WO2018094847A1 - 医疗路径导航方法、规划方法及系统 - Google Patents

医疗路径导航方法、规划方法及系统 Download PDF

Info

Publication number
WO2018094847A1
WO2018094847A1 PCT/CN2016/113824 CN2016113824W WO2018094847A1 WO 2018094847 A1 WO2018094847 A1 WO 2018094847A1 CN 2016113824 W CN2016113824 W CN 2016113824W WO 2018094847 A1 WO2018094847 A1 WO 2018094847A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
ablation catheter
region
airway
image
Prior art date
Application number
PCT/CN2016/113824
Other languages
English (en)
French (fr)
Inventor
刘弘毅
马家骏
Original Assignee
常州朗合医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州朗合医疗器械有限公司 filed Critical 常州朗合医疗器械有限公司
Priority to EP16922382.3A priority Critical patent/EP3545895A4/en
Priority to US16/463,301 priority patent/US20190374283A1/en
Publication of WO2018094847A1 publication Critical patent/WO2018094847A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00809Lung operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems

Definitions

  • the present application relates to the field of medical technology, and in particular, to a medical path navigation method, a planning method, and a system.
  • Radiofrequency ablation is a minimally invasive tumor in situ treatment technique.
  • the principle is that the high-frequency alternating current of the electrode is injected into the lesion tissue.
  • the ions in the lesion tissue change with the change of the current direction, and the lesion tissue generates high temperature.
  • a certain temperature generally 60 ° C
  • the lesion tissue dies, eventually solidifying and inactivating the tumor tissue.
  • the more commonly used radiofrequency ablation is guided by ultrasound or computed tomography (CT) imaging techniques, and the ablation electrode is directly inserted into the tumor by percutaneous puncture.
  • CT computed tomography
  • percutaneous puncture is used to insert the ablation electrode into the tumor, posing a risk of pneumothorax.
  • a relatively safe method is to insert an ablation catheter with electrodes into the bronchoscope, and send it to the lung tumor through the natural airway of the lung for radiofrequency ablation; then X-ray is used to determine the location of the ablation.
  • the bronchoscope can reach a limited range of bronchial tubes and cannot penetrate the lesions around the lungs. Therefore, the ablation catheter guided by the bronchoscope cannot accurately reach the lesions around the lungs.
  • aspects of the present application provide a medical path navigation method, a planning method, and a system for accurately navigating an ablation catheter to a lesion location that cannot be reached by a bronchoscope, such as a lesion location around the lung, which is no longer subject to bronchoscopy. Reach the limits of the range.
  • the embodiment of the present application provides a medical path navigation method, including:
  • the initial ablation region belongs to one of at least one ablation region included in the lesion region;
  • Positioning the ablation catheter in an actual position in the lesion region based on the positioning sensor during movement of the ablation catheter in the lesion region, and based on an actual position of the ablation catheter in the lesion region Adjusting the position and orientation of the ablation catheter in the lesion region with respect to the offset relationship of the at least one ablation region other than the initial ablation region until the ablation catheter is navigated to the other Ablation area.
  • the embodiment of the present application further provides a medical path planning method, including:
  • CT data of the diseased organ is imported to construct a CT image and a three-dimensional model
  • a navigation path to the initial ablation region is planned on the CT image or the three-dimensional model.
  • the embodiment of the present application further provides a medical path navigation system, including: a path planning device, a path navigation device, and an ablation catheter with a positioning sensor;
  • the path planning device is configured to plan a navigation path to an initial ablation region on a CT image of the diseased organ or a three-dimensional model reconstructed from the CT data; the initial ablation region belongs to one of at least one ablation region included in the lesion region ;
  • the ablation catheter is configured to be sent into the airway leading to the lesion area according to the navigation path to ablate the lesion area;
  • the path navigation device includes: a display module and a navigation module;
  • the display module is configured to display the CT image and the three-dimensional model and the navigation path;
  • the navigation module is configured to position an actual position of the ablation catheter in the airway based on the positioning sensor during movement of the ablation catheter in the airway, according to the ablation catheter in the gas Deviating the actual position in the track from the navigation path, adjusting the position and orientation of the ablation catheter in the airway until the ablation catheter is navigated to the initial ablation zone;
  • the navigation module is further configured to position an actual position of the ablation catheter in the lesion region based on the positioning sensor during movement of the ablation catheter in the lesion region, and according to the ablation catheter Adjusting the positional relationship of the ablation catheter in the lesion region to the position and direction of the ablation catheter in the lesion region, the deviation of the actual position in the lesion region from the ablation region of the at least one ablation region other than the initial ablation region
  • the ablation catheter navigates to the other ablation zones.
  • the positioning sensor carried by the ablation catheter is used for path navigation in the ablation process; wherein the navigation path based on the CT image or the three-dimensional model is combined with the positioning sensor, Positioning the ablation catheter into the initial ablation zone in the lesion area.
  • the ablation catheter is sequentially positioned to other ablation zones based on the positioning sensor, which can solve the inability to accurately ablate the catheter due to the limitation of the reach of the bronchoscope. Positioning the location of the lesion can accurately navigate the ablation catheter to a lesion location that is not accessible by the bronchoscope, such as the location of the lesion around the lung.
  • FIG. 1 is a schematic structural view of an ablation catheter with a positioning sensor according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a medical path navigation method according to another embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a medical path navigation method according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a medical path planning method according to another embodiment of the present application.
  • 5a-5g are diagrams showing a process of a medical path planning method according to still another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application.
  • the embodiment of the present application provides a medical path navigation method, which is applicable to an ablation catheter with a positioning sensor, and uses a positioning sensor carried by an ablation catheter to perform path navigation during ablation based on a CT image or a three-dimensional model reconstructed from CT data.
  • a medical path navigation method which is applicable to an ablation catheter with a positioning sensor, and uses a positioning sensor carried by an ablation catheter to perform path navigation during ablation based on a CT image or a three-dimensional model reconstructed from CT data.
