WO2018095338A1 - 用于检测冰箱内是否放入温度异常物品的方法 - Google Patents

用于检测冰箱内是否放入温度异常物品的方法 Download PDF

Info

Publication number
WO2018095338A1
WO2018095338A1 PCT/CN2017/112393 CN2017112393W WO2018095338A1 WO 2018095338 A1 WO2018095338 A1 WO 2018095338A1 CN 2017112393 W CN2017112393 W CN 2017112393W WO 2018095338 A1 WO2018095338 A1 WO 2018095338A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
value
storage space
abnormal
collected
Prior art date
Application number
PCT/CN2017/112393
Other languages
English (en)
French (fr)
Inventor
李春阳
崔文玲
刘明勇
苗建林
王铭
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2018095338A1 publication Critical patent/WO2018095338A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/06Stock management
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile

Definitions

  • the present invention relates to a refrigerating and freezing apparatus, and more particularly to a method for detecting whether an abnormal temperature item is placed in a refrigerator.
  • Conventional refrigerators typically sense the temperature around their arrangement using a temperature sensor disposed inside the storage compartment, which is used as a basis for refrigeration control.
  • the refrigerator control is performed using this control method, the refrigerator starts cooling when the temperature measured by the temperature sensor is higher than a preset value.
  • the storage compartment is divided into a plurality of relatively independent storage spaces by the shelf partition
  • the hot food Putting in the temperature that affects the storage space in which it is stored will allow the various bacteria that originally exist in the food inside the refrigerator to grow faster, which is not conducive to the healthy and safe preservation of food; on the other hand, if it is to the storage room Indiscriminate cooling as a whole can result in wasted energy and slow down the storage space in which hot food is placed.
  • the present invention has been made in order to overcome the above problems or at least partially solve the above problems.
  • Another further object of the invention is to improve the accuracy of the refrigeration control of the refrigerator.
  • the present invention provides a method for detecting whether or not a temperature abnormality item is placed in a refrigerator, wherein the refrigerator includes: a case that is internally divided into a plurality of storage spaces, and is disposed at a front portion of the case a door body, and a plurality of infrared sensors respectively sensing temperature of the plurality of storage spaces, and the method comprises:
  • the storage space corresponding to the infrared sensor is likely to be placed An abnormal storage space of the abnormal temperature item, and acquiring a first temperature change value of the abnormal storage space before and after the temperature abnormality item may be placed;
  • the abnormal storage space is calculated before and after the external environment may be placed between the abnormal storage space.
  • the abnormal storage space may be placed in the n+1th and nth time collection values before and after the abnormal temperature item; when the number of the other infrared sensors does not occur is more than two, IR(n+ 1) and IR(n) are respectively the temperature values of the n+1th and nth acquisitions of the other infrared sensors that have not been mutated during the period before and after the abnormal storage space may be placed in the temperature abnormality item, or IR(n+1) and IR(n) are all other infrared rays that are not mutated, respectively
  • the average value of the temperature values acquired by the sensor at the n+1th and nth times before and after the abnormal storage space may be placed in the temperature abnormality item;
  • the step of determining whether the temperature value collected by the infrared sensor is abrupt comprises:
  • the absolute value of the difference between the currently collected temperature value and the last collected temperature value is greater than the abrupt value, it is determined that the currently collected temperature value is abrupt; otherwise, it is determined that the currently collected temperature value has not changed.
  • the temperature value of the abrupt infrared sensor is no longer involved in the temperature difference. And calculations.
  • the temperature difference sum calculation ends, and the second temperature change value is the last temperature difference summation. The result of the calculation.
  • the step of obtaining the first temperature change value includes:
  • the temperature value of the first or last acquisition of the infrared sensor corresponding to the abnormal storage space in the continuous M acquisition is recorded as the abnormal storage space after the temperature abnormality item may be placed Temperature value.
  • each of the infrared sensors performs the first time before and after the abnormal storage space may be placed in the abnormal temperature item. collection;
  • each of the infrared sensors performs the last acquisition before and after the abnormal storage space may be placed in the temperature abnormal item;
  • Using the infrared sensor to perform the first temperature difference summation calculation for the second time temperature value and the first time temperature value collected before and after the abnormal storage space may be placed in the temperature abnormal item;
  • Using the infrared sensor to perform the last temperature difference summation calculation when the temperature value last collected before and after the abnormal storage space may be placed in the abnormal temperature item and the last collected temperature value;
  • the second temperature change value is a result of the last temperature difference summation calculation.
  • the step of determining whether the abnormal temperature item is placed in the abnormal storage space according to the first temperature change value and the second temperature change value comprises:
  • the second preset value is greater than or equal to the mutation value.
  • the number of the infrared sensors is more than three;
  • Controlling the plurality of infrared sensors to collect temperature values is performed after the door body is opened for a predetermined time.
  • the method further includes:
  • a visual and/or audible signal is sent to alert the user;
  • the method for detecting whether an abnormal temperature item is placed in a refrigerator first determining whether there is an abnormal storage space in a plurality of storage spaces that may be placed in an abnormal temperature item, and further passing the abnormal storage space at a possible temperature
  • the first temperature change value before and after the abnormal item and the second temperature change value caused by the heat exchange between the external environment before and after the abnormal temperature item are placed, and whether the abnormal temperature item is placed in the abnormal storage space is determined.
  • the principle of determining whether an abnormal temperature item is placed in the abnormal storage space of the present invention mainly uses hot food and indoor and outdoor during the opening of the refrigerator door.
  • the heat exchange causes the temperature change of the storage space to be compared with the natural temperature change caused by the heat exchange between the inside and outside of the storage space of the refrigerator door to determine whether or not the overheated food is placed in a certain storage space.
  • the method of the present invention can more accurately determine whether an overheated food is placed in a certain storage space, and can alert the user when it is judged that the overheated food is placed in the storage space, so that the user is in an abnormal temperature condition.
  • the temperature tends to be normal before placing it in the refrigerator for storage. To some extent, avoid or reduce the adverse effects on the refrigerator and its storage due to the presence of hot items in the refrigerator.
  • the present invention can more accurately calculate the second temperature change value caused by the heat exchange between the abnormal environment and the external environment before and after the abnormal storage space is placed, thereby improving the present invention. Check the accuracy of whether the temperature is abnormal in the refrigerator.
  • the present invention can more accurately distinguish the reason why the temperature of the storage space rises during the opening of the door is because the food is placed at a higher temperature or the heat exchange is caused only by the natural convection between the external environment and the storage space, thereby It is beneficial to the refrigerator to carry out more reasonable and appropriate cooling control for specific situations.
  • FIG. 1 is a schematic structural view of a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a method for detecting whether a temperature abnormality item is placed in a refrigerator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method of determining whether a temperature value collected by an infrared sensor is abruptly changed according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method of acquiring a first temperature change value, in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method of acquiring a second temperature change value according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a method of determining whether a temperature abnormality item is placed in an abnormal storage space according to an embodiment of the present invention
  • Figure 7 is a detailed flow chart for detecting whether a temperature abnormality item is placed in a refrigerator in accordance with one embodiment of the present invention.
  • the refrigerator may generally include a case 110 and a plurality of infrared sensors 130.
  • the box body 110 may be surrounded by a top wall, a bottom wall, a rear wall and two left and right side walls.
  • a door body (not shown) is disposed in front of the box body 110, and the door body may be connected to the side wall by a pivot structure.
  • the interior of the tank 110 defines a storage compartment (eg, a refrigerating compartment).
  • the storage compartment may be partitioned into a plurality of storage spaces 140.
  • the storage compartment is separated into a plurality of storage spaces 140, for example, by a rack assembly 120.
  • the rack assembly 120 includes at least one horizontally disposed partition to divide the storage compartment into a plurality of storage spaces 140 in a vertical direction.
  • the rack assembly 120 includes a first partition, a second partition, and a third partition, wherein a first storage space is formed above the first partition, and between the first partition and the second partition A second storage space is formed, and a third storage space is formed between the second partition and the third partition.
  • the number of partitions in the rack assembly 120 and the number of storage spaces 140 may be pre-configured according to the volume of the refrigerator and the requirements for use.
  • a plurality of infrared sensors 130 are disposed inside the storage compartment for measuring the temperatures of the respective storage spaces 140, respectively.
  • Each infrared sensor 130 corresponds to a storage space 140 to detect the temperature in the storage compartment.
  • the number of infrared sensors 130 is set according to the number of storage spaces 140, and each storage space 140 may be provided with an infrared sensor 130.
  • the inventors conducted a large number of tests on the installation position of the infrared sensor 130, and obtained the infrared sensor 130. Preferred installation location and its preferred configuration.
  • the infrared sensor 130 is at a height of one-half of the height of the storage space 140 in its storage space 140 (more preferably, it is higher than or two-thirds of the overall height of the storage space 140), infrared
  • the infrared receiving center line of the sensor 130 is set to a range of 70 degrees to 150 degrees with respect to the vertical direction (more preferably, the range is 76 degrees to 140 degrees); and the horizontal projection of the infrared receiving center line of the infrared sensor 130 and the side thereof
  • the angle of the wall is set to range from 30 degrees to 60 degrees (more preferably from 30 degrees to 45 degrees).
  • the infrared sensor 130 does not emit infrared rays, but passively receives infrared rays and background infrared rays emitted by the articles in the sensing range, directly senses the change region and temperature of the temperature of the articles in the storage space 140, and converts them into corresponding electrical signals.
  • the measurement results of two adjacent infrared sensors 130 can be calculated to obtain the temperature rise of each storage space 140, and then according to the temperature rise of the storage space 140. It is determined whether a certain storage space 140 is placed in an abnormal temperature item.
  • the temperature abnormality item herein is an item whose temperature is too high (for example, a temperature of 40 ° C or higher).
  • the refrigerator is provided with more than three storage spaces 140, and correspondingly, the refrigerator is provided with three or more infrared sensors 130. Since the temperature abnormality items are placed at most in the two storage spaces 140 of the refrigerator at the same time, even if the two storage spaces 140 simultaneously place the temperature abnormal items, the other storage spaces 140 are not placed with the temperature abnormal items at the same time.
  • the method for detecting whether an abnormal temperature item is placed in the refrigerator may generally include:
  • Step S102 after the door body is opened, the plurality of infrared sensors 130 are controlled to collect the temperature value.
  • Step S104 determining whether there is a sudden change in the temperature value collected by any of the infrared sensors 130 during the opening of the door; if yes, determining that the storage space 140 corresponding to the infrared sensor 130 is an abnormal storage space that may be placed in the abnormal temperature item, and performing the steps S106.
  • Step S106 Acquire a first temperature change value of the abnormal storage space before and after the temperature abnormality item may be placed, and a second temperature change value caused by heat exchange between the abnormal storage space before and after the temperature abnormality item may be placed due to the external environment.
  • Step S108 determining whether a temperature abnormality item is placed in the abnormal storage space according to the first temperature change value and the second temperature change value.
  • the opening and closing state of the door body can be detected by the door opening detecting device of the refrigerator.
  • the door opening detecting device can detect by using a fan switch, a magnetic sensitive switch, a Hall switch, and the like, and generate different electrical signals when the door body is completely closed or opened to indicate the state of the door body.
