WO2018094849A1 - 医疗路径导航方法及系统 - Google Patents

医疗路径导航方法及系统 Download PDF

Info

Publication number
WO2018094849A1
WO2018094849A1 PCT/CN2016/113922 CN2016113922W WO2018094849A1 WO 2018094849 A1 WO2018094849 A1 WO 2018094849A1 CN 2016113922 W CN2016113922 W CN 2016113922W WO 2018094849 A1 WO2018094849 A1 WO 2018094849A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
catheter
path
point
guiding catheter
Prior art date
Application number
PCT/CN2016/113922
Other languages
English (en)
French (fr)
Inventor
刘弘毅
马家骏
Original Assignee
常州朗合医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州朗合医疗器械有限公司 filed Critical 常州朗合医疗器械有限公司
Publication of WO2018094849A1 publication Critical patent/WO2018094849A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B2010/009Various features of diagnostic instruments

Definitions

  • the present application relates to the field of medical technology, and in particular, to a medical path navigation method and system.
  • pulmonary nodule biopsy is a method of percutaneous puncture to insert a needle directly into the lung to obtain a biopsy sample. This puncture method has the risk of producing a pneumothorax. Studies have shown that in the lung percutaneous puncture, there is a 20-40% incidence of pneumothorax, and pneumothorax is a serious adverse reaction, which may be fatal. A safer method is to use a bronchoscope to perform a biopsy of the lung nodules through the natural airway, which can reduce the risk of adverse reactions.
  • aspects of the present application provide a medical pathway navigation method and system for navigating a positioning catheter or treatment catheter to a lesion location that is not clearly accessible to the natural airway.
  • the embodiment of the present application provides a medical path navigation method, including:
  • the guiding catheter is fed into the natural airway leading to the puncture starting point based on a positioning catheter with a positioning sensor;
  • the balloon catheter After removing the puncture catheter, the balloon catheter is fed into the guiding catheter to reach the puncture wound, and the balloon catheter is controlled to expand the puncture wound;
  • a subsequent processing tool with a positioning sensor is fed into the guiding catheter, and the guiding catheter is positioned in the expanded puncture wound based on a positioning sensor on the subsequent processing tool. Position and orientation, adjusting the position and orientation of the guiding catheter in the expanded puncture wound until the guiding catheter is navigated to the lesioned area.
  • the embodiment of the present application further provides a medical path navigation system, including: a path planning device, a path navigation device, a guiding catheter, a positioning catheter with a positioning sensor, a puncture catheter with a positioning sensor, and a balloon catheter;
  • the path planning device is configured to determine a puncture starting point and a puncture target point on the path to the lesion area according to the three-dimensional model of the bronchial tree reconstructed from the CT data and the three-dimensional model of the intravascular blood vessel, and plan the main bulge a main navigation path through the natural airway to the puncture starting point and a puncture path from the puncture starting point to the puncture target point;
  • the guiding catheter is configured to carry the positioning catheter, the puncture catheter or the balloon catheter in an airway leading to the lesion area;
  • the path navigation device includes: a path navigation module, a puncture control module, and an expansion control module;
  • the path navigation module configured to position the guiding catheter based on a positioning sensor disposed on the positioning catheter in the guiding catheter during movement of the guiding catheter in the natural airway Position and direction in the natural airway, and adjusting the position and orientation of the guiding catheter in the natural airway according to the deviation relationship between the position and direction of the guiding catheter in the natural airway and the main navigation path, Until the guiding catheter is navigated to the puncture starting point;
  • the puncture control module is configured to position a direction of the puncture catheter based on a positioning sensor disposed on the puncture catheter in the guiding catheter, and adjust a direction of the puncture catheter until the puncture catheter faces the puncture a target point, and controlling the puncture catheter to stab the puncture target point along the puncture path to obtain a puncture wound;
  • the expansion control module is configured to control the balloon catheter inserted in the guiding catheter to expand the puncture wound
  • the path navigation module is further configured to adjust a position and a direction of the guiding catheter in the expanded puncture wound based on a positioning sensor disposed on a subsequent processing tool in the guiding catheter, and adjust the guiding The position and orientation of the catheter in the expanded puncture wound until the guiding catheter is navigated to the lesioned area.
  • the puncture starting point and the puncture target point on the path through the lesion area are determined; in the navigation process, electromagnetic navigation is combined with puncture and balloon expansion to open the path to the lesion area.
  • the channel which directs the guiding catheter to the lesion area, solves the problem of being unable to reach the lesion site without significant natural airway access, and can direct the guiding catheter to any lesion area of the lung.
  • FIG. 1 is a schematic flowchart of a medical path navigation method according to an embodiment of the present application
  • FIG. 1 is a schematic diagram of a medical path navigation process according to an embodiment of the present application
  • FIG. 2a is a schematic flowchart of a medical path navigation method according to another embodiment of the present application.
  • FIG. 2b is a schematic diagram of an auxiliary point and an auxiliary navigation path according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of ablation treatment of a puncture target point according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application.
  • the embodiment of the present application provides a medical path navigation method, which combines a path sensor based on a positioning sensor with a puncture and a balloon expansion on the basis of a three-dimensional model of a bronchial tree reconstructed from CT data and a three-dimensional model of a blood vessel in the lung.
  • a medical path navigation method which combines a path sensor based on a positioning sensor with a puncture and a balloon expansion on the basis of a three-dimensional model of a bronchial tree reconstructed from CT data and a three-dimensional model of a blood vessel in the lung.
  • a positioning sensor such as a positioning sensor disposed on the positioning catheter, a positioning sensor disposed on the puncture catheter, or the like, may be involved.
  • a positioning sensor such as a positioning sensor disposed on the positioning catheter, a positioning sensor disposed on the puncture catheter, or the like.
  • the positioning sensors use the principle of Electromagnetic Navigation, which is different from the ordinary principle of Magnetic Navigation.
  • the principle of magnetic navigation is mainly: relying on an external magnetic field to attract or repel the permanent magnets in the ablation catheter to affect the moving direction of the ablation catheter.
  • the working principle of the positioning sensor in the embodiment of the present application is mainly: outputting a current to an external control system in response to the magnetic field of the space in which it is located, for the control system to position the corresponding catheter.
  • the positioning sensor is electrically connected to the control system via wires.
  • the control system includes a magnetic field generator for generating a magnetic field in a range of positioning spaces; the positioning sensor itself is not magnetic, and the coil in the positioning sensor is used to sense the magnetic field generated by the magnetic field generator.
  • the magnetic field generator generates a changing magnetic field in a certain range of positioning space, and ensures that the magnetic field characteristics of each point in the positioning space are unique.
  • the coils in the positioning sensor generate current in a varying magnetic field, which is conducted by the wires of the positioning sensor to the control system, and the control system converts and analyzes the current transmitted by the positioning sensor to determine the precise position and orientation of the respective catheter.
  • FIG. 1 is a schematic flowchart of a medical path navigation method according to an embodiment of the present application. As shown in Figure 1a, the method includes:
  • the puncture catheter with the positioning sensor is fed into the guiding catheter to reach the puncture starting point, and the direction of the puncture catheter is adjusted based on the positioning sensor on the puncture catheter, and the direction of the puncture catheter is adjusted until The puncture catheter is directed toward the puncture target point, and the puncture catheter is controlled to puncture the puncture target point along the puncture path to obtain a puncture wound.
  • the balloon catheter After removing the puncture catheter, the balloon catheter is fed into the guiding catheter to reach the puncture wound, and the balloon catheter is controlled to expand the puncture wound.
  • the subsequent processing tool with the positioning sensor is sent to the guiding catheter, and the guiding catheter is adjusted according to the positioning sensor on the subsequent processing tool to position and guide the position and direction of the catheter in the expanded puncture wound. The position and orientation in the dilated puncture wound until the guiding catheter is navigated to the lesion area.
  • the diseased organ may be a lung, or other organ having a structure similar to the lungs, and the like.
  • the guiding catheter cannot reach the lesion directly.
  • the present embodiment provides a method of navigating the guiding catheter to the lesion area, the method comprising the following stages: a path planning stage, a first path navigation stage, a path opening stage, and The second path navigation phase.
  • the CT data of the diseased organ is introduced, and the three-dimensional model of the bronchial tree is constructed from the CT data, as shown in Fig. 1b; the lesion area on the diseased organ is determined based on the three-dimensional model of the bronchial tree.
  • the gray area represents the lesion area.
  • the lesion area may be defined as a single-connected closed three-dimensional area of arbitrary shape, for example, a single-connected closed three-dimensional area of a regular shape, such as an ellipsoidal shape; or, may be defined as a single-connected closed shape of any irregular shape. Three-dimensional area.
  • the guiding catheter cannot directly reach the determined lesion area, for example, there is some blockage in the path of the usually diseased area, or there is no obvious natural airway access.
  • the puncture starting point and the puncture target point on the path to the lesion area are determined, and the puncture starting point and the puncture target point are identified on the path leading to the lesion area.
  • Barrier area For the obstacle area, it may be an area that cannot be directly passed or difficult to pass, such as the lung parenchyma, and the puncture starting point and the puncture target point need to be opened in a certain manner.
  • Puncture and balloon expansion are used.
  • the path to the lesion area is planned to mainly include the main navigation path leading to the puncture starting point through the natural airway and the puncture path from the puncture starting point to the puncture target point, but is not limited thereto.
  • the puncture starting point and the puncture target point may be determined as follows:
  • the lesion area is planned; from the lesion area, a point is selected as the target point of the puncture; according to the three-dimensional model of the blood vessel in the lung, a point is selected in the bronchus avoiding the blood vessel as the puncture starting point.
  • Fig. 1c an exemplary diagram for determining the puncture starting point and the puncture target point using this embodiment.
  • "+" in the gray lesion area indicates the puncture target point
  • "+" located in the bronchi near the lesion area indicates the puncture starting point.