  • the catheter is positioned to the location of the lesion that is not accessible by the bronchoscope, such as the location of the lesion around the lung.
  • the ablation catheter used in the embodiment of the present application is first briefly described.
  • FIG. 1 shows the structure of an ablation catheter, but is not limited thereto.
  • the ablation catheter includes a catheter body 10, a positioning sensor 20, and an ablation electrode 31.
  • the positioning sensor 20 is fixed inside the catheter body 10 and is primarily used to position the ablation catheter to accurately position the ablation catheter to the location of the lesion.
  • the positioning sensor 20 may be fixed inside the catheter body 10 by various methods such as a hot melt method or an adhesive bonding method.
  • the positioning sensor 20 in this embodiment adopts the principle of electromagnetic navigation, which is different from the principle of magnetic navigation.
  • the principle of magnetic navigation is mainly: relying on an external magnetic field to attract or repel the permanent magnets in the ablation catheter to affect the moving direction of the ablation catheter.
  • the working principle of the positioning sensor 20 in this embodiment is mainly to output a current to a control system outside the ablation catheter in response to the magnetic field of the space in which it is located, for the control system to position the ablation catheter.
  • the positioning sensor 20 is electrically connected to the control system via wires.
  • the control system includes a magnetic field generator for generating a magnetic field in a range of positioning spaces; the positioning sensor 20 itself is not magnetic, and the coils in the positioning sensor 20 are used to sense the magnetic field generated by the magnetic field generator.
  • the magnetic field generator generates a changing magnetic field in a certain range of positioning space, and ensures that the magnetic field characteristics of each point in the positioning space are unique.
  • the coils in the positioning sensor 20 generate current in a varying magnetic field that is conducted by the wires of the positioning sensor 20 to a control system that converts and analyzes the current transmitted by the positioning sensor 20 to determine the precise position and orientation of the ablation catheter.
  • the ablation electrode 31 is fixed on the outer surface of the catheter body 10, and is mainly used for ablation treatment of the lesion.
  • the ablation electrode 31 may be fixed to the outer surface of the catheter body 10 by various methods such as a hot melt method, an adhesive bonding method, a forging method, or a microfluidic processing technique.
  • the ablation electrode 31 is used to generate a current, and the current is injected into the lesion tissue, so that the ions in the lesion tissue change with the change of the current direction, and the lesion tissue generates a high temperature when the temperature exceeds a certain temperature (generally 60 At °C), the lesion tissue dies, eventually solidifying and inactivating the tumor tissue, To achieve the purpose of treatment.
  • a certain temperature generally 60 At °C
  • the ablation catheter of the present embodiment may be in the form of a monopole, that is, the electrode body 10 has only one polarity electrode, and the other polarity electrode is attached to the external surface of the human body.
  • the ablation electrode 31 may be a ring electrode, and may be made of a metal material such as copper, stainless steel, platinum-iridium alloy, or other conductive materials.
  • the ablation catheter of the present embodiment may also adopt a bipolar form, that is, the catheter body 10 includes electrodes with positive and negative polarities, and electrodes of different polarities are not connected, and it is not necessary to use electrodes on the outer surface of the human body.
  • FIG. 1 is only an implementation structure of the ablation catheter, and other structures of the ablation catheter can be evolved based on the structure shown in FIG.
  • the ablation catheter can include two or more positioning sensors to facilitate improved positioning accuracy.
  • the ablation catheter can include, in addition to the positioning sensor, a water-cooling structure for accommodating the electrode coolant to reduce tissue temperature during ablation, avoid overheating and scarring, and improve the effectiveness of the ablation procedure.
  • the various ablation catheters provided by the above embodiments in addition to the ablation electrode, have a positioning sensor, can be positioned by the positioning sensor, can accurately position the ablation catheter to the lesion position, and can also track the position of the ablation catheter in real time, thereby overcoming the cause.
  • the problem of ablation catheter position caused by various reasons is not accurate enough to improve the therapeutic effect of ablation.
  • the medical path navigation method provided by the embodiment of the present application is as shown in FIG. 2 , and includes:
  • a navigation path to an initial ablation region is planned on a CT image of the diseased organ or a three-dimensional model reconstructed from the CT data; the initial ablation region belongs to one of at least one ablation region included in the lesion region.
  • an ablation catheter with a positioning sensor is sent into the airway leading to the lesion area.
  • the ablation catheter is used to ablate the diseased organ, and the ablation catheter needs to be navigated to the lesion area of the diseased organ.
  • the diseased organ mainly refers to the lungs, or other organs having a structure similar to the lungs.
  • the process of navigating the ablation catheter to the lesion area includes the following stages:
  • Path planning stage CT data of diseased organs are imported, CT images and 3D models are constructed from CT data; and lesions on diseased organs are determined based on CT images or 3D models.
  • the lesion area may be defined as a single-connected closed three-dimensional area of arbitrary shape, for example, a single-connected closed three-dimensional area of a regular shape, such as an ellipsoidal shape; or, may be defined as a single-connected closed shape of any irregular shape. Three-dimensional area.
  • the entire lesion area can be covered by multiple ablation.
  • the lesion area can be divided into at least one ablation area, one ablation area is ablated each time, and at least one ablation area is superimposed to cover the entire lesion area.
  • the ablation zone may be spherical, ellipsoidal or sausage type. From the at least one ablation zone, one ablation zone is selected as the initial ablation zone.
  • one ablation region may be randomly selected as the initial ablation region, or the ablation region located at the center of the lesion region may be selected as the initial ablation region; alternatively, the ablation region farthest from the main trachea or bronchi may be selected as the initial ablation region.
  • the initial ablation region represents the lesion region, and the arrival of the ablation catheter into the initial ablation region means that the lesion region has been reached, and therefore, the navigation path to the initial ablation region can be planned based on the CT image or the three-dimensional model.
