WO2018094917A1 - 一种修正波逆变器输出电压控制系统及控制方法 - Google Patents

一种修正波逆变器输出电压控制系统及控制方法 Download PDF

Info

Publication number
WO2018094917A1
WO2018094917A1 PCT/CN2017/076865 CN2017076865W WO2018094917A1 WO 2018094917 A1 WO2018094917 A1 WO 2018094917A1 CN 2017076865 W CN2017076865 W CN 2017076865W WO 2018094917 A1 WO2018094917 A1 WO 2018094917A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output voltage
unit
inverter
value
Prior art date
Application number
PCT/CN2017/076865
Other languages
English (en)
French (fr)
Inventor
徐新华
Original Assignee
广东百事泰电子商务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东百事泰电子商务股份有限公司 filed Critical 广东百事泰电子商务股份有限公司
Publication of WO2018094917A1 publication Critical patent/WO2018094917A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques

Definitions

  • the invention relates to an inverter, in particular to a modified wave inverter output voltage control system and a control method thereof.
  • the current correction wave inverter measures the output voltage, usually on the output side of the inverter, and uses the voltage divider resistor divider or op amp to scale down the output voltage to calculate the output voltage.
  • this method has a relatively obvious defect.
  • the bus voltage fluctuation is relatively large, the measurement result will have a large deviation, resulting in a large fluctuation range of the output voltage, and the microcontroller will generate a large error in the calculation. Affects the control accuracy of the output voltage.
  • this method usually involves square sum calculation, that is, each AD value needs to calculate the square sum of each time. For ordinary MCU, this is a very large burden, which seriously affects the operating efficiency of the program. The number of ADs that can be sampled in a single cycle will further increase the error.
  • the technical problem to be solved by the present invention is to provide a modified wave inverter output that can be sampled from the input side of the inverter, can effectively reduce errors, can improve control precision, and reduce computational burden, in view of the deficiencies of the prior art. Voltage control system and control method.
  • the present invention adopts the following technical solutions.
  • a modified wave inverter output voltage control system includes: an inverter unit having an input end connected to a bus bar, wherein the inverter unit is configured to invert a DC voltage transmitted on the bus line into an AC voltage; a sampling unit The input unit is connected to the bus bar, the sampling unit is configured to collect the bus voltage, and the main control unit is respectively connected to the output end of the sampling unit and the control end of the inverter unit, and the main control unit is configured to: The unit samples the bus voltage; outputs a plurality of PWM driving signals to the inverter unit to cause the inverter unit to output an AC voltage; and calculates an accumulated value of the AD value of the bus voltage sampling point in a single cycle of the AC voltage; Calculate the bus voltage value according to the average value; calculate the bus voltage value according to the average value; calculate the inverter according to the time of the AC voltage single cycle and the time when the bridge arm of the inverter unit is in the conduction state during the cycle a duty ratio of the unit output voltage; calculating an output voltage
  • the inverter unit is a four-leg inverter including four MOS tubes.
  • the sampling unit includes a first sampling resistor and a second sampling resistor connected between the bus bar and the ground and connected in series, the connection point of the first sampling resistor and the second sampling resistor and the AD of the main control unit The ports are connected.
  • the main control unit comprises a single chip microcomputer and peripheral circuits thereof.
  • a method for controlling an output voltage of a modified wave inverter is based on a system, the system comprising an inverter unit, a sampling unit and a main control unit, the method comprising the following steps: step S1, system initialization The main control unit samples the bus voltage through the sampling unit, and outputs a multi-channel PWM driving signal to the inverter unit to output the AC voltage to the inverter unit; in step S2, the main control unit calculates the AC The AD value of the bus voltage sampling point in a single cycle of the voltage is summed; in step S3, the main control unit calculates an average value of the sum of the AD values according to the number of sampling points; in step S4, the main control unit is based on the average value Calculating a bus voltage value; in step S5, the main control unit calculates a duty ratio of the output voltage of the inverter unit according to a time of a single cycle of the AC voltage and a time when the bridge arm of the inverter unit is in an on state during the cycle; S6, the main control
  • the main control unit calculates the sum of the AD values by the following algorithm: Among them, AdSum is the summation, i is the serial number of the sampling point, k is the number of sampling points in a single cycle of the AC voltage, and Adi is the i-th sampling result.
