WO2018095332A1 - 用于检测冰箱内是否放入温度异常物品的方法 - Google Patents

用于检测冰箱内是否放入温度异常物品的方法 Download PDF

Info

Publication number
WO2018095332A1
WO2018095332A1 PCT/CN2017/112381 CN2017112381W WO2018095332A1 WO 2018095332 A1 WO2018095332 A1 WO 2018095332A1 CN 2017112381 W CN2017112381 W CN 2017112381W WO 2018095332 A1 WO2018095332 A1 WO 2018095332A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
value
abnormal
storage space
item
Prior art date
Application number
PCT/CN2017/112381
Other languages
English (en)
French (fr)
Inventor
李春阳
苗建林
牟森
赵斌堂
刘昀曦
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2018095332A1 publication Critical patent/WO2018095332A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/06Sensors detecting the presence of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/123Sensors measuring the inside temperature more than one sensor measuring the inside temperature in a compartment

Definitions

  • the present invention relates to a refrigerating and freezing apparatus, and more particularly to a method for detecting whether an abnormal temperature item is placed in a refrigerator.
  • Conventional refrigerators typically sense the temperature around their arrangement using a temperature sensor disposed inside the storage compartment, which is used as a basis for refrigeration control.
  • the refrigerator control is performed using this control method, the refrigerator starts cooling when the temperature measured by the temperature sensor is higher than a preset value.
  • the storage compartment is divided into a plurality of relatively independent storage spaces by the shelf partition
  • the hot food Putting in the temperature that affects the storage space in which it is stored will allow the various bacteria that originally exist in the food inside the refrigerator to grow faster, which is not conducive to the healthy and safe preservation of food; on the other hand, if it is to the storage room Indiscriminate cooling as a whole can result in wasted energy and slow down the storage space in which hot food is placed.
  • the present invention has been made in order to overcome the above problems or at least partially solve the above problems.
  • Another further object of the invention is to improve the accuracy of the refrigeration control of the refrigerator.
  • the present invention provides a method for detecting whether or not a temperature abnormality item is placed in a refrigerator, wherein the refrigerator includes: a case that is internally divided into a plurality of storage spaces, and is disposed at a front portion of the case a door body, and a plurality of infrared sensors respectively sensing temperature of the plurality of storage spaces, and the method comprises:
  • the abnormal storage space is acquired before and after the temperature abnormality item may be placed a first temperature change value and a second temperature change value thereof due to heat exchange between the external environment before and after the temperature abnormality item may be placed, wherein the first temperature change value is equal to the abnormal storage space
  • the difference between the second temperature value after the abnormal temperature item is placed and the first temperature value before the abnormal temperature item is placed, and the temperature value corresponding to the infrared sensor corresponding to the abnormal storage space is the first time
  • the absolute value of the difference between the temperature values of the two adjacent acquisitions is less than the first preset value
  • the temperature value that is collected at any one of the consecutive K acquisitions is taken as the first temperature value, where K ⁇ 3; as well as
  • determining whether the abnormal storage space exists in the plurality of storage spaces comprises:
  • any one of the plurality of infrared sensors has a case where the absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than a preset abrupt value, determining the plurality of The abnormal storage space exists in the storage space, and the storage space corresponding to the infrared sensor whose absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than the mutation value is the abnormal storage space.
  • the step of obtaining the second temperature value includes:
  • the temperature value of the continuous M acquisitions meets the temperature of the adjacent two acquisitions.
  • the absolute value of the difference of the values is smaller than the first preset value, the temperature value that is collected at any one of the consecutive M acquisitions is taken as the second temperature value, where M ⁇ 3.
  • the temperature value of the first or last acquisition of the infrared sensor corresponding to the abnormal storage space in the continuous K acquisition is used as the first temperature value;
  • the temperature value of the first or last acquisition of the infrared sensor corresponding to the abnormal storage space in the continuous M acquisition is used as the second temperature value.
  • the infrared sensor corresponding to the abnormal storage space has an absolute value of a difference between the n+1th and the nth collected temperature values before and after the abnormal storage space may be placed in the abnormal temperature storage item, the absolute value is smaller than the first preset value. Then, IR(n+1) and IR(n) are respectively the n+1th and nth acquisitions of the infrared sensor corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the temperature abnormality item. Temperature value,
  • the infrared sensor corresponding to the abnormal storage space has an absolute value of a difference between the n+1th and the nth collected temperature values before and after the abnormal storage space may be placed in the abnormal temperature space is greater than or equal to the first a preset value, and there is another absolute value of the difference between the n+1th and nth collected temperature values before and after the abnormal storage space may be placed in the abnormal temperature space is less than the first preset value
  • Infrared sensor when the number of the other infrared sensors is one, IR(n+1) and IR(n) are respectively the first infrared sensor before and after the abnormal storage space may be placed in the temperature abnormality item a temperature value of n+1 times and an nth time acquisition; when the number of the other infrared sensors is two or more, IR(n+1) and IR(n) are respectively any of the other infrared sensors described above
  • the abnormal storage space may be placed in the temperature values of the n+1th and nth acquisitions before and after the
  • each of the infrared sensors performs the first time before and after the abnormal storage space may be placed in the abnormal temperature item. collection;
  • each of the infrared sensors performs the last acquisition before and after the abnormal storage space may be placed in the temperature abnormal item;
  • Using the infrared sensor to perform the first temperature difference summation calculation for the second time temperature value and the first time temperature value collected before and after the abnormal storage space may be placed in the temperature abnormal item;
  • Using the infrared sensor to perform the last temperature difference summation calculation when the temperature value last collected before and after the abnormal storage space may be placed in the abnormal temperature item and the last collected temperature value;
  • the second temperature change value is a result of the last temperature difference summation calculation.
  • the step of determining whether the abnormal temperature item is placed in the abnormal storage space according to the first temperature change value and the second temperature change value comprises:
  • the second preset value is greater than or equal to the mutation value.
  • the number of the infrared sensors is three or more.
  • controlling the plurality of infrared sensors to collect temperature values is performed after the door body is opened for a predetermined time.
  • the method further includes:
  • a visual and/or audible signal is sent to alert the user;
  • the method for detecting whether an abnormal temperature item is placed in a refrigerator first determining whether there is an abnormal storage space in a plurality of storage spaces that may be placed in an abnormal temperature item, and further passing the abnormal storage space at a possible temperature
  • the first temperature change value before and after the abnormal item and the second temperature change value caused by the heat exchange between the external environment before and after the abnormal temperature item are placed, and whether the abnormal temperature item is placed in the abnormal storage space is determined.
  • the principle of determining whether an abnormal temperature item is placed in the abnormal storage space of the present invention mainly utilizes the temperature change of the storage space caused by the hot food and the indoor and outdoor heat exchange during the opening of the refrigerator door, and the storage space inside and outside the refrigerator door opening period. The natural changes in temperature caused by heat exchange are compared to determine whether or not an overheated food is placed in a certain storage space.
  • the method of the present invention can more accurately determine whether an overheated food is placed in a certain storage space, and can alert the user when it is judged that the overheated food is placed in the storage space, so that the user is in an abnormal temperature condition.
  • the temperature tends to be normal before placing it in the refrigerator for storage. To some extent, avoid or reduce the adverse effects on the refrigerator and its storage due to the presence of hot items in the refrigerator.
  • the present invention can more accurately calculate the second temperature change value caused by the heat exchange between the abnormal environment and the external environment before and after the abnormal storage space is placed, thereby improving the present invention. Check the accuracy of whether the temperature is abnormal in the refrigerator.
  • the present invention can more accurately distinguish the reason why the temperature of the storage space rises during the opening of the door is because the food is placed at a higher temperature or the heat exchange is caused only by the natural convection between the external environment and the storage space, thereby It is beneficial to the refrigerator to carry out more reasonable and appropriate cooling control for specific situations.
  • FIG. 1 is a schematic structural view of a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a method for detecting whether a temperature abnormality item is placed in a refrigerator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method of determining whether an abnormal storage space exists in a refrigerator according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method of acquiring a first temperature change value, in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method of acquiring a second temperature change value according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a method of determining whether an abnormal temperature food is placed in an abnormal storage space according to an embodiment of the present invention
  • Figure 7 is a detailed flow chart for detecting whether a temperature abnormality item is placed in a refrigerator in accordance with one embodiment of the present invention.
  • the refrigerator may generally include a case 110 and a plurality of infrared sensors 130.
  • the box body 110 may be surrounded by a top wall, a bottom wall, a rear wall and two left and right side walls.
  • a door body (not shown) is disposed in front of the box body 110, and the door body may be connected to the side wall by a pivot structure.
  • the interior of the tank 110 defines a storage compartment (eg, a refrigerating compartment).
  • the storage compartment may be partitioned into a plurality of storage spaces 140.
  • the storage compartment is separated into a plurality of storage spaces 140, for example, by a rack assembly 120.
  • the rack assembly 120 includes at least one horizontally disposed partition to divide the storage compartment into a plurality of storage spaces 140 in a vertical direction.
  • the rack assembly 120 includes a first partition, a second partition, and a third partition, wherein a first storage space is formed above the first partition, and between the first partition and the second partition A second storage space is formed, and a third storage space is formed between the second partition and the third partition.
  • the number of partitions in the rack assembly 120 and the number of storage spaces 140 may be pre-configured according to the volume of the refrigerator and the requirements for use.
  • a plurality of infrared sensors 130 are disposed inside the storage compartment for measuring the temperatures of the respective storage spaces 140, respectively.
  • the number of infrared sensors 130 is set according to the number of storage spaces 140, and each storage space 140 may be provided with an infrared sensor 130.
  • the inventors conducted a large number of tests on the installation position of the infrared sensor 130, and obtained the infrared sensor 130. Preferred installation location and its preferred configuration.
  • the infrared sensor 130 is at a height of one-half of the height of the storage space 140 in its storage space 140 (more preferably, it is higher than or two-thirds of the overall height of the storage space 140), infrared
  • the infrared receiving center line of the sensor 130 is set to a range of 70 degrees to 150 degrees with respect to the vertical direction (more preferably, the range is 76 degrees to 140 degrees); and the horizontal projection of the infrared receiving center line of the infrared sensor 130 and the side thereof
  • the angle of the wall is set to range from 30 degrees to 60 degrees (more preferably from 30 degrees to 45 degrees).
  • the infrared sensor 130 does not emit infrared rays, but passively receives infrared rays and background infrared rays emitted by the articles in the sensing range, directly senses the change region and temperature of the temperature of the articles in the storage space 140, and converts them into corresponding electrical signals.
  • the measurement results of two adjacent infrared sensors 130 can be calculated to obtain the temperature rise of each storage space 140, and then according to the temperature rise of the storage space 140. It is determined whether a certain storage space 140 is placed in an abnormal temperature item.
  • the temperature abnormality item here is the temperature over temperature. Items that are high (for example, temperatures greater than or equal to 40 ° C).
  • the refrigerator is provided with more than three storage spaces 140, and correspondingly, the refrigerator is provided with three or more infrared sensors 130. Since the temperature abnormality items are placed at most in the two storage spaces 140 of the refrigerator at the same time, even if the two storage spaces 140 simultaneously place the temperature abnormal items, the other storage spaces 140 are not placed with the temperature abnormal items at the same time.
  • the method for detecting whether an abnormal temperature item is placed in the refrigerator may generally include:
  • Step S102 after the door body is opened, the plurality of infrared sensors 130 are controlled to collect the temperature value.
  • Step S104 judging whether there is an abnormal storage space in the plurality of storage spaces 140 that may be placed in the abnormal temperature item according to the temperature value of each of the infrared sensors 130 collected twice during the opening of the door body.
  • Step S106 if it is determined that there is an abnormal storage space, the first temperature change value of the abnormal storage space before and after the temperature abnormality item may be acquired and the heat exchange between the abnormal storage space and the external environment before and after the abnormal temperature item may be placed The resulting second temperature change value.
  • Step S108 determining whether a temperature abnormality item is placed in the abnormal storage space according to the first temperature change value and the second temperature change value.
  • the opening and closing state of the door body can be detected by the door opening detecting device of the refrigerator.
  • the door opening detecting device can detect by using a fan switch, a magnetic sensitive switch, a Hall switch, and the like, and generate different electrical signals when the door body is completely closed or opened to indicate the state of the door body.
  • the plurality of infrared sensors 130 may be controlled to collect temperature values after the door is opened for a predetermined time.
  • the preset time can be, for example, 2 to 3 seconds.