  • the point in the lesion area that is most convenient for subsequent operation can be selected as the puncture target point. For example, if a biopsy is needed, you can choose the point that is least likely to be taken outside the lesion area during biopsy. For another example, if treatment is desired, the point at which the entire lesion area is most easily covered during treatment can be selected, typically the center point of the lesion area.
  • the puncture starting point can be selected in the bronchi near the lesion area.
  • these superior bronchial tubes are relatively thick, and the front end of the guiding catheter, the positioning catheter, the puncture catheter, and the like are conveniently aligned with the puncture target point.
  • a three-dimensional model of the blood vessel in the lung can be combined to select the puncture starting point.
  • the puncture starting point is selected by connecting the puncture starting point to the puncture target point (straight line segment) to facilitate the catheter to reach and to be as far away as possible from the distinguishable blood vessel.
  • a three-dimensional model of the pulmonary blood vessels can be constructed by combining CT data, mainly including a three-dimensional model of arteries and veins; in the bronchus near the lesion area, a subsequent puncture step can be selected to avoid the bronchus of the blood vessel; Avoiding the bronchus of the blood vessel, select a point that facilitates the subsequent puncture step, such as the point of connection with the puncture target point away from the point where the blood vessel can be identified and easier to align with the target point (for example, the bifurcation of the bronchi) as the puncture starting point .
  • the identifiable blood vessel can be a blood vessel CT image and a three-dimensional model reconstructed based on CT image can be recognized by the human eye
  • the blood vessels are mainly referred to as arterial blood vessels and ve
  • the three-dimensional model of the bronchial tree and the three-dimensional model of the intrapulmonary vessels can be superimposed in the same three-dimensional model, and the bronchial tubes and blood vessels are distinguished by different attribute values (such as color or transparency), which is convenient for observation.
  • the first path navigation phase After determining the puncture starting point, the puncture target point, and planning the main navigation path to the puncture starting point and the puncture path from the puncture starting point to the puncture target point, the first path navigation phase may be entered.
  • the first path navigation phase is the first path navigation phase
  • the guiding catheter After planning the main navigation path to the puncture starting point, the guiding catheter can be guided into the natural airway leading to the puncture starting point by the positioning catheter with the positioning sensor under the guidance of the main navigation path, and the guiding catheter will be Move in the airway.
  • the positioning catheter is disposed inside the guiding catheter.
  • the natural airway leading to the puncture starting point includes the main airway, the bronchus, and the lower bronchus.
  • the guiding catheter is guided by the positioning sensor provided by the positioning catheter. Specifically, during the process of guiding the catheter to move in the airway, the positioning sensor on the positioning catheter is in operation, and the positioning and orientation of the catheter in the airway can be guided based on the positioning sensor; according to the position and orientation of the guiding catheter in the airway Based on the deviation of the primary navigation path planned by the three-dimensional model of the bronchial tree, the position and orientation of the guiding catheter in the airway is adjusted until the guiding catheter is navigated to the puncture starting point, as shown in Figure 1d.
  • Figure 1d shows the resulting state after navigating the guiding catheter to the puncture starting point.
  • located in the bronchi is a guiding catheter that directs the exposed head of the catheter to position the head of the catheter.
  • the diseased organ is in the positioning magnetic field emitted by the magnetic field generator, and the magnetic field has its own coordinate system, which is called the magnetic field coordinate system.
  • the position and orientation of the guiding catheter in the airway can be represented by directing the positional coordinates of the catheter head in the magnetic field coordinate system.
  • the three-dimensional model of the bronchial tree reconstructed from the CT data also has its own coordinate system, called the CT/image coordinate system.
  • the various paths (including the main navigation path, the puncture path) planned by the three-dimensional model of the bronchial tree can be represented by the position coordinates of these paths in the CT/image coordinate system.
  • the position and orientation of the guiding catheter in the airway and the three-dimensional based on the bronchial tree The deviation relationship of the main navigation path planned by the model can be represented by guiding the position coordinates of the catheter head in the magnetic field coordinate system and the position coordinates of the main navigation path in the CT/image coordinate system.
  • the two coordinate systems can be registered first to establish a mapping relationship between the two coordinate systems, and the position coordinates of the two are mapped based on the mapping relationship. Go to the same coordinate system and then compare them in the mapped coordinate system to determine the above-mentioned deviation relationship.
  • the planned navigation path can be corresponding to the bronchus, and the position and direction of the guiding catheter in the airway can be adjusted according to the navigation path until the guiding catheter is navigated to the puncture starting point.
  • the positioning catheter is withdrawn from the guiding catheter and the puncture catheter is delivered to the guiding catheter, after which the path is opened.
  • the puncture catheter After the puncture catheter is fed into the guiding catheter, it can be guided through the guiding catheter to the puncture starting point and ready to perform the puncture operation.
  • the puncture catheter needs to be stabbed toward the puncture target point along the puncture path, so it is necessary to know the direction of the puncture catheter.
  • the puncture catheter of the embodiment also has a positioning sensor, based on which the position and direction of the puncture catheter can be located, and the direction of the puncture catheter can be adjusted until the puncture catheter faces the puncture target point, thereby controlling the puncture catheter to puncture along the puncture path. Puncture the target point to obtain a puncture wound, as shown in Figure 1e. In Fig.
  • the guiding catheter is exposed as a puncture needle of a puncture catheter that is stabbing the puncture target point.
  • the bending of the puncture catheter head can be controlled by wire manipulation within the (multi-lumen) catheter, making it easier to align the puncture target point.
  • the puncture catheter can be stopped when the puncture target point is stabbed, or can be stopped when the puncture target point is not reached, or can be stopped after passing through the puncture target point, and can be adaptively controlled according to the application requirements.
  • the puncture wound is relatively small, and the guiding catheter is generally still unable to pass.
  • the puncture catheter is withdrawn from the guiding catheter and the balloon catheter is advanced into the guiding catheter to expand the puncture wound, as shown in Figure 1f.
  • the guiding catheter is exposed as the head of the balloon catheter.
  • the balloon catheter can reach the puncture wound, and the control balloon catheter can expand the puncture wound.
  • the balloon catheter can be inflated to expand the balloon, Further, the purpose of expanding the puncture wound is as shown in Fig. 1g. In Figure 1g, the head of the balloon catheter is being expanded.
  • it may be a certain time of expansion, or may be divided by different pressures, and the pressure is gradually increased in stages to gradually expand the balloon, thereby obtaining a wound sufficient to guide the passage of the catheter.
  • the expanded puncture wound is relatively large to direct the passage of the catheter.
  • the second path navigation phase is the second path navigation phase
  • the balloon catheter needs to be removed, as shown in Figure 1h, after the balloon catheter is removed.
  • Subsequent processing with a positioning sensor is sent to the guiding catheter, which is required to move in the expanded puncture wound.
  • the position and orientation of the guiding catheter in the expanded puncture wound can be adjusted based on the positioning sensor on the subsequent processing tool to adjust the guiding catheter in the expanded puncture wound. Position and orientation until the guide catheter is navigated to the lesion area.
  • the tool for subsequent treatment refers to a catheter for subsequent diagnosis or treatment of the lesion area, and may be, for example, but not limited to, an ablation catheter, a drug delivery catheter or a biopsy tool.
  • the guiding catheter can reach the lesion area, and after the balloon is expanded, the subsequent processing tool with the positioning sensor, such as the ablation catheter, can be directly
  • the catheter or biopsy tool is fed into the guiding catheter and guided into the dilated wound until the lesion is reached, and the lesion is subsequently processed by a subsequent treatment tool, such as ablation, dosing or biopsy sampling.
  • a subsequent treatment tool such as ablation, dosing or biopsy sampling.
  • the biopsy tool may or may not have a positioning sensor.
  • the guiding catheter can be navigated to the lesion area through a positioning catheter with a positioning sensor. After the positioning catheter is removed, the biopsy tool is sent to the guiding catheter to perform biopsy sampling.
  • the characteristics of the tool for subsequent processing may need to be deeper than the target point of the puncture. For example, if ablation is required subsequently, the center of the ablation electrode needs to reach the puncture target point, and the ablation catheter tip will exceed the puncture point. The target point is deeper so that the ablation zone created by the ablation catheter effectively covers the entire lesion area.
  • the puncture catheter can be re-introduced into the guiding catheter, and the direction of the puncture catheter is adjusted based on the positioning sensor on the puncture catheter, and the direction of the puncture catheter is adjusted until the puncture catheter is directed toward the puncture target point, and is controlled.
  • the puncture catheter is punctured along the puncture path to the puncture target point so as to be inserted deep into the puncture target point or beyond the puncture target point, providing conditions for subsequent treatment tools for diagnosis or treatment.
  • Fig. 1i it is a schematic diagram of the state at the time of secondary puncture.
  • the puncture target point may be a point in the lesion area, and the guiding catheter is navigated to the lesion area, which may also be understood as navigating the guiding catheter to or near the puncture target point.
  • the target point of the puncture is located outside the lesion area and is located in front of the lesion area, and the guiding catheter is navigated to the lesion area. It can be understood that the guiding catheter needs to pass through the puncture target point and continue to move to the lesion area.
  • the puncture starting point and the puncture target point on the path through the lesion area are determined;
  • electromagnetic navigation is combined with puncture and balloon dilation to open the passage to the lesion area, thereby guiding the guiding catheter to the lesion area, and solving the unreachable (or thick enough) natural airway access.
  • the problem with the location of the lesion can be used to navigate the guide catheter to any lesion area.
  • FIG. 2 is a schematic flowchart of a medical path navigation method according to another embodiment of the present application. As shown in Figure 2a, the method includes:
  • Position sensor directs the position and orientation of the catheter in the natural airway and adjusts the position of the guiding catheter in the natural airway based on the deviation of the position and orientation of the guiding catheter in the natural airway from the primary navigation path Direction until the guide catheter is navigated to the puncture start point.