  • the plurality of infrared sensors 130 may be controlled to collect temperature values after the door is opened for a predetermined time.
  • the preset time can be, for example, 2 to 3 seconds.
  • the infrared sensor 130 collects the temperature value just after the door body is opened, and delays for a predetermined time to avoid a sudden change in the temperature value collected by the infrared sensor 130 due to the airflow disturbance.
  • the infrared sensor 130 can perform an acquisition every 0.1 ms (this value can be flexibly adjusted). Multiple infrared sensors 130 can simultaneously acquire.
  • the process of determining whether the temperature value collected by the infrared sensor 140 has abrupt changes in the step S104 includes a plurality of, and a preferred manner can be referred to the steps S1041 to S1043 shown in FIG.
  • step S1041 it is determined whether the absolute value of the difference between the temperature value currently collected by the infrared sensor 140 and the last collected temperature value is greater than a preset abrupt value; if yes, step S1042 is performed; if not, step S1043 is performed.
  • step S1042 it is determined that the currently collected temperature value is abrupt.
  • step S1043 it is determined that the currently collected temperature value has not changed.
  • the magnitude of the mutation value can be obtained experimentally.
  • the difference between the temperature values detected by the infrared sensor 130 adjacent to the infrared sensor 130 caused by the heat exchange between the external environment during the opening of the storage space 140 (the difference may be recorded as the first difference) ) can be obtained by extensive testing of the refrigerator.
  • the difference in temperature values of the two adjacent detections of the infrared sensor 130 caused by the heat exchange between the storage space 140 and the external environment during the opening of the storage space (the difference) It can be recorded as the second difference) should be greater than the first difference described above.
  • the difference between the temperature values detected by the infrared sensor 130 twice can be used as a reference value of the abrupt value.
  • the mutation value can be set, for example. Set to 0.6 ° C or 0.7 ° C and so on.
  • an optional process of step S104 is: comparing the temperature collected by the plurality of infrared sensors 130 at the same acquisition time or the same collection point or the same collection time, if the temperature value collected by an infrared sensor If the temperature value collected by the other infrared sensors 130 is significantly higher, it is determined that the temperature value collected by the infrared sensor 130 having the high temperature value is abrupt.
  • step S104 if the temperature values collected by all the infrared sensors 130 are not abruptly changed during the opening of the door body, it is determined that the plurality of storage spaces 140 are not placed in the temperature during the opening of the door body. Unusual items.
  • step S106 the flow of acquiring the first temperature change value includes a plurality of, and a preferred manner may be referred to step S1061 to step S1064 shown in FIG.
  • Step S1061 recording the first temperature value collected by the infrared sensor 130 corresponding to the abnormal storage space before the sudden change of the collected temperature value, as the temperature value of the abnormal storage space before the temperature abnormality item may be placed, wherein E ⁇ 2.
  • E may be, for example, 2, 3, 4, 5, or the like.
  • Step S1062 determining that the infrared sensor 130 corresponding to the abnormal storage space has a temperature value that is consistent with the M times after the sudden change of the collected temperature value, and the absolute value of the difference between the temperature values of the two adjacent acquisitions is smaller than the first pre-preparation. If the value is set, the process proceeds to step S1063.
  • step S1063 the second temperature value collected by the infrared sensor 130 corresponding to the abnormal storage space at any time in the continuous M acquisition is recorded as the temperature value of the abnormal storage space after the temperature abnormality item may be placed.
  • Step S1064 calculating a difference between the second temperature value and the first temperature value as the first temperature change value.
  • M ⁇ 3 and the first preset value is less than or equal to the abrupt value.
  • M can be, for example, 3, 4, 5, 6, and the like.
  • the size of the first preset value can be obtained experimentally.
  • the temperature in the abnormal storage space first rises at a faster rate, and then tends to be stably warmed up.
  • the temperature value of the corresponding infrared sensor 130 collected in any of the consecutive M acquisitions satisfies the difference between the temperature values of the adjacent two acquisitions is smaller than the first value.
  • the temperature value collected at any one of the continuous M acquisitions can be used as the temperature of the abnormal storage space after the temperature abnormality item may be placed.
  • the first preset value can be set, for example, to 0.5 ° C or 0.4 ° C or the like.
  • the second temperature value is a temperature value of the first or last acquisition of the infrared sensor 130 corresponding to the abnormal storage space in successive M acquisitions. Therefore, in step S1063, the temperature value of the first or last acquisition of the infrared sensor 130 corresponding to the abnormal storage space in the continuous M acquisition is recorded as the temperature value of the abnormal storage space after the temperature abnormality item may be placed. .
  • the first temperature value collected by the infrared sensor 130 corresponding to the abnormal storage space before the sudden change in the collected temperature value is recorded as an abnormal storage space in the temperature abnormality item.
  • Pre-war The second value of the infrared sensor 130 corresponding to the abnormal storage space is collected at any time in the continuous M acquisition, and is used as the temperature value of the abnormal storage space after the temperature abnormality item may be placed.
  • the temperature value of the infrared sensor 130 corresponding to the abnormal storage space is abruptly changed in the Hth time (for example, the absolute value of the difference between the temperature value collected in the Hth time and the temperature value collected in the H-1th time is greater than Mutation value), then it collects the first temperature value at the HE time, where H>E and E ⁇ 2.
  • the first temperature value may be recorded as IR1 (HE) or IR1 (1), where IR1 (HE) represents the temperature value of the infrared sensor 130 corresponding to the abnormal storage space at the HE acquisition, and IR1 (1) represents the abnormal storage space.
  • the temperature value corresponding to the first time that the corresponding infrared sensor 130 collects before and after the abnormal storage space may be placed in the temperature abnormality item.
  • the infrared sensor 130 corresponding to the abnormal storage space collects a second temperature value at its Qth collection point, where Q>H.
  • the second temperature value may be recorded as IR1(Q) or IR1(Q-H+E+1), where IR1(Q) represents the temperature value of the Qth acquisition of the infrared sensor 130 corresponding to the abnormal storage space, IR1 (Q) -H+E+1) indicates the temperature value of the Q-H+E+1 or the last acquisition of the infrared sensor 130 corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the temperature abnormality item.
  • the abnormal storage space should be understood as an abnormal storage space corresponding to the infrared sensor 130 during the period from the acquisition of the first temperature value until the end of the acquisition of the second temperature value, that is, the infrared sensor 130 is in the period of the abnormal temperature.
  • the infrared sensor 130 is in the period of the abnormal temperature.
  • IR(n+1) and IR(n) are the temperature values of the n+1th and nth acquisitions of the other infrared sensors that have not been mutated, respectively, before and after the abnormal storage space may be placed in the temperature abnormality item.
  • IR(n+1) and IR(n) are any other infrared sensors that are not mutated, respectively, may be placed in the abnormal storage space.
  • the temperature values of the n+1th and nth acquisitions before and after the temperature abnormality items, or IR(n+1) and IR(n) are all the other infrared sensors that are not mutated, respectively, in the abnormal storage space.
  • the average of the temperature values collected at the n+1th and nth times before and after the abnormal temperature items are placed.
  • the second temperature change value caused by heat exchange with The method further includes: if it is determined that there is an infrared sensor in the other infrared sensor that has a sudden change in the temperature value before performing each temperature difference sum calculation, the temperature value collected by the abrupt infrared sensor is no longer involved in the temperature difference summation Calculation.
  • the temperature value of the sudden change and the subsequent collected temperature value will be No longer participate in the temperature difference sum calculation.
  • S the Sth temperature difference summation calculation
  • the temperature currently collected by the one or more other infrared sensors The value does not participate in the S-th temperature difference summation calculation, and the temperature value acquired thereafter does not participate in the subsequent temperature difference summation calculation. It is no longer necessary to judge whether the temperature values collected by other infrared sensors that have undergone mutations are abrupt before each subsequent temperature difference sum calculation.
  • the method for performing the second temperature change value caused by the heat exchange between the heat exchanges includes: before the temperature difference summation calculation is performed, if the temperature values collected by the other infrared sensors are excessively changed, the temperature difference sum calculation ends.
  • the second temperature change value is a result of the last temperature difference summation calculation.
  • the temperature difference summation calculation ends, and the temperature difference summation calculation (ie, the Xth time) is no longer performed.
  • the temperature difference summation result of the X-1th time is the second temperature change value.
  • the number of infrared sensors 130 is three, namely a first infrared sensor (represented by IR1), a second infrared sensor (represented by IR2), and a third infrared sensor (represented by IR3), respectively.
  • a preferred flow for calculating the second temperature change value of the abnormal storage space due to heat exchange between the external environment and the external environment before and after the abnormal temperature storage item may be used by using the temperature difference summation formula may be specifically referred to step S1601 shown in FIG. Step S1608.
  • Step S1602 determining whether the temperature value of the second time collected by IR2 and/or IR3 during the abnormal storage space may be placed in the temperature abnormality item; if not (ie, IR2 and IR3 may be placed in abnormal temperature in the abnormal storage space)
  • step S1603 and step S1604 are sequentially executed.
  • the temperature values of the second and first collections during the abnormal storage space before and after the temperature abnormality items may be placed; IR3(2) and IR3(1) are respectively IR3 may be placed in the abnormal storage space.
  • step S1604 it is determined whether the temperature value of the third time that IR2 and/or IR3 is collected before and after the abnormal storage space may be placed in the temperature abnormality item is abrupt; if not, step S1605 is performed.
  • IR2(3) is IR2 in the abnormal storage space
  • IR3(3) is the temperature value of the third time that IR3 collects before and after the abnormal storage space may be placed in the temperature abnormality item.
  • step S1606 determines that IR2 and/or IR3 are in abnormal storage. Whether the temperature value of the last time the space may be placed in the space before and after the abnormal temperature item is abrupt; if not, step S1607 and step S1608 are sequentially performed.
  • step S1608 sum(N) is a second temperature change value.
  • step S1602 If the result of the determination in step S1602 is "YES", that is, it is judged that IR2 and/or IR3 are abruptly changed in the temperature value acquired for the second time before and after the abnormal storage space may be placed in the abnormal temperature storage item, step S1612 is performed.
  • step S1612 it is determined whether only the temperature value of the second time that the IR3 is collected before and after the abnormal storage space may be placed in the abnormal storage space is abrupt; if so, step S1613 and step S1614 are sequentially performed.
  • step S1614 it is determined whether the temperature value of the third time that IR2 is collected before and after the abnormal storage space may be placed in the abnormal temperature storage item is abrupt; if not, step S1615 is performed.
  • step S1616 determines that IR2 may be placed in the abnormal storage space. If IR2 does not change the temperature value from the second time to the second time before and after the abnormal storage space may be placed in the abnormal temperature space, proceed to step S1616 to determine that IR2 may be placed in the abnormal storage space. Whether the temperature value collected last time before and after the item is abrupt; if not, step S1617 and step S1608 are sequentially performed; if so, step S1647 and step S1608 are sequentially performed.
  • step S1614 If the judgment result in the step S1614 is "Yes", that is, the temperature value of the second collection of the IR3 during the abnormal storage space may be placed before and after the temperature abnormality item is changed, and the IR2 may be placed in the abnormal storage space before and after the temperature abnormality item may be placed.
  • step S1635 and step S1608 are sequentially performed.
  • step S1622 is performed.
  • step S1604 and step S1606 if the result of the determination is "Yes", the steps performed by it may refer to step S1612 and subsequent steps. That is, if it is judged that the mutation of IR2 and/or IR3 is changed, it is further determined that only IR2 is mutated, or only IR3 is mutated, or both IR2 and IR3 are mutated, and then similar steps S1613, S1623 or Step S1624 and its subsequent steps.
  • Step S108 determining, according to the first temperature change value and the second temperature change value, whether the temperature abnormality object is placed in the abnormal storage space includes a plurality of processes, and a preferred manner may be referred to step S1081 to the step shown in FIG. S1083.
