JPH0380728B2 - - Google Patents

Info

Publication number
JPH0380728B2
JPH0380728B2 JP62180015A JP18001587A JPH0380728B2 JP H0380728 B2 JPH0380728 B2 JP H0380728B2 JP 62180015 A JP62180015 A JP 62180015A JP 18001587 A JP18001587 A JP 18001587A JP H0380728 B2 JPH0380728 B2 JP H0380728B2
Authority
JP
Japan
Prior art keywords
refractory
heat storage
wall
storage chamber
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62180015A
Other languages
Japanese (ja)
Other versions
JPS6424022A (en
Inventor
Kimio Hirata
Yasuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP62180015A priority Critical patent/JPS6424022A/en
Priority to US07/159,939 priority patent/US4874034A/en
Priority to FR888802684A priority patent/FR2611880B1/en
Publication of JPS6424022A publication Critical patent/JPS6424022A/en
Publication of JPH0380728B2 publication Critical patent/JPH0380728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • C03B5/2375Regenerator brick design ; Use of materials therefor; Brick stacking arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガラス溶融炉の蓄熱室に用いる耐火
物の形状に関するもので、特に溶融鋳造法により
作られる蓄熱室用耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the shape of a refractory used in a heat storage chamber of a glass melting furnace, and particularly to a refractory for a heat storage chamber made by a melt casting method.

従来の技術 ガラス溶融炉の吹出口から排出された排ガス
は、蓄熱室に導かれて蓄熱室用耐火物を加熱す
る。この際、高温の排ガスから耐火物への伝熱は
輻射伝熱が主体である。
BACKGROUND ART Exhaust gas discharged from the outlet of a glass melting furnace is guided to a heat storage chamber and heats a refractory for the heat storage chamber. At this time, heat transfer from the high-temperature exhaust gas to the refractory is mainly through radiation heat transfer.

これに反し、予熱された耐火物により冷めた空
気を加熱する場合には、専ら対流による伝熱に依
存しなければならない。その為に蓄熱室用耐火物
は大きな比表面積を持つことが極めて重要であ
り、空気の流れも層流よりはむしろ乱流であるこ
とが望ましい。
In contrast, when heating cold air with preheated refractories, one must rely exclusively on convective heat transfer. For this reason, it is extremely important that the refractory for the heat storage chamber have a large specific surface area, and it is desirable that the air flow be turbulent rather than laminar.

これらの蓄熱室用耐火物の形状は、一般的には
角柱状のものが用いられるが、従来では十字形の
ものや角筒形(実開昭53−56452号公報及び特開
昭55−149139号公報参照)のものが開示されてい
る。またこれらの一部は溶融鋳造法による耐火物
即ち一般に電鋳耐火物と称されるもので形成され
ていた。
The shape of these refractories for heat storage chambers is generally prismatic, but in the past, they were cross-shaped or prismatic (cylindrical) (Refer to Publication No. 2006) has been disclosed. Further, some of these were made of refractories made by melt casting, that is, what is generally called electrocast refractories.

第5図は特開昭55−149139号公報に開示された
もので角筒状のものである。これは八角形の外輪
部30と、積断面において中心を通る四角形の流
路40を有し、ほぼ均一な壁厚みを有している。
FIG. 5 shows the one disclosed in Japanese Patent Application Laid-Open No. 149139/1983, which has a rectangular cylindrical shape. This has an octagonal outer ring 30 and a square flow path 40 passing through the center in cross section, and has a substantially uniform wall thickness.

使用に際し、これ等の多数を互いの稜面50が
接するように並べて層を作り、この層を垂直に数
段重ねることにより上下に通じた断面四角形の流
路を多数作つている。そしてこの流路の中を高温
の排ガスと冷えた空気を交互に流して熱交換を行
つている。
In use, a large number of these are lined up so that their ridge faces 50 are in contact with each other to form a layer, and by stacking these layers vertically in several stages, a large number of vertically communicating flow channels with a square cross section are created. Heat exchange is performed by alternately flowing hot exhaust gas and cold air through this flow path.

例えば従来の耐火物の比表面積を第5図を使つ
て説明する。
For example, the specific surface area of conventional refractories will be explained using FIG.