  • the main control unit calculates an output voltage value of the inverter unit by using an algorithm as follows: Where Vout is the output voltage value of the inverter unit, VBus is the bus voltage, and Duty is the duty ratio of the output voltage of the inverter unit.
  • the bus voltage is first multi-point sampled, and the main control unit accumulates the AD values of the plurality of sampling points to calculate an average value, and then according to the average value Converting the bus voltage, and then calculating the conduction time of the inverter unit bridge arm within the time range of a single AC cycle, that is, the time during which the inverter unit has voltage output during the period, using the conduction time and the overall time of the communication cycle Calculating the duty ratio of the output voltage, calculating the output voltage value of the inverter unit according to the conversion relationship of the effective voltage value, combining the duty ratio and the bus voltage value, and finally determining whether the output voltage of the inverter unit reaches the target, and if When the output voltage is too low, the on-time of each arm of the inverter unit is increased by increasing the duty ratio of the PWM drive signal, so that the output voltage of the inverter unit is increased; if the output voltage is too high, the PWM is
  • the duty ratio of the driving signal is used to reduce the conduction time of each arm of the inverter unit, so that the output voltage of the inverter unit is reduced.
  • the main control unit repeats the above adjustment to maintain the output voltage of the inverter unit at the target value.
  • the above method only samples and calculates the DC voltage on the bus line, and does not need to sample the output side of the inverter unit. Compared with the prior art, the calculation accuracy is affected due to the large range of the input voltage fluctuation, and the present invention The square sum operation of the AD value is not involved, which effectively reduces the error in the signal acquisition and processing process, not only reduces the computational burden, but also improves the control precision.
  • FIG. 1 is a block diagram showing the composition of a modified wave inverter output voltage control system of the present invention.
  • FIG. 2 is a circuit schematic diagram of an inverter unit and a sampling unit.
  • FIG. 3 is a flow chart of a method for controlling an output voltage of a modified wave inverter according to the present invention.
  • the invention discloses a modified wave inverter output voltage control system. As shown in FIG. 1 and FIG. 2, it comprises an inverter unit 1, a sampling unit 2 and a main control unit 3, wherein:
  • An input end of the inverter unit 1 is connected to a bus bar, and the inverter unit 1 is configured to invert a DC voltage transmitted on the bus line into an AC voltage;
  • An input end of the sampling unit 2 is connected to a bus bar, and the sampling unit 2 is configured to collect a bus voltage
  • the main control unit 3 is connected to the output end of the sampling unit 2 and the control end of the inverter unit 1, respectively, and the main control unit 3 is used for:
  • the bus voltage is sampled by the sampling unit 2;
  • Determining whether the output voltage value of the inverter unit 1 reaches a preset value if the output voltage value is less than a preset value, increasing the conduction time of each bridge arm of the inverter unit 1; if the output voltage value is greater than a preset value, The conduction time of each bridge arm of the inverter unit 1 is shortened.
  • the system only samples and calculates the DC voltage on the busbar, and does not need to sample the output side of the inverter unit 1.
  • the calculation accuracy is affected by the large range of the input voltage fluctuation, and at the same time,
  • the invention does not involve the square sum operation of the AD value, which effectively reduces the error in the signal acquisition and processing process, not only reduces the computational burden, but also improves the control precision.
  • the inverter unit 1 is a four-bridge arm inverter including four MOS tubes (Q1, Q2, Q3, Q4).
  • the sampling unit 2 includes a first sampling resistor R1 and a second sampling resistor R2 connected between the bus bar and the ground, and the connection point and the main control unit of the first sampling resistor R1 and the second sampling resistor R2.
  • the AD ports of 3 are connected.
  • the main control unit 3 includes a single chip microcomputer and peripheral circuits thereof. Further, the input end of the inverter unit 1 is grounded through the filter capacitor C1.
  • the present invention also discloses a method for controlling the output voltage of the modified wave inverter.
  • the method is implemented based on a system including an inverter unit 1 and a sampling. Unit 2 and a main control unit 3, the method includes the following steps:
  • Step S1 system initialization: the main control unit 3 samples the bus voltage by the sampling unit 2, and outputs a multi-channel PWM driving signal to the inverter unit 1 to cause the inverter unit 1 to output an AC voltage;
  • Step S2 the main control unit 3 calculates an accumulation sum of the AD values of the bus voltage sampling points in a single cycle of the AC voltage;
  • Step S3 the main control unit 3 calculates an average value of the sum of the AD values according to the number of sampling points;