  • step S1081 it is determined whether the difference between the first temperature change value and the second temperature change value is greater than a second preset value. If yes, step S1082 is performed; if not, step S1083 is performed.
  • step S1082 it is determined that an abnormal temperature item is placed in the abnormal storage space.
  • step S1083 it is determined that the abnormal temperature item is not placed in the abnormal storage space.
  • the second preset value may be greater than or equal to the abrupt value.
  • the size of the second preset value is related to the lowest temperature of the abnormal temperature item identified by the refrigerator. For example, if the refrigerator considers that the item having a temperature higher than 40 ° C is a temperature abnormal item, an item of 40 ° C may be placed in a certain storage space 140, and the size of the second preset value is determined experimentally.
  • a visual and/or audible signal may be issued to alert the user that the temperature of the item placed in the corresponding storage space 140 is abnormal.
  • a specific music or ringtone or voice prompt may be issued through a built-in sounding device in the refrigerator, and/or a text reminder may be issued through a display device provided on the door of the refrigerator, and/or a user may be alerted by lighting or flashing an indicator light.
  • the plurality of infrared sensors 130 may continue to acquire temperature values, and perform steps S104 to S108 again.
  • the abnormality may be determined. Storage After the temperature abnormality item is placed in the space, it is judged whether the storage space 140 corresponding to the other mutated infrared sensor 130 is placed in the temperature abnormality item. For the method of determining whether the storage space 140 corresponding to the infrared sensor 130 of another mutation is placed in the temperature abnormality item, refer to steps S106 to S108.
  • Figure 7 is a detailed flow chart for detecting whether a temperature abnormality item is placed in a refrigerator in accordance with one embodiment of the present invention.
  • the number of the infrared sensors 130 is three, and the temperatures of the three storage spaces 140 are respectively collected.
  • step S201 it is determined whether the door body is open, and if so, step S202 is performed.
  • Step S202 after y seconds delay, the three infrared sensors 130 start to collect the temperature value IR(1), and record the number of acquisitions. y is 2 to 3 seconds.
  • step S204 the three infrared sensors 130 collect the temperature value IR(2) for the second time, and record the number of acquisitions.
  • step S206 the three infrared sensors 130 collect the temperature value IR(H) for the Hth time, and record the number of acquisitions.
  • Step S208 determining whether the absolute value of the difference between the temperature value IR(H) currently collected by any of the infrared sensors 130 and the last collected temperature value IR(H-1) is greater than the abrupt value A; if so, determining that the infrared sensor 130 is If the collected temperature value is abrupt, step S210 is performed; if not, it is determined that the temperature values collected by the three infrared sensors 130 are not abrupt, and step S209 is performed. In the present invention, if it is determined that the temperature value collected by a certain infrared sensor 130 is abrupt, it means that the storage space 140 corresponding to the infrared sensor 130 is likely to be placed in an abnormal temperature item, resulting in the temperature of the storage space 140. A mutation has occurred.
  • the infrared sensor 130 identified as a sudden change in the collected temperature value in step S208 is referred to as a first infrared sensor, and the other two infrared sensors 130 are recorded as a second infrared sensor and a third infrared sensor, and three infrared sensors are recorded. 130
  • the temperature value IR (H-2) collected twice before the temperature value acquired by the first infrared sensor is abrupt.
  • the temperature value of the H-2th acquisition of the first infrared sensor can be represented by IR1 (H-2).
  • Step S209 determining whether the door body is in an open state, and if yes, returning to step S206, continuing to cause the three infrared sensors 130 to collect the temperature value, and repeatedly determining the temperature value IR(H) currently collected by any of the infrared sensors 130 and the last acquired value. Whether the absolute value of the difference between the temperature values IR (H-1) is greater than the abrupt value A; if not, step S211 is performed.
  • step S211 it is determined that each of the storage spaces 140 is not placed in the temperature abnormal item.
  • step S212 the three infrared sensors 130 continue to collect the temperature value IR(H+1), and continue the temperature difference sum calculation.
  • Step S214 determining that the infrared sensor 130 (ie, the first infrared sensor) in the case where the absolute value of the difference between the acquired value IR(H) and the collected value IR(H-1) is greater than the abrupt value A occurs in step S208 Whether the temperature value of the continuous M times is equal to the absolute value of the difference between the two adjacent times is less than the first preset value B, and if so, step S216 is performed.
  • the infrared sensor 130 ie, the first infrared sensor
  • Step S216 recording the first acquisition value IR(Q) of the three infrared sensors 130 in the continuous M acquisitions; and performing the last temperature difference summation calculation.
  • Q can be used to indicate the number of times the first infrared sensor collects the second temperature value (ie, the temperature value first collected by the first infrared sensor in successive M acquisitions); the second temperature value is represented by IR1 (Q); N) represents the result of the last temperature difference summation calculation.
  • step S2108 it is determined whether IR1(Q)-IR1(H-2)-sum(N) is greater than the second preset value C. If yes, step S220 is performed; if not, step S219 is performed. In step S218, the difference between the temperature at which the abnormal storage space collected by the first infrared sensor tends to be stable after being placed in the temperature abnormal article and the temperature before the temperature abnormal article may be placed, and sum(N) For comparison, if the difference between the two is greater than the second preset value, step S220 is performed to determine that an abnormal temperature item is placed in the abnormal storage space corresponding to the first infrared sensor; if the difference between the two is less than or equal to the second pre- If the value is set, step S219 is executed to determine that the abnormal temperature item is not placed in the abnormal storage space corresponding to the first infrared sensor.
  • step S201 may be returned.
  • the first infrared sensor 130 is in the first M acquisitions before the first acquisition (ie, the first infrared sensor 130 corresponding to the abnormal storage space is before the second temperature value is collected), the other two If the temperature values collected by the infrared sensors are abrupt, the temperature difference summation calculation can be stopped; or the temperature difference summation calculation can be continued, but the result of each temperature difference summation calculation is that the last sudden change of the infrared sensor occurs. The result of the last temperature difference summation before the mutation.
  • a reminder may be issued, such as lighting an indicator light corresponding to the abnormal storage space to remind the user to place a temperature abnormal item in the storage space 140.
  • the determination result of step S218 may be sent to the main control board of the refrigerator to participate in the control of the refrigeration system of the refrigerator.
  • the refrigeration system is caused to supply more cooling capacity to the storage space 140 to lower its temperature to a preset storage temperature as soon as possible.
  • the refrigeration control can be performed in time and effectively, the influence of the high temperature object on the surrounding storage space 140 is avoided, the storage effect of the refrigerator freezer is improved, and the nutrient loss of the food is reduced. At the same time, it avoids the waste of electric energy caused by the indiscriminate cooling of the entire storage room.
  • the second after determining whether the storage space 140 corresponding to the first infrared sensor is placed in the temperature abnormal item (ie, after step S219 or step S220), the second may be determined according to each time the temperature difference is summed. Whether the temperature value collected by the third infrared sensor is abruptly changed, and further determining whether the abnormal temperature item is placed in the storage space 140 corresponding to the second and third infrared sensors. For the specific process, refer to step S210 to step S219 or to step S220.
  • the number of infrared sensors 130 is three, respectively a first infrared sensor, a second infrared sensor, and a third infrared sensor, respectively collecting the temperatures of the three storage spaces 140; three storages
  • the temperature of the space 140 was set to 5 °C.
  • the three infrared sensors 130 start collecting temperature values after the second second.
  • the first infrared sensor has a temperature value of 5.1 ° C
  • the second temperature is 5.2 ° C
  • the third temperature is 5.4 ° C
  • the fourth temperature is 5.6 ° C.
  • the temperature value collected in the fifth time is 5.9 ° C
  • the temperature value collected in the sixth time is 6.2 ° C
  • the temperature value collected in the seventh time is 6.9 ° C
  • the temperature value collected in the eighth time is 7.6 ° C
  • the temperature collected in the ninth time is 7.6 ° C
  • the value is 8.2 ° C
  • the temperature value collected in the 10th time is 8.8 ° C
  • the temperature value collected in the 11th time is 9.3 ° C
  • the temperature value collected in the 12th time is 9.6 ° C
  • the temperature value collected in the 13th time is 9.9 ° C.
  • the temperature value of the 14 acquisitions was 10.2 ° C
  • the temperature value of the 15th collection was 10.4 ° C, .
  • the temperature of the second infrared sensor is 5.2 °C for the first time, 5.3 °C for the second time, 5.5 °C for the third time, and 5.7 °C for the fourth time.
  • the temperature value of the second acquisition is 5.9 °C
  • the temperature value of the sixth acquisition is 6.2 °C
  • the temperature value of the seventh collection is 6.4 °C
  • the temperature value of the eighth collection is 7.1 °C
  • the temperature value of the ninth acquisition is At 7.8 °C
  • the temperature value collected in the 10th time is 8.4 °C
  • the temperature value collected in the 11th time is 9.0 °C
  • the temperature value collected in the 12th time is 9.6 °C
  • the temperature value collected in the 13th time is 9.9 °C, the 14th time.
  • the collected temperature value was 10.2 ° C
  • the temperature value collected for the 15th time was 10.4 ° C, .
  • the third infrared sensor is collected at a temperature of 5.1 ° C for the first time, the second temperature is 5.3 ° C, the third temperature is 5.4 ° C, and the fourth temperature is 5.6 ° C.
  • the temperature value of the second acquisition is 5.9 °C
  • the temperature value of the sixth collection is 6.1 °C
  • the temperature value of the seventh collection is 6.4 °C
  • the temperature value of the eighth collection is 6.6 °C
  • the temperature value of the ninth acquisition is At 6.9 °C
  • the temperature value collected in the 10th time is 7.1 °C
  • the temperature value collected in the 11th time is 7.4 °C
  • the temperature value collected in the 12th time is 7.7 °C
  • the temperature value collected in the 13th time is 7.9 °C
  • the 14th time was 8.1 ° C
  • the temperature value collected for the 15th time was 8.3 ° C, ....
  • the absolute value of the difference between the temperature values of the two adjacent acquisitions of the first infrared sensor at the seventh acquisition is greater than the mutation value (ie,
  • > 0.6 ° C, H 7)
  • the storage space 140 corresponding to the first infrared sensor is an abnormal storage space, that is, a storage space 140 that may be placed in an abnormal temperature item.
  • the first infrared sensor satisfies the case where the absolute value of the difference between the temperature values of the two adjacent acquisitions is smaller than the first preset value from the 12th acquisition (the difference between the temperature value collected in the 12th time and the temperature value collected in the 11th time)
  • the absolute value of the difference is less than 0.4 ° C, that is,
  • ⁇ 0.4 ° C, Q 12), and the absolute value of the difference between the temperature values satisfying the four consecutive acquisitions of the fifth acquisition is less than the first
  • the difference between the temperature values of the second and fifth acquisitions of the second infrared sensor is 0.3 ⁇ 0.6 ° C, and the temperature values of the third infrared sensor at the sixth and fifth times are collected.
  • IR2(2), IR2(1) are the second infrared sensor at the 6th and 5th time respectively
  • IR3(2) and IR3(1) are the temperature values collected by the third infrared sensor at the 6th and 5th times, respectively.
  • the difference between the temperature values of the second and sixth acquisitions of the second infrared sensor is 0.2 ⁇ 0.6 ° C, and the temperature values of the third infrared sensor are collected at the seventh and sixth times.
  • the difference between the temperature values of the second and seventh acquisitions of the second infrared sensor is 0.7>0.6° C.
  • the temperature values of the third infrared sensor are collected at the 8th and 7th times.
  • the third infrared sensor does not show that the absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than the mutation value. Therefore, during the first acquisition to the 15th acquisition of the infrared sensor, no abnormal temperature items are placed in the storage space corresponding to the third infrared sensor.
  • the temperature of the second infrared sensor is abruptly changed during the eighth acquisition. Therefore, the storage space corresponding to the second infrared sensor may also be placed in an abnormal temperature object.
  • the storage space corresponding to the second infrared sensor may be determined according to the above method. Put in abnormal temperature items.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种用于检测冰箱内是否放入温度异常物品的方法,其中冰箱包括:内部划分为多个储物空间(140)的箱体(110)、设置在箱体(110)前部的门体、以及分别对多个储物空间(140)的温度进行感测的多个红外传感器(130),并且该方法包括:在门体开启后,控制多个红外传感器(130)采集温度值;判断多个储物空间(140)中是否存在可能放入温度异常物品的异常储物空间;若判断存在异常储物空间,则获取异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值;以及根据第一温度变化值和第二温度变化值判断异常储物空间内是否放入温度异常物品。该方法能较为准确地判断某一储物空间(140)内是否放入过热食物。