  • the balloon catheter After removing the puncture catheter, the balloon catheter is fed into the guiding catheter to reach the puncture wound, and the balloon catheter is controlled to expand the puncture wound.
  • the subsequent processing tool with the positioning sensor is sent to the guiding catheter, and the position and direction of the catheter in the expanded puncture wound is adjusted based on the positioning sensor on the subsequent processing tool, and the guiding catheter is adjusted. The position and orientation of the dilated puncture wound until the guiding catheter is navigated to the lesion area.
  • the position in the airway, or the actual bronchial path, etc. is the positional coordinate in the magnetic field coordinate system in which the airway is located.
  • the primary navigation path and the auxiliary navigation path generally refer to position coordinates in the CT/image coordinate system.
  • the diseased organ may be a lung, or other organ having a structure similar to the lungs, and the like.
  • the guiding catheter cannot reach the lesion directly.
  • the present embodiment provides a method of navigating the guiding catheter to the lesion area, the method comprising the following stages: a path planning stage, a first path navigation stage, a path opening stage, and The second path navigation phase.
  • the path planning phase in this embodiment is basically the same as the path planning phase in the embodiment shown in FIG. 1a, and the difference is that the three-dimensional model based on the bronchial tree is further included, and the bronchus around the lesion region is determined and surrounded from the lesion region.
  • the auxiliary points in the endobronchial are selected to plan the operation of the auxiliary navigation path from the puncture starting point to the auxiliary point.
  • the bronchus near the lesion position but deeper than the puncture starting point and the puncture target point can be selected, the auxiliary point is selected from the determined bronchus, and the starting point of the puncture is planned.
  • the path to this auxiliary point is called the auxiliary navigation path.
  • the selected auxiliary point should surround the lesion area from different directions as much as possible, so that the auxiliary navigation path can surround the lesion area, so as to help determine the coordinate range of the puncture target point that needs to be reached. As shown in Fig.
  • auxiliary points in addition to the puncture target point and the puncture starting point, there are two auxiliary points in the direction deeper than the puncture starting point and the puncture target point around the gray lesion area, as shown in Fig. 2b at the end of the bronchus.
  • the dotted line from the puncture starting point to the two auxiliary points indicates the auxiliary navigation path.
  • the first path navigation phase is the first path navigation phase
  • the path planning phase in this embodiment is basically the same as the first path navigation phase in the embodiment shown in FIG. 1a, except that after the guiding catheter is navigated to the puncture starting point, the puncture starting point and the puncture target point are also corrected. The location of the operation.
  • the guiding catheter After navigating the guiding catheter to the puncture starting point, the guiding catheter can be navigated from the puncture starting point to the auxiliary point according to the positioning sensor on the positioning catheter before the puncture catheter is fed into the guiding catheter to obtain the puncture starting point to the auxiliary point.
  • the actual bronchial path that corresponds to the secondary navigation path.
  • the difference between the actual bronchial path and the auxiliary navigation path is that the actual bronchial path is a real path in the airway, which can be represented by the position coordinates in the magnetic field coordinate system of the airway; and the auxiliary navigation path is based on the three-dimensionality of the bronchial tree.
  • the path planned by the model which can be represented by the position coordinates in the CT/image coordinate system where the 3D model is located.
  • the puncture starting point and the puncture target point it is also planned based on the three-dimensional model of the bronchial tree, so it is necessary to correct the position of the puncture starting point and the puncture target point according to the actual bronchial path. So, you can According to the comparison between the actual bronchial path and the auxiliary navigation path, the mapping relationship between the magnetic field coordinate system and the CT/image coordinate system is adjusted, and the position of the puncture starting point and the puncture target point is corrected, thereby providing a basis for performing the puncture of the subsequent puncture catheter.
  • the path planning stage in addition to determining the puncture starting point and the puncture target point on the path of the lesion area, the auxiliary points surrounding the diseased area from different directions are determined and the auxiliary navigation path is planned; in the path navigation stage In addition to combining electromagnetic navigation with puncture and balloon dilation, opening the passage to the lesion area, and correcting the position of the puncture starting point and the puncture target point based on the comparison between the auxiliary navigation path and the actual bronchial path. It solves the problem that the position of the lesion without obvious natural airway access can be reached, and it is beneficial to reduce the positioning error and the error of the subsequent puncture step, and improve the accuracy of the entire navigation process.
  • the method further comprises: adjusting the position and direction of the subsequent processing tool based on the positioning sensor on the subsequent processing tool until the subsequent processing tool reaches the puncture target point, and controlling the subsequent processing tool
  • Subsequent treatment of the puncture target such as ablation, dosing or biopsy sampling. If biopsy sampling is performed, a cytometer, a cell clamp, a biopsy needle, or the like can be used.
  • the therapeutic catheter is an ablation catheter, the ablation catheter can be controlled to ablate the puncture target point, as shown in FIG. After the treatment is over, the therapeutic catheter and the guiding catheter can be withdrawn in sequence.
  • FIG. 4 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application. As shown in FIG. 4, the system includes a path planning device 41, a path navigation device 42, a guiding catheter 43, a positioning catheter 44 with a positioning sensor, a puncture catheter 45 with a positioning sensor, and a balloon catheter 46.
  • the path planning device 41 is configured to determine a puncture starting point and a puncture target point on the path to the lesion area according to the three-dimensional model of the bronchial tree reconstructed from the CT data and the three-dimensional model of the intrapulmonary blood vessel.
  • the main navigation path from the main bulge through the natural airway to the puncture starting point and the puncture path from the puncture starting point to the puncture target point are planned.
  • a guiding catheter 43 is provided for carrying a positioning catheter 44, a puncture catheter 45 or a balloon catheter 46 in the airway leading to the lesion.
  • the path navigation device 42 includes a path navigation module 421, a puncture control module 422, and an expansion control module 423.
  • the path navigation module 421 is configured to position and guide the position and direction of the guiding duct 43 in the airway based on the positioning sensor disposed on the positioning duct 44 disposed in the guiding duct 43 during the movement of the guiding duct 43 in the airway, and The position and orientation of the guiding catheter 43 in the airway is adjusted according to the deviation of the position and orientation of the guiding catheter 43 in the airway from the main navigation path until the guiding catheter 43 is navigated to the puncture starting point.
  • the puncture control module 422 is configured to position the puncture catheter 45 based on the positioning sensor disposed on the puncture catheter 45 in the guiding catheter 43 to adjust the direction of the puncture catheter 45 until the puncture catheter 45 faces the puncture target point, and control the puncture catheter 45 puncturing the puncture target along the puncture path to obtain a puncture wound.
  • the expansion control module 423 is configured to control the balloon catheter 46 disposed in the guiding catheter 43 to expand the puncture wound.
  • the path navigation module 421 is further configured to adjust the position and direction of the guiding catheter 43 in the expanded puncture wound based on the positioning sensor on the subsequent processing tool disposed in the guiding catheter 43 to adjust the puncture of the guiding catheter 43 after expansion. The position and orientation in the wound until the guiding catheter 43 is navigated to the lesion area.
  • the path planning device 41 when determining the puncture starting point and the puncture target point, is specifically configured to: plan a lesion region according to a three-dimensional model of the bronchial tree; and select a point from the lesion region as a puncture target point; According to the three-dimensional model of the blood vessels in the lungs, a point is selected in the bronchus avoiding the blood vessel as a puncture starting point.
  • the path planning device 41 is specifically configured to: in the bronchus near the lesion region, select a subsequent puncture step to avoid the bronchus of the blood vessel; Within the bronchus of the open blood vessel, a point (e.g., a bifurcation of the bronchi) that facilitates the subsequent puncture step is selected as the puncture starting point.
  • a point e.g., a bifurcation of the bronchi
  • the path planning device 41 is further configured to: select an auxiliary point from the bronchus around the lesion area according to the three-dimensional model of the bronchial tree, and plan an auxiliary navigation path from the puncture starting point to the auxiliary point.
  • the path navigation module 421 is further configured to: during the movement of the guiding catheter 43 into the airway, navigate the guiding catheter 43 from the puncture starting point to the auxiliary point based on the positioning sensor on the positioning catheter 44 to obtain and assist navigation The actual bronchial path corresponding to the path, and correcting the position of the puncture starting point and the puncture target point according to the mapping relationship between the actual bronchial path and the auxiliary navigation path.
  • the puncture control module 422 is further configured to: adjust the direction of the puncture catheter 45 until the puncture catheter 45 is oriented based on the orientation of the puncture catheter 45 positioned by the positioning sensor disposed on the puncture catheter 45 within the indexing catheter 43.
  • the target point is punctured, and the puncture catheter 45 is controlled to puncture the puncture target point twice along the puncture path.
  • the path navigation device 42 further includes a therapy control module 425.
  • the treatment control module 425 is configured to adjust the position and direction of the subsequent processing tool based on the positioning sensor on the subsequent processing tool until the subsequent processing tool reaches the puncture target point, and control the subsequent processing tool to perform subsequent processing on the puncture target point.
  • the tool for subsequent treatment is an ablation catheter, a drug delivery catheter or a biopsy tool, and accordingly, the subsequent treatment may be ablation, administration or biopsy sampling.
  • the medical path navigation system provided in this embodiment can be used to execute the process of the medical path navigation method provided by the foregoing method embodiment.
  • the medical path navigation system determines the puncture starting point and the puncture target point on the path through the lesion area in the path planning stage; in the navigation process, the electromagnetic navigation is combined with the puncture and the balloon expansion to open the way.
  • the passage of the lesion area which directs the guiding catheter to the lesion area, solves the problem of being unable to reach the location of the lesion without significant natural airway access, and can direct the guiding catheter to any lesion area of the lung.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种医疗路径导航方法及系统,其中,方法包括:路径规划阶段,确定通往病变区域路径上的穿刺起始点和穿刺目标点;路径导航阶段,将电磁导航与穿刺、球囊扩张相结合,打通经肺实质通往病变区域的通道,从而将指引导管(43)导航至病变区域,解决了无法到达没有明显自然气道通达的病变位置的问题,可以将指引导管(43)导航至肺内任何病变区域。