  • the infrared sensor 130 collects the temperature value just after the door body is opened, and delays for a predetermined time to avoid a sudden change in the temperature value collected by the infrared sensor 130 due to the airflow disturbance.
  • the infrared sensor 130 can perform an acquisition every 0.1 ms (this value can be flexibly adjusted). Multiple infrared sensors 130 can simultaneously acquire.
  • the process of determining whether there are abnormal storage spaces in the plurality of storage spaces 140 that may be placed in the temperature abnormality items in the step S104 includes a plurality of, and a preferred manner may be referred to the steps S1041 to S1043 shown in FIG.
  • Step S1041 determining whether there is any infrared sensor 130 during the door opening period where the absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than the preset abrupt value; if yes, executing step S1042; if not, executing the step S1043.
  • step S1042 it is determined that there is an abnormal storage space in the plurality of storage spaces 140, and the storage space 140 corresponding to the infrared sensor 130 whose absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than the abrupt value is abnormal. Storage space.
  • step S1043 it is determined that there is no abnormal storage space in the plurality of storage spaces 140.
  • the flow of step S104 preferably includes: if the absolute value of the difference between the temperature values of the two adjacent infrared sensors 130 is greater than the sudden value during the opening of the door body, (ie, the temperature value collected by any of the infrared sensors 130 is abrupt), it is determined that there is an abnormal storage space in the plurality of storage spaces 140, and the absolute value of the difference between the temperature values of each of the two adjacent acquisitions is greater than the mutation.
  • the storage space 140 corresponding to the value of the infrared sensor 130 is an abnormal storage space; if the absolute value of the difference between the temperature values collected by each of the infrared sensors 130 is less than or equal to the abrupt value during the opening of the door, It is judged that there is no abnormal storage space in the plurality of storage spaces 140.
  • the magnitude of the mutation value can be obtained experimentally.
  • the difference between the temperature values detected by the infrared sensor 130 adjacent to the infrared sensor 130 caused by the heat exchange between the external environment during the opening of the storage space 140 (the difference may be recorded as the first difference) ) can be obtained by extensive testing of the refrigerator.
  • the difference in temperature values of the two adjacent detections of the infrared sensor 130 caused by the heat exchange between the storage space 140 and the external environment during the opening of the storage space (the difference) It can be recorded as the second difference) should be greater than the first difference described above.
  • the difference between the temperature values detected by the infrared sensor 130 twice can be used as a reference value of the abrupt value.
  • the mutation value can be set, for example, to 0.6 ° C or 0.7 ° C or the like.
  • an optional process of step S104 is: comparing the temperature of the plurality of infrared sensors 130 collected at the same acquisition time or the same collection point or the same collection time, and the temperature is significantly higher than that of the other infrared sensors 130.
  • the storage space 140 corresponding to the infrared sensor 130 is an abnormal storage space.
  • an optional process of step S104 is to manually input, by the user, whether there is an abnormal storage space in the plurality of storage spaces 140, and which storage space 140 is an abnormal storage space.
  • step S104 if it is determined in step S104 that there is no abnormal storage space, it is determined that none of the plurality of storage spaces 140 are placed in the temperature abnormality during the opening of the door. That is to say, during the opening of the door, if all the infrared sensors 130 do not have the absolute value of the difference between the temperature values of the two adjacent acquisitions being larger than the abrupt value, it is judged that there is no abnormal storage space, and the door body is further judged. During the opening period, none of the plurality of storage spaces 140 are placed in the temperature abnormality item.
  • the first temperature change value is preferably equal to the difference between the second temperature value of the abnormal storage space after the temperature abnormality item may be placed and the first temperature value before the temperature abnormality item may be placed.
  • the process of obtaining the first temperature value includes a plurality of.
  • the absolute value of the difference between the temperature values of the adjacent two acquisitions is less than the first preset value
  • the temperature value acquired at any one of the consecutive K acquisitions is taken as the first temperature value, wherein K ⁇ 3, and the first preset value is less than or equal to the mutation value.
  • K can be, for example, 3, 4, 5, 6, and the like.
  • the size of the first preset value can be based on the experiment obtain. For the refrigerator, the temperature in the storage space usually rises steadily after the refrigerator door is opened until the temperature abnormality is placed.
  • the temperature value of the infrared sensor collected in any of the consecutive K acquisitions satisfies the phase.
  • the absolute value of the difference between the temperature values of the two acquisitions is less than the first preset value.
  • the temperature value acquired at any one of the consecutive K acquisitions can be used as the temperature before the abnormal storage space is placed in the temperature abnormality item.
  • the first preset value can be set, for example, to 0.5 ° C or 0.4 ° C or the like.
  • the first temperature value is a temperature value of the first or last acquisition of the infrared sensor 130 corresponding to the abnormal storage space in successive K acquisitions.
  • the infrared sensor 130 corresponding to the abnormal storage space is recorded as the abnormal temperature stored in the last E time before the absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than the sudden value.
  • E may be, for example, 2, 3, 4, 5, or the like.
  • the process of obtaining the second temperature value includes a plurality of.
  • the absolute value of the difference between the temperature values of the adjacent two acquisitions is greater than the abrupt value of the infrared sensor corresponding to the abnormal storage space
  • the temperature values of the consecutive M acquisitions are satisfied twice.
  • the absolute value of the difference of the collected temperature values is less than the first preset value
  • the temperature value that is collected at any one of the consecutive M acquisitions is taken as the second temperature value, where M ⁇ 3.
  • M can be, for example, 3, 4, 5, 6, and the like.
  • the temperature in the abnormal storage space first rises at a faster rate, and then tends to be stably warmed up.
  • the temperature value of the corresponding infrared sensor 130 collected in any of the consecutive M acquisitions satisfies the difference between the temperature values of the adjacent two acquisitions is smaller than the first value.
  • a preset value At this time, the temperature value collected at any one of the continuous M acquisitions can be used as the temperature after the abnormal storage space is placed in the temperature abnormality item.
  • the second temperature value is a temperature value of the first or last acquisition of the infrared sensor 130 corresponding to the abnormal storage space in successive M acquisitions.
  • a preferred manner of obtaining the first temperature change value can be seen in steps S1062 through S1066 shown in FIG.
  • Step S1062 when the infrared sensor corresponding to the abnormal storage space satisfies the temperature value of the consecutive K acquisitions for the first time, and the absolute value of the difference between the temperature values of the adjacent two acquisitions is less than the first preset value, The temperature value last collected in the K acquisitions is taken as the first temperature value.
  • Step S1064 when the absolute value of the difference between the temperature values of the adjacent two acquisitions is greater than the abrupt value, the temperature value of the continuous M acquisitions meets the temperature values of the two adjacent acquisitions.
  • the absolute value of the difference is smaller than the first preset value, the temperature value acquired for the first time in the continuous M acquisition is taken as the second temperature value.
  • Step S1066 the difference between the second temperature value and the first temperature value is taken as the first temperature change value.
  • the temperature value of the last time the infrared sensor 130 corresponding to the abnormal storage space is collected in the continuous K acquisition is used as the first temperature value, that is, as the abnormal storage space is at the possible temperature.
  • the temperature value before the abnormal item; the temperature value first collected by the infrared sensor 130 corresponding to the abnormal storage space in the continuous M acquisition As the second temperature value, that is, the temperature value of the abnormal storage space after the temperature abnormality item may be placed. It is assumed that the absolute value of the difference between the temperature value collected by the infrared sensor 130 corresponding to the abnormal storage space and the temperature value collected by the H-1th time is greater than the sudden value, which is at the Pth (P ⁇ H) times.
  • the collection point collects the first temperature value; the second (Q>H) acquisition point collects the second temperature value.
  • the first temperature value can be recorded as IR1(P) or IR1(1), where IR1(P) represents the temperature value of the infrared sensor 130 corresponding to the abnormal storage space at the Pth time, and IR1(1) represents the abnormal storage space.
  • the temperature value corresponding to the first time that the corresponding infrared sensor 130 collects before and after the abnormal storage space may be placed in the temperature abnormality item.
  • the second temperature value may be recorded as IR1(Q) or IR1(Q-P+1), where IR1(Q) represents the temperature value of the Qth acquisition of the infrared sensor 130 corresponding to the abnormal storage space, IR1 (Q-P) +1) indicates the temperature value of the Q-P+1st or last acquisition of the infrared sensor 130 corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the temperature abnormality item.
  • the abnormal storage space should be understood as an abnormal storage space corresponding to the infrared sensor 130 during the period from the acquisition of the first temperature value until the end of the acquisition of the second temperature value, that is, the infrared sensor 130 is in the period of the abnormal temperature. During the Pth acquisition point and the Qth collection point.
  • IR(n+1) and IR(n) are the temperatures of the n+1th and nth acquisitions of the infrared sensor 130 corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the abnormal temperature object. value.
  • the absolute value of the difference between the n+1th and the nth collected temperature values is greater than or equal to the first preset. Value, and there are other infrared sensors 130 whose absolute value of the difference between the n+1th and nth collected temperature values before and after the abnormal storage space may be placed in the abnormal temperature space is less than the first preset value, then When the number of other infrared sensors is one, IR(n+1) and IR(n) are the temperatures of the n+1th and nth acquisitions of other infrared sensors during the abnormal storage space before and after the abnormal temperature items may be placed in the abnormal storage space.
  • IR(n+1) and IR(n) are the n+1th time of any other infrared sensor before and after the abnormal storage space may be placed in the abnormal temperature item.
  • nth collected temperature value, or IR(n+1) and IR(n) are the n+1th and nth acquisitions of all other infrared sensors before and after the abnormal storage space may be placed in the temperature abnormality item. The average of the temperature values.
  • the value is compared with the size of the first preset value, and the temperature difference sum of the two other previously acquired infrared sensors that meet the condition is used to perform the current temperature difference sum calculation according to the comparison result (the difference between the temperature values acquired before and after the two times)
  • the absolute value is smaller than the other infrared sensors of the first preset value, or the current temperature difference summation result is equal to the previous temperature difference summation result (the temperature values of all the infrared sensors before and after the two acquisitions)
  • the absolute value of the difference is greater than or equal to the first preset value).
  • a preferred procedure for obtaining the second temperature change value may be specifically referred to step S1602 to step S1622 shown in FIG.
  • Step S1604 determining whether the absolute value of the difference between the temperature values of the second and first acquisitions of the infrared sensor 130 corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the abnormal storage space is less than the first preset value. If yes, go to step S1605; if no, go to step S1606.
  • the temperature value collected for the second time and the first time in the period before and after the item, sum(1) is the result of the first temperature difference summation calculation.
  • Step S1606 determining whether there is another infrared sensor whose absolute value of the difference between the temperature values of the second and the first acquisition is less than the first preset value before and after the abnormal storage space may be placed in the abnormal storage space, and if so, Step S1607 is performed; if no, step S1608 is performed.
  • the collected temperature value; or, IR2 (2) is the average value of the temperature values collected for the second time before and after all the other infrared sensors may be placed in the abnormal storage space, and IR2(1) is all the other infrared rays mentioned above.
  • the average value of the temperature value collected by the sensor for the first time before and after the abnormal storage space may be placed in the temperature abnormality item.
  • Step S1610 determining whether the absolute value of the difference between the temperature values of the third and second acquisitions of the infrared sensor 130 corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the abnormal storage space is less than the first preset value. If yes, go to step S1611; if no, go to step S1612.
  • Step S1612 determining whether there is another infrared sensor whose absolute value of the difference between the third and second collected temperature values is less than the first preset value before and after the abnormal storage space may be placed in the abnormal storage space, and if so, Step S1613 is performed; if no, step S1614 is performed.
  • step S1616 it is determined whether the absolute value of the difference between the temperature values of the last time and the second time collected by the infrared sensor 130 corresponding to the abnormal storage space before and after the abnormal storage space may be placed in the abnormal temperature storage space is It is smaller than the first preset value, and if yes, step S1617 is performed; if not, step S1618 is performed.
  • the abnormal storage space may be placed in the temperature value of the last time and the second time after the abnormal temperature item, and sum(N) and sum(N-1) are the temperature difference of the last time and the second time respectively. And the result of the calculation.
  • Step S1618 determining whether there is another infrared sensor whose absolute value of the difference between the last time and the second time collected temperature value before and after the abnormal storage space may be placed in the abnormal temperature storage space is smaller than the first preset value, and if so, Then, step S1619 is performed; if not, step S1620 is performed.
  • the temperature value (or average value) of the last time and the second countdown may be placed before and after the abnormal temperature item. For details, refer to step S1607.
  • step S1622 sum(N) is a second temperature change value.
  • Steps S1604 to S1608 are the first temperature difference summation calculation.
  • the first temperature difference summation calculation starts from the acquisition of the first temperature value by the infrared sensor 130 corresponding to the abnormal storage space.