Description

用于检测冰箱内是否放入温度异常物品的方法
本申请要求了申请日为2016年11月23日,申请号为201611047457.3,发明名称为“用于检测冰箱内是否放入温度异常物品的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冷藏冷冻设备,特别是涉及一种用于检测冰箱内是否放入温度异常物品的方法。
背景技术
传统冰箱通常利用布置于储物间室内部的温度传感器感测其布置位置周围的温度,将该温度作为制冷控制的依据。使用这种控制方式进行冰箱控制时,在温度传感器测量的温度高于预设值时,冰箱启动制冷。然而,在储物间室被搁物隔板分隔为多个相对独立的储物空间的情况下,如果用户把温度较高的热食物放进冰箱某一储物空间,一方面,热食物的放入会影响其所在储物空间的温度,从而会使原本存在于冰箱内部食物中的各种细菌得以较快的滋生,不利于食物健康安全的保存;另一方面,如果对储物间室整体进行无差别的制冷,则会造成电能浪费,同时会导致放入热食物的储物空间降温缓慢。
此外,在冰箱开门时,放入温度较高的热食物会引起储物空间温度变化,而未放入热食物的储物空间也会由于外部环境与储物间室之间自然对流导致的热交换引起温度变化,但是现有技术中始终没有适当的判别方法来区分上述两种情况,导致现有技术中冰箱的制冷控制不够准确。不过多地增加冰箱硬件成本,提供一种能够较为准确地区分上述两种情况的判别方法是冰箱技术领域一直渴望解决但始终未能解决的技术问题。
发明内容
鉴于上述问题,提出了本发明以便克服上述问题或者至少部分地解决上述问题。
本发明一个进一步的目的是要提供一种检测冰箱内是否放入温度异常物品的方法,以检测冰箱在开门期间是否放入过热食物。
本发明另一个进一步的目的是要提高冰箱的制冷控制的准确性。
特别地,本发明提供了一种用于检测冰箱内是否放入温度异常物品的方法,其中所述冰箱包括:内部划分为多个储物空间的箱体、设置在所述箱体前部的门体、以及分别对所述多个储物空间的温度进行感测的多个红外传感器,并且所述方法包括:
在所述门体开启后,控制所述多个红外传感器采集温度值;
判断所述多个红外传感器中是否存在任一红外传感器采集的温度值发生突变;
若判断存在温度值发生突变的红外传感器,则该红外传感器对应的储物空间为可能放入 温度异常物品的异常储物空间,获取所述异常储物空间在可能放入温度异常物品前后的第一温度变化值;
根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算所述异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,其中温差求和计算开始时sum(0)=0,且在进行每次温差求和计算之前,判断除所述异常储物空间对应的红外传感器之外的其他红外传感器采集的温度值是否发生突变,当所述其他红外传感器中未发生突变的数量为一个时,IR(n+1)和IR(n)分别为未发生突变的所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值;当所述其他红外传感器中未发生突变的数量为两个以上时,IR(n+1)和IR(n)分别为任一未发生突变的所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,或IR(n+1)和IR(n)分别为全部未发生突变的所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的平均值;
根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品。
可选地,其中判断红外传感器采集的温度值是否发生突变的步骤包括:
判断所述红外传感器当前采集的温度值与上一次采集的温度值的差的绝对值是否大于预设的突变值;
若当前采集的温度值与上一次采集的温度值的差的绝对值大于所述突变值,则判断当前采集的温度值发生突变;否则,判断当前采集的温度值未发生突变。
可选地,其中在进行每次温差求和计算之前,若判断所述其他红外传感器中存在采集的温度值发生突变的红外传感器,则该发生突变的红外传感器采集的温度值不再参与温差求和计算。
可选地,其中在进行每次温差求和计算之前,若所述其他红外传感器采集的温度值均发生过突变,则温差求和计算结束,所述第二温度变化值为最后一次温差求和计算的结果。
可选地,其中获取所述第一温度变化值的步骤包括:
记录所述异常储物空间对应的红外传感器在采集的温度值发生突变之前最近E次采集的第一温度值,作为所述异常储物空间在可能放入温度异常物品前的温度值,其中E≥2;
当所述异常储物空间对应的红外传感器在采集的温度值发生突变之后、出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,记录所述异常储物空间对应的红外传感器在所述连续M次采集中任意一次采集的第二温度值,作为所述异常储物空间在可能放入温度异常物品后的温度值,其中M≥3,所述第一预设值小于等于 所述突变值;
计算所述第二温度值与所述第一温度值的差值,作为所述第一温度变化值。
可选地,记录所述异常储物空间对应的红外传感器在所述连续M次采集中第一次或最后一次采集的温度值,作为所述异常储物空间在可能放入温度异常物品后的温度值。
可选地,所述异常储物空间对应的红外传感器进行所述第一温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行第1次采集;
所述异常储物空间对应的红外传感器进行所述第二温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行最后1次采集;
利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间第2次采集的温度值和第1次采集的温度值进行第一次温差求和计算;
利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间最后1次采集的温度值和上一次采集的温度值,进行最后一次温差求和计算;且
所述第二温度变化值为最后一次温差求和计算的结果。
可选地,其中根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品的步骤包括:
判断所述第一温度变化值与所述第二温度变化值的差值是否大于第二预设值,
若是,则判断所述异常储物空间内放入温度异常物品;
若否,则判断所述异常储物空间内未放入温度异常物品;
其中所述第二预设值大于等于所述突变值。
可选地,所述红外传感器的数量为三个以上;且
控制所述多个红外传感器采集温度值是在所述门体开启一预设时间后进行的。
可选地,所述方法还包括:
若判断所述异常储物空间内放入温度异常物品,则发出视觉和/或听觉信号提醒用户;和/或
在所述门体开启期间,若判断任一红外传感器采集的温度值均未发生突变,则判断在所述门体开启期间所述多个储物空间均未放入温度异常物品。
本发明用于检测冰箱内是否放入温度异常物品的方法,先判断多个储物空间中是否存在可能放入温度异常物品的异常储物空间,并进一步通过异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,判断异常储物空间内是否放入温度异常物品。本发明的判断异常储物空间内是否放入温度异常物品的原理主要利用冰箱门开启期间放入热食物和室内外 热交换引起储物空间的温度变化、与单纯由于冰箱门开启期储物空间内外热交换导致的温度自然变化作比较,以判断某一储物空间内是否放入过热食物。
目前,现有冰箱中尚未存在检测冰箱内是否放入温度异常物品的方法。对于普通用户而言,可能尚未意识到在冰箱内放入过热食物(如温度大于40℃上的食物)会对冰箱造成何种不利影响,有时也可能没有在意放入冰箱内的食物温度是否过高。针对这些问题,本发明的方法可较为准确地判断某一储物空间内是否放入过热食物,并可在判断储物空间内放入过热食物时对用户发出提醒,以便于用户在温度异常物品的温度趋于正常后再将其放入冰箱贮藏。在一定程度上避免或减少由于冰箱内放入过热物品对冰箱及其内的储物造成不利影响。
进一步地,本发明根据温差求和公式,可较为准确地计算异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,从而提高了本发明检测冰箱内是否放入温度异常物品的准确性。
进一步地,本发明可较为准确地区分储物空间在开门期间温度升高的原因是因为放入温度较高的食物或是仅由于外部环境与储物空间之间自然对流导致的热交换,从而有利于冰箱针对具体情况进行较为合理适当的制冷控制。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的方法的示意图;
图3是根据本发明一个实施例的判断红外传感器采集的温度值是否发生突变的方法的示意图;
图4是根据本发明一个实施例的获取第一温度变化值的方法的示意图;
图5是根据本发明一个实施例的获取第二温度变化值的方法的示意图;
图6是根据本发明一个实施例的判断异常储物空间内是否放入温度异常物品的方法的示意图;
图7是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的详细流程图。
具体实施方式
图1是根据本发明一个实施例的冰箱的示意性结构图。参见图1,该冰箱一般性地可以包括:箱体110和多个红外传感器130。箱体110可由顶壁、底壁、后壁以及左右两个侧壁围成,箱体110前方设置门体(图中未示出),门体可以采用枢轴结构连接于侧壁上。箱体110内部限定有储物间室(例如冷藏室)。储物间室可被分隔为多个储物空间140。例如利用搁物架组件120将储物间室分隔为多个储物空间140。其中一种优选结构为:搁物架组件120包括至少一个水平设置的隔板,以将储物间室沿竖直方向分隔为多个储物空间140。在图1中,搁物架组件120包括第一隔板、第二隔板、第三隔板,其中第一隔板上方形成第一储物空间、第一隔板与第二隔板之间形成第二储物空间、第二隔板与第三隔板之间形成第三储物空间。在本发明的另一些实施例中,搁物架组件120中的隔板数量以及储物空间140的数量,可以根据冰箱的容积以及使用要求预先进行配置。
多个红外传感器130,设置于储物间室内部,其分别用于测量各储物空间140的温度。每个红外传感器130与一个储物空间140相对应,以检测该储物间室内的温度。红外传感器130的数量依据储物空间140的数量进行设定,每个储物空间140可以设置一个红外传感器130。
为了提高红外传感器130对储物空间140内部物品的温度感测精度,满足对储物空间140进行制冷的要求,发明人对红外传感器130的安装位置进行了大量的测试,并得出红外传感器130的优选安装位置及其优选的配置方式。红外传感器130在其所在储物空间140的高度高于储物空间140整体高度的二分之一处(更优的范围为高于或位于储物空间140整体高度的三分之二),红外传感器130的红外接收中心线相对于竖直向上的角度范围设置为70度至150度(更优的范围为76度至140度);以及红外传感器130的红外接收中心线的水平投影与其所在侧壁的夹角范围设置为30度至60度(更优的范围为30度至45度)。
红外传感器130不发射红外线,而是被动接收所感测范围内物品发射的红外线及背景红外线,直接感知储物空间140内物品温度的变化区域及温度,转换为相应的电信号。
在本发明实施例的冰箱中,可以对每个红外传感器130的相邻两次的测量结果进行计算,以得到每个储物空间140的温升情况,进而根据储物空间140的温升情况来判断某个储物空间140是否放入温度异常物品。本领域技术人员可以理解,此处的温度异常物品即为温度过高(例如温度大于等于40℃)的物品。