第5図では個々の耐火物は八角形外輪部30を
持ち稜の部分(稜面50)で互いに隣接してい
る。そしてこのような状態では、ガス流路は個々
の耐火物の内側に断面四角形の内側流路40と、
外側に他の4個の耐火物で囲まれた断面四角形の
外側流路60の2種類の流路として形成される。
ここで耐火物の全表面積の内、蓄熱室用耐火物と
して熱交換に関与するのは内側、外側の流路4
0,60に接している部分のみである。
In FIG. 5, the individual refractories have an octagonal outer ring portion 30 and are adjacent to each other at the edge portion (edge surface 50). In such a state, the gas flow path has an inner flow path 40 with a square cross section inside each refractory,
Two types of flow channels are formed: an outer flow channel 60 having a rectangular cross section and surrounded by other four refractories on the outside.
Of the total surface area of the refractory, the inner and outer channels 4 are involved in heat exchange as the refractory for the heat storage chamber.
This is only the part that touches 0 and 60.

したがつてここでいう比表面積とは、耐火物1
個の外輪部30(外輪殻)の寸法から計算される
体積(嵩)に対する、内側、外側の流路40,6
0に直接接している部分の面積の割合とする。し
たがつて上、下面及び稜面の面積は含まれない。
Therefore, the specific surface area here refers to the refractory 1
The inner and outer flow paths 40, 6 with respect to the volume (bulk) calculated from the dimensions of the outer ring portion 30 (outer ring shell)
It is the ratio of the area of the part that is in direct contact with 0. Therefore, the areas of the top, bottom, and ridge surfaces are not included.

このような定義のもとで第5図の比表面積を計
算すると、第5図の耐火物の1個の寸法が内側流
路40の断面においてたとえば150mm×150mm、壁
厚みが4mm、高さ140mmである場合、比表面積は、 0.15×0.14×8/(0.23×0.23−2×0.04×0.04)×0.
14 =24.1m2/m2 と計算される。
Calculating the specific surface area in Fig. 5 based on this definition, the dimensions of one refractory in Fig. 5 are, for example, 150 mm x 150 mm in cross section of the inner channel 40, wall thickness 4 mm, and height 140 mm. , the specific surface area is 0.15×0.14×8/(0.23×0.23−2×0.04×0.04)×0.
14 = 24.1m 2 /m 2 is calculated.

発明が解決しようとする問題点 しかしながら、上記技術においては比表面積に
おいて未だ不足し、いつそうの改善が要請されて
いた。しかも、気体の流路壁はほぼ平滑であるた
め、ガス流は層流として流れ乱流とはならず、対
流伝熱を有効に行わせしめることが困難であつ
た。
Problems to be Solved by the Invention However, the above technology still lacks in specific surface area, and there has been a constant need for improvement. Furthermore, since the walls of the gas flow path are substantially smooth, the gas flow is laminar and does not become turbulent, making it difficult to effectively conduct convective heat transfer.

さらに、この蓄熱室用耐火物は使用に際し稜面
で互いに接触するように配置されるが、この稜面
が平滑であるために滑り易く全体として安定な構
造にはならなかつた。その結果高く積み上げたと
き外力によつて崩れやすかつた。このようなこと
から、蓄熱室の能力及び安全性が低かつた。
Furthermore, during use, the refractories for the heat storage chamber are arranged so that their ridges are in contact with each other, but since these ridges are smooth, they tend to slip easily and the structure as a whole is not stable. As a result, when stacked high, they were prone to collapse due to external forces. For this reason, the capacity and safety of the heat storage chamber were low.

発明の目的 本発明は上記問題点を解消するためになされた
ものであり、ガス流を有効に対流伝熱させ、高く
積み上げたとき外力により崩れ難い蓄熱室用耐火
物を提供することを目的としている。
Purpose of the Invention The present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a refractory for a heat storage chamber that effectively conducts convective heat transfer in a gas flow and is resistant to collapse due to external force when stacked high. There is.

発明の要旨 本発明の蓄熱室用耐火物は、特許請求の範囲を
要旨としている。
Summary of the Invention The refractory for a heat storage chamber of the present invention is summarized in the claims.