  • the path from one ablation zone to another ablation zone can be planned until all ablation zones are reached in sequence.
  • the first navigation phase after planning the navigation path to the initial ablation zone, the ablation catheter with the positioning sensor can be sent into the natural airway leading to the lesion area according to the navigation path, and the ablation catheter moves in the airway.
  • the ablation catheter is navigated in conjunction with the positioning sensor provided by the ablation catheter on the basis of the navigation path.
  • the positioning sensor is in operation, and the actual position and orientation of the ablation catheter in the airway can be located based on the positioning sensor; according to the actual position of the ablation catheter in the airway and based on the CT image or The deviation of the navigation path as planned by the three-dimensional model adjusts the position and orientation of the ablation catheter in the airway until the ablation catheter is navigated to the initial ablation zone.
  • the airway leading to the lesion area includes the main airway, the bronchus, and the lower bronchus.
  • the positioning sensor is electrically connected to a control system external to the ablation catheter, and the positioning sensor can sense an electromagnetic field at the airway position of the ablation catheter to generate an induced current, which can transmit the induced current to the control system; the control system can be positioned according to the positioning
  • the sensor senses the actual position of the ablation catheter in the airway by sensing the induced current generated by the electromagnetic field at the airway position of the ablation catheter; and then, based on the actual position of the ablation catheter in the airway and the CT image or three-dimensional model
  • the deviation of the navigation path adjusts the position and orientation of the ablation catheter in the airway until the ablation catheter is navigated to the initial ablation zone.
  • the ablation catheter comprises two positioning sensors, respectively a first positioning sensor and a second positioning sensor; wherein the first positioning sensor is located at the ablation catheter head, and the first positioning sensor and the second positioning sensor are separated by a certain distance.
  • the two positioning sensors of the ablation catheter are simultaneously active, ie both positioning sensors sense the electromagnetic field at the airway location of the ablation catheter to generate an induced current and are transmitted to the control system.
  • the control system can select the first positioning sensor, and calculate the actual position of the ablation catheter in the airway according to the induced current generated by the first positioning sensor due to the electromagnetic field at the airway position of the ablation catheter.
  • the second positioning sensor may be selected to calculate the actual position of the ablation catheter in the airway according to the induced current generated by the second positioning sensor due to the electromagnetic field at the airway position of the ablation catheter; or, the first positioning may be selected a sensor and a second positioning sensor, The actual position of the ablation catheter in the airway is calculated based on the induced current generated by the first and second positioning sensors in response to the electromagnetic field at the location of the airway at which the ablation catheter is located.
  • one of the two positioning sensors is in an active state, and the ablation catheter can be calculated based on the electromagnetic sensor generated by the positioning sensor in the working state due to the electromagnetic field at the airway position of the ablation catheter. The actual position in the airway.
  • adjusting the position and direction of the ablation catheter in the airway according to the deviation relationship may be, but not limited to, tracking the position and direction of the ablation catheter in the airway on the CT image or the three-dimensional model; wherein, the CT image or The navigation path to the initial ablation area is displayed on the three-dimensional model, so that based on the CT image or the three-dimensional model, the deviation relationship between the actual position of the ablation catheter in the airway and the navigation path can be determined, and the ablation catheter can be adjusted based on the deviation relationship.
  • the position and orientation in the airway is described until the ablation catheter is navigated to the initial ablation zone.
  • navigating the ablation catheter to the initial ablation zone may be: navigating the ablation catheter's ablation center to the center of the initial ablation zone such that the ablation catheter actually ablatedly can more effectively cover the planned initial ablation zone .
  • the ablation catheter After navigating the ablation catheter to the initial ablation zone, the ablation catheter can be controlled to ablate the initial ablation zone. If the entire lesion area includes only the initial ablation area, the entire navigation process ends after the ablation catheter is navigated to the initial ablation area. If the entire lesion region also includes other ablation regions beyond the initial ablation region, then after ablation of the initial ablation region, ablation of the other ablation regions is continued, which means that the ablation catheter needs to be navigated to other ablation regions, ie Enter the second navigation phase.
  • the second navigation phase the ablation catheter reaches the initial ablation zone, meaning that the ablation catheter is in the lesion area, and if there are other ablation zones, it means that the ablation catheter needs to move from the current ablation zone to another ablation zone. If the navigation path between the ablation regions is planned in advance, the ablation region can be moved along the planned path to another ablation region; if the navigation path between the ablation regions is not planned in advance, the next one that needs to be reached can be randomly selected. Ablation area.
  • the positioning sensor is in an active state, and the actual position of the ablation catheter in the lesion area can be located based on the positioning sensor, and according to the ablation catheter in the lesion area
  • the deviation of the actual position from the other ablation zones adjusts the direction of movement of the ablation catheter in the lesion area until the ablation catheter is navigated to other ablation zones.
  • the navigation path between the ablation zones is planned in advance, during the navigation process, the actual position of the ablation catheter in the lesion area, the navigation path between the ablation zones, and the center of the ablation zone need to be simultaneously combined.
  • the deviation relationship adjusts the direction of movement of the ablation catheter in the lesion area until the ablation catheter is navigated to other ablation zones.
  • the ablation catheter can be directly navigated from the initial ablation zone to the ablation zone; if there are multiple ablation zones, the ablation catheter needs to be navigated multiple times, each time the ablation catheter is navigated to An ablation zone, after ablation of the ablation zone, navigates from the ablation zone to the next ablation zone.
  • the ablation catheter comprises two positioning sensors, respectively a first positioning sensor and a second positioning sensor; wherein the first positioning sensor is located at the ablation catheter head, and the first positioning sensor and the second positioning sensor are separated by a certain distance.
  • the two positioning sensors of the ablation catheter are simultaneously active, ie both positioning sensors sense the electromagnetic field at the airway location of the ablation catheter to generate an induced current and are transmitted to the control system.