在本发明的一些实施例中,冰箱设置3个以上的储物空间140,相应地,冰箱设置3个以上的红外传感器130。由于同时最多在冰箱的两个储物空间140中放入温度异常物品,这样,即使两个储物空间140同时放置温度异常物品,仍有其他储物空间140未同时放置温度异常物品。
图2是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的方法的示意图。该用于检测冰箱内是否放入温度异常物品的方法一般性地可以包括:
步骤S102,在门体开启后,控制多个红外传感器130采集温度值。
步骤S104,判断在开门期间是否有任一红外传感器130采集的温度值发生突变;若是,则判断该红外传感器130对应的储物空间140为可能放入温度异常物品的异常储物空间,执行步骤S106。
步骤S106,获取异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值。
步骤S108,根据第一温度变化值和第二温度变化值判断异常储物空间内是否放入温度异常物品。
在步骤S102中,可利用冰箱的开门检测装置检测门体的开闭状态。开门检测装置可以利用扇形开关、磁敏开关、霍尔开关等多种方式进行检测,在门体完全闭合或者打开时分别产生不同的电信号,以指示门体的状态。可在门体开启一预设时间后,控制多个红外传感器130采集温度值。该预设时间例如可为2至3秒。相比在门体刚开启就使红外传感器130采集温度值,延迟一预设时间可以避免由于气流扰动导致红外传感器130采集的温度值发生突变。
红外传感器130可以每间隔0.1ms(该数值可以灵活调整)进行一次采集。多个红外传感器130可以同时进行采集。
步骤S104判断红外传感器140采集的温度值是否发生突变的流程包括多种,其中一种优选的方式可参见图3中示出的步骤S1041至步骤S1043。
步骤S1041,判断红外传感器140当前采集的温度值与上一次采集的温度值的差的绝对值是否大于预设的突变值;若是,则执行步骤S1042;若否,则执行步骤S1043。
步骤S1042,判断当前采集的温度值发生突变。
步骤S1043,判断当前采集的温度值未发生突变。
在步骤S1041中,突变值的大小可根据实验获得。对于特定的冰箱而言,储物空间140在开门期间由于外部环境与其之间进行热交换引起的红外传感器130相邻两次检测的温度值的差值(该差值可记为第一差值)可以通过对该冰箱进行大量测试得出。本领域技术人员均可意识到的,储物空间140在开门期间由于放入温度异常物品以及外部环境与其进行热交换引起的红外传感器130相邻两次检测的温度值的差值(该差值可记为第二差值)应该大于上述第一差值。例如,冰箱的某个储物空间140在开门期间放入温度为25℃的物品时红外传感器130相邻两次检测的温度值的差值的大小,可作为突变值的参考值。突变值例如可设 置为0.6℃或0.7℃等。
在替代性实施例中,步骤S104的一种可选流程为:将多个红外传感器130在同一采集次数或同一采集点或相同采集时刻采集的温度进行比较,如果某一红外传感器采集的温度值明显高于其他红外传感器130采集的温度值,则判断该温度值高的红外传感器130采集的温度值发生突变。
在一些实施例中,在步骤S104中,在门体开启期间,如果全部红外传感器130采集的温度值均未发生突变,则判断在门体开启期间前述多个储物空间140均未放入温度异常物品。
在步骤S106中,获取第一温度变化值的流程包括多种,其中一种优选的方式可参见图4中示出的步骤S1061至步骤S1064。
步骤S1061,记录异常储物空间对应的红外传感器130在采集的温度值发生突变之前最近E次采集的第一温度值,作为异常储物空间在可能放入温度异常物品前的温度值,其中E≥2。E例如可为2,3,4,5等。
步骤S1062,判断异常储物空间对应的红外传感器130在采集的温度值发生突变之后、是否出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值的情况,若是,则执行步骤S1063。
步骤S1063,记录异常储物空间对应的红外传感器130在连续M次采集中任意一次采集的第二温度值,作为异常储物空间在可能放入温度异常物品后的温度值。
步骤S1064,计算第二温度值与第一温度值的差值,并作为第一温度变化值。
在步骤S1063中,M≥3且第一预设值小于等于突变值。M例如可为3,4,5,6等。第一预设值的大小可根据实验获得。对于冰箱而言,将温度异常物品放入某一储物空间140后,该异常储物空间内的温度先会以较快地速率升温,之后趋于稳定升温。当该异常储物空间内的温度趋于稳定升温后,其对应的红外传感器130在连续M次采集中任意一次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值。此时,在连续M次采集中任意一次采集的温度值均可作为该异常储物空间在可能放入温度异常物品后的温度。第一预设值例如可设置为0.5℃或0.4℃等。
在优选的实施例中,第二温度值为异常储物空间对应的红外传感器130在连续M次采集中第一次或最后一次采集的温度值。因此,在步骤S1063中,记录异常储物空间对应的红外传感器130在连续M次采集中第一次或最后一次采集的温度值,作为异常储物空间在可能放入温度异常物品后的温度值。
在图4示出的实施例中,记录异常储物空间对应的红外传感器130在采集的温度值发生突变之前最近E次采集的第一温度值,作为异常储物空间在可能放入温度异常物品前的温 度值;记录异常储物空间对应的红外传感器130在连续M次采集中任意一次采集的第二温度值,作为异常储物空间在可能放入温度异常物品后的温度值。假设异常储物空间对应的红外传感器130在其第H次采集的温度值发生突变(例如在其第H次采集到的温度值与第H-1次采集到的温度值的差的绝对值大于突变值),则其在第H-E次采集到第一温度值,其中H>E,且E≥2。第一温度值可记为IR1(H-E)或IR1(1),其中IR1(H-E)表示异常储物空间对应的红外传感器130在第H-E次采集的温度值,IR1(1)表示异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第1次采集的温度值。假设异常储物空间对应的红外传感器130在其第Q次采集点采集到第二温度值,其中Q>H。第二温度值可记为IR1(Q)或IR1(Q-H+E+1),其中IR1(Q)表示异常储物空间对应的红外传感器130在第Q次采集的温度值,IR1(Q-H+E+1)表示异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第Q-H+E+1次或者最后一次采集的温度值。该异常储物空间在可能放入温度异常物品前后期间应理解为异常储物空间对应的红外传感器130在采集第一温度值开始直至采集第二温度值结束的期间,即为各红外传感器130在第H-E次采集点和第Q次采集点期间。
在步骤S106中,获取第二温度变化值的流程包括多种,其中一种优选的方式为根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值。其中温差求和计算开始时sum(0)=0,并且:
在每次进行每次温差求和计算之前,判断除异常储物空间对应的红外传感器之外的其他红外传感器采集的温度值是否发生突变,当所述其他红外传感器中未发生突变的数量为一个时,IR(n+1)和IR(n)分别为未发生突变的所述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值;当所述其他红外传感器中未发生突变的数量为两个以上时,IR(n+1)和IR(n)分别为任一未发生突变的所述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,或IR(n+1)和IR(n)分别为全部未发生突变的所述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的平均值。
也就是说,在利用温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)进行每一次温差求和计算之前,均要先判断除所述异常储物空间对应的红外传感器之外的其他红外传感器采集的温度值是否发生突变,并利用未发生突变的其他红外传感器检测的温度值进行温差求和计算。
在一些实施例中,根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值的 方法还包括:在进行每次温差求和计算之前,若判断所述其他红外传感器中存在采集的温度值发生突变的红外传感器,则该发生突变的红外传感器采集的温度值不再参与温差求和计算。即,自进行温差求和计算开始,如果判断某一其他红外传感器(即非异常储物空间对应的红外传感器)采集的温度值发生突变,则其发生突变的温度值以及后续采集的温度值将不再参与温差求和计算。例如,在进行第S次温差求和计算之前(S大于等于1),如果判断某一个或多个其他红外传感器当前采集的温度值发生突变,则该一个或多个其他红外传感器当前采集的温度值不参与第S次温差求和计算,且其之后采集的温度值也不参与后续的温差求和计算。在后续每次进行温差求和计算之前,无需再判断发生突变的其他红外传感器采集的温度值是否发生突变。
在一些实施例中,根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值的方法还包括:在进行每次温差求和计算之前,若所述其他红外传感器采集的温度值均发生过突变,则温差求和计算结束,所述第二温度变化值为最后一次温差求和计算的结果。也就是说,在进行某一次(例如第X次,X大于等于1)温差求和之前,如果全部其他红外传感器均发生过突变(可能全部其他红外传感器均在本次判断中发生突变,也可能部分其他红外传感器在之前的判断中发生过突变,部分其他红外传感器在本次判断中发生突变),则温差求和计算结束,不再进行该次(即第X次)的温差求和计算,第X-1次的温差求和结果即为第二温度变化值。例如,在某种极端情况下,在进行第一次温差求和之前,判断所有其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第2次采集的温度值发生了突变,则温差求和计算结束,第二温度变化值等于sum(0)=0。
在一个说明性实施例中,红外传感器130的数量为三个,即第一红外传感器(用IR1表示)、第二红外传感器(用IR2表示)、第三红外传感器(用IR3表示),分别采集三个储物空间140的温度。假设IR1采集的温度值发生了突变,IR1对应的储物空间为异常储物空间。利用温差求和公式计算该异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值的优选流程可具体参见图5中示出的步骤S1601至步骤S1608。
步骤S1601,温差求和计算开始时sum(0)=0。
步骤S1602,判断IR2和/或IR3在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值是否发生突变;若否(即IR2和IR3在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值均未发生突变),则依次执行步骤S1603和步骤S1604。