  • the infrared sensor 130 corresponding to the abnormal storage space collects the first temperature value at the Pth acquisition point, that is, the Pth acquisition of the infrared sensor 130 corresponding to the abnormal storage space corresponds to each infrared sensor.
  • the first acquisition is performed before and after the abnormal storage space may be placed in the temperature abnormality item.
  • the temperature values acquired in the Pth time (IR1(2), IR1(1) may also be represented by IR1(P+1), IR1(P), respectively) (step S1605).
  • Steps S1610 to S1614 are the second temperature difference summation calculation. Similar to the first temperature difference summation, before the second temperature difference summation calculation, the temperature values of the infrared sensor 130 corresponding to the abnormal storage space are collected at the P+2th and P+1th times.
  • the temperature values of the infrared sensor 130 corresponding to the abnormal storage space at the P+2th and P+1th times (IR1(3), IR1(2) may also be IR1(P+2), IR1 ( P+1) indicates) (step S1611); if not, it continues to determine whether there are other infrared sensors whose absolute values of the difference between the temperature values of the P+2th and P+1th acquisitions are smaller than the first preset value. (Step S1612).
  • Steps S1616 through S1620 are the last temperature difference summation calculation.
  • the temperature difference sum calculation ends when the infrared sensor 130 corresponding to the abnormal storage space collects the second temperature value.
  • the infrared sensor 130 corresponding to the abnormal storage space collects the second temperature value at the Qth collection point, that is, the infrared sensor 130 corresponding to the abnormal storage space.
  • the Q acquisition corresponds to the last acquisition performed by each infrared sensor during the period before and after the abnormal storage space may be placed in the temperature abnormality item.
  • step S1618 is the result of the last temperature difference summation calculation (sum (QP) is sum(N)); if not, continue to judge whether There are other infrared sensors whose absolute values of the difference between the temperature values acquired at the Qth and Q-1th times are smaller than the first preset value (step S1618).
  • Sum(Q-P) is the second temperature change value caused by the heat exchange between the abnormal storage space and the external environment before and after it may be placed in the temperature abnormality.
  • Step S108 determining, according to the first temperature change value and the second temperature change value, whether the temperature abnormality object is placed in the abnormal storage space includes a plurality of processes, and a preferred manner may be referred to step S1081 to the step shown in FIG. S1083.
  • step S1081 it is determined whether the difference between the first temperature change value and the second temperature change value is greater than a second preset value. If yes, step S1082 is performed; if not, step S1083 is performed.
  • step S1082 it is determined that an abnormal temperature item is placed in the abnormal storage space.
  • step S1083 it is determined that the abnormal temperature item is not placed in the abnormal storage space.
  • the second preset value may be greater than or equal to the abrupt value.
  • the size of the second preset value is related to the lowest temperature of the abnormal temperature item identified by the refrigerator. For example, if the refrigerator considers that the item having a temperature higher than 40 ° C is a temperature abnormal item, an item of 40 ° C may be placed in a certain storage space 140, and the size of the second preset value is determined experimentally.
  • a visual and/or audible signal may be issued to alert the user that the temperature of the item placed in the corresponding storage space 140 is abnormal.
  • a specific music or ringtone or voice prompt may be issued through a built-in sounding device in the refrigerator, and/or a text reminder may be issued through a display device provided on the door of the refrigerator, and/or a user may be alerted by lighting or flashing an indicator light.
  • the plurality of infrared sensors 130 may continue to acquire temperature values, and perform steps S104 to S108 again.
  • the abnormal storage may be determined. After the temperature abnormal food is placed in the object space, it is judged whether the storage space 140 corresponding to the other mutated infrared sensor 130 is placed in the temperature abnormal food. Determining whether the storage space 140 corresponding to the infrared sensor 130 of another mutation is The method of placing the abnormal temperature food can be referred to step S106 to step S108.
  • Figure 7 is a detailed flow chart for detecting whether a temperature abnormality item is placed in a refrigerator in accordance with one embodiment of the present invention.
  • the number of the infrared sensors 130 is three, and the temperatures of the three storage spaces 140 are respectively collected.
  • step S201 it is determined whether the door body is open, and if so, step S202 is performed.
  • Step S202 after y seconds delay, the three infrared sensors 130 start to collect the temperature value IR(1), and record the number of acquisitions. y is 2 to 3 seconds.
  • step S204 the three infrared sensors 130 collect the temperature value IR(2) for the second time, and record the number of acquisitions.
  • step S206 the three infrared sensors 130 collect the temperature value IR(H) for the Hth time, and record the number of acquisitions.
  • Step S208 determining whether the absolute value of the difference between the temperature value IR(H) currently collected by any of the infrared sensors 130 and the last collected temperature value IR(H-1) is greater than the abrupt value A; if so, determining that the infrared sensor 130 is If the collected temperature value is abrupt, step S210 is performed; if not, it is determined that the temperature values collected by the three infrared sensors 130 are not abrupt, and step S209 is performed. In the present invention, if it is determined that the temperature value collected by a certain infrared sensor 130 is abrupt, it means that the storage space 140 corresponding to the infrared sensor 130 is likely to be placed in an abnormal temperature item, resulting in the temperature of the storage space 140. A mutation has occurred.
  • the infrared sensor 130 which is determined to have a sudden change in the collected temperature value in step S208, is referred to as a first infrared sensor, and the other two infrared sensors 130 are referred to as a second infrared sensor and a third infrared sensor.
  • Step S209 determining whether the door body is open, and if yes, returning to step S206, continuing to cause the three infrared sensors 130 to collect the temperature value, and repeatedly determining the temperature value IR(H) currently collected by any of the infrared sensors 130 and the temperature value collected last time. Whether the absolute value of the difference of IR (H-1) is larger than the mutation value A; if not, step S211 is performed.
  • Step S210 recording that the infrared sensors corresponding to the three infrared sensors in the abnormal storage space (ie, the first infrared sensor) have the first time that the temperature values of the consecutive K acquisitions satisfy the difference between the temperature values of the adjacent two acquisitions is smaller than the first value.
  • step S211 it is determined that each of the storage spaces 140 is not placed in the temperature abnormal item.
  • step S212 the three infrared sensors 130 continue to collect the temperature values, and continue the temperature difference sum calculation.
  • Step S214 determining that the infrared sensor 130 (ie, the first infrared sensor, or the abnormality) in the case where the absolute value of the difference between the acquired value IR(H) and the collected value IR(H-1) is greater than the abrupt value A occurs in step S208
  • the infrared sensor corresponding to the storage space whether the temperature value acquired after the continuous acquisition of the temperature value of the M times is equal to the absolute value of the difference between the two adjacent times is less than the first preset value B, and if yes, step S216 is performed.
  • Step S216 recording the three infrared sensors 130 for the first time in consecutive M acquisitions (which is in the total number of acquisitions).
  • the Qth time is the collected value IR(Q); and the last temperature difference summation calculation is performed.
  • the second temperature value can be represented by IR1 (Q); the result of the last temperature difference summation calculation is represented by sum(N).
  • step S2108 it is determined whether IR1(Q)-IR1(P)-sum(N) is greater than the second preset value C. If yes, step S220 is performed; if not, step S219 is performed. In step S218, the difference between the temperature at which the abnormal storage space collected by the first infrared sensor tends to be stable after being placed in the temperature abnormal article and the temperature before the temperature abnormal article may be placed, and sum(N) For comparison, if the difference between the two is greater than the second preset value, step S220 is performed to determine that an abnormal temperature item is placed in the abnormal storage space corresponding to the first infrared sensor; if the difference between the two is less than or equal to the second pre- If the value is set, step S219 is executed to determine that the abnormal temperature item is not placed in the abnormal storage space corresponding to the first infrared sensor.
  • step S201 may be returned.
  • a reminder may be issued, such as lighting an indicator light corresponding to the abnormal storage space to remind the user to place a temperature abnormal item in the storage space 140.
  • the determination result of step S218 may be sent to the main control board of the refrigerator to participate in the control of the refrigeration system of the refrigerator.
  • the refrigeration system is caused to supply more cooling capacity to the storage space 140 to lower its temperature to a preset storage temperature as soon as possible.
  • the refrigeration control can be performed in time and effectively, the influence of the high temperature object on the surrounding storage space 140 is avoided, the storage effect of the refrigerator freezer is improved, and the nutrient loss of the food is reduced. At the same time, it avoids the waste of electric energy caused by the indiscriminate cooling of the entire storage room.
  • the step S208 may be used to determine whether the temperature values collected by the second and third infrared sensors are abrupt, thereby further It is determined whether a temperature abnormal item is placed in the storage space 140 corresponding to the second and third infrared sensors. For the specific process, refer to step S210 to step S219 or to step S220.
  • the number of infrared sensors 130 is three, respectively a first infrared sensor, a second infrared sensor, and a third infrared sensor, respectively collecting the temperatures of the three storage spaces 140; three storages
  • the temperature of the space 140 was set to 5 °C.
  • the above mutation value be 0.6 ° C
  • the first preset value is 0.4 ° C
  • the second preset value is 0.8 ° C
  • the three infrared sensors 130 start collecting temperature values after the second second.
  • the first infrared sensor has a temperature value of 5.1 ° C
  • the second temperature is 5.2 ° C
  • the third temperature is 5.4 ° C
  • the fourth temperature is 5.6 ° C.
  • the temperature value collected in the fifth time is 5.9 ° C
  • the temperature value collected in the sixth time is 6.2 ° C
  • the temperature value collected in the seventh time is 6.9 ° C
  • the temperature value collected in the eighth time is 7.6 ° C
  • the temperature collected in the ninth time is 7.6 ° C
  • the value is 8.2 ° C
  • the temperature value collected in the 10th time is 8.8 ° C
  • the temperature value collected in the 11th time is 9.3 ° C
  • the temperature value collected in the 12th time is 9.6 ° C.
  • the temperature value collected in the 13th time was 9.9 ° C
  • the temperature value collected in the 14th time was 10.2 ° C
  • the temperature value collected in the 15th time was 10.4 ° C, .
  • the temperature of the second infrared sensor is 5.2 °C for the first time, 5.3 °C for the second time, 5.5 °C for the third time, and 5.7 °C for the fourth time.
  • the temperature value of the second acquisition is 5.9 °C
  • the temperature value of the sixth acquisition is 6.2 °C
  • the temperature value of the seventh collection is 6.4 °C
  • the temperature value of the eighth collection is 6.6 °C
  • the temperature value of the ninth acquisition is At 6.8 °C
  • the temperature value collected in the 10th time is 7.1 °C
  • the temperature value collected in the 11th time is 7.3 °C
  • the temperature value collected in the 12th time is 7.6 °C
  • the temperature value collected in the 13th time is 7.9 °C
  • the 14th time The collected temperature value was 8.2 ° C
  • the temperature value collected for the 15th time was 8.4 ° C, .
  • the third infrared sensor is collected at a temperature of 5.1 ° C for the first time, the second temperature is 5.3 ° C, the third temperature is 5.4 ° C, and the fourth temperature is 5.6 ° C.
  • the temperature value of the second acquisition is 5.9 °C
  • the temperature value of the sixth collection is 6.1 °C
  • the temperature value of the seventh collection is 6.4 °C
  • the temperature value of the eighth collection is 6.6 °C
  • the temperature value of the ninth acquisition is At 6.9 °C
  • the temperature value collected in the 10th time is 7.1 °C
  • the temperature value collected in the 11th time is 7.4 °C
  • the temperature value collected in the 12th time is 7.7 °C
  • the temperature value collected in the 13th time is 7.9 °C
  • the 14th time was 8.1 ° C
  • the temperature value collected for the 15th time was 8.3 ° C, ....
  • the storage space 140 corresponding to the first infrared sensor is an abnormal storage space, that is, a storage space 140 that may be placed in an abnormal temperature item.
  • the first infrared sensor satisfies the case where the absolute value of the difference between the temperature values of the two adjacent acquisitions is smaller than the first preset value from the second acquisition (the difference between the temperature value of the second acquisition and the temperature value of the first acquisition)
  • the absolute value of the difference is less than 0.4 ° C, that is,
  • the absolute value of the difference between the temperature values satisfying the three consecutive acquisitions of the fourth acquisition is less than the first preset value.
  • the first infrared sensor satisfies the case where the absolute value of the difference between the temperature values of the two adjacent acquisitions is smaller than the first preset value from the 12th acquisition (the difference between the temperature value collected in the 12th time and the temperature value collected in the 11th time)
  • the absolute value of the difference is less than 0.4 ° C, that is,
  • ⁇ 0.4 ° C, Q 12), and the absolute value of the difference between the temperature values satisfying the four consecutive acquisitions of the fifth acquisition is less than the first
  • the difference between the temperature values of the first and sixth acquisitions of the first infrared sensor is 0.7>0.4° C.
  • the temperature values of the second infrared sensor are collected at the 7th and 6th times.
  • the difference is 0.2 ⁇ 0.4°C
  • the difference between the temperature values of the third and sixth acquisitions of the third infrared sensor is 0.3 ⁇ 0.4°C
  • IR2(4), IR2(3) are the temperature values of the second and sixth acquisitions of the second infrared sensor
  • IR3 (3) are the temperature values collected by the third infrared sensor at the 7th and 6th times, respectively.
  • the second infrared sensor and the third infrared sensor do not show that the absolute value of the difference between the temperature values of the two adjacent acquisitions is greater than the first preset value. Therefore, during the first acquisition to the 15th acquisition of the infrared sensor, no abnormal temperature items are placed in the storage space corresponding to the second infrared sensor and the storage space corresponding to the third infrared sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种用于检测冰箱内是否放入温度异常物品的方法,其中冰箱包括:内部划分为多个储物空间(140)的箱体(110)、设置在箱体(110)前部的门体、以及分别对多个储物空间(140)的温度进行感测的多个红外传感器(130),并且该方法包括:在门体开启后,控制多个红外传感器(130)采集温度值;判断多个储物空间(140)中是否存在可能放入温度异常物品的异常储物空间;若判断存在异常储物空间,则获取异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值;以及根据第一温度变化值和第二温度变化值判断异常储物空间内是否放入温度异常物品。该方法能较为准确地判断某一储物空间(140)内是否放入过热食物。