  • the control system can select a second positioning sensor located behind the ablation electrode, and calculate the ablation catheter according to the induced current generated by the second positioning sensor due to the electromagnetic field induced at the airway position of the ablation catheter. The actual position in the airway.
  • the second positioning sensor Since the second positioning sensor is located at the rear end of the ablation electrode, the interference of the ablation electrode is small, and the actual position of the ablation catheter in the airway is calculated based on the second positioning sensor, which is beneficial to improve the accuracy of the calculation result.
  • a shielding layer may be disposed for the second positioning sensor and the wire connected to the second positioning sensor.
  • the second positioning sensor can be controlled to be in an active state, and the first positioning sensor is in a non-working state. It is worth noting that the use of the second positioning sensor is a preferred method, but is not limited thereto.
  • adjusting the position and direction of the ablation catheter in the lesion area according to the deviation relationship may be, but not limited to, tracking the position and orientation of the ablation catheter in the lesion area on the CT image or the three-dimensional model; wherein, CT The location of other ablation zones is displayed on the image or 3D model.
  • CT CT The location of other ablation zones is displayed on the image or 3D model.
  • navigating the ablation catheter to other ablation zones may be: navigating the ablation center of the ablation catheter to the center of the other ablation zone such that the area that the ablation catheter is actually capable of ablation can more effectively cover other ablation zones.
  • the present embodiment uses the positioning sensor carried by the ablation catheter to perform path navigation during the ablation process on the basis of the CT image or the three-dimensional model; wherein the navigation path based on the CT image or the three-dimensional model is combined with the positioning sensor, Positioning the ablation catheter to the initial ablation region in the lesion area; further, in the lesion region, positioning the ablation catheter to other ablation regions based on the positioning sensor in turn, can solve the problem that the prior art cannot be accurately determined due to the limitation of the bronchoscope reachable range
  • the problem of positioning the ablation catheter to the location of the lesion can accurately navigate the ablation catheter to the location of the lesion that is not accessible to the bronchoscope, such as the location of the lesion in the periphery of the lung, which is no longer limited by the reach of the bronchoscope, especially for some bronchial tubes.
  • X-ray assisted navigation is not required, and radiation
  • FIG. 3 is a schematic flowchart diagram of a medical path navigation method according to another embodiment of the present application. The method can also be implemented based on the ablation catheter shown in Figure 1, as shown in Figure 3, the method comprising:
  • the initial ablation region belongs to one of at least one ablation region included in the lesion region.
  • the ablation catheter with the positioning sensor is sent into the airway leading to the lesion area.
  • the ablation catheter is controlled to reach a predetermined registration bulge site, and the actual position of the keel portion in the airway is located based on the positioning sensor.
  • the ablation catheter in the lesion region locate the actual position of the ablation catheter in the lesion region based on the positioning sensor, based on the mapping between the magnetic field coordinate system and the coordinate system of the CT image or the three-dimensional model. a relationship determining a deviation relationship between an actual position of the ablation catheter in the lesion region and other ablation regions of the at least one ablation region other than the initial ablation region, and adjusting a position of the ablation catheter in the lesion region based on the deviation relationship And direction until the ablation catheter is navigated to other ablation zones.
  • the ablation catheter is used to ablate the diseased organ, and the ablation catheter needs to be navigated to the lesion area of the diseased organ.
  • the process of navigating the ablation catheter to the lesion area in this embodiment is also divided into several stages, including: a path planning stage, a registration stage, a first navigation stage, and a second navigation stage.
  • the path planning phase in this embodiment is the same as the path navigation phase in the embodiment shown in FIG. 2, and can be referred to the embodiment shown in FIG. 2, and details are not described herein again.
  • the ablation catheter is delivered into the airway leading to the lesion area, and the ablation catheter moves in the airway.
  • the registration phase is to register the magnetic field coordinate system of the airway with the coordinate system of the CT image or the 3D model before navigating the ablation catheter to obtain the coordinate system between the magnetic field coordinate system and the CT image or the 3D model.
  • the mapping relationship provides conditions for the subsequent first navigation phase and the second navigation phase based on the navigation path, thereby improving positioning accuracy.
  • the registration phase includes: a predetermined registration for the protuberance.
  • This embodiment does not limit the number of registration protuberances, and may be, for example, 3 or 5 or the like.
  • the registration bulge site may be a main bulge, a bulge at the first-stage bifurcation of the left main bronchus, and a bulge at the first-stage bifurcation of the right main bronchus, but is not limited thereto.
  • key points can be marked on the navigation path to correspond to the airway. The position of the key mark is used as the key position for registration.
  • the ablation catheter can be controlled to reach a predetermined registration bulge site, and the actual position of the bulge site in the airway is located based on the positioning sensor (ie, the bulge portion is at the magnetic field coordinate) Position coordinates in the system); then, according to the actual position of the bulge in the airway and the position coordinates of the embossed mark on the CT image or the three-dimensional model, the magnetic field coordinate system of the airway and the CT image or three-dimensional
  • the coordinate system of the model is registered to obtain the mapping relationship between the magnetic field coordinate system and the coordinate system of the CT image or the three-dimensional model.
  • the bronchoscope can be used to guide the bulge to the bulge, and the front end of the tool with the positioning sensor (such as the ablation catheter) can be touched.
  • the selected position on the keel to obtain the exact coordinates of the actual position of the keel.
  • the positioning sensor In the first navigation phase in the embodiment, during the movement of the ablation catheter in the airway, the positioning sensor generates an induced current due to the electromagnetic field induced at the airway position of the ablation catheter and outputs the same to the control system; the control system is The induced current output from the positioning sensor calculates the actual position and direction of the ablation catheter in the airway, that is, the position coordinate and orientation of the ablation catheter in the electromagnetic field coordinate system of the airway; based on the electromagnetic field coordinate system and the coordinate system of the CT image or the three-dimensional model The mapping relationship maps the actual position of the ablation catheter in the airway to the CT image or the 3D model; wherein the CT image or the 3D model displays the planned navigation path, so that the ablation is displayed on the CT image or the 3D model.