問題点を解決するための手段 本発明の蓄熱室用耐火物は、第1図に示すよう
に外輪郭1が八角形の筒形である。この筒形の内
側と外側をガスが流れるようになつている。この
ような蓄熱室用耐火物では、内側流路を形成して
いる耐火物の内壁部1d、外側流路を形成してい
る外壁部1c、他の蓄熱室用耐火物との接合面を
形成している稜面部8が、それぞれ前記ガスの流
路と垂直に凹凸5,4,6を有する。これらの凹
凸4,5,6は、蛇腹状に山と谷が交互に連続
し、かつ山の稜線の方向が、前記内壁部1dでは
蓄熱室用耐火物の上面1aと下面1bに垂直であ
り、外壁部1cと稜面部8では上面1aと下面1
bに平行である。
Means for Solving the Problems The refractory for a heat storage chamber of the present invention has a cylindrical shape with an octagonal outer contour 1, as shown in FIG. Gas flows inside and outside this cylindrical shape. In such a refractory for a heat storage chamber, an inner wall portion 1d of the refractory forming an inner flow path, an outer wall portion 1c forming an outer flow path, and a joint surface with other refractories for a heat storage chamber are formed. The ridge surface portion 8 has unevenness 5, 4, and 6 perpendicular to the gas flow path, respectively. These unevennesses 4, 5, and 6 have a continuation of alternating peaks and valleys in a bellows shape, and the direction of the ridgeline of the peaks is perpendicular to the upper surface 1a and lower surface 1b of the refractory for the heat storage chamber in the inner wall portion 1d. , the upper surface 1a and the lower surface 1 in the outer wall portion 1c and the ridge surface portion 8.
parallel to b.

作 用 このように内壁部及び外壁部にガス流路と垂直
に凹凸を付すことによつて全体の比表面積を増大
させることができる。さらに外壁部に設けた凹凸
は、ガス流に乱流を起すように作用し、かつ稜面
に設けた凹凸は、隣接する他の蓄熱室用耐火物と
噛み合つて滑りのない安定な積み構造を提供する
ことができる。
Effect By providing the inner wall portion and the outer wall portion with irregularities perpendicular to the gas flow path in this manner, the overall specific surface area can be increased. Furthermore, the unevenness provided on the outer wall acts to cause turbulence in the gas flow, and the unevenness provided on the ridge surface meshes with other adjacent refractories for the heat storage chamber, creating a stable stacked structure with no slippage. can be provided.

実施例 第1図と第2図は本発明の蓄熱室用耐火物を示
しており、八角形外輪郭1と、積断面言換れば上
面1aと下面1bにおいて中心を通る四角形の内
側流路7を持つている。この内側流路7の寸法例
をあげれば、たて、よこがそれぞれ150mmである。
そして外輪郭1の壁の厚みWは、たとえばほぼ40
mmである。この蓄熱室用耐火物は溶融鋳造法によ
り作られている。
Embodiment FIGS. 1 and 2 show a refractory for a heat storage chamber according to the present invention, which has an octagonal outer contour 1 and a rectangular inner channel passing through the center in the cross section, that is, the upper surface 1a and the lower surface 1b. I have 7. To give an example of the dimensions of this inner flow path 7, the vertical and horizontal dimensions are each 150 mm.
The wall thickness W of the outer contour 1 is, for example, approximately 40
mm. This refractory for a heat storage chamber is made by a melt casting method.

この製造工程の概略を説明すると、フエノール
樹脂等の結合剤で耐火砂を固めてつくつた内側流
路の形をした中子と、この中子の周囲を囲むよう
に同一材質の外型を配置して製品(耐火物)と同
形の空間を造り、この空間に溶融耐火物を流し込
み、次いで徐冷、固化させる。そして徐冷後に高
熱により弱く焼結した中子及び外型を崩しながら
除去し製品を取り出す。
To explain the outline of this manufacturing process, there is a core in the shape of an inner channel made by solidifying refractory sand with a binder such as phenol resin, and an outer mold made of the same material is placed around this core. A space with the same shape as the product (refractory) is created, the molten refractory is poured into this space, and then slowly cooled and solidified. After slow cooling, the core and outer mold, which have been weakly sintered due to high heat, are broken and removed to take out the product.