  • Step S4 the main control unit 3 calculates a bus voltage value according to the average value
  • Step S5 the main control unit 3 according to the time of the AC voltage single cycle and the bridge arm of the inverter unit 1 in the cycle Calculating the duty ratio of the output voltage of the inverter unit 1 at the time of the on state;
  • Step S6 the main control unit 3 calculates an output voltage value of the inverter unit 1 according to the bus voltage value and the duty ratio;
  • step S7 the main control unit 3 determines whether the output voltage value of the inverter unit 1 reaches a preset value:
  • the on-time of each bridge arm of the inverter unit 1 is shortened.
  • the bus voltage is first multi-sampled, and the main control unit 3 accumulates the AD values of the plurality of sampling points to calculate an average value, and then converts the bus voltage according to the average value, and then Calculating the on-time of the bridge arm of the inverter unit 1 in the time range of a single AC cycle, that is, the time when the inverter unit 1 has a voltage output during the period, and calculating the output by using the conduction time and the total time of the AC cycle
  • the duty ratio of the voltage is calculated according to the conversion relationship of the effective voltage value, and the output voltage value of the inverter unit 1 is calculated in combination with the duty ratio and the bus voltage value, and finally, it is judged whether the output voltage of the inverter unit 1 reaches the target, and if the output is When the voltage is too low, the on-time of each bridge arm of the inverter unit 1 is increased by increasing the duty ratio of the PWM drive signal, so that the output voltage of the inverter
  • the duty ratio of the PWM drive signal reduces the on-time of each bridge arm of the inverter unit 1, and the output voltage of the inverter unit 1 is lowered.
  • the main control unit 3 repeats the above adjustment to maintain the output voltage of the inverter unit 1 at the target value.
  • the above method only samples and calculates the DC voltage on the busbar, and does not need to sample the output side of the inverter unit 1. Compared with the prior art, the calculation accuracy is affected due to the large fluctuation range of the input voltage, and at the same time, The invention does not involve the square sum operation of the AD value, which effectively reduces the error in the signal acquisition and processing process, not only reduces the computational burden, but also improves the control precision.
  • the main control unit 3 calculates the sum of the AD values by the following algorithm:
  • AdSum is the summation
  • i is the serial number of the sampling point
  • k is the number of sampling points in a single cycle of the AC voltage
  • Adi is the i-th sampling result.
  • the AD value is a digital quantity after the main control unit 3 performs analog-to-digital conversion on the sampled signal.
  • the main control unit 3 calculates an average value of the sum of the AD values by the following algorithm:
  • AdAvg AdSum/k
  • AdAvg is the average value
  • AdSum is the cumulative sum
  • k is the number of sampling points in a single cycle of the AC voltage.
  • the main control unit 3 calculates the bus voltage value by the following algorithm:
  • step S3 and step S4 are used to calculate the average value of the bus sample voltage for subsequent operations and processing.
  • Duty is the duty ratio of the output voltage of the inverter unit 1
  • Tcycle is the time of the AC voltage single cycle
  • Ton is the time when the bridge arm of the inverter unit 1 is in the on state.
  • the main control unit 3 calculates the output voltage value of the inverter unit 1 by the following algorithm:
  • Vout is the output voltage value of the inverter unit 1 (ie, the effective value of the AC voltage)
  • VBus is the bus voltage
  • Duty is the duty ratio of the output voltage of the inverter unit 1.
  • the main control unit 3 compares and judges according to the calculated output voltage value, and can realize the duty ratio adjustment of the PWM driving signal, thereby realizing the adjustment of the output voltage of the inverter unit 1.
  • the output voltage of the transformer so single from this point, The mutual jump between the busbar and the output voltage is much smaller than the jitter between the busbar and 0V, and this method is the average of the busbar voltage calculated first, so when using the invention, one more and one less AD is adopted. The impact on the final result is much smaller.
  • the present invention can use a very small filter capacitor at the AD sampling, the real-time sampling is also greatly improved, and the output voltage can be adjusted to better follow the voltage variation of the bus. Therefore, the method improves the measurement accuracy and real-time performance when the bus voltage fluctuation is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种修正波逆变器输出电压控制系统及控制方法。该系统包括有逆变单元(1)、采样单元(2)及主控单元(3)。主控单元用于:通过采样单元对母线电压进行采样;向逆变单元输出多路PWM驱动信号,以令逆变单元输出交流电压;计算交流电压单个周期内的母线电压采样点的AD值累加和(S2);根据采样点的数量计算AD值累加和的平均值(S3);根据平均值计算母线电压值(S4);根据交流电压单个周期的时间以及在该周期内逆变单元的桥臂处于导通状态的时间,计算逆变单元输出电压的占空比(S5);根据母线电压值和占空比计算逆变单元的输出电压值(S6);根据输出电压值控制逆变单元的工作状态(S7)。该系统及方法能减小误差、提高控制精度和减轻运算负担。