  • the positioning sensor In the second navigation phase in the embodiment, during the movement of the ablation catheter in the lesion region, the positioning sensor generates an induced current due to the electromagnetic field at the location of the lesion region where the ablation catheter is located and outputs the current to the control system; the control system is The induced current output from the positioning sensor calculates the actual position of the ablation catheter in the lesion area, that is, the position coordinate and orientation of the ablation catheter in the electromagnetic field coordinate system of the lesion region; based on the electromagnetic field coordinate system and the coordinate system of the CT image or the three-dimensional model Mapping relationship, mapping the actual position of the ablation catheter in the lesion area to the CT image or the three-dimensional model; Wherein, the position of the center of the other ablation region is displayed on the CT image or the three-dimensional model, so that the deviation relationship between the position and direction of the ablation catheter and the center of the other ablation region is displayed on the CT image or the three-dimensional model, and then adjusted based on the deviation relationship.
  • the position and orientation of the catheter is
  • the present embodiment can not only use the positioning sensor carried by the ablation catheter to perform path navigation during the ablation process on the basis of the CT image or the three-dimensional model, and solves the problem that the ablation catheter cannot be accurately determined due to the limitation of the reachable range of the bronchoscope.
  • Positioning the location of the lesion can accurately position the ablation catheter to the lesion location; and through coordinate registration, the accuracy of the navigation path can be further improved and the positioning accuracy can be improved.
  • the embodiment of the present application further provides a medical path planning method, which is shown in FIG. 4 and includes the following steps:
  • the lesion area may be a single-connected closed three-dimensional area of any shape, for example, a single-connected closed three-dimensional area of a regular shape, such as an ellipsoidal shape; or, may be defined as a single connection of any irregular shape. Close the three-dimensional area.
  • the lesion area needs to be divided into at least one ablation zone depending on the single ablation range of the ablation catheter used.
  • the ablation guide The ablation zone produced by one tube of ablation (actually killing cells in the region) is called a single ablation range; the shape of a single ablation range is generally defined as a sphere or an ellipsoid, which can be determined by factors such as the relative position of the ablation electrode; The size of the single ablation range can also be adjusted by controlling the power, time and other parameters of the ablation.
  • an ablation area can be used to cover the entire lesion area, as shown in Figure 5b; the dashed circle in Figure 5b represents the ablation area.
  • multiple ablation areas can be used to cover the entire lesion area, as shown in Figures 5c and 5d; the three dotted circles in Figure 5c represent an ablation area, meaning that three ablation is required; four in Figure 5d A dotted circle represents an ablation zone, meaning that four ablation is required.
  • the sizes of the different ablation zones may be the same or different.
  • one of the at least one ablation region is selected to represent the lesion region, and the selected ablation region is referred to as the initial ablation region.
  • the ablation process is illustrated by taking the three ablation zones shown in Figure 5c as an example, and the selected initial ablation zone is shown in Figure 5e.
  • the dashed circle in Figure 5e represents the initial ablation zone.
  • the manner of selecting the initial ablation area is not limited, and may be randomly selected, or may be selected as far as possible, or may be selected most recently, or the range of the selected area may be the largest.
  • the navigation path to the initial ablation catheter area can then be planned on the CT image or 3D model.
  • the initial ablation zone can be ablated.
  • the initial ablation zone can be moved to the next ablation zone, as shown in Figure 5f, and the ablation zone shown in Figure 5f is ablated.
  • movement to the next ablation zone can continue, as shown in Figure 5g, repeated until all ablation zones are ablated.
  • the dark gray area indicates the area that has been ablated in the lesion area
  • the light gray area indicates the area that has not been ablated.
  • the medical path planning method provided by this embodiment divides the lesion area and is no longer subject to The ellipsoidal constraints make the planning process and subsequent ablation processes more flexible and efficient.
  • the execution bodies of the steps of the method provided by the foregoing embodiments may all be the same device, or the method may also be performed by different devices.
  • the execution body of steps 201 to 203 may be device A; for example, the execution body of steps 201 and 202 may be device A, the execution body of step 203 may be device B, and the like.
  • FIG. 6 is a schematic structural diagram of a medical path navigation system according to another embodiment of the present application. As shown in FIG. 6, the system includes a path planning device 61, an ablation catheter 62 with a positioning sensor, and a path navigation device 63.
  • the path planning device 61 is configured to plan a navigation path to the initial ablation region on the CT image of the diseased organ or the three-dimensional model reconstructed from the CT data; the initial ablation region belongs to at least one ablation region included in the lesion region One.
  • the ablation catheter 62 is configured to be delivered into the airway leading to the lesion area in accordance with the navigation path to ablate the lesion area.
  • the path navigation device 63 includes a display module 631 and a navigation module 633.
  • the display module 631 is configured to display the CT image or the three-dimensional model and the navigation path to provide a navigation basis for the navigation module 633.
  • a navigation module 633 for positioning an actual position of the ablation catheter 62 in the airway based on the positioning sensor during movement of the ablation catheter 62 in the airway, depending on the actual position of the ablation catheter 62 in the airway In an offset relationship with the navigation path, the position and orientation of the ablation catheter 62 in the airway is adjusted until the ablation catheter 62 is navigated to the initial ablation zone.
  • the navigation module 633 is further configured to position the ablation catheter 62 in an actual position in the lesion region based on the positioning sensor during movement of the ablation catheter 62 in the lesion region, and according to the ablation catheter 62 in the lesion region Adjusting the position of the ablation catheter 62 in the lesion region and the direction of the ablation catheter in the lesion region, and adjusting the position of the ablation catheter 62 to the ablation region in the at least one ablation region Said other ablation areas.