Description

医疗路径导航方法及系统
交叉引用
本申请引用于2016年11月23日递交的名称为“医疗路径导航方法及系统”的第2016110424729号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及医疗技术领域,尤其涉及一种医疗路径导航方法及系统。
背景技术
肺部结节的诊断和治疗对于肺癌的早期发现和治疗已经具有越来越重要的意义。常规的肺部结节活检方式是采用经皮穿刺的方式将穿刺针直接插入肺部获取活检样本,这种穿刺方式有产生气胸的风险。有研究表明,在肺部经皮穿刺,有20-40%的气胸发生率,而气胸是一种严重的不良反应,有可能致命。更安全的方式是采用支气管镜经自然气道对肺部结节进行活检,可以降低不良反应发生的风险。
但是,有些病变位置比较特殊,例如没有明显的自然气道通达,导致支气管镜无法到达病变位置,无法实施活检或治疗。
发明内容
本申请的多个方面提供一种医疗路径导航方法及系统,用以将定位导管或治疗导管导航至没有明显自然气道通达的病变位置。
本申请实施例提供一种医疗路径导航方法,包括:
根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确 定通往病变区域路径上的穿刺起始点和穿刺目标点,并规划由主隆突经自然气道到所述穿刺起始点的主导航路径和从所述穿刺起始点到所述穿刺目标点的穿刺路径;
在所述主导航路径的引导下,基于带有定位传感器的定位导管将指引导管送入通往所述穿刺起始点的自然气道中;
在所述指引导管在所述自然气道中移动的过程中,基于所述定位导管上的定位传感器定位所述指引导管在所述自然气道中的位置和方向,并根据所述指引导管在所述自然气道中的位置和方向与所述规划的主导航路径的偏离关系,调整所述指引导管在所述自然气道中的位置和方向,直到将所述指引导管导航至所述穿刺起始点;
将带有定位传感器的穿刺导管送入所述指引导管以到达所述穿刺起始点,基于所述穿刺导管上的定位传感器定位所述穿刺导管的方向,调整所述穿刺导管的方向直到所述穿刺导管朝向所述穿刺目标点为止,并控制所述穿刺导管沿着所述穿刺路径刺向所述穿刺目标点,以获得穿刺创口;
取出所述穿刺导管后,将球囊导管送入所述指引导管以到达所述穿刺创口,并控制所述球囊导管扩张所述穿刺创口;
取出所述球囊导管后,将带定位传感器的后续处理用工具送入所述指引导管,基于所述后续处理用工具上的定位传感器定位所述指引导管在所述扩张后的穿刺创口中的位置和方向,调整所述指引导管在所述扩张后的穿刺创口中的位置和方向,直到将所述指引导管导航至所述病变区域。
本申请实施例还提供一种医疗路径导航系统,包括:路径规划装置、路径导航装置、指引导管、带定位传感器的定位导管、带定位传感器的穿刺导管以及球囊导管;
所述路径规划装置,用于根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,并规划由主隆突经自然气道到所述穿刺起始点的主导航路径和从所述穿刺起始点到所述穿刺目标点的穿刺路径;
所述指引导管,用于在通往所述病变区域的气道中,承载所述定位导管、所述穿刺导管或所述球囊导管;
所述路径导航装置,包括:路径导航模块、穿刺控制模块以及扩张控制模块;
所述路径导航模块,用于在所述指引导管在所述自然气道中移动的过程中,基于穿设于所述指引导管内的所述定位导管上的定位传感器定位所述指引导管在所述自然气道中的位置和方向,并根据所述指引导管在所述自然气道中的位置和方向与所述主导航路径的偏离关系,调整所述指引导管在所述自然气道中的位置和方向,直到将所述指引导管导航至所述穿刺起始点;
所述穿刺控制模块,用于基于穿设于所述指引导管内的所述穿刺导管上的定位传感器定位所述穿刺导管的方向,调整所述穿刺导管的方向直到所述穿刺导管朝向所述穿刺目标点为止,并控制所述穿刺导管沿着所述穿刺路径刺向所述穿刺目标点,以获得穿刺创口;
所述扩张控制模块,用于控制穿设于所述指引导管内的所述球囊导管扩张所述穿刺创口;
所述路径导航模块,还用于基于穿设于所述指引导管内的后续处理用工具上的定位传感器定位所述指引导管在所述扩张后的穿刺创口中的位置和方向,调整所述指引导管在所述扩张后的穿刺创口中的位置和方向,直到将所述指引导管导航至所述病变区域。
在本申请实施例中,在路径规划阶段,确定通过病变区域路径上的穿刺起始点和穿刺目标点;在导航过程中,将电磁导航与穿刺、球囊扩张相结合,打通通往病变区域的通道,从而将指引导管导航至病变区域,解决了无法到没有明显自然气道通达的病变位置的问题,可以将指引导管导航至肺部的任何病变区域。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为本申请一实施例提供的医疗路径导航方法的流程示意图;
图1b-图1i为本申请一实施例提供的医疗路径导航过程的示意图;
图2a为本申请另一实施例提供的医疗路径导航方法的流程示意图;
图2b为本申请另一实施例提供的辅助点及辅助导航路径的示意图;
图3为本申请又一实施例提供的对穿刺目标点进行消融治疗的示意图;
图4为本申请又一实施例提供的医疗路径导航系统的结构示意图;
图5为本申请又一实施例提供的医疗路径导航系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种医疗路径导航方法,在由CT数据重建出的支气管树的三维模型及肺内血管的三维模型的基础上,将基于定位传感器的路径导航与穿刺、球囊扩张相结合,为一些特殊病变位置,例如没有明显自然气道通达的病变位置,提供一条可达通道,使得指引导管可以到达这些病变位置,为这些病变位置的治疗提供条件。
在本申请以下各实施例中,会涉及定位传感器,例如设置于定位导管上的定位传感器、设置于穿刺导管上的定位传感器等。首先,对本申请各实施 例涉及的定位传感器进行介绍说明:
这些定位传感器采用电磁导航(Electromagnetic Navigation)原理,不同于普通的磁导航(Magnetic Navigation)原理。磁导航原理主要是:依靠外部磁场吸引或排斥消融导管中的永磁体以影响消融导管的移动方向。本申请实施例中的定位传感器的工作原理主要是:响应于其所在空间的磁场而向外部控制系统输出电流,以供控制系统定位相应导管的位置。详细地来说,定位传感器与控制系统通过导线进行电气连接。该控制系统包括磁场发生器,用以在一定范围的定位空间中产生磁场;定位传感器本身没有磁性,定位传感器中的线圈用于感受磁场发生器所产生的磁场。其中,磁场发生器在一定范围的定位空间中产生变化的磁场,并保证定位空间中每一点的磁场特性是唯一的。定位传感器中的线圈在变化磁场中产生电流,由定位传感器的导线传导至控制系统,控制系统转换和分析定位传感器传输来的电流以确定相应导管的精确位置和方向。
图1a为本申请一实施例提供的医疗路径导航方法的流程示意图。如图1a所示,该方法包括:
101、根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,并规划由主隆突经自然气道到所述穿刺起始点的主导航路径和从所述穿刺起始点到所述穿刺目标点的穿刺路径。
102、在主导航路径的引导下,基于带有定位传感器的定位导管将指引导管送入通往穿刺起始点的自然气道中。
103、在指引导管在所述自然气道中移动的过程中,基于定位导管上的定位传感器定位指引导管在所述自然气道中的位置和方向,并根据指引导管在所述自然气道中的位置和方向与主导航路径的偏离关系,调整指引导管在所述自然气道中的位置和方向,直到将指引导管导航至所述穿刺起始点。
104、将带有定位传感器的穿刺导管送入指引导管以到达穿刺起始点,基于穿刺导管上的定位传感器定位穿刺导管的方向,调整穿刺导管的方向直到 穿刺导管朝向穿刺目标点为止,并控制穿刺导管沿着穿刺路径刺向穿刺目标点,以获得穿刺创口。
105、取出穿刺导管后,将球囊导管送入指引导管以到达穿刺创口,并控制球囊导管扩张穿刺创口。
106、取出球囊导管后,将带有定位传感器的后续处理用工具送入指引导管,基于后续处理用工具上的定位传感器定位指引导管在扩张后的穿刺创口中的位置和方向,调整指引导管在扩张后的穿刺创口中的位置和方向,直到将指引导管导航至病变区域。
对病变器官进行治疗之前,需要将指引导管导航至病变器官的病变区域,后续处理用工具可以通过指引导管到达病变区域。所述病变器官可以是肺部,或结构类似肺部的其它器官等。对于一些特殊病变区域,例如没有明显自然腔道通达的病变区域,有时指引导管无法直接到达病变区域。
针对那些指引导管无法直接到达的特殊病变区域,本实施例提供一种将指引导管导航至病变区域的方法,该方法包括以下几个阶段:路径规划阶段、第一路径导航阶段、路径打通阶段以及第二路径导航阶段。
路径规划阶段:
首先,导入病变器官的CT数据,由CT数据构建支气管树的三维模型,如图1b所示;基于支气管树的三维模型,确定病变器官上的病变区域。在图1b中,灰色区域表示病变区域。在本实施例中,病变区域可以定义为任意形状的单连通封闭三维区域,例如可以是规则形状的单连通封闭三维区域,例如椭球形;或者,也可以定义为任何不规则形状的单连通封闭三维区域。