Description

一种修正波逆变器输出电压控制系统及控制方法
技术领域
本发明涉及逆变器,尤其涉及一种修正波逆变器输出电压控制系统及控制方法。
背景技术
目前的修正波逆变器在测量输出电压时,通常是在逆变器的输出侧,利用分压电阻分压或运放将输出电压按比例缩小后来计算输出电压。但这种方式有个比较明显的缺陷,就是在母线电压波动比较大时,测量结果会出现较大的偏差,导致输出电压的波动范围较大,单片机在运算时会产生很大的误差,进而影响输出电压的控制精度。另外,采用这种方法通常还会涉及到平方和计算,即每采样一个AD值都需要计算一次平方和,对普通单片机来说,这是非常大的负担,严重影响程序的运行效率,若减少单个周期内能采样的AD次数,也会进一步增大误差。
发明内容
本发明要解决的技术问题在于,针对现有技术的不足,提供一种从逆变器的输入侧进行采样,能有效减小误差、能提高控制精度、减轻运算负担的修正波逆变器输出电压控制系统及控制方法。
为解决上述技术问题,本发明采用如下技术方案。
一种修正波逆变器输出电压控制系统,其包括有:一逆变单元,其输入端连接母线,所述逆变单元用于将母线上传输的直流电压逆变为交流电压;一采样单元,其输入端连接于母线,所述采样单元用于采集母线电压;一主控单元,其分别连接于采样单元的输出端和逆变单元的控制端,所述主控单元用于:通过采样单元对母线电压进行采样;向逆变单元输出多路PWM驱动信号,以令所述逆变单元输出交流电压;计算所述交流电压单个周期内的母线电压采样点的AD值累加和;根据采样点的数量计算AD值累加和的平均值;根据所述平均值计算母线电压值;根据交流电压单个周期的时间以及在该周期内逆变单元的桥臂处于导通状态的时间,计算逆变单元输出电压的占空比;根据所述母线电压值和所述占空比计算逆变单元的输出电压值;判断逆变单元的输出电压值是否达到预设值:若该输出电压值小于预设值,则提高逆变单元各桥臂的导通时间;若该输出电压值大于预设值,则缩短逆变单元各桥臂的导通时间。
优选地,所述逆变单元是包括有四个MOS管的四桥臂逆变器。
优选地,所述采样单元包括有连接于母线与地之间并且依次串联的第一采样电阻和第二采样电阻,所述第一采样电阻和第二采样电阻的连接点与主控单元的AD端口相连。
优选地,所述主控单元包括有单片机及其外围电路。
一种修正波逆变器输出电压控制方法,该方法基于一系统实现,所述系统包括有一逆变单元、一采样单元及一主控单元,所述方法包括有如下步骤:步骤S1,系统初始化:所述主控单元通过采样单元对母线电压进行采样,并且向逆变单元输出多路PWM驱动信号,以令所述逆变单元输出交流电压;步骤S2,所述主控单元计算所述交流电压单个周期内的母线电压采样点的AD值累加和;步骤S3,所述主控单元根据采样点的数量计算AD值累加和的平均值;步骤S4,所述主控单元根据所述平均值计算母线电压值;步骤S5,所述主控单元根据交流电压单个周期的时间以及在该周期内逆变单元的桥臂处于导通状态的时间,计算逆变单元输出电压的占空比;步骤S6,所述主控单元根据所述母线电压值和所述占空比计算逆变单元的输出电压值;步骤S7,所述主控单元判断逆变单元的输出电压值是否达到预设值:若该输出电压值小于预设值,则提高逆变单元各桥臂的导通时间;若该输出电压值大于预设值,则缩短逆变单元各桥臂的导通时间。
优选地,所述步骤S2中,所述主控单元通过如下算法计算AD值累加和:
Figure PCTCN2017076865-appb-000001
其中,AdSum为累加和,i为采样点的序号,k为交流电压单个周期内的采样点数量,Adi为第i次采样结果。
优选地,所述步骤S3中,所述主控单元通过如下算法计算AD值累加和的平均值:AdAvg=AdSum/k;其中,AdAvg为平均值,AdSum为累加和,k为交流电压单个周期内的采样点数量。
优选地,所述步骤S4中,所述主控单元通过如下算法计算母线电压值:VBus=AdAvg*V Re f/2AdBit/Scale;其中,VBus为母线电压,VRef为AD参考电压,AdBit为AD转换位数,Scale为AD采样缩放系数。
优选地,所述步骤S5中,所述主控单元通过如下算法计算逆变单元输出电压的占空比:Duty=Ton/Tcycle;其中,Duty为逆变单元输出电压的占空比,Tcycle为交流电压单个周期的时间,Ton为该周期内逆变单元的桥臂处于导通状态的时间。
优选地,所述步骤S6中,所述主控单元通过如下算法计算逆变单元的输出电压值:
Figure PCTCN2017076865-appb-000002
其中,Vout为逆变单元的输出电压值,VBus为母线电压,Duty为逆变单元输出电压的占空比。