Description

用于检测冰箱内是否放入温度异常物品的方法
本申请要求了申请日为2016年11月23日,申请号为201611046858.7,发明名称为“用于检测冰箱内是否放入温度异常物品的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冷藏冷冻设备,特别是涉及一种用于检测冰箱内是否放入温度异常物品的方法。
背景技术
传统冰箱通常利用布置于储物间室内部的温度传感器感测其布置位置周围的温度,将该温度作为制冷控制的依据。使用这种控制方式进行冰箱控制时,在温度传感器测量的温度高于预设值时,冰箱启动制冷。然而,在储物间室被搁物隔板分隔为多个相对独立的储物空间的情况下,如果用户把温度较高的热食物放进冰箱某一储物空间,一方面,热食物的放入会影响其所在储物空间的温度,从而会使原本存在于冰箱内部食物中的各种细菌得以较快的滋生,不利于食物健康安全的保存;另一方面,如果对储物间室整体进行无差别的制冷,则会造成电能浪费,同时会导致放入热食物的储物空间降温缓慢。
此外,在冰箱开门时,放入温度较高的热食物会引起储物空间温度变化,而未放入热食物的储物空间也会由于外部环境与储物间室之间自然对流导致的热交换引起温度变化,但是现有技术中始终没有适当的判别方法来区分上述两种情况,导致现有技术中冰箱的制冷控制不够准确。不过多地增加冰箱硬件成本,提供一种能够较为准确地区分上述两种情况的判别方法是冰箱技术领域一直渴望解决但始终未能解决的技术问题。
发明内容
鉴于上述问题,提出了本发明以便克服上述问题或者至少部分地解决上述问题。
本发明一个进一步的目的是要提供一种检测冰箱内是否放入温度异常物品的方法,以检测冰箱在开门期间是否放入过热食物。
本发明另一个进一步的目的是要提高冰箱的制冷控制的准确性。
特别地,本发明提供了一种用于检测冰箱内是否放入温度异常物品的方法,其中所述冰箱包括:内部划分为多个储物空间的箱体、设置在所述箱体前部的门体、以及分别对所述多个储物空间的温度进行感测的多个红外传感器,并且所述方法包括:
在所述门体开启后,控制所述多个红外传感器采集温度值;
判断所述多个储物空间中是否存在可能放入温度异常物品的异常储物空间;
若判断存在所述异常储物空间,则获取所述异常储物空间在可能放入温度异常物品前后 的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,其中所述第一温度变化值等于所述异常储物空间在可能放入温度异常物品后的第二温度值与可能放入温度异常物品前的第一温度值之差,且当所述异常储物空间对应的红外传感器在首次出现连续K次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,其在所述连续K次采集中任意一次采集的温度值作为所述第一温度值,其中K≥3;以及
根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品。
可选地,其中判断所述多个储物空间中是否存在所述异常储物空间,包括:
在所述门体开启期间,若所述多个红外传感器中的任一红外传感器出现相邻两次采集的温度值的差的绝对值大于预设的突变值的情况,则判断所述多个储物空间中存在所述异常储物空间,且每个出现相邻两次采集的温度值的差的绝对值大于所述突变值的红外传感器对应的储物空间均为所述异常储物空间;
在所述门体开启期间,若每个所述红外传感器相邻两次采集的温度值的差的绝对值均小于等于所述突变值,则判断所述多个储物空间中不存在所述异常储物空间,其中所述突变值大于等于所述第一预设值。
可选地,其中获取所述第二温度值的步骤包括:
当所述异常储物空间对应的红外传感器在出现相邻两次采集的温度值的差的绝对值大于所述突变值之后、出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于所述第一预设值时,其在所述连续M次采集中任意一次采集的温度值作为所述第二温度值,其中M≥3。
可选地,所述异常储物空间对应的红外传感器在所述连续K次采集中第一次或最后一次采集的温度值作为所述第一温度值;且
所述异常储物空间对应的红外传感器在所述连续M次采集中第一次或最后一次采集的温度值作为所述第二温度值。
可选地,其中根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算所述第二温度变化值,其中温差求和计算开始时sum(0)=0,且
如果所述异常储物空间对应的红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值小于第一预设值,则IR(n+1)和IR(n)分别为所述异常储物空间对应的红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,
如果所述异常储物空间对应的红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值大于或等于所述第一预设值,且存在在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值小于所述第一预设值的其他红外传感器,则当所述其他红外传感器的数量为一个时,IR(n+1)和IR(n)分别为所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值;当所述其他红外传感器的数量为两个以上时,IR(n+1)和IR(n)分别为任一所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,或IR(n+1)和IR(n)分别为全部所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的平均值;
如果每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值均大于或等于所述第一预设值,则sum(n)=sum(n-1)。
可选地,所述异常储物空间对应的红外传感器进行所述第一温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行第1次采集;
所述异常储物空间对应的红外传感器进行所述第二温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行最后1次采集;
利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间第2次采集的温度值和第1次采集的温度值进行第一次温差求和计算;
利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间最后1次采集的温度值和上一次采集的温度值,进行最后一次温差求和计算;且
所述第二温度变化值为最后一次温差求和计算的结果。
可选地,其中根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品的步骤包括:
判断所述第一温度变化值与所述第二温度变化值的差值是否大于第二预设值,
若是,则判断所述异常储物空间内放入温度异常物品;
若否,则判断所述异常储物空间内未放入温度异常物品;
其中所述第二预设值大于等于所述突变值。
可选地,其中所述红外传感器的数量为三个以上。
可选地,其中控制所述多个红外传感器采集温度值是在所述门体开启一预设时间后进行的。
可选地,所述方法还包括:
若判断所述异常储物空间内放入温度异常物品,则发出视觉和/或听觉信号提醒用户;和/或
若判断不存在所述异常储物空间,则判断在所述门体开启期间所述多个储物空间均未放入温度异常物品。
本发明用于检测冰箱内是否放入温度异常物品的方法,先判断多个储物空间中是否存在可能放入温度异常物品的异常储物空间,并进一步通过异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,判断异常储物空间内是否放入温度异常物品。本发明的判断异常储物空间内是否放入温度异常物品的原理主要利用冰箱门开启期间放入热食物和室内外热交换引起储物空间的温度变化、与单纯由于冰箱门开启期储物空间内外热交换导致的温度自然变化作比较,以判断某一储物空间内是否放入过热食物。
目前,现有冰箱中尚未存在检测冰箱内是否放入温度异常物品的方法。对于普通用户而言,可能尚未意识到在冰箱内放入过热食物(如温度大于40℃上的食物)会对冰箱造成何种不利影响,有时也可能没有在意放入冰箱内的食物温度是否过高。针对这些问题,本发明的方法可较为准确地判断某一储物空间内是否放入过热食物,并可在判断储物空间内放入过热食物时对用户发出提醒,以便于用户在温度异常物品的温度趋于正常后再将其放入冰箱贮藏。在一定程度上避免或减少由于冰箱内放入过热物品对冰箱及其内的储物造成不利影响。
进一步地,本发明根据温差求和公式,可较为准确地计算异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,从而提高了本发明检测冰箱内是否放入温度异常物品的准确性。
进一步地,本发明可较为准确地区分储物空间在开门期间温度升高的原因是因为放入温度较高的食物或是仅由于外部环境与储物空间之间自然对流导致的热交换,从而有利于冰箱针对具体情况进行较为合理适当的制冷控制。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性结构图;
图2是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的方法的示意图;
图3是根据本发明一个实施例的判断冰箱中是否存在异常储物空间的方法的示意图;
图4是根据本发明一个实施例的获取第一温度变化值的方法的示意图;
图5是根据本发明一个实施例的获取第二温度变化值的方法的示意图;
图6是根据本发明一个实施例的判断异常储物空间内是否放入温度异常食物的方法的示意图;
图7是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的详细流程图。
具体实施方式
图1是根据本发明一个实施例的冰箱的示意性结构图。参见图1,该冰箱一般性地可以包括:箱体110和多个红外传感器130。箱体110可由顶壁、底壁、后壁以及左右两个侧壁围成,箱体110前方设置门体(图中未示出),门体可以采用枢轴结构连接于侧壁上。箱体110内部限定有储物间室(例如冷藏室)。储物间室可被分隔为多个储物空间140。例如利用搁物架组件120将储物间室分隔为多个储物空间140。其中一种优选结构为:搁物架组件120包括至少一个水平设置的隔板,以将储物间室沿竖直方向分隔为多个储物空间140。在图1中,搁物架组件120包括第一隔板、第二隔板、第三隔板,其中第一隔板上方形成第一储物空间、第一隔板与第二隔板之间形成第二储物空间、第二隔板与第三隔板之间形成第三储物空间。在本发明的另一些实施例中,搁物架组件120中的隔板数量以及储物空间140的数量,可以根据冰箱的容积以及使用要求预先进行配置。
多个红外传感器130,设置于储物间室内部,其分别用于测量各储物空间140的温度。红外传感器130的数量依据储物空间140的数量进行设定,每个储物空间140可以设置一个红外传感器130。
为了提高红外传感器130对储物空间140内部物品的温度感测精度,满足对储物空间140进行制冷的要求,发明人对红外传感器130的安装位置进行了大量的测试,并得出红外传感器130的优选安装位置及其优选的配置方式。红外传感器130在其所在储物空间140的高度高于储物空间140整体高度的二分之一处(更优的范围为高于或位于储物空间140整体高度的三分之二),红外传感器130的红外接收中心线相对于竖直向上的角度范围设置为70度至150度(更优的范围为76度至140度);以及红外传感器130的红外接收中心线的水平投影与其所在侧壁的夹角范围设置为30度至60度(更优的范围为30度至45度)。
红外传感器130不发射红外线,而是被动接收所感测范围内物品发射的红外线及背景红外线,直接感知储物空间140内物品温度的变化区域及温度,转换为相应的电信号。
在本发明实施例的冰箱中,可以对每个红外传感器130的相邻两次的测量结果进行计算,以得到每个储物空间140的温升情况,进而根据储物空间140的温升情况来判断某个储物空间140是否放入温度异常物品。本领域技术人员可以理解,此处的温度异常物品即为温度过 高(例如温度大于等于40℃)的物品。
在本发明的一些实施例中,冰箱设置3个以上的储物空间140,相应地,冰箱设置3个以上的红外传感器130。由于同时最多在冰箱的两个储物空间140中放入温度异常物品,这样,即使两个储物空间140同时放置温度异常物品,仍有其他储物空间140未同时放置温度异常物品。
图2是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的方法的示意图。该用于检测冰箱内是否放入温度异常物品的方法一般性地可以包括:
步骤S102,在门体开启后,控制多个红外传感器130采集温度值。
步骤S104,根据每个红外传感器130在门体开启期间相邻两次采集的温度值,判断多个储物空间140中是否存在可能放入温度异常物品的异常储物空间。
步骤S106,若判断存在异常储物空间,则获取异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值。
步骤S108,根据第一温度变化值和第二温度变化值判断异常储物空间内是否放入温度异常物品。
在步骤S102中,可利用冰箱的开门检测装置检测门体的开闭状态。开门检测装置可以利用扇形开关、磁敏开关、霍尔开关等多种方式进行检测,在门体完全闭合或者打开时分别产生不同的电信号,以指示门体的状态。可在门体开启一预设时间后,控制多个红外传感器130采集温度值。该预设时间例如可为2至3秒。相比在门体刚开启就使红外传感器130采集温度值,延迟一预设时间可以避免由于气流扰动导致红外传感器130采集的温度值发生突变。
红外传感器130可以每间隔0.1ms(该数值可以灵活调整)进行一次采集。多个红外传感器130可以同时进行采集。
步骤S104判断多个储物空间140中是否存在可能放入温度异常物品的异常储物空间的流程包括多种,其中一种优选的方式可参见图3中示出的步骤S1041至步骤S1043。
步骤S1041,判断在开门期间是否有任一红外传感器130出现相邻两次采集的温度值的差的绝对值大于预设的突变值的情况;若是,则执行步骤S1042;若否,则执行步骤S1043。
步骤S1042,判断多个储物空间140中存在异常储物空间,且每个出现相邻两次采集的温度值的差的绝对值大于突变值的红外传感器130对应的储物空间140均为异常储物空间。
步骤S1043,判断多个储物空间140中不存在异常储物空间。
也就是说,步骤S104的流程优选包括:在门体开启期间,若前述多个红外传感器130中的任一红外传感器130出现相邻两次采集的温度值的差的绝对值大于突变值的情况(即任一红外传感器130采集的温度值发生突变),则判断前述多个储物空间140中存在异常储物空间,且每个出现相邻两次采集的温度值的差的绝对值大于突变值的红外传感器130对应的储物空间140均为异常储物空间;在门体开启期间,若每个红外传感器130相邻两次采集的温度值的差的绝对值均小于等于突变值,则判断前述多个储物空间140中不存在异常储物空间。
在步骤S1041中,突变值的大小可根据实验获得。对于特定的冰箱而言,储物空间140在开门期间由于外部环境与其之间进行热交换引起的红外传感器130相邻两次检测的温度值的差值(该差值可记为第一差值)可以通过对该冰箱进行大量测试得出。本领域技术人员均可意识到的,储物空间140在开门期间由于放入温度异常物品以及外部环境与其进行热交换引起的红外传感器130相邻两次检测的温度值的差值(该差值可记为第二差值)应该大于上述第一差值。例如,冰箱的某个储物空间140在开门期间放入温度为25℃的物品时红外传感器130相邻两次检测的温度值的差值的大小,可作为突变值的参考值。突变值例如可设置为0.6℃或0.7℃等。
在替代性实施例中,步骤S104的一种可选流程为:将多个红外传感器130在同一采集次数或同一采集点或相同采集时刻采集的温度进行比较,温度明显高于其他红外传感器130的红外传感器130对应的储物空间140为异常储物空间。在另一些替代性实施例中,步骤S104的一种可选流程为:由用户手动输入多个储物空间140中是否存在异常储物空间、以及哪个储物空间140为异常储物空间。
在一些实施例中,在步骤S104中,若判断不存在异常储物空间,则判断在门体开启期间前述多个储物空间140均未放入温度异常物品。也就是说,在开门期间,如果全部红外传感器130均未出现相邻两次采集的温度值的差的绝对值大于突变值的情况,则判断不存在异常储物空间,并进一步判断在门体开启期间前述多个储物空间140均未放入温度异常物品。
在步骤S106中,第一温度变化值优选等于异常储物空间在可能放入温度异常物品后的第二温度值与可能放入温度异常物品前的第一温度值之差。
获取第一温度值的流程包括多种。在优选的实施例中,当异常储物空间对应的红外传感器在首次出现连续K次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,其在所述连续K次采集中任意一次采集的温度值作为第一温度值,其中K≥3,且第一预设值小于等于突变值。K例如可为3,4,5,6等。第一预设值的大小可根据实验 获得。对于冰箱而言,在冰箱门开启后至放入温度异常物品前,储物空间内的温度通常会稳定地上升,此时,红外传感器在连续K次采集中任意一次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值。在本实施例中,在连续K次采集中任意一次采集的温度值均可作为该异常储物空间放入温度异常物品前的温度。第一预设值例如可设置为0.5℃或0.4℃等。在进一步优选的实施例中,第一温度值为异常储物空间对应的红外传感器130在连续K次采集中第一次或最后一次采集的温度值。
在替代性实施例中,记录异常储物空间对应的红外传感器130在出现相邻两次采集的温度值的差的绝对值大于突变值之前最近E次采集的第一温度值,作为异常储物空间在可能放入温度异常物品前的温度值,其中E≥2。E例如可为2,3,4,5等。
获取第二温度值的流程包括多种。在优选的实施例中,当异常储物空间对应的红外传感器在出现相邻两次采集的温度值的差的绝对值大于突变值之后、出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,其在所述连续M次采集中任意一次采集的温度值作为第二温度值,其中M≥3。M例如可为3,4,5,6等。对于冰箱而言,将温度异常物品放入某一储物空间140后,该异常储物空间内的温度先会以较快地速率升温,之后趋于稳定升温。当该异常储物空间内的温度趋于稳定升温后,其对应的红外传感器130在连续M次采集中任意一次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值。此时,在连续M次采集中任意一次采集的温度值均可作为该异常储物空间放入温度异常物品后的温度。在进一步优选的实施例中,第二温度值为异常储物空间对应的红外传感器130在连续M次采集中第一次或最后一次采集的温度值。
获取第一温度变化值的优选方式可参见图4中示出的步骤S1062至步骤S1066。
步骤S1062,当异常储物空间对应的红外传感器在首次出现连续K次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,其在所述连续K次采集中最后一次采集的温度值作为第一温度值。
步骤S1064,当异常储物空间对应的红外传感器在出现相邻两次采集的温度值的差的绝对值大于突变值之后、出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,其在所述连续M次采集中第一次采集的温度值作为第二温度值。
步骤S1066,第二温度值与第一温度值的差值作为第一温度变化值。
在图4示出的实施例中,异常储物空间对应的红外传感器130在所述连续K次采集中最后一次采集的温度值作为第一温度值,即作为异常储物空间在可能放入温度异常物品前的温度值;异常储物空间对应的红外传感器130在所述连续M次采集中第一次采集的温度值 作为第二温度值,即作为异常储物空间在可能放入温度异常物品后的温度值。假设异常储物空间对应的红外传感器130在其第H次采集到的温度值与第H-1次采集到的温度值的差的绝对值大于突变值,其在第P(P<H)次采集点采集到第一温度值;其第Q(Q>H)次采集点采集到第二温度值。第一温度值可记为IR1(P)或IR1(1),其中IR1(P)表示异常储物空间对应的红外传感器130在第P次采集的温度值,IR1(1)表示异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第1次采集的温度值。第二温度值可记为IR1(Q)或IR1(Q-P+1),其中IR1(Q)表示异常储物空间对应的红外传感器130在第Q次采集的温度值,IR1(Q-P+1)表示异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第Q-P+1次或者最后一次采集的温度值。该异常储物空间在可能放入温度异常物品前后期间应理解为异常储物空间对应的红外传感器130在采集第一温度值开始直至采集第二温度值结束的期间,即为各红外传感器130在第P次采集点和第Q次采集点期间。
在步骤S106中,获取第二温度变化值的流程包括多种,其中一种优选的方式为根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值。其中温差求和计算开始时sum(0)=0,并且:
如果该异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值小于第一预设值,则IR(n+1)和IR(n)分别为该异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值。
如果该异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值大于或等于第一预设值,且存在在该异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值小于第一预设值的其他红外传感器130,则当其他红外传感器的数量为一个时,IR(n+1)和IR(n)分别为其他红外传感器在异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值;当其他红外传感器的数量为两个以上时,IR(n+1)和IR(n)分别为任一其他红外传感器在异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,或IR(n+1)和IR(n)分别为全部其他红外传感器在异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的平均值。
如果每个红外传感器130在该异常储物空间可能放入温度异常物品前后期间第n+1次 和第n次采集的温度值的差的绝对值均大于或等于第一预设值,则sum(n)=sum(n-1)。
也就是说,在利用温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)进行每一次温差求和计算之前,均要先将异常储物空间对应的红外传感器前后两次采集的温度值的差的绝对值与第一预设值的大小进行比较,如果异常储物空间对应的红外传感器前后两次采集的温度值的差的绝对值小于第一预设值,则直接利用异常储物空间对应的红外传感器前后两次采集的温度值进行本次的温差求和计算,否则,将剩余的红外传感器前后两次采集的温度值的差的绝对值与第一预设值的大小进行比较,根据比较结果要么利用满足条件的前述其他红外传感器前后两次采集的温度值进行本次的温差求和计算(存在前后两次采集的温度值的差的绝对值小于第一预设值的其他红外传感器时),要么本次的温差求和计算结果等于上一次温差求和计算结果(全部红外传感器前后两次采集的温度值的差的绝对值均大于等于第一预设值时)。
获取第二温度变化值的优选流程可具体参见图5中示出的步骤S1602至步骤S1622。
步骤S1602,温差求和计算开始时sum(0)=0。
步骤S1604,判断异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值的差的绝对值是否小于第一预设值,若是,则执行步骤S1605;若否,则执行步骤S1606。
步骤S1605,sum(1)=IR1(2)-IR1(1),其中IR1(2)、IR1(1)分别为异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值,sum(1)为进行第1次温差求和计算的结果。
步骤S1606,判断是否存在在该异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值的差的绝对值小于第一预设值的其他红外传感器,若是,则执行步骤S1607;若否,则执行步骤S1608。