このようにして製作した耐火物の上面1aと下
面1bを除く他の外壁部1c及び内壁部1d及び
稜面部8にはそれぞれ凹凸4及び凹凸5及び凹凸
6を設けてある。これ等の凹凸4,5,6の形状
は蛇腹状である。凹凸4,5,6の高さhがたと
えば10mmの山と谷が交互に連続した形状である。
たとえば、内壁部1d側の山の底辺の長さが20mm
であり、外壁部1c側の山の底辺の長さが40mmで
ある。
Apart from the upper surface 1a and lower surface 1b of the refractory produced in this way, the outer wall 1c, inner wall 1d, and ridge surface 8 are provided with unevenness 4, unevenness 5, and unevenness 6, respectively. The shapes of these unevenness 4, 5, and 6 are bellows-like. The height h of the unevenness 4, 5, and 6 is, for example, 10 mm, and the shape is a series of alternating peaks and valleys.
For example, the length of the base of the mountain on the inner wall 1d side is 20 mm.
The length of the base of the mountain on the outer wall portion 1c side is 40 mm.

これらの山の稜線は、内壁部1dでは上面1a
と下面1bに垂直である。そして、耐火物の高さ
Hはたとえば140mmである。第2図は第1図のA
−A線における断面を示すもので第1図の理解を
助けるものである。第2図のWは内壁部1d側の
山の頂と外壁部1c側の山の頂の距離を示してい
る。
The ridgelines of these mountains are located on the upper surface 1a of the inner wall portion 1d.
and is perpendicular to the lower surface 1b. The height H of the refractory is, for example, 140 mm. Figure 2 is A of Figure 1.
-A cross section taken along the line A is shown to aid understanding of FIG. 1. W in FIG. 2 indicates the distance between the top of the mountain on the inner wall portion 1d side and the top of the mountain on the outer wall portion 1c side.

第3図と第4図は本発明の複数の耐火物が接合
されたときの稜面部における接合部分を示す図で
ある。これ等の稜面部8には、内壁部1d及び外
壁部1cに設けた凹凸5,4と同様の蛇腹状の凹
凸6を設けてある。左側の耐火物は右側の耐火物
と稜面部8,8において噛み合うようになつてい
る。そしてこの図の紙面において、左側の耐火物
は天地を逆にすると右側の耐火物となる。即ち全
て同一形状の耐火物で第3図の如き耐火物煉瓦の
組み合わせが可能となるように山と谷の配置がな
されている。
FIG. 3 and FIG. 4 are diagrams showing a joint portion at a ridge surface when a plurality of refractories of the present invention are joined. These ridge portions 8 are provided with bellows-shaped unevenness 6 similar to the unevenness 5 and 4 provided on the inner wall portion 1d and the outer wall portion 1c. The refractory on the left side engages with the refractory on the right side at the ridge portions 8, 8. In this figure, if the refractory on the left side is turned upside down, it becomes the refractory on the right side. That is, the peaks and valleys are arranged so that it is possible to combine refractory bricks as shown in FIG. 3 using refractories all having the same shape.

その結果、この実施例の蓄熱室用耐火物では比
表面積は 4×0.15×0.14×√2+4×0.15×0.14×1.115/(0.2
3×0.23−2×0.04×0.04)×0.14 =30.5m2/m3 に達した。
As a result, the specific surface area of the heat storage chamber refractory of this example was 4×0.15×0.14×√2+4×0.15×0.14×1.115/(0.2
3×0.23−2×0.04×0.04)×0.14 = 30.5m 2 /m 3 was reached.

これをガス流路壁面に凹凸を設けていない従来
技術のもの(壁厚み40mmで150×150mm)の流路断
面、高さ150mm)の前記値24.1m2/m3と較べると、
実に26.5%も比表面積が増大した。
Comparing this with the above value of 24.1 m 2 /m 3 for a conventional gas flow passage with no unevenness on the wall (wall thickness: 40 mm, flow passage cross section: 150 x 150 mm, height: 150 mm).
In fact, the specific surface area increased by 26.5%.

ところで本発明は上述した実施例に限定されな
い。凹凸の形は三角形状の山と谷に限らない。山
の高さhは内壁部1dと外壁部1cで異なること
ができる。
However, the present invention is not limited to the embodiments described above. The shape of the unevenness is not limited to triangular peaks and valleys. The height h of the peak can be different between the inner wall portion 1d and the outer wall portion 1c.

さらに内壁部1dに少しテーパをつけると、製
造時に中子の取り除きが容易になるる。
Furthermore, if the inner wall portion 1d is slightly tapered, the core can be easily removed during manufacturing.