步骤S1603,sum(1)=(IR2(2)-IR2(1)+IR3(2)-IR3(1))/2,其中IR2(2)、IR2(1)分别为IR2 在该异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值;IR3(2)、IR3(1)分别为IR3在该异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值。
步骤S1604,判断IR2和/或IR3在异常储物空间可能放入温度异常物品前后期间第3次采集的温度值是否发生突变;若否,则执行步骤S1605。
步骤S1605,sum(2)=sum(1)+(IR2(3)-IR2(2)+IR3(3)-IR3(2))/2,其中IR2(3)为IR2在该异常储物空间可能放入温度异常物品前后期间第3次采集的温度值;IR3(3)为IR3在该异常储物空间可能放入温度异常物品前后期间第3次采集的温度值。
如果IR2和IR3在异常储物空间可能放入温度异常物品前后期间第2次至倒数第2次采集的温度值均未发生突变,则继续执行步骤S1606,判断IR2和/或IR3在异常储物空间可能放入温度异常物品前后期间最后一次采集的温度值是否发生突变;若否,则依次执行步骤S1607和步骤S1608。
步骤S1607,sum(N)=sum(N-1)+(IR2(N+1)-IR2(N)+IR3(N+1)-IR3(N))/2,其中IR2(N+1)、IR2(N)分别为IR2在该异常储物空间可能放入温度异常物品前后期间第N+1次(最后1次)和第N次(倒数第2次)采集的温度值;IR3(2)、IR3(1)分别为IR3在该异常储物空间可能放入温度异常物品前后期间第N+1次和第N次采集的温度值。
步骤S1608,sum(N)为第二温度变化值。
如果步骤S1602中的判断结果为“是”,即判断IR2和/或IR3在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值发生突变,则执行步骤S1612。
步骤S1612,判断是否仅有IR3在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值发生突变;若是,则依次执行步骤S1613和步骤S1614。
步骤S1613,sum(1)=IR2(2)-IR2(1)。
步骤S1614,判断IR2在异常储物空间可能放入温度异常物品前后期间第3次采集的温度值是否发生突变;若否,则执行步骤S1615。
步骤S1615,sum(2)=sum(1)+IR2(3)-IR2(2)。
如果IR2在异常储物空间可能放入温度异常物品前后期间第2次至倒数第2次采集的温度值均未发生突变,则继续执行步骤S1616,判断IR2在异常储物空间可能放入温度异常物品前后期间最后一次采集的温度值是否发生突变;若否,则依次执行步骤S1617和步骤S1608;若是,则依次执行步骤S1647和步骤S1608。
步骤S1617,sum(N)=sum(N-1)+IR2(N+1)-IR2(N),温差求和计算结束。
步骤S1647,sum(N)=sum(N-1),温差求和计算结束。
如果步骤S1614中的判断结果为“是”,即IR3在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值发生突变,IR2在异常储物空间可能放入温度异常物品前后期间第3次采集的温度值发生突变,则依次执行步骤S1635和步骤S1608。
步骤S1635,sum(N)=sum(1)=IR2(2)-IR2(1),温差求和计算结束。
如果步骤S1612中的判断结果为“否”,则执行步骤S1622。
步骤S1622,判断是否仅有IR2在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值发生突变;若否,则意味着IR2和IR3在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值均发生突变,则执行步骤S1624,温差求和计算结束,sum(N)=sum(0)=0,即第二温度变化值为0;若是,则执行步骤S1623,sum(1)=IR3(2)-IR3(1)。之后可参考步骤S1614及其后续的步骤。
对于步骤S1604和步骤S1606,如果判断结果为“是”,则其执行的步骤可参考步骤S1612及其后续的步骤。即如果判断IR2和/或IR3发生了突变,则需进一步确定:仅IR2发生了突变,或者是仅IR3发生了突变,或者是IR2和IR3均发生了突变,进而执行类似步骤S1613、步骤S1623或步骤S1624及其后续的步骤。
步骤S108根据第一温度变化值和第二温度变化值判断异常储物空间内是否放入温度异常物品的流程包括多种,其中一种优选的方式可参见图6中示出的步骤S1081至步骤S1083。
步骤S1081,判断第一温度变化值与第二温度变化值的差值是否大于第二预设值,若是,则执行步骤S1082;若否,则执行步骤S1083。
步骤S1082,判断异常储物空间内放入温度异常物品。
步骤S1083,判断异常储物空间内未放入温度异常物品。
在步骤S1081中,第二预设值可大于等于突变值。第二预设值的大小与冰箱认定的温度异常物品的最低温度相关。例如,如果冰箱认为温度高于40℃的物品即为温度异常物品,则可在某一储物空间140中放入40℃的物品,通过实验来确定第二预设值的大小。
在步骤S1082之后,可发出视觉和/或听觉信号提醒用户其在对应储物空间140中放入的物品温度异常。例如可以通过冰箱中内置的发音装置发出特定的音乐或铃声或语音提示,和/或通过冰箱门体上设置的显示装置发出文字提醒,和/或通过点亮或闪烁指示灯等方式提醒用户。
在步骤S1082或步骤S1083之后,多个红外传感器130可继续采集温度值,重新执行步骤S104至步骤S108。
此外,在一些实施例中,如果在异常储物空间可能放入温度异常物品的前后期间,其他某一储物空间140对应的红外传感器130采集的温度值也发生突变,则可在判断该异常储物 空间内是否放入温度异常物品之后,再判断另一发生突变的红外传感器130对应的储物空间140是否放入温度异常物品。判断另一发生突变的红外传感器130对应的储物空间140是否放入温度异常物品的方法可参见步骤S106至步骤S108。
图7是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的详细流程图。其中红外传感器130的数量为三个,分别采集三个储物空间140的温度。
步骤S201,判断门体是否开启,若是,执行步骤S202。
步骤S202,延迟y秒后,3个红外传感器130开始采集温度值IR(1),并记录采集次数。y为2~3秒。
步骤S204,3个红外传感器130第二次采集温度值IR(2),并记录采集次数。
步骤S206,3个红外传感器130第H次采集温度值IR(H),并记录采集次数。
步骤S208,判断任一红外传感器130当前采集的温度值IR(H)与上次采集的温度值IR(H-1)之差的绝对值是否大于突变值A;若是,认定为该红外传感器130采集的温度值发生了突变,执行步骤S210;若否,认定为三个红外传感器130采集的温度值均未发生突变,执行步骤S209。在本发明中,若认定某个红外传感器130采集的温度值发生了突变,则意味着该红外传感器130对应的储物空间140很可能放入了温度异常物品,导致该储物空间140的温度发生突变。在步骤S208中被认定为采集的温度值发生突变的红外传感器130被记为第一红外传感器,其他两个红外传感器130被记为第二红外传感器和第三红外传感器,则记录3个红外传感器130在第一红外传感器采集的温度值发生突变时前两次采集的温度值IR(H-2)。可用IR1(H-2)表示第一红外传感器第H-2次采集的温度值。
步骤S209,判断门体是否处于开启状态,若是,返回步骤S206,继续使三个红外传感器130采集温度值,并重复判断任一红外传感器130当前采集的温度值IR(H)与上次采集的温度值IR(H-1)之差的绝对值是否大于突变值A;若否,执行步骤S211。
步骤S210,记录3个红外传感器130第H-2次采集的温度值IR(H-2),并开始进行温差求和计算,其中sum(1)=IR(H-1)-IR(H-2),sum(2)=sum(1)+IR(H)-IR(H-1)。可用IR1(H-2)表示第一温度值,其为第一红外传感器在出现相邻两次采集的温度值的差的绝对值大于突变值之前最近2次采集的温度值(即E=2)。
步骤S211,判断每个储物空间140均未放入温度异常物品。
步骤S212,3个红外传感器130继续采集温度值IR(H+1),继续进行温差求和计算。
步骤S214,判断在步骤S208中出现采集值IR(H)与采集值IR(H-1)之差的绝对值大于突变值A的情况的该红外传感器130(即第一红外传感器)在之后采集的温度值是否出现连续M次采集的温度值均满足相邻两次的差的绝对值小于第一预设值B,若是,执行步骤S216。
步骤S216,记录3个红外传感器130在连续M次采集中第一次的采集值IR(Q);并进行最后一次温差求和计算。可用Q表示第一红外传感器采集第二温度值(即第一红外传感器在连续M次采集中第一次采集的温度值)的采集次数;用IR1(Q)表示第二温度值;用sum(N)表示最后一次温差求和计算的结果。
步骤S218,判断IR1(Q)-IR1(H-2)-sum(N)是否大于第二预设值C,若是,则执行步骤S220;若否,则执行步骤S219。在步骤S218中,利用第一红外传感器采集的异常储物空间在可能放入温度异常物品之后趋于稳定时的温度与在可能放入温度异常物品之前的温度的差值,与sum(N)进行比较,如果两者的差值大于第二预设值,则执行步骤S220,认定第一红外传感器对应的异常储物空间内放入温度异常物品;如果两者的差值小于等于第二预设值,则执行步骤S219,认定第一红外传感器对应的异常储物空间内并未放入温度异常物品。
在步骤S220和步骤S219之后,可返回执行步骤S201。
本领域技术人员可意识到的,如果在第一红外传感器130连续M次采集中第一次采集之前(即异常储物空间对应的第一红外传感器130在采集第二温度值之前),其他两个红外传感器采集的温度值均发生了突变,则可停止进行温差求和计算;或者也可继续进行温差求和计算,但每次温差求和计算的结果均为最后发生突变的红外传感器在发生突变前最后一次温差求和的结果。
在一些实施例中,在步骤S220之后,可发出提醒,例如点亮对应该异常储物空间的指示灯,以提醒用户在该储物空间140内放入温度异常物品。
在另一些实施例中,可将步骤S218的判断结果发送至冰箱的主控板,参与冰箱制冷系统的控制。例如,当判断结果为某一储物空间140内放入温度异常物品,则使制冷系统向该储物空间140提供更多的冷量,以使其温度尽快降低至预设保存温度。利用本实施例的检测冰箱内是否放入温度异常物品的方法,可以及时有效地进行制冷控制,避免高温物体对周围储物空间140的影响,提高冰箱冷藏室的储藏效果,减少食物的营养流失,同时避免了对整个储物间室无区别制冷导致的电能浪费。
此外,在一些实施例中,在判断第一红外传感器对应的储物空间140是否放入温度异常物品后(即步骤S219或步骤S220之后),可根据每次进行温差求和之前判断第二、第三红外传感器采集的温度值是否发生突变的情况,进一步判断第二、第三红外传感器对应的储物空间140内是否放入温度异常物品。具体流程可参考步骤S210至步骤S219或至步骤S220。
在一个说明性的实施例中,红外传感器130的数量为3个,分别为第一红外传感器、第二红外传感器、第三红外传感器,分别采集三个储物空间140的温度;三个储物空间140的温度均设定为5℃。令上述突变值为0.6℃,第一预设值为0.4℃,第二预设值为0.8℃, E=2,M=4。