步骤S1607,sum(1)=IR2(2)-IR2(1),其中IR2(2)、IR2(1)分别为前述其他红外传感器在该异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值。具体地,当前述其他红外传感器的数量为一个时,IR2(2)和IR2(1)分别为前述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值。当前述其他红外传感器的数量为两个以上时,IR2(2)和IR2(1)分别为任一前述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第2次和第1次采集的温度值;或者,IR2(2)为全部前述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第2次采集的温度值的平均值,IR2(1)为全部前述其他红外传感器在异常储物空间可能放入温度异常物品前后期间第1次采集的温度值的平均值。
步骤S1608,sum(1)=0。
步骤S1610,判断异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间第3次和第2次采集的温度值的差的绝对值是否小于第一预设值,若是,则执行步骤S1611;若否,则执行步骤S1612。
步骤S1611,sum(2)=sum(1)+IR1(3)-IR1(2),其中IR1(3)、IR1(2)分别为异常储物空间对应的红外传感器在该异常储物空间可能放入温度异常物品前后期间第3次和第2次采集的温度值,sum(2)为进行第2次温差求和计算的结果。
步骤S1612,判断是否存在在该异常储物空间可能放入温度异常物品前后期间第3次和第2次采集的温度值的差的绝对值小于第一预设值的其他红外传感器,若是,则执行步骤S1613;若否,则执行步骤S1614。
步骤S1613,sum(2)=sum(1)+IR2(3)-IR2(2),其中IR2(3)、IR2(2)分别为前述其他红外传感器在该异常储物空间可能放入温度异常物品前后期间第3次和第2次采集的温度值(或平均值)。具体可参见步骤S1607。
步骤S1614,sum(2)=sum(1)。
以此类推,直至步骤S1616,判断异常储物空间对应的红外传感器130在该异常储物空间可能放入温度异常物品前后期间最后1次和倒数第2次采集的温度值的差的绝对值是否小于第一预设值,若是,则执行步骤S1617;若否,则执行步骤S1618。
步骤S1617,sum(N)=sum(N-1)+IR1(N+1)-IR1(N),其中IR1(N+1)、IR1(N)分别为异常储物空间对应的红外传感器在该异常储物空间可能放入温度异常物品前后期间最后1次和倒数第2次采集的温度值,sum(N)、sum(N-1)分别为最后1次和倒数第2次进行温差求和计算的结果。
步骤S1618,判断是否存在在该异常储物空间可能放入温度异常物品前后期间最后1次和倒数第2次采集的温度值的差的绝对值小于第一预设值的其他红外传感器,若是,则执行步骤S1619;若否,则执行步骤S1620。
步骤S1619,sum(N)=sum(N-1)+IR2(N+1)-IR2(N),IR2(N+1)、IR2(N)分别为前述其他红外传感器在该异常储物空间可能放入温度异常物品前后期间最后1次和倒数第2次采集的温度值(或平均值)。具体可参见步骤S1607。
步骤S1620,sum(N)=sum(N-1)。
步骤S1622,sum(N)为第二温度变化值。
步骤S1604至步骤S1608为第一次温差求和计算。第一次温差求和计算从异常储物空 间对应的红外传感器130采集第一温度值开始进行。如前所述,异常储物空间对应的红外传感器130在第P次采集点采集第一温度值,也就是说,异常储物空间对应的红外传感器130的第P次采集对应于每个红外传感器在该异常储物空间可能放入温度异常物品前后期间进行的第1次采集。在进行第一次温差求和计算之前,先判断异常储物空间对应的红外传感器130在第P+1次和第P次采集的温度值的差的绝对值是否小于第一预设值(步骤S1604),若是,则sum(1)=IR1(2)-IR1(1),其中IR1(2)、IR1(1)分别为该异常储物空间对应的红外传感器130在第P+1次和第P次采集的温度值(IR1(2)、IR1(1)也可分别用IR1(P+1)、IR1(P)表示)(步骤S1605)。在异常储物空间对应的红外传感器130在第P+1次和第P次采集的温度值的差的绝对值大于等于第一预设值的情况下,则判断是否存在在第P+1次和第P次采集的温度值的差的绝对值小于第一预设值的其他红外传感器(步骤S1606),如果仅存在一个其他红外传感器,则sum(1)=IR2(2)-IR2(1),其中IR2(2)、IR2(1)分别为该其他红外传感器130在第P+1次和第P次采集的温度值(IR2(2)、IR2(1)也可分别用IR2(P+1)、IR2(P)表示);如果存在两个以上其他红外传感器,则sum(1)=IR2’(2)-IR2’(1),其中IR2’(2)、IR2’(1)分别为其他红外传感器中任一个在第P+1次和第P次采集的温度值(IR2’(2)、IR2’(1)也可分别用IR2’(P+1)、IR2’(P)表示);或者sum(1)=[IR21(2)-IR21(1)+IR22(2)-IR22(1)+…]/2,其中IR21(2)、IR22(2)等分别为每个其他红外传感器在第P+1次采集的温度值(IR21(2)、IR22(2)也可分别用IR21(P+1)、IR22(P+1)表示),IR21(1)、IR22(1)等分别为每个其他红外传感器在第P次采集的温度值(IR21(1)、IR22(1)也可分别用IR21(P)、IR22(P)表示)(步骤S1607)。如果每个红外传感器在第P+1次和第P次采集的温度值的差的绝对值均大于或等于第一预设值,则sum(1)=0(步骤S1608)。
步骤S1610至步骤S1614为第二次温差求和计算。与第一次温差求和相类似地,在进行第二次温差求和计算之前,先判断异常储物空间对应的红外传感器130在第P+2次和第P+1次采集的温度值的差的绝对值是否小于第一预设值(步骤S1610),若是,则sum(2)=sum(1)+IR1(3)-IR1(2),其中IR1(3)、IR1(2)分别为该异常储物空间对应的红外传感器130在第P+2次和第P+1次采集的温度值(IR1(3)、IR1(2)也可分别用IR1(P+2)、IR1(P+1)表示)(步骤S1611);若否,则继续判断是否存在在第P+2次和第P+1次采集的温度值的差的绝对值小于第一预设值的其他红外传感器(步骤S1612)。
步骤S1616至步骤S1620为最后一次温差求和计算。温差求和计算在异常储物空间对应的红外传感器130采集第二温度值时结束。如前所述,即异常储物空间对应的红外传感器130在第Q次采集点采集第二温度值,也就是说,异常储物空间对应的红外传感器130的第 Q次采集对应于每个红外传感器在该异常储物空间可能放入温度异常物品前后期间进行的最后1次采集。在进行最后一次温差求和计算(即第Q-P次温差求和计算)之前,先判断异常储物空间对应的红外传感器130在第Q次和第Q-1次采集的温度值的差的绝对值是否小于第一预设值(步骤S1616),若是,则sum(Q-P)=sum(Q-P-1)+IR1(Q-P+1)-IR1(Q-P),其中IR1(Q-P+1)、IR1(Q-P)分别为该异常储物空间对应的红外传感器130在第Q次和第Q-1次采集的温度值(IR1(Q-P+1)、IR1(Q-P)也可分别用IR1(Q)、IR1(Q-1)表示),sum(Q-P)为最后一次进行温差求和计算的结果(步骤S1617,sum(Q-P)即为sum(N));若否,则继续判断是否存在在第Q次和第Q-1次采集的温度值的差的绝对值小于第一预设值的其他红外传感器(步骤S1618)。
sum(Q-P)作为该异常储物空间在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值。
步骤S108根据第一温度变化值和第二温度变化值判断异常储物空间内是否放入温度异常物品的流程包括多种,其中一种优选的方式可参见图6中示出的步骤S1081至步骤S1083。
步骤S1081,判断第一温度变化值与第二温度变化值的差值是否大于第二预设值,若是,则执行步骤S1082;若否,则执行步骤S1083。
步骤S1082,判断异常储物空间内放入温度异常物品。
步骤S1083,判断异常储物空间内未放入温度异常物品。
在步骤S1081中,第二预设值可大于等于突变值。第二预设值的大小与冰箱认定的温度异常物品的最低温度相关。例如,如果冰箱认为温度高于40℃的物品即为温度异常物品,则可在某一储物空间140中放入40℃的物品,通过实验来确定第二预设值的大小。
在步骤S1082之后,可发出视觉和/或听觉信号提醒用户其在对应储物空间140中放入的物品温度异常。例如可以通过冰箱中内置的发音装置发出特定的音乐或铃声或语音提示,和/或通过冰箱门体上设置的显示装置发出文字提醒,和/或通过点亮或闪烁指示灯等方式提醒用户。
在步骤S1082或步骤S1083之后,多个红外传感器130可继续采集温度值,重新执行步骤S104至步骤S108。
此外,在一些实施例中,如果在异常储物空间可能放入温度异常物品的前后期间,其他某一储物空间140对应的红外传感器130的采集温度也发生突变,则可在判断该异常储物空间内是否放入温度异常食物之后,再判断另一发生突变的红外传感器130对应的储物空间140是否放入温度异常食物。判断另一发生突变的红外传感器130对应的储物空间140是否 放入温度异常食物的方法可参见步骤S106至步骤S108。
图7是根据本发明一个实施例的用于检测冰箱内是否放入温度异常物品的详细流程图。其中红外传感器130的数量为三个,分别采集三个储物空间140的温度。
步骤S201,判断门体是否开启,若是,执行步骤S202。
步骤S202,延迟y秒后,3个红外传感器130开始采集温度值IR(1),并记录采集次数。y为2~3秒。
步骤S204,3个红外传感器130第二次采集温度值IR(2),并记录采集次数。
步骤S206,3个红外传感器130第H次采集温度值IR(H),并记录采集次数。
步骤S208,判断任一红外传感器130当前采集的温度值IR(H)与上次采集的温度值IR(H-1)之差的绝对值是否大于突变值A;若是,认定为该红外传感器130采集的温度值发生了突变,执行步骤S210;若否,认定为三个红外传感器130采集的温度值均未发生突变,执行步骤S209。在本发明中,若认定某个红外传感器130采集的温度值发生了突变,则意味着该红外传感器130对应的储物空间140很可能放入了温度异常物品,导致该储物空间140的温度发生突变。在步骤S208中被认定为采集的温度值发生突变的红外传感器130被记为第一红外传感器,其他两个红外传感器130被记为第二红外传感器和第三红外传感器。
步骤S209,判断门体是否开启,若是,返回步骤S206,继续使三个红外传感器130采集温度值,并重复判断任一红外传感器130当前采集的温度值IR(H)与上次采集的温度值IR(H-1)之差的绝对值是否大于突变值A;若否,执行步骤S211。
步骤S210,记录3个红外传感器在异常储物空间对应的红外传感器(即第一红外传感器)首次出现连续K次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,在所述连续K次采集中最后1次(其在总采集次数中为第P次)采集的温度值IR(P);并开始进行温差求和计算,其中sum(1)=IR(P+1)-IR(P),sum(2)=sum(1)+IR(P+2)-IR(P+1),以此类推。
步骤S211,判断每个储物空间140均未放入温度异常物品。
步骤S212,3个红外传感器130继续采集温度值,继续进行温差求和计算。
步骤S214,判断在步骤S208中出现采集值IR(H)与采集值IR(H-1)之差的绝对值大于突变值A的情况的该红外传感器130(即第一红外传感器,或者说异常储物空间对应的红外传感器)在之后采集的温度值是否出现连续M次采集的温度值均满足相邻两次的差的绝对值小于第一预设值B,若是,执行步骤S216。
步骤S216,记录3个红外传感器130在连续M次采集中第一次(其在总采集次数中为 第Q次)的采集值IR(Q);并进行最后一次温差求和计算。可用IR1(Q)表示第二温度值;用sum(N)表示最后一次温差求和计算的结果。
步骤S218,判断IR1(Q)-IR1(P)-sum(N)是否大于第二预设值C,若是,则执行步骤S220;若否,则执行步骤S219。在步骤S218中,利用第一红外传感器采集的异常储物空间在可能放入温度异常物品之后趋于稳定时的温度与在可能放入温度异常物品之前的温度的差值,与sum(N)进行比较,如果两者的差值大于第二预设值,则执行步骤S220,认定第一红外传感器对应的异常储物空间内放入温度异常物品;如果两者的差值小于等于第二预设值,则执行步骤S219,认定第一红外传感器对应的异常储物空间内并未放入温度异常物品。
在步骤S220和步骤S219之后,可返回执行步骤S201。
在一些实施例中,在步骤S220之后,可发出提醒,例如点亮对应该异常储物空间的指示灯,以提醒用户在该储物空间140内放入温度异常物品。