本发明公开的修正波逆变器输出电压控制系统及控制方法中,先对母线电压进行多点采样,主控单元将多个采样点的AD值进行累加后计算出平均值,再根据平均值换算母线电压,之后计算在单个交流周期的时间范围内,逆变单元桥臂的导通时间,即在该周期内逆变单元有电压输出的时间,利用该导通时间与该交流周期总体时间计算出输出电压的占空比,根据有效电压值的换算关系,结合该占空比与母线电压值计算得出逆变单元的输出电压值,最后判断逆变单元的输出电压是否达到目标,若输出电压过低,则通过提高PWM驱动信号的占空比,来提高逆变单元各桥臂的导通时间,使逆变单元的输出电压得以升高;若输出电压过高,则通过降低PWM驱动信号的占空比,来减少逆变单元各桥臂的导通时间,使逆变单元的输出电压得以降低。主控单元反复进行上述调节,可使逆变单元的输出电压维持在目标值。上述方法仅针对母线上的直流电压进行采样、运算,无需对逆变单元的输出侧采样,相比现有技术而言,避免了因输入电压波动范围较大而影响运算精度,同时,本发明不涉及AD值的平方和运算,有效减少了在信号采集和处理过程中的误差,不仅减轻了运算负担,而且提高了控制精度。
附图说明
图1为本发明修正波逆变器输出电压控制系统的组成框图。
图2为逆变单元和采样单元的电路原理图。
图3为本发明修正波逆变器输出电压控制方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作更加详细的描述。
本发明公开了一种修正波逆变器输出电压控制系统,结合图1和图2所示,其包括有一逆变单元1、一采样单元2及一主控单元3,其中:
所述逆变单元1的输入端连接母线,所述逆变单元1用于将母线上传输的直流电压逆变为交流电压;
所述采样单元2的输入端连接于母线,所述采样单元2用于采集母线电压;
所述主控单元3分别连接于采样单元2的输出端和逆变单元1的控制端,所述主控单元3用于:
通过采样单元2对母线电压进行采样;
向逆变单元1输出多路PWM驱动信号,以令所述逆变单元1输出交流电压;
计算所述交流电压单个周期内的母线电压采样点的AD值累加和;
根据采样点的数量计算AD值累加和的平均值;
根据所述平均值计算母线电压值;
根据交流电压单个周期的时间以及在该周期内逆变单元1的桥臂处于导通状态的时间,计算逆变单元1输出电压的占空比;
根据所述母线电压值和所述占空比计算逆变单元1的输出电压值;
判断逆变单元1的输出电压值是否达到预设值:若该输出电压值小于预设值,则提高逆变单元1各桥臂的导通时间;若该输出电压值大于预设值,则缩短逆变单元1各桥臂的导通时间。
该系统仅针对母线上的直流电压进行采样、运算,无需对逆变单元1的输出侧采样,相比现有技术而言,避免了因输入电压波动范围较大而影响运算精度,同时,本发明不涉及AD值的平方和运算,有效减少了在信号采集和处理过程中的误差,不仅减轻了运算负担,而且提高了控制精度。
本实施例中,关于电路配置,所述逆变单元1是包括有四个MOS管(Q1、Q2、Q3、Q4)的四桥臂逆变器。所述采样单元2包括有连接于母线与地之间并且依次串联的第一采样电阻R1和第二采样电阻R2,所述第一采样电阻R1和第二采样电阻R2的连接点与主控单元3的AD端口相连。所述主控单元3包括有单片机及其外围电路。进一步地,所述逆变单元1的输入端通过滤波电容C1接地。
在此基础上,本发明还公开了一种修正波逆变器输出电压控制方法,结合图1至图3所示,该方法基于一系统实现,所述系统包括有一逆变单元1、一采样单元2及一主控单元3,所述方法包括有如下步骤:
步骤S1,系统初始化:所述主控单元3通过采样单元2对母线电压进行采样,并且向逆变单元1输出多路PWM驱动信号,以令所述逆变单元1输出交流电压;
步骤S2,所述主控单元3计算所述交流电压单个周期内的母线电压采样点的AD值累加和;
步骤S3,所述主控单元3根据采样点的数量计算AD值累加和的平均值;
步骤S4,所述主控单元3根据所述平均值计算母线电压值;
步骤S5,所述主控单元3根据交流电压单个周期的时间以及在该周期内逆变单元1的桥臂 处于导通状态的时间,计算逆变单元1输出电压的占空比;
步骤S6,所述主控单元3根据所述母线电压值和所述占空比计算逆变单元1的输出电压值;
步骤S7,所述主控单元3判断逆变单元1的输出电压值是否达到预设值:
若该输出电压值小于预设值,则提高逆变单元1各桥臂的导通时间;
若该输出电压值大于预设值,则缩短逆变单元1各桥臂的导通时间。