开门后,第2秒后3个红外传感器130开始采集温度值。其中,第一红外传感器第1次采集的温度值为5.1℃、第2次采集的温度值为5.2℃、第3次采集的温度值为5.4℃、第4次采集的温度值为5.6℃、第5次采集的温度值为5.9℃、第6次采集的温度值为6.2℃、第7次采集的温度值为6.9℃、第8次采集的温度值为7.6℃、第9次采集的温度值为8.2℃、第10次采集的温度值为8.8℃、第11次采集的温度值为9.3℃、第12次采集的温度值为9.6℃、第13次采集的温度值为9.9℃、第14次采集的温度值为10.2℃、第15次采集的温度值为10.4℃、……。
第二红外传感器第1次采集的温度值为5.2℃、第2次采集的温度值为5.3℃、第3次采集的温度值为5.5℃、第4次采集的温度值为5.7℃、第5次采集的温度值为5.9℃、第6次采集的温度值为6.2℃、第7次采集的温度值为6.4℃、第8次采集的温度值为7.1℃、第9次采集的温度值为7.8℃、第10次采集的温度值为8.4℃、第11次采集的温度值为9.0℃、第12次采集的温度值为9.6℃、第13次采集的温度值为9.9℃、第14次采集的温度值为10.2℃、第15次采集的温度值为10.4℃、……。
第三红外传感器第1次采集的温度值为5.1℃、第2次采集的温度值为5.3℃、第3次采集的温度值为5.4℃、第4次采集的温度值为5.6℃、第5次采集的温度值为5.9℃、第6次采集的温度值为6.1℃、第7次采集的温度值为6.4℃、第8次采集的温度值为6.6℃、第9次采集的温度值为6.9℃、第10次采集的温度值为7.1℃、第11次采集的温度值为7.4℃、第12次采集的温度值为7.7℃、第13次采集的温度值为7.9℃、第14次采集的温度值为8.1℃、第15次采集的温度值为8.3℃、……。
根据上述采集结果,可知第一红外传感器在第7次采集时出现相邻两次采集的温度值的差的绝对值大于突变值的情况(即|6.9℃-6.2℃|>0.6℃,H=7),第一红外传感器对应的储物空间140即为异常储物空间,即可能会放入温度异常物品的储物空间140。记录第5次(即H-E=7-2次)采集的温度值作为第一温度值。第一红外传感器从第12次采集开始满足相邻两次采集的温度值的差的绝对值小于第一预设值的情况(第12次采集的温度值与第11次采集的温度值的差的绝对值小于0.4℃,即|9.6℃-9.3℃|<0.4℃,Q=12),且至第15次采集满足连续4次相邻两次采集的温度值的差的绝对值小于第一预设值的情况,则记录该第一红外传感器在连续4次采集中第一次采集(即第12次采集)的温度值作为第二温度值。相应地,第一温度变化值=第二温度值-第一温度值=9.6℃-5.9℃=3.7℃。
进行第1次温差求和计算:第二红外传感器在第6次与第5次采集的温度值的差为0.3<0.6℃,第三红外传感器在第6次与第5次采集的温度值的差为0.2<0.6℃,则sum(1)= (IR2(2)-IR2(1)+IR3(2)-IR3(1))/2=0.25℃;IR2(2)、IR2(1)分别为第二红外传感器在第6次与第5次采集的温度值;IR3(2)、IR3(1)分别为第三红外传感器在第6次与第5次采集的温度值。
进行第2次温差求和计算:第二红外传感器在第7次与第6次采集的温度值的差为0.2<0.6℃,第三红外传感器在第7次与第6次采集的温度值的差为0.3<0.6℃,则sum(2)=sum(1)+(IR2(3)-IR2(2)+IR3(3)-IR3(2))/2=0.5℃;IR2(3)、IR2(2)分别为第二红外传感器在第7次与第6次采集的温度值,IR3(3)、IR3(2)分别为第三红外传感器在第7次与第6次采集的温度值。
进行第3次温差求和计算:第二红外传感器在第8次与第7次采集的温度值的差为0.7>0.6℃,第三红外传感器在第8次与第7次采集的温度值的差为0.2<0.6℃,由于第二温度传感器在其第8次采集时温度值发生了突变,故sum(3)=sum(2)+IR3(4)-IR3(3)=0.7℃;IR3(4)、IR3(3)分别为第三红外传感器在第8次与第7次采集的温度值。
进行第4次温差求和计算:第三红外传感器在第9次与第8次采集的温度值的差为0.3<0.6℃,故sum(4)=sum(3)+IR3(5)-IR3(4)=1℃;IR3(5)、IR3(4)分别为第三红外传感器在第9次与第8次采集的温度值。
以此类推,进行最后一次(即第7次)温差求和计算:第三红外传感器在第12次与第11次采集的温度值的差为0.3<0.4℃,则sum(7)=sum(6)+IR3(8)-IR3(7)=1.8℃;IR3(8)、IR3(7)分别为第三红外传感器在第12次与第11次采集的温度值。
即第二温度变化值=sum(7)=1.8℃,因此第一温度变化值与第二温度变化值的差值=3.7℃-1.8℃=1.9℃,大于第二预设值0.8℃,因此判断第一红外传感器对应的异常储物空间内放入温度异常物品。
第三红外传感器在第1次采集至第15次采集期间,均未出现相邻两次采集的温度值的差的绝对值大于突变值的情况。故在红外传感器第1次采集至第15次采集期间,第三红外传感器对应的储物空间内未放入温度异常物品。第二红外传感器在其第8次采集时温度值发生了突变,故第二红外传感器对应的储物空间也可能放入温度异常物品,可按照上述方法判断第二红外传感器对应的储物空间是否放入温度异常物品。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于检测冰箱内是否放入温度异常物品的方法,其中所述冰箱包括:内部划分为多个储物空间的箱体、设置在所述箱体前部的门体、以及分别对所述多个储物空间的温度进行感测的多个红外传感器,并且所述方法包括:
    在所述门体开启后,控制所述多个红外传感器采集温度值;
    判断所述多个红外传感器中是否存在任一红外传感器采集的温度值发生突变;
    若判断存在温度值发生突变的红外传感器,则该红外传感器对应的储物空间为可能放入温度异常物品的异常储物空间,获取所述异常储物空间在可能放入温度异常物品前后的第一温度变化值;
    根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算所述异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,其中温差求和计算开始时sum(0)=0,且在进行每次温差求和计算之前,判断除所述异常储物空间对应的红外传感器之外的其他红外传感器采集的温度值是否发生突变,当所述其他红外传感器中未发生突变的数量为一个时,IR(n+1)和IR(n)分别为未发生突变的所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值;当所述其他红外传感器中未发生突变的数量为两个以上时,IR(n+1)和IR(n)分别为任一未发生突变的所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,或IR(n+1)和IR(n)分别为全部未发生突变的所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的平均值;
    根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品。
  2. 根据权利要求1所述的方法,其中判断红外传感器采集的温度值是否发生突变的步骤包括:
    判断所述红外传感器当前采集的温度值与上一次采集的温度值的差的绝对值是否大于预设的突变值;
    若当前采集的温度值与上一次采集的温度值的差的绝对值大于所述突变值,则判断当前采集的温度值发生突变;否则,判断当前采集的温度值未发生突变。
  3. 根据权利要求1所述的方法,其中在进行每次温差求和计算之前,若判断所述其他红外传感器中存在采集的温度值发生突变的红外传感器,则该发生突变的红外传感器采集的温度值不再参与温差求和计算。
  4. 根据权利要求3所述的方法,其中在进行每次温差求和计算之前,若所述其他红外传感器采集的温度值均发生过突变,则温差求和计算结束,所述第二温度变化值为最后一次温差求和计算的结果。
  5. 根据权利要求2所述的方法,其中获取所述第一温度变化值的步骤包括:
    记录所述异常储物空间对应的红外传感器在采集的温度值发生突变之前最近E次采集的第一温度值,作为所述异常储物空间在可能放入温度异常物品前的温度值,其中E≥2;
    当所述异常储物空间对应的红外传感器在采集的温度值发生突变之后、出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,记录所述异常储物空间对应的红外传感器在所述连续M次采集中任意一次采集的第二温度值,作为所述 异常储物空间在可能放入温度异常物品后的温度值,其中M≥3,所述第一预设值小于等于所述突变值;
    计算所述第二温度值与所述第一温度值的差值,作为所述第一温度变化值。
  6. 根据权利要求5所述的方法,其中
    记录所述异常储物空间对应的红外传感器在所述连续M次采集中第一次或最后一次采集的温度值,作为所述异常储物空间在可能放入温度异常物品后的温度值。
  7. 根据权利要求5所述的方法,其中
    所述异常储物空间对应的红外传感器进行所述第一温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行第1次采集;
    所述异常储物空间对应的红外传感器进行所述第二温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行最后1次采集;
    利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间第2次采集的温度值和第1次采集的温度值进行第一次温差求和计算;
    利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间最后1次采集的温度值和上一次采集的温度值,进行最后一次温差求和计算;且
    所述第二温度变化值为最后一次温差求和计算的结果。
  8. 根据权利要求2所述的方法,其中根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品的步骤包括:
    判断所述第一温度变化值与所述第二温度变化值的差值是否大于第二预设值,
    若是,则判断所述异常储物空间内放入温度异常物品;
    若否,则判断所述异常储物空间内未放入温度异常物品;
    其中所述第二预设值大于等于所述突变值。
  9. 根据权利要求1所述的方法,其中
    所述红外传感器的数量为三个以上;且
    控制所述多个红外传感器采集温度值是在所述门体开启一预设时间后进行的。
  10. 根据权利要求1所述的方法,还包括:
    若判断所述异常储物空间内放入温度异常物品,则发出视觉和/或听觉信号提醒用户;和/或
    在所述门体开启期间,若判断任一红外传感器采集的温度值均未发生突变,则判断在所述门体开启期间所述多个储物空间均未放入温度异常物品。
PCT/CN2017/112393 2016-11-23 2017-11-22 用于检测冰箱内是否放入温度异常物品的方法 WO2018095338A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611047457.3 2016-11-23
CN201611047457.3A CN106766650B (zh) 2016-11-23 2016-11-23 用于检测冰箱内是否放入温度异常物品的方法