在另一些实施例中,可将步骤S218的判断结果发送至冰箱的主控板,参与冰箱制冷系统的控制。例如,当判断结果为某一储物空间140内放入温度异常物品,则使制冷系统向该储物空间140提供更多的冷量,以使其温度尽快降低至预设保存温度。利用本实施例的检测冰箱内是否放入温度异常物品的方法,可以及时有效地进行制冷控制,避免高温物体对周围储物空间140的影响,提高冰箱冷藏室的储藏效果,减少食物的营养流失,同时避免了对整个储物间室无区别制冷导致的电能浪费。
此外,在一些实施例中,在判断第一红外传感器对应的储物空间140是否放入温度异常物品后,可利用步骤S208判断第二、第三红外传感器采集的温度值是否发生突变,从而进一步判断第二、第三红外传感器对应的储物空间140内是否放入温度异常物品。具体流程可参考步骤S210至步骤S219或至步骤S220。
在一个说明性的实施例中,红外传感器130的数量为3个,分别为第一红外传感器、第二红外传感器、第三红外传感器,分别采集三个储物空间140的温度;三个储物空间140的温度均设定为5℃。令上述突变值为0.6℃,第一预设值为0.4℃,第二预设值为0.8℃,K=3,M=4。
开门后,第2秒后3个红外传感器130开始采集温度值。其中,第一红外传感器第1次采集的温度值为5.1℃、第2次采集的温度值为5.2℃、第3次采集的温度值为5.4℃、第4次采集的温度值为5.6℃、第5次采集的温度值为5.9℃、第6次采集的温度值为6.2℃、第7次采集的温度值为6.9℃、第8次采集的温度值为7.6℃、第9次采集的温度值为8.2℃、第10次采集的温度值为8.8℃、第11次采集的温度值为9.3℃、第12次采集的温度值为9.6℃、 第13次采集的温度值为9.9℃、第14次采集的温度值为10.2℃、第15次采集的温度值为10.4℃、……。
第二红外传感器第1次采集的温度值为5.2℃、第2次采集的温度值为5.3℃、第3次采集的温度值为5.5℃、第4次采集的温度值为5.7℃、第5次采集的温度值为5.9℃、第6次采集的温度值为6.2℃、第7次采集的温度值为6.4℃、第8次采集的温度值为6.6℃、第9次采集的温度值为6.8℃、第10次采集的温度值为7.1℃、第11次采集的温度值为7.3℃、第12次采集的温度值为7.6℃、第13次采集的温度值为7.9℃、第14次采集的温度值为8.2℃、第15次采集的温度值为8.4℃、……。
第三红外传感器第1次采集的温度值为5.1℃、第2次采集的温度值为5.3℃、第3次采集的温度值为5.4℃、第4次采集的温度值为5.6℃、第5次采集的温度值为5.9℃、第6次采集的温度值为6.1℃、第7次采集的温度值为6.4℃、第8次采集的温度值为6.6℃、第9次采集的温度值为6.9℃、第10次采集的温度值为7.1℃、第11次采集的温度值为7.4℃、第12次采集的温度值为7.7℃、第13次采集的温度值为7.9℃、第14次采集的温度值为8.1℃、第15次采集的温度值为8.3℃、……。
根据上述采集结果,可知第一红外传感器在第7次采集时出现相邻两次采集的温度值的差的绝对值大于突变值的情况(即|6.9℃-6.2℃|>0.6℃,H=7),第一红外传感器对应的储物空间140即为异常储物空间,即可能会放入温度异常物品的储物空间140。
第一红外传感器从第2次采集开始满足相邻两次采集的温度值的差的绝对值小于第一预设值的情况(第2次采集的温度值与第1次采集的温度值的差的绝对值小于0.4℃,即|5.2℃-5.1℃|<0.4℃),且至第4次采集满足连续3次相邻两次采集的温度值的差的绝对值小于第一预设值的情况,则记录该第一红外传感器在连续3次采集中最后1次采集(即第4次采集,P=4)的温度值作为第一温度值。第一红外传感器从第12次采集开始满足相邻两次采集的温度值的差的绝对值小于第一预设值的情况(第12次采集的温度值与第11次采集的温度值的差的绝对值小于0.4℃,即|9.6℃-9.3℃|<0.4℃,Q=12),且至第15次采集满足连续4次相邻两次采集的温度值的差的绝对值小于第一预设值的情况,则记录该第一红外传感器在连续4次采集中第一次采集(即第12次采集)的温度值作为第二温度值。相应地,第一温度变化值=第二温度值-第一温度值=9.6℃-5.6℃=4℃。
进行第1次温差求和计算:第一红外传感器在第5次与第4次采集的温度值的差为0.3<0.4℃,则sum(1)=IR1(2)-IR1(1)=0.3℃;IR1(2)、IR1(1)分别为第一红外传感器在第5次与第4次采集的温度值。
进行第2次温差求和计算:第一红外传感器在第6次与第5次采集的温度值的差为0.3<0.4℃,则sum(2)=sum(1)+IR1(3)-IR1(2)=0.6℃;IR1(3)、IR1(2)分别为第一红外传感器在第6次与第5次采集的温度值。
进行第3次温差求和计算:第一红外传感器在第7次与第6次采集的温度值的差为0.7>0.4℃,第二红外传感器在第7次与第6次采集的温度值的差为0.2<0.4℃,第三红外传感器在第7次与第6次采集的温度值的差为0.3<0.4℃,则sum(3)=sum(2)+(IR2(4)-IR2(3)+IR3(4)-IR3(3))/2=0.85℃;IR2(4)、IR2(3)分别为第二红外传感器在第7次与第6次采集的温度值,IR3(4)、IR3(3)分别为第三红外传感器在第7次与第6次采集的温度值。
以此类推,进行最后一次(即第8次)温差求和计算:第一红外传感器在第12次与第11次采集的温度值的差为0.3<0.4℃,则sum(8)=sum(7)+IR1(9)-IR1(8)=2.1℃;IR1(9)、IR1(8)分别为第一红外传感器在第12次与第11次采集的温度值。
即第二温度变化值=sum(8)=2.1℃,因此第一温度变化值与第二温度变化值的差值=4℃-2.1℃=1.9℃,大于第二预设值0.8℃,因此判断第一红外传感器对应的异常储物空间内放入温度异常物品。
第二红外传感器和第三红外传感器在第1次采集至第15次采集期间,均未出现相邻两次采集的温度值的差的绝对值大于第一预设值的情况。故在红外传感器第1次采集至第15次采集期间,第二红外传感器对应的储物空间和第三红外传感器对应的储物空间内均未放入温度异常物品。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于检测冰箱内是否放入温度异常物品的方法,其中所述冰箱包括:内部划分为多个储物空间的箱体、设置在所述箱体前部的门体、以及分别对所述多个储物空间的温度进行感测的多个红外传感器,并且所述方法包括:
    在所述门体开启后,控制所述多个红外传感器采集温度值;
    判断所述多个储物空间中是否存在可能放入温度异常物品的异常储物空间;
    若判断存在所述异常储物空间,则获取所述异常储物空间在可能放入温度异常物品前后的第一温度变化值和其在可能放入温度异常物品前后由于外部环境与其之间进行热交换导致的第二温度变化值,其中所述第一温度变化值等于所述异常储物空间在可能放入温度异常物品后的第二温度值与可能放入温度异常物品前的第一温度值之差,且当所述异常储物空间对应的红外传感器在首次出现连续K次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于第一预设值时,其在所述连续K次采集中任意一次采集的温度值作为所述第一温度值,其中K≥3;以及
    根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品。
  2. 根据权利要求1所述的方法,其中判断所述多个储物空间中是否存在所述异常储物空间,包括:
    在所述门体开启期间,若所述多个红外传感器中的任一红外传感器出现相邻两次采集的温度值的差的绝对值大于预设的突变值的情况,则判断所述多个储物空间中存在所述异常储物空间,且每个出现相邻两次采集的温度值的差的绝对值大于所述突变值的红外传感器对应的储物空间均为所述异常储物空间;
    在所述门体开启期间,若每个所述红外传感器相邻两次采集的温度值的差的绝对值均小于等于所述突变值,则判断所述多个储物空间中不存在所述异常储物空间,其中所述突变值大于等于所述第一预设值。
  3. 根据权利要求2所述的方法,其中获取所述第二温度值的步骤包括:
    当所述异常储物空间对应的红外传感器在出现相邻两次采集的温度值的差的绝对值大于所述突变值之后、出现连续M次采集的温度值均满足相邻两次采集的温度值的差的绝对值小于所述第一预设值时,其在所述连续M次采集中任意一次采集的温度值作为所述第二温度值,其中M≥3。
  4. 根据权利要求3所述的方法,其中
    所述异常储物空间对应的红外传感器在所述连续K次采集中第一次或最后一次采集的温度值作为所述第一温度值;且
    所述异常储物空间对应的红外传感器在所述连续M次采集中第一次或最后一次采集的温度值作为所述第二温度值。
  5. 根据权利要求1所述的方法,其中根据温差求和公式sum(n)=sum(n-1)+IR(n+1)-IR(n)计算所述第二温度变化值,其中温差求和计算开始时sum(0)=0,且
    如果所述异常储物空间对应的红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值小于第一预设值,则IR(n+1)和IR(n)分别为所述异常储物空间对应的红外传感器在所述异常储物空间可能放入温度异常物品前 后期间第n+1次和第n次采集的温度值,
    如果所述异常储物空间对应的红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值大于或等于所述第一预设值,且存在在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值小于所述第一预设值的其他红外传感器,则当所述其他红外传感器的数量为一个时,IR(n+1)和IR(n)分别为所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值;当所述其他红外传感器的数量为两个以上时,IR(n+1)和IR(n)分别为任一所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值,或IR(n+1)和IR(n)分别为全部所述其他红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的平均值;
    如果每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间第n+1次和第n次采集的温度值的差的绝对值均大于或等于所述第一预设值,则sum(n)=sum(n-1)。
  6. 根据权利要求5所述的方法,其中
    所述异常储物空间对应的红外传感器进行所述第一温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行第1次采集;
    所述异常储物空间对应的红外传感器进行所述第二温度值的采集时,每个所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间进行最后1次采集;
    利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间第2次采集的温度值和第1次采集的温度值进行第一次温差求和计算;
    利用所述红外传感器在所述异常储物空间可能放入温度异常物品前后期间最后1次采集的温度值和上一次采集的温度值,进行最后一次温差求和计算;且
    所述第二温度变化值为最后一次温差求和计算的结果。
  7. 根据权利要求2所述的方法,其中根据所述第一温度变化值和所述第二温度变化值判断所述异常储物空间内是否放入温度异常物品的步骤包括:
    判断所述第一温度变化值与所述第二温度变化值的差值是否大于第二预设值,
    若是,则判断所述异常储物空间内放入温度异常物品;
    若否,则判断所述异常储物空间内未放入温度异常物品;
    其中所述第二预设值大于等于所述突变值。
  8. 根据权利要求1所述的方法,其中所述红外传感器的数量为三个以上。
  9. 根据权利要求1所述的方法,其中控制所述多个红外传感器采集温度值是在所述门体开启一预设时间后进行的。
  10. 根据权利要求1所述的方法,还包括:
    若判断所述异常储物空间内放入温度异常物品,则发出视觉和/或听觉信号提醒用户;和/或
    若判断不存在所述异常储物空间,则判断在所述门体开启期间所述多个储物空间均未放入温度异常物品。
PCT/CN2017/112381 2016-11-23 2017-11-22 用于检测冰箱内是否放入温度异常物品的方法 WO2018095332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611046858.7A CN106766646B (zh) 2016-11-23 2016-11-23 用于检测冰箱内是否放入温度异常物品的方法
CN201611046858.7 2016-11-23