発明の効果 以上説明したことから明らかなように、この耐
火物の外壁部及び内壁部に設けた凹凸は、凹凸を
付さない壁面より実施例によれば比表面積を約27
%増大することができた。
Effects of the Invention As is clear from the above explanation, the unevenness provided on the outer wall and inner wall of this refractory has a specific surface area of about 27
% could be increased.

一方この耐火物は水平方向及び上下方向に多数
を組み合わせて使用されるものであり、その時に
は個々の耐火物の外壁部はガス流が流れる外側ガ
ス流路を構成し、内壁部は内側ガス流路を構成す
る。そして外壁部、及び内壁部はそれ等と接する
高温のガス流と熱交換を行う状況にある。
On the other hand, these refractories are used in combination horizontally and vertically, and in that case, the outer wall of each refractory constitutes an outer gas passage through which gas flows, and the inner wall constitutes an inner gas flow passage. constitute a road. The outer wall and the inner wall are in a state of exchanging heat with the high-temperature gas flow in contact with them.

このような状況下では、本発明の耐火物は外壁
部にはガス流路と垂直に凹凸が設けられており、
かつこれらの凹凸は蛇腹状に山と谷が交互に連続
し、山の稜線がこの耐火物の上下面に平行である
特徴を持つているからその結果、外側流路を通る
ガス流は著しい乱流となりガス流と耐火物との間
の熱交換能を増大すことになる。
Under such circumstances, the refractory of the present invention has irregularities perpendicular to the gas flow path on the outer wall,
In addition, these irregularities have a bellows-like series of alternating peaks and valleys, and the ridgelines of the peaks are parallel to the upper and lower surfaces of this refractory, resulting in significant turbulence in the gas flow passing through the outer flow path. This will increase the heat exchange capacity between the gas stream and the refractory.

特に使用に際し、上下方向の各段をガス流が外
側流路と内側流路を交互に通るように積むことに
よつて外壁部で起きた乱流は内壁部にも順次作用
し、内壁部での熱交換能も増大する。この結果、
上述の比表面積の増大との相乗効果により耐火物
全体の熱交換能が著しく増大することになる。
In particular, during use, by stacking each stage in the vertical direction so that the gas flow passes through the outer flow path and the inner flow path alternately, the turbulent flow that occurs on the outer wall sequentially acts on the inner wall. The heat exchange capacity of is also increased. As a result,
The synergistic effect with the above-mentioned increase in specific surface area results in a significant increase in the heat exchange capacity of the entire refractory.

また稜面に設けた凹凸は互いに隣接する耐火物
とその部分でしつかり噛み合うことにより一体と
なる。この結果、力学的に極めて安定し、高く積
み上げても容易に崩れることがない。したがつて
蓄熱室の能力及び安全性が向上する。
Moreover, the unevenness provided on the ridge surface becomes one with the adjacent refractory material by firmly interlocking with the adjacent refractory material. As a result, they are extremely stable mechanically and do not easily collapse even when stacked high. Therefore, the capacity and safety of the heat storage chamber are improved.

さらにこの耐火物の内壁部はこの耐火物の上下
面に対して垂直な面のみで構成されているので、
この部分の鋳型の製作及び鋳造後の鋳型の取り除
き容易であるという利点も有している。さらに内
壁部に少しテーパをつけると、さらに鋳型の取り
除きが容易になる。
Furthermore, since the inner wall of this refractory consists of only surfaces perpendicular to the upper and lower surfaces of this refractory,
Another advantage is that it is easy to manufacture a mold for this part and to remove the mold after casting. Additionally, if the inner wall is slightly tapered, removal of the mold will become even easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蓄熱室用耐火物の実施例
を示す斜視図、第2図は第1図のA−A線におけ
る断面図、第3図は上記耐火物の実施例が複数接
合されたときの稜面における接合部を示す平面
図、第4図はその接合部のB−B線における断面
図、第5図は従来の耐火物が配置された状態を示
す平面図である。 1…外輪郭、1a…上面、1b…下面、1c…
外壁部、1d…内壁部、4,5,6…凹凸、7…
流路、8…稜面部。
FIG. 1 is a perspective view showing an embodiment of the refractory for a heat storage chamber according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. FIG. 4 is a sectional view taken along the line B-B of the joint, and FIG. 5 is a plan view showing a state in which conventional refractories are arranged. 1...outer contour, 1a...top surface, 1b...bottom surface, 1c...
Outer wall part, 1d... Inner wall part, 4, 5, 6... Unevenness, 7...
Channel, 8... ridge surface portion.