  • the path navigation device 63 further includes a registration module 634.
  • the registration module 634 is configured to ablate the ablation catheter 62 before the navigation module 633 navigates During the movement of the tube 62 in the airway, the ablation catheter 62 is controlled to reach a predetermined registration bulge portion, and the actual position of the bulge portion in the airway is located based on the positioning sensor; Calculating the actual position of the protuberance part in the airway, coordinately registering the magnetic field coordinate system of the airway with the coordinate system of the CT image or the three-dimensional model, to obtain the magnetic field coordinate system and the CT image Or the mapping relationship between the coordinate systems of the 3D model.
  • the navigation module 633 is specifically configured to: based on the coordinate system of the magnetic field coordinate system and the CT image or the three-dimensional model a mapping relationship between the actual position of the ablation catheter in the airway to the CT image or three-dimensional model; according to the position and orientation of the ablation catheter displayed on the CT image or the three-dimensional model Deviating the navigation path, adjusting the position and orientation of the ablation catheter in the airway.
  • the navigation module 633 adjusts the position and direction of the ablation catheter 62 in the lesion region according to the deviation relationship
  • the navigation module 633 is specifically configured to: based on the magnetic field coordinate system and the coordinate system of the CT image or the three-dimensional model a mapping relationship between the actual position of the ablation catheter in the lesion region onto the CT image or the three-dimensional model; determining the ablation catheter at the CT according to the CT image or the three-dimensional model Adjusting the deviation relationship between the position and orientation of the mapping on the image or three-dimensional model and the other ablation regions, and adjusting according to the deviation relationship between the mapping position of the ablation catheter on the CT image or the three-dimensional model and the other ablation regions The position and orientation of the ablation catheter in the lesion area.
  • the navigation module 633 when the navigation module 633 locates the actual position of the ablation catheter 62 in the airway based on the positioning sensor, the navigation module 633 is specifically configured to: according to the electromagnetic field at the airway position of the ablation catheter 62 induced by the positioning sensor. Generating the induced current to calculate the actual position of the ablation catheter 62 in the airway;
  • the navigation module 633 locates the actual position of the ablation catheter 62 in the lesion area based on the positioning sensor, the navigation module 633 is specifically configured to: generate an induction according to the electromagnetic field at the position of the lesion area where the ablation catheter 62 is located. Current, the actual position of the ablation catheter 62 in the lesion area is calculated.
  • the positioning sensor includes a first positioning sensor and a second positioning a sensor; the first positioning sensor is located at a head of the ablation catheter 62, and the first positioning sensor and the second positioning sensor are respectively located on opposite sides of the ablation electrode on the ablation catheter 62.
  • the navigation module 633 is configured to: according to the positioning sensor, the actual position of the ablation catheter 62 in the airway, according to the first positioning sensor and/or the second positioning sensor Inductive current generated by inducing an electromagnetic field at the airway location of the ablation catheter 62, calculating the actual position of the ablation catheter 62 in the airway; accordingly, the navigation module 633 positions the ablation catheter 62 based on the positioning sensor