Publications (1)

Publication Number Publication Date
WO2018095332A1 true WO2018095332A1 (zh) 2018-05-31

Family

ID=58974469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112381 WO2018095332A1 (zh) 2016-11-23 2017-11-22 用于检测冰箱内是否放入温度异常物品的方法

Country Status (2)

Country Link
CN (1) CN106766646B (zh)
WO (1) WO2018095332A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766647B (zh) 2016-11-23 2019-12-06 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766646B (zh) * 2016-11-23 2019-05-03 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766650B (zh) * 2016-11-23 2019-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN111536749B (zh) * 2020-04-24 2022-02-18 海信(山东)冰箱有限公司 一种冰箱及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257828A (ja) * 1998-03-11 1999-09-24 Sanyo Electric Co Ltd 部分的急速温調機構付保存装置
JP2005328859A (ja) * 2004-05-18 2005-12-02 Sanyo Electric Co Ltd 冷・温蔵両用配膳車の温度管理装置
CN102878773A (zh) * 2012-10-24 2013-01-16 合肥美的荣事达电冰箱有限公司 冰箱
CN104296490A (zh) * 2014-10-09 2015-01-21 合肥美的电冰箱有限公司 冰箱的控制方法、系统及冰箱
CN106766647A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766646A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766650A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766648A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460006A (en) * 1993-11-16 1995-10-24 Hoshizaki Denki Kabushiki Kaisha Monitoring system for food storage device
JP2014070870A (ja) * 2012-10-02 2014-04-21 Hoshizaki Electric Co Ltd 冷却庫
CN105698479A (zh) * 2014-11-27 2016-06-22 青岛海尔股份有限公司 应用于冰箱的温度异常提示装置及其提示方法
CN104990326B (zh) * 2015-06-26 2018-02-02 青岛海尔股份有限公司 冰箱和基于红外传感器的温度测量方法
CN104990358B (zh) * 2015-06-26 2019-03-12 青岛海尔股份有限公司 冰箱冷藏室的分区制冷控制方法和分区制冷控制装置
CN104990357B (zh) * 2015-06-26 2018-03-23 青岛海尔股份有限公司 冰箱冷藏室的分区制冷控制方法和分区制冷控制装置
CN204854147U (zh) * 2015-06-30 2015-12-09 青岛海尔股份有限公司 冰箱及其红外传感装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257828A (ja) * 1998-03-11 1999-09-24 Sanyo Electric Co Ltd 部分的急速温調機構付保存装置
JP2005328859A (ja) * 2004-05-18 2005-12-02 Sanyo Electric Co Ltd 冷・温蔵両用配膳車の温度管理装置
CN102878773A (zh) * 2012-10-24 2013-01-16 合肥美的荣事达电冰箱有限公司 冰箱
CN104296490A (zh) * 2014-10-09 2015-01-21 合肥美的电冰箱有限公司 冰箱的控制方法、系统及冰箱
CN106766647A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766646A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766650A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法
CN106766648A (zh) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 用于检测冰箱内是否放入温度异常物品的方法

Also Published As

Publication number Publication date
CN106766646B (zh) 2019-05-03
CN106766646A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018095339A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2018095338A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2018095332A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2018095334A1 (zh) 用于检测冰箱内是否放入温度异常物品的方法
WO2017113643A1 (zh) 冰箱与用于冰箱的体感探测方法
CN106958974B (zh) 基于食材的冰箱温度控制方法与计算机存储介质
CN107144086B (zh) 基于食材的冰箱温度控制方法与计算机存储介质
WO2016206218A1 (zh) 冰箱和基于红外传感器的温度测量方法
CN106766648B (zh) 用于检测冰箱内是否放入温度异常物品的方法
US10501972B2 (en) Refrigeration system and control system therefor
CN107192216B (zh) 基于食材的冰箱温度控制方法与计算机存储介质
WO2016173162A1 (zh) 冰箱与冰箱的使用容积检测方法
US20150285552A1 (en) Refrigerator appliance and a method for defrosting a food item
CN105953521B (zh) 冰箱与冰箱门体的开启方法
WO2016173165A1 (zh) 冰箱
EP2752630A2 (en) Refrigerator providing air flow to door
WO2016173163A1 (zh) 冰箱与冰箱的使用容积检测方法
KR102605622B1 (ko) 냉장고
EP1482264B1 (en) Refrigerator with improved temperature control
US20180156524A1 (en) Control device for air-conditioning equipment and air conditioning system
CN208124707U (zh) 一种风冷冰箱
CN109612188A (zh) 一种可循环复位托盘食堂透明留样冰箱
KR102446226B1 (ko) 반찬용 냉온장고
CN215340315U (zh) 一种电冰箱使用容积检测装置
CN210391937U (zh) 一种热风式餐盒保温箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874069

Country of ref document: EP

Kind code of ref document: A1