上述修正波逆变器输出电压控制方法中,先对母线电压进行多点采样,主控单元3将多个采样点的AD值进行累加后计算出平均值,再根据平均值换算母线电压,之后计算在单个交流周期的时间范围内,逆变单元1桥臂的导通时间,即在该周期内逆变单元1有电压输出的时间,利用该导通时间与该交流周期总体时间计算出输出电压的占空比,根据有效电压值的换算关系,结合该占空比与母线电压值计算得出逆变单元1的输出电压值,最后判断逆变单元1的输出电压是否达到目标,若输出电压过低,则通过提高PWM驱动信号的占空比,来提高逆变单元1各桥臂的导通时间,使逆变单元1的输出电压得以升高;若输出电压过高,则通过降低PWM驱动信号的占空比,来减少逆变单元1各桥臂的导通时间,使逆变单元1的输出电压得以降低。主控单元3反复进行上述调节,可使逆变单元1的输出电压维持在目标值。上述方法仅针对母线上的直流电压进行采样、运算,无需对逆变单元1的输出侧采样,相比现有技术而言,避免了因输入电压波动范围较大而影响运算精度,同时,本发明不涉及AD值的平方和运算,有效减少了在信号采集和处理过程中的误差,不仅减轻了运算负担,而且提高了控制精度。
本发明控制方法中各步骤的具体运算过程可以参考如下实施例:
所述步骤S2中,所述主控单元3通过如下算法计算AD值累加和:
Figure PCTCN2017076865-appb-000003
其中,AdSum为累加和,i为采样点的序号,k为交流电压单个周期内的采样点数量,Adi为第i次采样结果。该AD值是主控单元3对采样信号进行模数转换后的数字量。
所述步骤S3中,所述主控单元3通过如下算法计算AD值累加和的平均值:
AdAvg=AdSum/k;
其中,AdAvg为平均值,AdSum为累加和,k为交流电压单个周期内的采样点数量。
所述步骤S4中,所述主控单元3通过如下算法计算母线电压值:
VBus=AdAvg*V Re f/2AdBit/Scale;
其中,VBus为母线电压,VRef为AD参考电压,AdBit为AD转换位数,Scale为AD采样缩放系数。该步骤S3和步骤S4用来计算母线采样电压的平均值,以供后续运算和处理用。
所述步骤S5中,所述主控单元3通过如下算法计算逆变单元1输出电压的占空比:Duty=Ton/Tcycle;
其中,Duty为逆变单元1输出电压的占空比,Tcycle为交流电压单个周期的时间,Ton为该周期内逆变单元1的桥臂处于导通状态的时间。实际应用中,为实现对输出电压的调节,在逆变单元1的一对桥臂关断与另一对桥臂导通的期间,设置一定的延时,该期间所有桥臂均关断,然而当逆变单元1的桥臂导通时,逆变单元1的输出侧有电压输出,当逆变单元1的桥臂全部关断时,逆变单元1的输出侧无电压输出,基于这种特性,使得交流电压的单个周期内,输出电压具有一定的占空比。由于逆变单元1的输出电压值是其交流电压的有效值,结合电压有效值的换算方法可见,逆变单元1输入侧的母线电压值、输出电压值与输出电压的占空比存在换算关系。应当说明的是,本发明是将母线直流电压逆变为方波交流电压,因此,输出电压的有效值换算与正弦波不同,本实施例应当采用如下运算公式:PWM方波有效值=(方波峰值)*(占空比开根号);
其中,当一对桥臂导通时,直接将母线电压输出,此时交流电压的方波峰值即为母线电压值,所以有:
所述步骤S6中,所述主控单元3通过如下算法计算逆变单元1的输出电压值:
Figure PCTCN2017076865-appb-000004
其中,Vout为逆变单元1的输出电压值(即交流电压的有效值),VBus为母线电压,Duty为逆变单元1输出电压的占空比。
经上述运算后,主控单元3根据计算得出的输出电压值进行对比和判断,可实现对PWM驱动信号的占空比调节,进而实现了对逆变单元1输出电压的调整。
本发明公开的修正波逆变器输出电压控制系统及控制方法中,由于单片机AD采样和运算速度的限制,在单个方波周期内多采样一个AD值和少采样一个AD值,对输出结果的影响相当的大,这是由于如果从逆变器的输出采样,在导通和关闭时采样到的电压是一个非常陡峭的突跳电压;而如果是采母线电压,由于逆变器输出桥导通时的电压就等于母线电压,而输出桥关闭时,由于母线一般都接有储能电容,电压不可能突跳,所以是一个相对缓慢的多的变化,并且一般母线电压本来就很接近逆变器的输出电压,所以单从这一点上说, 母线和输出电压之间的相互跳动也远比母线和0V之间的跳动小的多,而本方法又是先算的母线电压的平均值,所以采用本发明时多采一个和少采一个AD值时对最终结果的影响就小了很多。另外,由于本发明可以在AD采样处使用非常小的滤波电容,所以采样的实时性也的到了很大的提高,能更好的跟随母线的电压变化来调节输出电压。所以本方法提高了母线电压波动较大时的测量精度和实时性。
以上所述只是本发明较佳的实施例,并不用于限制本发明,凡在本发明的技术范围内所做的修改、等同替换或者改进等,均应包含在本发明所保护的范围内。