  • the actual position in the lesion area is specifically used to calculate the actual ablation catheter 62 in the lesion area according to the induced current generated by the second positioning sensor due to the electromagnetic field at the position of the lesion area where the ablation catheter 62 is located. position.
  • the path planning device 61 includes an image construction module 611 , an ablation region division module 612 , an initial selection module 613 , and a path planning module 614 .
  • the image construction module 611 is configured to introduce CT data of the diseased organ to construct a CT image and a three-dimensional model.
  • the ablation region dividing module 612 is configured to determine a lesion region on the diseased organ based on the CT image or the three-dimensional model, and divide the lesion region into at least one ablation according to a single ablation range of the ablation catheter used region.
  • An initial selection module 613 is configured to select an initial ablation region from the at least one ablation region.
  • the path planning module 614 is configured to plan a navigation path to the initial ablation area on the CT image or the three-dimensional model.
  • the path sensor carried in the ablation process is matched with the positioning sensor carried by the ablation catheter; wherein the navigation path is planned based on the CT image or the three-dimensional model
  • the ablation catheter can be positioned to the initial ablation region in the lesion area. Further, in the lesion region, the ablation catheter is sequentially positioned to other ablation regions based on the positioning sensor, which can solve the limitation of the reachable range of the bronchoscope. The inability to accurately position the ablation catheter to the location of the lesion allows the bronchoscope to be accurately navigated to a location that is not accessible to the bronchoscope, such as the location of the lesion in the periphery of the lung.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Robotics (AREA)
  • Cardiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种医疗路径导航方法、规划方法及系统,该导航方法包括:规划导航路径(201);根据导航路径,将带有定位传感器(20)的消融导管(62)送入通往病变区域的气道中(202);在消融导管(62)在气道中移动的过程中,基于定位传感器(20)调整消融导管(62)在气道中的位置和方向,直到将消融导管(62)导航至所规划的初始消融区域(203);以及在消融导管(62)在病变区域移动的过程中,基于定位传感器(20)调整消融导管(62)在病变区域中的位置和方向,直到将消融导管(62)导航至其它消融区域(204)。该方法可以将消融导管(62)准确地导航至支气管镜无法到达的病灶位置,如肺部外周的位置,不再受支气管镜可达范围的限制。

Description

医疗路径导航方法、规划方法及系统
交叉引用
本申请引用于2016年11月23日递交的名称为“医疗路径导航方法、规划方法及系统”的第2016110424733号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及医疗技术领域,尤其涉及一种医疗路径导航方法、规划方法及系统。
背景技术
射频消融术是一种微创性肿瘤原位治疗技术,其原理是:电极的高频交流电射入病灶组织,病灶组织中的离子随着电流方向的改变而改变,病灶组织产生高温,当超过一定温度(一般为60℃)时,病灶组织死亡,最终凝固和灭活肿瘤组织。
目前较为常用的射频消融术是借助于超声或计算机断层扫描(Computed Tomography,CT)等影像技术引导,通过经皮穿刺方式将消融电极直接插入肿瘤内。对于肺部肿瘤,采用经皮穿刺方式将消融电极插入肿瘤,有产生气胸的风险。有研究表明,肺部经皮穿刺,有20-40%的气胸发生率,而气胸是一种严重的不良反应,有可能致命。相对安全的方式是将带电极的消融导管插入支气管镜中,经肺部自然气道送达肺部肿瘤处进行射频消融;然后通过X光来确定消融的位置。
但是,支气管镜可到达的支气管范围有限,无法深入肺部周边的病灶,因此,在支气管镜引导下的消融导管也无法准确到达肺部周边的病灶。
发明内容
本申请的多个方面提供一种医疗路径导航方法、规划方法及系统,用以将消融导管准确地导航至支气管镜无法到达的病灶位置,如肺部周边的病灶位置,不再受支气管镜可达范围的限制。
本申请实施例提供一种医疗路径导航方法,包括:
在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个;
根据所述导航路径,将带有定位传感器的消融导管送入通往所述病变区域的气道中;
在所述消融导管在所述气道中移动的过程中,基于所述定位传感器定位所述消融导管在所述气道中的实际位置,根据所述消融导管在所述气道中的实际位置与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向,直到将所述消融导管导航至所述初始消融区域;以及;
在所述消融导管在所述病变区域移动的过程中,基于所述定位传感器定位所述消融导管在所述病变区域中的实际位置,并根据所述消融导管在所述病变区域中的实际位置与所述至少一个消融区域中除所述初始消融区域外的其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向,直到将所述消融导管导航至所述其它消融区域。
本申请实施例还提供一种医疗路径规划方法,包括:
导入病变器官的CT数据,以构建CT影像和三维模型;
基于所述CT影像或三维模型,确定所述病变器官上的病变区域;
根据所使用的消融导管的单次消融范围,将所述病变区域划分为至少一个消融区域;
从所述至少一个消融区域中,选定初始消融区域;
在所述CT影像或者三维模型上,规划到所述初始消融区域的导航路径。
本申请实施例还提供一种医疗路径导航系统,包括:路径规划装置、路径导航装置以及带有定位传感器的消融导管;
所述路径规划装置,用于在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个;