在本实施例中,指引导管无法直接到达所确定的病变区域,例如通常病变区域的路径上有些阻挡,或者没有明显自然气道通达。对于此,基于支气管树的三维模型及肺部血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,所述穿刺起始点和穿刺目标点标识通往病变区域路径上的障碍区域。对于障碍区域可以是不能直接通过或难以通过的区域,例如肺实质,需要采用一定方式将穿刺起始点和穿刺目标点打通。在本实施例中, 采用穿刺和球囊扩张的方式。
为了能够将指引导管导航至病变区域,需要规划通往病变区域的路径。在本实施例中,规划通往病变区域的路径,主要包括经自然气道通往穿刺起始点的主导航路径以及从穿刺起始点到穿刺目标点的穿刺路径,但并不限于此。在一可选实施方式中,可以采用如下方式来确定穿刺起始点和穿刺目标点:
根据支气管树的三维模型,规划病变区域;从病变区域内,选择一点作为穿刺目标点;根据肺内血管的三维模型,在避开血管的支气管内选择一点,作为穿刺起始点。如图1c所示,为采用该实施方式确定穿刺起始点和穿刺目标点的一种示例图。在图1c中,位于灰色病变区域中的“+”表示穿刺目标点,位于靠近病变区域的支气管内的“+”表示穿刺起始点。
在上述可选实施方式中,可以选择病变区域内中最方便后续操作的点作为穿刺目标点。例如,如果需要做活检,则可以选择活检时最不容易取到病变区域范围之外的点。又例如,如果需要治疗,可以选择治疗时最容易覆盖整个病变区域的点,一般是病变区域的中心点。
在上述可选实施方式中,可以在病变区域附近支气管中选择穿刺起始点。例如,可以在通往病变区域方向的上级支气管中,这些上级支气管相对较粗,便于指引导管、定位导管、穿刺导管等前端方便地对准穿刺目标点。考虑到穿刺的特殊性,为了防止在穿刺过程中损伤血管造成大量出血,可以结合肺内血管的三维模型来选择穿刺起始点。例如,以穿刺起始点到穿刺目标点的连线(直线段)方便导管到达并且尽量远离能分辨出的血管为选择目标,来选择穿刺起始点。在具体实施过程中,可以结合CT数据,构建肺内血管的三维模型,主要包括动脉和静脉三维模型;在病变区域附近的支气管中,选择后续穿刺步骤可以避开血管的支气管;在所选择的避开血管的支气管内,选择便于后续穿刺步骤实施的一点,如与穿刺目标点的连线远离可辨识血管且更容易对准目标点的点(例如支气管的分叉处),作为穿刺起始点。所述可辨识血管可以是血管CT影像及基于CT影像重建的三维模型中可被人肉眼识别 出的血管,主要是指动脉血管和静脉血管,但并不限于此。
优选的,可以将支气管树的三维模型和肺内血管的三维模型叠加在同一三维模型中,并通过不同的属性值(例如颜色或透明度)来区分支气管和血管,这样便于观察。
在确定穿刺起始点、穿刺目标点并规划好到穿刺起始点的主导航路径以及从穿刺起始点到穿刺目标点的穿刺路径之后,可进入第一路径导航阶段。
第一路径导航阶段:
在规划出到穿刺起始点的主导航路径之后,可以在该主导航路径的引导下,通过带有定位传感器的定位导管将指引导管送入通往穿刺起始点的自然气道中,指引导管会在气道中移动。其中,定位导管穿设于指引导管内部。
上述通往穿刺起始点的自然气道包括主气管、支气管以及下级支气管等。
为了能够准确地沿着规划出的主导航路径到达穿刺起始点,在主导航路径的基础上,结合定位导管自带的定位传感器对指引导管进行导航。具体的,在指引导管在气道中移动的过程中,定位导管上的定位传感器处于工作状态,可以基于定位传感器定位指引导管在气道中的位置和方向;根据指引导管在气道中的位置和方向与基于支气管树的三维模型所规划出的主导航路径的偏离关系,调整指引导管在气道中的位置和方向,直到将指引导管导航至穿刺起始点,如图1d所示。图1d所示为将指引导管导航至穿刺起始点后的结果状态。在图1d中,位于支气管中的是指引导管,指引导管露出的圆滑头部为定位导管的头部。
值得说明的是,病变器官处于磁场发生器发射的定位磁场中,该磁场具有自己的坐标系,称之为磁场坐标系。指引导管在气道中的位置和方向可通过指引导管头部在磁场坐标系中的位置坐标来表示。相应地,由CT数据重建出的支气管树的三维模型也有自己的坐标系,称之为CT/影像坐标系。基于支气管树的三维模型所规划的各种路径(包括主导航路径、穿刺路径)等可通过这些路径在CT/影像坐标系中的位置坐标来表示。
基于上述说明,指引导管在气道中的位置和方向与基于支气管树的三维 模型所规划出的主导航路径的偏离关系,可以通过指引导管头部在磁场坐标系中的位置坐标与主导航路径在CT/影像坐标系中的位置坐标来体现。
磁场坐标系与CT/影像坐标系是不同的坐标系,则可以先对两个坐标系进行配准,以建立两个坐标系之间的映射关系,基于该映射关系将两者的位置坐标映射到同一坐标系中,然后在所映射到的坐标系中进行比较,从而确定上述偏离关系。
由此可见,基于上述配准过程,可以将规划的导航路径与支气管相对应,根据导航路径可以调整指引导管在气道中的位置和方向,直到将指引导管导航至穿刺起始点。当指引导管到达穿刺起始点后,将定位导管从指引导管中撤出,并将穿刺导管送入指引导管,之后进入路径打通阶段。
路径打通阶段:
穿刺导管被送入指引导管后,可通过指引导管到达穿刺起始点,并准备执行穿刺操作。在本实施例中,穿刺导管需要沿着穿刺路径刺向穿刺目标点,所以需要了解穿刺导管的方向。本实施例的穿刺导管也带有定位传感器,基于该定位传感器可以定位穿刺导管的位置和方向,并且可以调整穿刺导管的方向直到穿刺导管朝向穿刺目标点为止,进而控制穿刺导管沿着穿刺路径刺向穿刺目标点,以获得穿刺创口,如图1e所示。在图1e中,指引导管露出的为穿刺导管的穿刺针,该穿刺针正刺向穿刺目标点。可选的,可以通过(多腔)导管内的钢丝操控的手段来控制穿刺导管头部的弯曲,更容易对准穿刺目标点。
值得说明的是,穿刺导管可以在刺到穿刺目标点时停止,或者可以在未到达穿刺目标点时停止,或者可以在穿过穿刺目标点之后停止,可以根据应用需求适应性控制。穿刺创口相对较小,指引导管一般仍无法通过。
在获得穿刺创口后,将穿刺导管从指引导管中撤出,并将球囊导管送入指引导管,以便对该穿刺创口进行扩张,如图1f所示。在图1f中,指引导管露出的为球囊导管的头部。通过指引导管,球囊导管可以到达穿刺创口处,控制球囊导管可以扩张穿刺创口。例如,可以向球囊导管充气以扩张球囊, 进而达到扩张穿刺创口的目的,如图1g所示。在图1g中,球囊导管的头部正在被扩张。可选的,根据应用需求,可以是一次一定时间的扩张,也可以是按不同压力分次扩张,分阶段逐步增加压力使球囊逐渐扩大的扩张,从而获得足够指引导管通过的创口。扩张后的穿刺创口相对较大,以便指引导管通过。
第二路径导航阶段:
在该导航阶段,需要取出球囊导管,如图1h所示,为取出球囊导管后的状态。将带定位传感器的后续处理用工具送入指引导管,指引导管需要在扩张后的穿刺创口中移动。在指引导管在扩张后的穿刺创口中移动的过程中,可基于后续处理用工具上的定位传感器定位指引导管在扩张后的穿刺创口中的位置和方向,调整指引导管在扩张后的穿刺创口中的位置和方向,直到将指引导管导航至病变区域。
其中,后续处理用工具是指后续需要对病变区域进行诊断或治疗用的导管,例如可以是但不限于:消融导管、给药导管或活检工具等。
在一可选实施方式中,若球囊扩张后的穿刺创口足够深,指引导管可以到达病变区域,则在球囊扩张后,可以直接将带定位传感器的后续处理用工具,如消融导管、给药导管或活检工具送入指引导管,并引导指引导管进入扩张后的创口中,直到到达病变区域,并由后续处理用工具对病变区域进行后续处理,例如消融、给药或活检取样。值得说明的是,活检工具可以带有定位传感器,也可能不带有定位传感器。对于不带有定位传感器的活检工具,可以先通过带有定位传感器的定位导管将指引导管导航至病变区域,取出定位导管后,再将活检工具送入指引导管,执行活检取样。
在一可选实施方式中,根据后续处理用工具的特性可能需要比穿刺目标点更深入,例如如果后续需要进行消融,则需要让消融电极中心到达穿刺目标点,此时消融导管前端会超过穿刺目标点,更深入,这样才能使消融导管产生的消融区域有效地覆盖整个病变区域。基于此,若球囊扩张后的穿刺创口不够深,未到达穿刺目标点或未能更深入,则在取出球囊导管之后,并在 将后续处理用工具送入指引导管之前,可以将穿刺导管再次送入指引导管,基于穿刺导管上的定位传感器定位穿刺导管的方向,调整穿刺导管的方向直到穿刺导管朝向穿刺目标点为止,并控制穿刺导管沿着穿刺路径二次刺向穿刺目标点,以便插入深处到达穿刺目标点或超过穿刺目标点,为后续处理用工具进行诊断或治疗提供条件。如图1i所示,为二次穿刺时的状态示意图。
可选的,穿刺目标点可以是病变区域中的一点,则将指引导管导航至病变区域,也可以理解为将指引导管导航至穿刺目标点或其附近。
可选的,穿刺目标点位于病变区域之外,且位于病变区域前方,则将指引导管导航至病变区域,可以理解为指引导管需要经过穿刺目标点,继续移动到病变区域。