Claims (10)

  1. 一种修正波逆变器输出电压控制系统,其特征在于,包括有:
    一逆变单元,其输入端连接母线,所述逆变单元用于将母线上传输的直流电压逆变为交流电压;
    一采样单元,其输入端连接于母线,所述采样单元用于采集母线电压;
    一主控单元,其分别连接于采样单元的输出端和逆变单元的控制端,所述主控单元用于:
    通过采样单元对母线电压进行采样;
    向逆变单元输出多路PWM驱动信号,以令所述逆变单元输出交流电压;
    计算所述交流电压单个周期内的母线电压采样点的AD值累加和;
    根据采样点的数量计算AD值累加和的平均值;
    根据所述平均值计算母线电压值;
    根据交流电压单个周期的时间以及在该周期内逆变单元的桥臂处于导通状态的时间,计算逆变单元输出电压的占空比;
    根据所述母线电压值和所述占空比计算逆变单元的输出电压值;
    判断逆变单元的输出电压值是否达到预设值:若该输出电压值小于预设值,则提高逆变单元各桥臂的导通时间;若该输出电压值大于预设值,则缩短逆变单元各桥臂的导通时间。
  2. 如权利要求1所述的修正波逆变器输出电压控制系统,其特征在于,所述逆变单元是包括有四个MOS管的四桥臂逆变器。
  3. 如权利要求1所述的修正波逆变器输出电压控制系统,其特征在于,所述采样单元包括有连接于母线与地之间并且依次串联的第一采样电阻和第二采样电阻,所述第一采样电阻和第二采样电阻的连接点与主控单元的AD端口相连。
  4. 如权利要求1所述的修正波逆变器输出电压控制系统,其特征在于,所述主控单元包括有单片机及其外围电路。
  5. 一种修正波逆变器输出电压控制方法,其特征在于,该方法基于一系统实现,所述系统包括有一逆变单元、一采样单元及一主控单元,所述方法包括有如下步骤:
    步骤S1,系统初始化:所述主控单元通过采样单元对母线电压进行采样,并且向逆变单元输出多路PWM驱动信号,以令所述逆变单元输出交流电压;
    步骤S2,所述主控单元计算所述交流电压单个周期内的母线电压采样点的AD值累加和;
    步骤S3,所述主控单元根据采样点的数量计算AD值累加和的平均值;
    步骤S4,所述主控单元根据所述平均值计算母线电压值;
    步骤S5,所述主控单元根据交流电压单个周期的时间以及在该周期内逆变单元的桥臂处于 导通状态的时间,计算逆变单元输出电压的占空比;
    步骤S6,所述主控单元根据所述母线电压值和所述占空比计算逆变单元的输出电压值;
    步骤S7,所述主控单元判断逆变单元的输出电压值是否达到预设值:
    若该输出电压值小于预设值,则提高逆变单元各桥臂的导通时间;
    若该输出电压值大于预设值,则缩短逆变单元各桥臂的导通时间。
  6. 如权利要求5所述的修正波逆变器输出电压控制方法,其特征在于,所述步骤S2中,所述主控单元通过如下算法计算AD值累加和:
    Figure PCTCN2017076865-appb-100001
    其中,AdSum为累加和,i为采样点的序号,k为交流电压单个周期内的采样点数量,Adi为第i次采样结果。
  7. 如权利要求5所述的修正波逆变器输出电压控制方法,其特征在于,所述步骤S3中,所述主控单元通过如下算法计算AD值累加和的平均值:
    AdAvg=AdSum/k;
    其中,AdAvg为平均值,AdSum为累加和,k为交流电压单个周期内的采样点数量。
  8. 如权利要求5所述的修正波逆变器输出电压控制方法,其特征在于,所述步骤S4中,所述主控单元通过如下算法计算母线电压值:
    VBus=AdAvg*VRef/2AdBit/Scale;
    其中,VBus为母线电压,VRef为AD参考电压,AdBit为AD转换位数,Scale为AD采样缩放系数。
  9. 电压控制方法,其特征在于,所述步骤S5中,所述主控单元通过如下算法计算逆变单元输出电压的占空比:
                                                 ;
    其中,Duty为逆变单元输出电压的占空比,Tcycle为交流电压单个周期的时间,Ton为该周期内逆变单元的桥臂处于导通状态的时间。
  10. 如权利要求5所述的修正波逆变器输出电压控制方法,其特征在于,所述步骤S6中,所述主控单元通过如下算法计算逆变单元的输出电压值:
    Figure PCTCN2017076865-appb-100002
    其中,Vout为逆变单元的输出电压值,VBus为母线电压,Duty为逆变单元输出电压的占空比。
PCT/CN2017/076865 2016-11-25 2017-03-16 一种修正波逆变器输出电压控制系统及控制方法 WO2018094917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611061747.3A CN106787902B (zh) 2016-11-25 2016-11-25 一种修正波逆变器输出电压控制系统及控制方法
CN201611061747.3 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018094917A1 true WO2018094917A1 (zh) 2018-05-31