Publications (1)

Publication Number Publication Date
WO2018095338A1 true WO2018095338A1 (zh) 2018-05-31

Family

ID=58974234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112393 WO2018095338A1 (zh) 2016-11-23 2017-11-22 用于检测冰箱内是否放入温度异常物品的方法

Country Status (2)

Country Link
CN (1) CN106766650B (zh)
WO (1) WO2018095338A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766650B (zh) * 2016-11-23 2019-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766649B (zh) * 2016-11-23 2019-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766647B (zh) 2016-11-23 2019-12-06 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766646B (zh) * 2016-11-23 2019-05-03 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN107131714B (zh) * 2017-06-14 2019-12-10 合肥华凌股份有限公司 提醒食物存储时间的控制方法、控制系统和冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328859A (ja) * 2004-05-18 2005-12-02 Sanyo Electric Co Ltd 冷・温蔵両用配膳車の温度管理装置
CN104296490A (zh) * 2014-10-09 2015-01-21 合肥美的电冰箱有限公司 冰箱的控制方法、系统及冰箱
CN106766646A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766650A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766647A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431342B1 (ko) * 2001-03-26 2004-05-12 삼성전자주식회사 김치냉장고 및 그 제어방법
CN104329863B (zh) * 2014-09-25 2017-01-11 青岛海尔股份有限公司 冰箱及其控制方法
CN105698479A (zh) * 2014-11-27 2016-06-22 青岛海尔股份有限公司 应用于冰箱的温度异常提示装置及其提示方法
CN104990326B (zh) * 2015-06-26 2018-02-02 青岛海尔股份有限公司 冰箱和基于红外传感器的温度测量方法
CN105674680A (zh) * 2016-01-06 2016-06-15 陈星宏 一种基于关键检测点温度采集的冷藏箱温度控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328859A (ja) * 2004-05-18 2005-12-02 Sanyo Electric Co Ltd 冷・温蔵両用配膳車の温度管理装置
CN104296490A (zh) * 2014-10-09 2015-01-21 合肥美的电冰箱有限公司 冰箱的控制方法、系统及冰箱
CN106766646A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766650A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766647A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法

Also Published As

Publication number Publication date
CN106766650B (zh) 2019-05-31
CN106766650A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018095339A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2018095338A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2018095334A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2018095332A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
CN105466147B (zh) 冰箱与用于冰箱的体感探测方法
CN106766648B (zh) 用于检测冰箱内是否放入温度异常物品的方法
CN106958974B (zh) 基于食材的冰箱温度控制方法与计算机存储介质
WO2016206218A1 (zh) 冰箱和基于红外传感器的温度测量方法
CN107144086B (zh) 基于食材的冰箱温度控制方法与计算机存储介质
CN107192216B (zh) 基于食材的冰箱温度控制方法与计算机存储介质
WO2015103935A1 (zh) 冰箱及冰箱内风帘产生装置的控制方法
CN105953521B (zh) 冰箱与冰箱门体的开启方法
WO2016173165A1 (zh) 冰箱
CN204776727U (zh) 一种带有药品分类和制冷功能的家用储药箱
CN112611147A (zh) 一种带重量感应的冰箱
CN204737194U (zh) 一种带有药品分类和制冷功能的家用储药箱
US20180156524A1 (en) Control device for air-conditioning equipment and air conditioning system
CN114562845B (zh) 冷藏冷冻设备的控制方法与冷藏冷冻设备
CN208124707U (zh) 一种风冷冰箱
CN109612188A (zh) 一种可循环复位托盘食堂透明留样冰箱
KR102446226B1 (ko) 반찬용 냉온장고
CN215340315U (zh) 一种电冰箱使用容积检测装置
CN108800714A (zh) 一种具有除臭装置的智能冰箱
JP4457486B2 (ja) 品温制御冷凍庫
WO2023193635A1 (zh) 用于跟踪冷冻室中的储存物品的制冷电器和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874071

Country of ref document: EP

Kind code of ref document: A1