由上述可见,在本实施例中,对于一些路径上有阻碍,或者没有明显自然气道通达的病变区域,在路径规划阶段,确定通过病变区域路径上的穿刺起始点和穿刺目标点;在导航过程中,将电磁导航与穿刺、球囊扩张相结合,打通通往病变区域的通道,从而将指引导管导航至病变区域,解决了无法到达没有明显的(或足够粗的)自然气道通达的病变位置的问题,可以将指引导管导航至任何病变区域。
图2a为本申请另一实施例提供的医疗路径导航方法的流程示意图。如图2a所示,该方法包括:
201、根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,并规划由主隆突经自然气道到穿刺起始点的主导航路径和从穿刺起始点到穿刺目标点的穿刺路径。
202、根据支气管树的三维模型,从病变区域周围的支气管内选择辅助点,并规划从穿刺起始点到辅助点的辅助导航路径。
203、在主导航路径的引导下,基于带有定位传感器的定位导管将指引导管送入通往穿刺起始点的自然气道中。
204、在指引导管在所述自然气道中移动的过程中,基于定位导管上的定 位传感器定位指引导管在所述自然气道中的位置和方向,并根据指引导管在所述自然气道中的位置和方向与主导航路径的偏离关系,调整指引导管在所述自然气道中的位置和方向,直到将指引导管导航至穿刺起始点。
205、基于定位导管上的定位传感器将指引导管从穿刺起始点导航至辅助点,以获得所述自然气道与辅助导航路径对应的实际支气管路径,并根据实际支气管路径与规划的辅助导航路径的对比,修正穿刺起始点和穿刺目标点的位置。
206、将带有定位传感器的穿刺导管送入指引导管以到达穿刺起始点,基于穿刺导管上的定位传感器定位穿刺导管的方向,调整穿刺导管的方向直到穿刺导管朝向穿刺目标点为止,并控制穿刺导管沿着穿刺路径刺向穿刺目标点,以获得穿刺创口。
207、取出穿刺导管后,将球囊导管送入指引导管以到达穿刺创口,并控制球囊导管扩张所述穿刺创口。
208、取出球囊导管后,将带定位传感器的后续处理用工具送入指引导管,基于后续处理用工具上的定位传感器定位指引导管在扩张后的穿刺创口中的位置和方向,调整指引导管在扩张后的穿刺创口中的位置和方向,直到将指引导管导航至病变区域。
值得说明的是,所述在气道中的位置,或者实际支气管路径等都是在气道所在磁场坐标系中的位置坐标。相应地,主导航路径、辅助导航路径一般是指CT/影像坐标系中的位置坐标。
对病变器官进行治疗之前,需要将指引导管导航至病变器官的病变区域,后续处理用工具可以通过指引导管到达病变区域。所述病变器官可以是肺部,或结构类似肺部的其它器官等。对于一些特殊病变区域,例如没有明显自然气道通达的病变区域,有时指引导管无法直接到达病变区域。
针对那些指引导管无法直接到达的特殊病变区域,本实施例提供一种将指引导管导航至病变区域的方法,该方法包括以下几个阶段:路径规划阶段、第一路径导航阶段、路径打通阶段以及第二路径导航阶段。
本实施例中的路径规划阶段,与图1a所示实施例中的路径规划阶段基本相同,区别在于:还包括基于支气管树的三维模型,确定病变区域周围的支气管,并从所述病变区域周围的支气管内选择辅助点,规划从穿刺起始点到辅助点的辅助导航路径的操作。
在上述规划操作中,可以根据应用需求,可以选择在病变位置附近但与穿刺起始点和穿刺目标点相比方向更加深入的支气管,从所确定的支气管内选择辅助点,并规划从穿刺起始点到此辅助点的路径,称之为辅助导航路径。其中,所选择的辅助点要尽量从不同方向包围病变区域,这样辅助导航路径就可以包围病变区域,以便于帮助确定需要到达的穿刺目标点的坐标范围。如图2b所示,除穿刺目标点和穿刺起始点之外,在灰色病变区域周围比穿刺起始点和穿刺目标点更深入的方向还有两个辅助点,如图2b中支气管末端处的“+”所示;另外,图2b中,从穿刺起始点到两个辅助点之间的虚线表示辅助导航路径。
关于路径规划阶段的其它描述,可参见图1a所示实施例,在此不再赘述。
第一路径导航阶段:
本实施例中的路径规划阶段,与图1a所示实施例中的第一路径导航阶段基本相同,区别在于:在将指引导管导航至穿刺起始点之后,还包括修正穿刺起始点和穿刺目标点的位置的操作。
在将指引导管导航至穿刺起始点之后,在将穿刺导管送入指引导管之前,可以根据定位导管上的定位传感器将指引导管从穿刺起始点导航至辅助点,以获得从穿刺起始点到辅助点的实际支气管路径,该实际支气管路径对应于辅助导航路径。实际支气管路径与辅助导航路径的区别在于:实际支气管路径是气道中实实在在的一条路径,该路径可通过气道所在磁场坐标系中位置坐标来表示;而辅助导航路径是基于支气管树的三维模型所规划出的路径,该路径可通过三维模型所在CT/影像坐标系中的位置坐标来表示。对穿刺起始点和穿刺目标点来说,也是基于支气管树的三维模型所规划出来的,所以需要根据实际支气管路径,修正穿刺起始点和穿刺目标点的位置。于是,可以 根据实际支气管路径与辅助导航路径的对比,调整磁场坐标系与CT/影像坐标系的映射关系,进而修正穿刺起始点和穿刺目标点的位置,为后续穿刺导管执行穿刺提供依据。
关于第一路径导航阶段的其它描述以及路径打通阶段、第二路径导航阶段,可参见图1a所示实施例,在此不再赘述。
在本实施例中,在路径规划阶段,除了确定通过病变区域路径上的穿刺起始点和穿刺目标点之外,还确定从不同方向包围病变区域的辅助点并规划辅助导航路径;在路径导航阶段,除了将电磁导航与穿刺、球囊扩张相结合,打通通往病变区域的通道之外,还基于辅助导航路径与实际支气管路径之间的对比,修正穿刺起始点和穿刺目标点的位置,不仅解决了无法到达没有明显自然气道通达的病变位置的问题,而且有利于减少定位误差和之后穿刺步骤的误差,提高整个导航过程的准确度。
在上述各实施例的基础上,将指引导管导航至病变区域后,还需要使用后续处理用工具对病变区域进行后续处理,例如消融、给药或活检取样。基于此,在将指引导管导航至病变区域后,还包括:基于后续处理用工具上的定位传感器调整后续处理用工具的位置和方向,直到后续处理用工具到达穿刺目标点,控制后续处理用工具对穿刺目标点进行后续处理,例如消融、给药或活检取样。如果进行活检取样,则可以使用细胞刷、细胞钳、活检针等。如果治疗性导管为消融导管,则可以控制消融导管对穿刺目标点进行消融,如图3所示。治疗结束后,可依次撤出治疗性导管和指引导管。
图4为本申请又一实施例提供的医疗路径导航系统的结构示意图。如图4所示,该系统包括:路径规划装置41、路径导航装置42、指引导管43、带定位传感器的定位导管44、带定位传感器的穿刺导管45以及球囊导管46。
路径规划装置41,用于根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点, 并规划由主隆突经自然气道到穿刺起始点的主导航路径和从穿刺起始点到穿刺目标点的穿刺路径。
指引导管43,用于在通往病变区域的气道中,承载定位导管44、穿刺导管45或球囊导管46。
路径导航装置42,包括:路径导航模块421、穿刺控制模块422以及扩张控制模块423。
其中,路径导航模块421,用于在指引导管43在气道中移动的过程中,基于穿设于指引导管43内的定位导管44上的定位传感器定位指引导管43在气道中的位置和方向,并根据指引导管43在气道中的位置和方向与主导航路径的偏离关系,调整指引导管43在气道中的位置和方向,直到将指引导管43导航至穿刺起始点。
穿刺控制模块422,用于基于穿设于指引导管43内的穿刺导管45上的定位传感器定位穿刺导管45的方向,调整穿刺导管45的方向直到穿刺导管45朝向穿刺目标点为止,并控制穿刺导管45沿着穿刺路径刺向穿刺目标点,以获得穿刺创口。
扩张控制模块423,用于控制穿设于指引导管43内的球囊导管46扩张穿刺创口。
路径导航模块421,还用于基于穿设于指引导管43内的后续处理用工具上的定位传感器定位指引导管43在扩张后的穿刺创口中的位置和方向,调整指引导管43在扩张后的穿刺创口中的位置和方向,直到将指引导管43导航至病变区域。
在一可选实施方式中,路径规划装置41在确定穿刺起始点和穿刺目标点时,具体用于:根据支气管树的三维模型,规划病变区域;从病变区域内,选择一点作为穿刺目标点;根据肺内血管的三维模型,在避开血管的支气管内选择一点,作为穿刺起始点。
进一步,路径规划装置41在选择穿刺起始点时,具体用于:在所述病变区域附近的支气管中,选择后续穿刺步骤可以避开血管的支气管;从所述避 开血管的支气管内,选择便于后续穿刺步骤实施的一点(例如支气管的分叉处),作为所述穿刺起始点。
在一可选实施方式中,路径规划装置41还用于:根据支气管树的三维模型,从病变区域周围的支气管内选择辅助点,并规划从穿刺起始点到辅助点的辅助导航路径。
相应地,路径导航模块421还用于:在指引导管43在气道中移动到的过程中,基于定位导管44上的定位传感器将指引导管43从穿刺起始点导航至辅助点,以获得与辅助导航路径对应的实际支气管路径,并根据实际支气管路径与辅助导航路径的映射关系,修正穿刺起始点和穿刺目标点的位置。
在一可选实施方式中,穿刺控制模块422还用于:基于穿设于指引导管43内的穿刺导管45上的定位传感器定位穿刺导管45的方向,调整穿刺导管45的方向直到穿刺导管45朝向穿刺目标点为止,并控制穿刺导管45沿着穿刺路径二次刺向穿刺目标点。