Family

ID=58910995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076865 WO2018094917A1 (zh) 2016-11-25 2017-03-16 一种修正波逆变器输出电压控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN106787902B (zh)
WO (1) WO2018094917A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487458A (zh) * 2019-01-25 2020-08-04 浙江绍兴苏泊尔生活电器有限公司 交流电电压的测量方法和电路、烹饪器具
CN113098313A (zh) * 2021-04-01 2021-07-09 惠州志顺电子实业有限公司 逆变反馈控制电路、控制方法及逆变器
CN113644826B (zh) * 2021-08-12 2023-04-18 惠州志顺电子实业有限公司 逆变器以及逆变器控制方法
CN114309887A (zh) * 2021-12-27 2022-04-12 唐山松下产业机器有限公司 逆变焊机的控制方法及控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570779B2 (en) * 2001-10-04 2003-05-27 Kokusan Denki Co., Ltd. Pulse with modulation inverter generation using a correction co-efficient and a reference to the ratio to obtain a real duty ratio
CN103546024A (zh) * 2013-11-04 2014-01-29 山东新风光电子科技发展有限公司 链式svg模块均压控制方法和电路
CN104702136A (zh) * 2013-12-10 2015-06-10 美固电子(深圳)有限公司 修正波车载逆变器输出电压的稳压控制电路及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309663A (ja) * 2000-04-19 2001-11-02 Kokusan Denki Co Ltd インバータ発電装置
JP4814740B2 (ja) * 2006-09-22 2011-11-16 サンデン株式会社 インバータ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570779B2 (en) * 2001-10-04 2003-05-27 Kokusan Denki Co., Ltd. Pulse with modulation inverter generation using a correction co-efficient and a reference to the ratio to obtain a real duty ratio
CN103546024A (zh) * 2013-11-04 2014-01-29 山东新风光电子科技发展有限公司 链式svg模块均压控制方法和电路
CN104702136A (zh) * 2013-12-10 2015-06-10 美固电子(深圳)有限公司 修正波车载逆变器输出电压的稳压控制电路及控制方法

Also Published As

Publication number Publication date
CN106787902B (zh) 2019-09-20
CN106787902A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018094917A1 (zh) 一种修正波逆变器输出电压控制系统及控制方法
CN106370912B (zh) 提高mosfet管电流采样精度的方法、系统和电机驱动系统
CN104362851B (zh) 一种dc‑dc转换器控制系统
CN104821552A (zh) 过温保护方法、电路以及带该电路的线性驱动电路
US10181787B2 (en) Power factor correction device, and current sensing method and apparatus thereof
WO2017028617A1 (zh) 相位角获取方法和系统
TW201807421A (zh) 使用狀態觀察器之濾波電容電流無感測器偵測方法與裝置
CN108008180A (zh) 一种开关电源的电流采样电路
WO2023131127A1 (zh) 光伏逆变器直流侧绝缘阻抗检测方法及装置
WO2020218442A1 (ja) 電力変換装置の制御装置
WO2023123676A1 (zh) 单电阻检测方法、电机控制方法、控制器及控制系统
CN103944427A (zh) 一种ac-dc变换器输出电流的控制方法及其控制系统
CN104808736A (zh) 一种pwm控制电压的补偿方法
CN104159357B (zh) 一种led照明电路输出电流有效值和功率因数的控制方法及其控制系统
CN203881815U (zh) 一种简易高精度直流电子负载
WO2023098127A1 (zh) 一种dc-dc开关电源的电感电流预估方法
CN110855169A (zh) 一种无电压传感器的单相逆变器模型预测控制方法
CN103280964B (zh) 一种功率因数校正电路
CN107918053B (zh) 一种基于窗口移动的快速滑差计算方法
CN113691151B (zh) 三电平逆变器控制方法及pcs系统
CN110212892B (zh) 一种高精度电能表可变阈值积分微分脉冲生成方法
CN209982742U (zh) 一种基于三线制热电阻的温控加热系统
CN114152802A (zh) 一种无刷直流电机无位置传感器控制电压采样方法及系统
CN112782633A (zh) 一种电感电流采样校准方法、系统和计算机可读存储介质
CN206135861U (zh) 一种过流保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874077

Country of ref document: EP

Kind code of ref document: A1