Claims (1)

【特許請求の範囲】[Claims] 1 外輪郭が八角形の筒形をしており、この筒形
の内側及び外側をガスが流れるような蓄熱室用耐
火物において、内側流路を形成している耐火物の
内壁部、及び外側流路を形成している外壁部、及
び他の蓄熱室用耐火物との接合面を形成している
稜面が、それぞれ流路と垂直に凹凸を持ち、か
つ、これらの凹凸は蛇腹状に山と谷が交互に連続
し、かつ山の稜線の方向が、前記内壁部ではこの
蓄熱室用耐火物の上下面に垂直であり、外壁部及
び稜面では上下面に平行であることを特徴とする
蓄熱室用耐火物。
1. In a refractory for a heat storage chamber that has a cylindrical shape with an octagonal outer contour and gas flows inside and outside the cylindrical shape, the inner wall of the refractory forming the inner flow path and the outer side The outer wall forming the flow path and the ridge surface forming the joint surface with other refractories for the heat storage chamber each have unevenness perpendicular to the flow path, and these unevenness have a bellows shape. Mountains and valleys are continuous alternately, and the direction of the ridgeline of the mountain is perpendicular to the upper and lower surfaces of the refractory for heat storage chamber in the inner wall portion, and parallel to the upper and lower surfaces in the outer wall portion and the ridge surface. Refractories for heat storage chambers.
JP62180015A 1987-03-03 1987-07-21 Refractory material for regenerator Granted JPS6424022A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62180015A JPS6424022A (en) 1987-07-21 1987-07-21 Refractory material for regenerator
US07/159,939 US4874034A (en) 1987-03-03 1988-02-24 Refractory unit for a heat regenerator
FR888802684A FR2611880B1 (en) 1987-03-03 1988-03-03 REFRACTORY UNIT FOR A HEAT RECOVERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62180015A JPS6424022A (en) 1987-07-21 1987-07-21 Refractory material for regenerator

Publications (2)

Publication Number Publication Date
JPS6424022A JPS6424022A (en) 1989-01-26
JPH0380728B2 true JPH0380728B2 (en) 1991-12-25

Family

ID=16075967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62180015A Granted JPS6424022A (en) 1987-03-03 1987-07-21 Refractory material for regenerator

Country Status (1)

Country Link
JP (1) JPS6424022A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258636A (en) * 1988-12-23 1990-10-19 Osamu Takezaki Checker block
JP2628403B2 (en) * 1990-09-13 1997-07-09 東芝モノフラックス株式会社 Refractory segment for heat storage room
JP2016080315A (en) * 2014-10-22 2016-05-16 株式会社デンソー Heat storage member

Also Published As

Publication number Publication date
JPS6424022A (en) 1989-01-26

Similar Documents

Publication Publication Date Title
CN101836051A (en) Metallic porous body incorporated by casting into a heat exchanger
US4651810A (en) Checkerwork for upright regeneration chambers of a glass melting furnace
JPS6324240B2 (en)
JPH0380728B2 (en)
EP0832406B1 (en) Brick for heat exchangers
US1521216A (en) Kiln car
US4150717A (en) Interlocking checker tile
US4874034A (en) Refractory unit for a heat regenerator
JP2628403B2 (en) Refractory segment for heat storage room
JPH0231307B2 (en)
US4378045A (en) Interlocking checker tile and supporting means for regenerative heating stoves
KR20100124780A (en) Checker brick
RU2289549C2 (en) Refractory ceramic checker bricks
US1916458A (en) Checker construction
JPS5983939A (en) Hollow refractory brick for grate in regenerative chamber of regenerative heating furnace
GB2122328A (en) Refractory brick
JP2639593B2 (en) Empty stack of refractories for heat storage
WO2018096863A1 (en) Heat storage device, glass melting device, and glass article manufacturing method
JPH0251430A (en) Dry masonry structure of refractory body for heat accumulating chamber
EP0137430B1 (en) Chequer-brick for vertical cowpers and cowper chequerwork constructed from these chequer-bricks
JPH0380729B2 (en)
US4527617A (en) Regenerator checker packing with enhanced transverse flow
US4330269A (en) Refractory sagger
JPS6333119Y2 (en)
JPS6057182A (en) Electromagnetic induction crucible furnace for die casting

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 16