在一可选实施方式中,如图5所示,路径导航装置42还包括:治疗控制模块425。
治疗控制模块425,用于基于后续处理用工具上的定位传感器调整后续处理用工具的位置和方向直到后续处理用工具到达穿刺目标点,并控制后续处理用工具针对穿刺目标点进行后续处理。
可选的,后续处理用工具为消融导管、给药导管或活检工具,相应地,后续处理可以是消融、给药或活检取样。
本实施例提供的医疗路径导航系统,可用于执行上述方法实施例提供的医疗路径导航方法的流程。
本实施例提供的医疗路径导航系统,在路径规划阶段,确定通过病变区域路径上的穿刺起始点和穿刺目标点;在导航过程中,将电磁导航与穿刺、球囊扩张相结合,打通通往病变区域的通道,从而将指引导管导航至病变区域,解决了无法到达没有明显自然气道通达的病变位置的问题,可以将指引导管导航至肺部的任何病变区域。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种医疗路径导航方法,其特征在于,包括:
    根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,并规划由主隆突经自然气道到所述穿刺起始点的主导航路径和从所述穿刺起始点到所述穿刺目标点的穿刺路径;
    在所述主导航路径的引导下,基于带有定位传感器的定位导管将指引导管送入通往所述穿刺起始点的自然气道中;
    在所述指引导管在所述自然气道中移动的过程中,基于所述定位导管上的定位传感器定位所述指引导管在所述自然气道中的位置和方向,并根据所述指引导管在所述自然气道中的位置和方向与所述主导航路径的偏离关系,调整所述指引导管在所述自然气道中的位置和方向,直到将所述指引导管导航至所述穿刺起始点;
    将带有定位传感器的穿刺导管送入所述指引导管以到达所述穿刺起始点,基于所述穿刺导管上的定位传感器定位所述穿刺导管的方向,调整所述穿刺导管的方向直到所述穿刺导管朝向所述穿刺目标点为止,并控制所述穿刺导管沿着所述穿刺路径刺向所述穿刺目标点,以获得穿刺创口;
    取出所述穿刺导管后,将球囊导管送入所述指引导管以到达所述穿刺创口,并控制所述球囊导管扩张所述穿刺创口;
    取出所述球囊导管后,将带定位传感器的后续处理用工具送入所述指引导管,基于所述后续处理用工具上的定位传感器定位所述指引导管在所述扩张后的穿刺创口中的位置和方向,调整所述指引导管在所述扩张后的穿刺创口中的位置和方向,直到将所述指引导管导航至所述病变区域。
  2. 根据权利要求1所述的方法,其特征在于,所述根据支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,包括:
    根据所述支气管树的三维模型,规划病变区域;
    从所述病变区域内,选择一点作为所述穿刺目标点;
    根据所述肺内血管的三维模型,在避开血管的支气管内选择一点,作为所述穿刺起始点。
  3. 根据权利要求2所述的方法,其特征在于,所述在避开血管的支气管内选择一点,作为所述穿刺起始点,包括:
    在所述病变区域附近的支气管中,选择避开血管的支气管;
    在所述避开血管的支气管内,选择分叉处的一点,作为所述穿刺起始点。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    根据所述支气管树的三维模型,从所述病变区域周围的支气管内选择辅助点,并规划从所述穿刺起始点到所述辅助点的辅助导航路径;以及
    在所述指引导管在所述自然气道中移动到的过程中,基于所述定位导管上的定位传感器将所述指引导管从所述穿刺起始点导航至所述辅助点,以获得与所述辅助导航路径对应的实际支气管路径,并根据所述实际支气管路径与所述辅助导航路径的对比,修正所述穿刺起始点和所述穿刺目标点的位置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在将带有定位传感器的后续处理用工具送入所述指引导管之前,所述方法还包括:
    将所述穿刺导管送入所述指引导管,基于所述穿刺导管上的定位传感器定位所述穿刺导管的方向,调整所述穿刺导管的方向直到所述穿刺导管朝向所述穿刺目标点为止,并控制所述穿刺导管沿着所述穿刺路径二次刺向所述穿刺目标点。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,在将所述指引导管导航至所述病变区域之后,所述方法还包括:
    基于所述后续处理用工具上的定位传感器调整所述后续处理用工具的位置和方向直到所述后续处理用工具到达所述穿刺目标点,控制所述后续 处理用工具针对所述穿刺目标点进行后续处理。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述后续处理用工具为消融导管、活检工具或给药导管。
  8. 一种医疗路径导航系统,其特征在于,包括:路径规划装置、路径导航装置、指引导管、带定位传感器的定位导管、带定位传感器的穿刺导管以及球囊导管;
    所述路径规划装置,用于根据由CT数据重建出的支气管树的三维模型及肺内血管的三维模型,确定通往病变区域路径上的穿刺起始点和穿刺目标点,并规划由主隆突经自然气道到所述穿刺起始点的主导航路径和从所述穿刺起始点到所述穿刺目标点的穿刺路径;
    所述指引导管,用于在通往所述病变区域的气道中,承载所述定位导管、所述穿刺导管或所述球囊导管;
    所述路径导航装置,包括:路径导航模块、穿刺控制模块、以及扩张控制模块;
    所述路径导航模块,用于在所述指引导管在所述自然气道中移动的过程中,基于穿设于所述指引导管内的所述定位导管上的定位传感器定位所述指引导管在所述自然气道中的位置和方向,并根据所述指引导管在所述自然气道中的位置和方向与所述主导航路径的偏离关系,调整所述指引导管在所述自然气道中的位置和方向,直到将所述指引导管导航至所述穿刺起始点;
    所述穿刺控制模块,用于基于穿设于所述指引导管内的所述穿刺导管上的定位传感器定位所述穿刺导管的方向,调整所述穿刺导管的方向直到所述穿刺导管朝向所述穿刺目标点为止,并控制所述穿刺导管沿着所述穿刺路径刺向所述穿刺目标点,以获得穿刺创口;
    所述扩张控制模块,用于控制穿设于所述指引导管内的所述球囊导管扩张所述穿刺创口;
    所述路径导航模块,还用于基于穿设于所述指引导管内的后续处理用 工具上的定位传感器定位所述指引导管在所述扩张后的穿刺创口中的位置和方向,调整所述指引导管在所述扩张后的穿刺创口中的位置和方向,直到将所述指引导管导航至所述病变区域。
  9. 根据权利要求8所述的系统,其特征在于,所述路径规划装置具体用于:
    根据所述支气管树的三维模型,规划病变区域;
    从所述病变区域内,选择一点作为所述穿刺目标点;
    根据所述肺内血管的三维模型,在避开血管的支气管内选择一点,作为所述穿刺起始点。
  10. 根据权利要求9所述的系统,其特征在于,所述路径规划装置具体用于:
    在所述病变区域附近的支气管中,选择避开血管的支气管;从所述避开血管的支气管内,选择分叉处的一点,作为所述穿刺起始点。
  11. 根据权利要求8所述的系统,其特征在于,所述路径规划装置还用于:根据所述支气管树的三维模型,从与所述病变区域周围的支气管内选择辅助点,并规划从所述穿刺起始点到所述辅助点的辅助导航路径;
    所述路径导航模块还用于:在所述指引导管在所述自然气道中移动到的过程中,基于所述定位导管上的定位传感器将所述指引导管从所述穿刺起始点导航至所述辅助点,以获得所述自然气道与所述辅助导航路径对应的实际支气管路径,并根据所述实际支气管路径与所述辅助导航路径的对比,修正所述穿刺起始点和所述穿刺目标点在所述自然气道的位置。
  12. 根据权利要求8-11任一项所述的系统,其特征在于,所述穿刺控制模块还用于:基于穿设于所述指引导管内的所述穿刺导管上的定位传感器定位所述穿刺导管的方向,调整所述穿刺导管的方向直到所述穿刺导管朝向所述穿刺目标点为止,并控制所述穿刺导管沿着所述穿刺路径二次刺向所述穿刺目标点。
  13. 根据权利要求8-11任一项所述的系统,其特征在于,
    所述路径导航装置还包括:治疗控制模块;
    所述治疗控制模块,用于基于所述后续处理用工具上的定位传感器调整所述治疗性导管的位置和方向直到所述后续处理用工具到达所述穿刺目标点,控制所述后续处理用工具针对所述穿刺目标点进行后续处理。
PCT/CN2016/113922 2016-11-23 2016-12-30 医疗路径导航方法及系统 WO2018094849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611042472.9A CN106510845B (zh) 2016-11-23 2016-11-23 医疗路径导航方法及系统
CN201611042472.9 2016-11-23

Publications (1)

Publication Number Publication Date
WO2018094849A1 true WO2018094849A1 (zh) 2018-05-31

Family

ID=58356572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113922 WO2018094849A1 (zh) 2016-11-23 2016-12-30 医疗路径导航方法及系统

Country Status (2)

Country Link
CN (1) CN106510845B (zh)
WO (1) WO2018094849A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378421A (zh) * 2020-11-20 2021-02-19 山东威高医疗科技有限公司 用于测试电磁导航系统定位精度的装置及方法
CN114073581A (zh) * 2021-06-29 2022-02-22 成都科莱弗生命科技有限公司 一种支气管电磁导航系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537960A (zh) * 2018-05-29 2019-12-06 上海联影医疗科技有限公司 穿刺路径的确定方法、存储设备及机器人辅助手术系统
CN108013934B (zh) * 2018-01-19 2020-02-11 上海联影医疗科技有限公司 用于介入对象的腔内介入系统
CN109620303B (zh) * 2018-11-26 2022-09-02 苏州朗开医疗技术有限公司 一种肺部辅助诊断方法及装置
CN109620302A (zh) * 2018-11-26 2019-04-16 苏州朗开医疗技术有限公司 一种肺部活检装置及系统
CN114305680A (zh) * 2021-12-02 2022-04-12 杭州堃博生物科技有限公司 体内路径规划、导航的数据处理方法、装置与导航系统
CN114027984B (zh) * 2022-01-06 2022-03-11 极限人工智能有限公司 迂曲血管穿越控制装置及血管机器人系统
CN114041741B (zh) * 2022-01-13 2022-04-22 杭州堃博生物科技有限公司 数据处理部、处理装置、手术系统、设备与介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104582781A (zh) * 2012-08-07 2015-04-29 柯惠有限合伙公司 微波消融导管及其使用方法
CN104936545A (zh) * 2012-12-31 2015-09-23 直观外科手术操作公司 设计介入程序的系统和方法
WO2016029022A1 (en) * 2014-08-20 2016-02-25 Covidien Lp Systems and methods for spherical ablations
WO2016033090A1 (en) * 2014-08-25 2016-03-03 Covidien Lp System and method for planning, monitoring, and confirming treatment
CN105764424A (zh) * 2013-11-20 2016-07-13 柯惠有限合伙公司 用于将活检工具导航到靶位置以及使用活检工具获得组织样本的装置、系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104306072B (zh) * 2014-11-07 2016-08-31 常州朗合医疗器械有限公司 医疗导航系统及方法
CN105796161A (zh) * 2016-03-02 2016-07-27 赛诺威盛科技(北京)有限公司 一种ct介入治疗中进行穿刺导航的方法及穿刺导航装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104582781A (zh) * 2012-08-07 2015-04-29 柯惠有限合伙公司 微波消融导管及其使用方法
CN104936545A (zh) * 2012-12-31 2015-09-23 直观外科手术操作公司 设计介入程序的系统和方法
CN105764424A (zh) * 2013-11-20 2016-07-13 柯惠有限合伙公司 用于将活检工具导航到靶位置以及使用活检工具获得组织样本的装置、系统和方法
WO2016029022A1 (en) * 2014-08-20 2016-02-25 Covidien Lp Systems and methods for spherical ablations
WO2016033090A1 (en) * 2014-08-25 2016-03-03 Covidien Lp System and method for planning, monitoring, and confirming treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378421A (zh) * 2020-11-20 2021-02-19 山东威高医疗科技有限公司 用于测试电磁导航系统定位精度的装置及方法
CN112378421B (zh) * 2020-11-20 2022-07-08 山东威高医疗科技有限公司 用于测试电磁导航系统定位精度的装置及方法
CN114073581A (zh) * 2021-06-29 2022-02-22 成都科莱弗生命科技有限公司 一种支气管电磁导航系统

Also Published As

Publication number Publication date
CN106510845B (zh) 2019-09-10
CN106510845A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018094849A1 (zh) 医疗路径导航方法及系统
US11877804B2 (en) Methods for navigation of catheters inside lungs
US11622815B2 (en) Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy
US20190307516A1 (en) Image-based navigation system and method of using same
WO2018094847A1 (zh) 医疗路径导航方法、规划方法及系统
JP2022523445A (ja) 動的な介入的3次元モデル変形
US11051886B2 (en) Systems and methods for performing a surgical navigation procedure
CN113440740B (zh) 沿管腔网络进行治疗的系统和方法
JP2016514531A (ja) 誘導式の高線量率小線源治療における機器の位置特定
US20170086665A1 (en) Marker placement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922271

Country of ref document: EP

Kind code of ref document: A1