所述消融导管,用于依据所述导航路径被送入通往所述病变区域的气道中,以对所述病变区域进行消融;
所述路径导航装置包括:显示模块和导航模块;
所述显示模块,用于显示所述CT影像和三维模型以及所述导航路径;
所述导航模块,用于在所述消融导管在所述气道中移动的过程中,基于所述定位传感器定位所述消融导管在所述气道中的实际位置,根据所述消融导管在所述气道中的实际位置与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向,直到将所述消融导管导航至所述初始消融区域;
所述导航模块,还用于在所述消融导管在所述病变区域移动的过程中,基于所述定位传感器定位所述消融导管在所述病变区域中的实际位置,并根据所述消融导管在所述病变区域中的实际位置与所述至少一个消融区域中除所述初始消融区域外的其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向,直到将所述消融导管导航至所述其它消融区域。
在本申请实施例中,在CT影像或者三维模型的基础上,配合消融导管携带的定位传感器进行消融过程中的路径导航;其中,基于CT影像或者三维模型规划的导航路径并结合定位传感器,可以将消融导管定位到病变区域中的初始消融区域,进一步,在病变区域中,基于定位传感器依次将消融导管定位到其它消融区域,可以解决因受支气管镜可达范围的限制无法准确地将消融导管定位到病灶位置的问题,可以准确地将消融导管导航至支气管镜无法到达的病灶位置,如肺部周边的病灶位置。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一实施例提供的带定位传感器的消融导管的一种结构示意图;
图2为本申请另一实施例提供的医疗路径导航方法的流程示意图;
图3为本申请又一实施例提供的医疗路径导航方法的流程示意图;
图4为本申请又一实施例提供的医疗路径规划方法的流程示意图;
图5a-图5g为本申请又一实施例提供的医疗路径规划方法的图示过程;
图6为本申请又一实施例提供的医疗路径导航系统的结构示意图;
图7为本申请又一实施例提供的医疗路径导航系统的结构示意图;
图8为本申请又一实施例提供的医疗路径导航系统的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种医疗路径导航方法,适用于带定位传感器的消融导管,在CT影像或者由CT数据重建的三维模型的基础上,配合消融导管携带的定位传感器进行消融过程中的路径导航,可以解决因受支气管镜可达范围的限制无法准确地将消融导管定位到病灶位置的问题,从而准确地将消融 导管定位到支气管镜无法到达的病灶位置,如肺部周边的病灶位置。
为便于理解本申请实施例提供的方法,首先对本申请实施例采用的消融导管进行简单介绍说明。
本申请实施例采用的消融导管带有定位传感器,其实现结构可以有多种形式。为便于理解,图1示出一种消融导管的结构,但并不限于此。如图1所示,该消融导管包括:导管本体10、定位传感器20以及消融电极31。
定位传感器20固设于导管本体10内部,主要用于对消融导管进行定位,以便将消融导管准确定位到病灶位置。例如,可以采用热熔法、采用粘合剂粘接法等各种方式,将定位传感器20固设于导管本体10内部。
本实施例中的定位传感器20采用电磁导航(Electromagnetic Navigation)原理,不同于普通的磁导航(Magnetic Navigation)原理。磁导航原理主要是:依靠外部磁场吸引或排斥消融导管中的永磁体以影响消融导管的移动方向。本实施例中的定位传感器20的工作原理主要是:响应于其所在空间的磁场而向消融导管外部的控制系统输出电流,以供控制系统定位消融导管的位置。详细地来说,定位传感器20与控制系统通过导线进行电气连接。该控制系统包括磁场发生器,用以在一定范围的定位空间中产生磁场;定位传感器20本身没有磁性,定位传感器20中的线圈用于感受磁场发生器所产生的磁场。其中,磁场发生器在一定范围的定位空间中产生变化的磁场,并保证定位空间中每一点的磁场特性是唯一的。定位传感器20中的线圈在变化磁场中产生电流,由定位传感器20的导线传导至控制系统,控制系统转换和分析定位传感器20传输来的电流以确定消融导管的精确位置和方向。
消融电极31固设于导管本体10外表面,主要用于对病灶进行消融治疗。例如,可以采用热熔法、采用粘合剂粘接法、锻压法、微流控加工技术等各种方式,将消融电极31固设于导管本体10外表面。
在本实施例中,消融电极31,用于产生电流,该电流射入病灶组织,这样病灶组织中的离子随着电流方向的改变而改变,病灶组织产生高温,当超过一定温度(一般为60℃)时,病灶组织死亡,最终凝固和灭活肿瘤组织, 达到治疗目的。
可选的,本实施例的消融导管可以采用单极形式,即导管本体10上只有一个极性的电极,另一极性的电极贴在人体外表面。例如,上述消融电极31可以采用环形电极,可以采用金属材料,如铜、不锈钢、铂铱合金等,也可以采用其他导电材料。或者,本实施例的消融导管也可以采用双极形式,即导管本体10上包括正负两个极性的电极,且不同极性的电极之间不连通,不需要使用人体外表面的电极。
值得说明的是,图1所示仅仅是消融导管的一种实现结构,基于图1所示结构还可以演变出其它结构的消融导管。例如,消融导管可以包括两个或两个以上的定位传感器,以便于提高定位精度。又例如,消融导管除了包括定位传感器之外,还可以包括水冷结构,用于容纳电极冷却液,以便在消融过程中,降低组织温度,避免过热和结痂,提高消融术的有效性。
上述实施例提供的各种消融导管,除了包括消融电极之外,自带定位传感器,通过定位传感器进行导航,可以将消融导管准确定位到病灶位置,并且还可以实时跟踪消融导管的位置,克服因各种原因引起的消融导管位置不够精确的问题,提高消融术的治疗效果。
基于图1所示消融导管,本申请实施例提供的医疗路径导航方法如图2所示,包括:
201、在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个。
202、根据上述导航路径,将带有定位传感器的消融导管送入通往所述病变区域的气道中。
203、在消融导管在所述气道中移动的过程中,基于定位传感器定位消融导管在所述气道中的实际位置,根据消融导管在所述气道中的实际位置与导航路径的偏离关系,调整消融导管在所述气道中的位置和方向,直到将消融导管导航至初始消融区域。
204、在消融导管在所述病变区域移动的过程中,基于定位传感器定位消融导管在所述病变区域中的实际位置,并根据消融导管在所述病变区域中的实际位置与上述至少一个消融区域中除初始消融区域外的其它消融区域的偏离关系,调整消融导管在所述病变区域中的位置和方向,直到将消融导管导航至其它消融区域。
在本实施例中,采用消融导管对病变器官进行消融治疗,需要将消融导管导航至病变器官的病变区域。所述病变器官主要是指肺部,或结构类似肺部的其它器官等。将消融导管导航至病变区域的过程包括以下几个阶段:
路径规划阶段:导入病变器官的CT数据,由CT数据构建CT影像和三维模型;基于CT影像或三维模型,确定病变器官上的病变区域。在本实施例中,病变区域可以定义为任意形状的单连通封闭三维区域,例如可以是规则形状的单连通封闭三维区域,例如椭球形;或者,也可以定义为任何不规则形状的单连通封闭三维区域。
考虑到消融导管单次消融有一定的覆盖范围,为了能够全面地对病变区域进行消融,可以通过多次消融来覆盖整个病变区域。基于此考虑,可以将病变区域划分为至少一个消融区域,每次对一个消融区域进行消融,且至少一个消融区域叠加起来可以覆盖整个病变区域。可选的,消融区域可以是球形、椭球形或腊肠型等。从至少一个消融区域中,选定一个消融区域作为初始消融区域。例如,可以随机选择一个消融区域作为初始消融区域,或者,可以选择位于病变区域中心的消融区域作为初始消融区域;或者,也可以选择离主气管或支气管最远的消融区域作为初始消融区域。在一定程度上,该初始消融区域代表病变区域,消融导管到达该初始消融区域意味着到达了病变区域,因此,可以基于CT影像或三维模型,规划到初始消融区域的导航路径。
可选的,如果有一个以上的消融区域,还可以规划从一个消融区域到另一个消融区域的路径,直到依次到达所有消融区域。
值得说明的是,上述规划路径的过程可以是自动或者手动完成。
第一导航阶段:在规划出到初始消融区域的导航路径之后,可以根据该导航路径,将带有定位传感器的消融导管送入通往病变区域的自然气道中,消融导管会在气道中移动。为了能够准确地沿着规划出的导航路径到达目标/病变区域,在导航路径的基础上,结合消融导管自带的定位传感器对消融导管进行导航。具体的,在消融导管在气道中移动的过程中,定位传感器处于工作状态,可以基于定位传感器定位消融导管在气道中的实际位置和方向;根据消融导管在气道中的实际位置与基于CT影像或三维模型规划出的导航路径的偏离关系,调整消融导管在气道中的位置和方向,直到将消融导管导航至初始消融区域。
上述通往病变区域的气道包括主气管、支气管以及下级支气管等。
在上述过程中,定位传感器与消融导管外部的控制系统电气连接,定位传感器可感应于消融导管所在气道位置处的电磁场而产生感应电流,可以将感应电流传输给控制系统;控制系统可以根据定位传感器因感应于消融导管所在气道位置处的电磁场而产生的感应电流,计算消融导管在气道中的实际位置;然后,根据消融导管在气道中的实际位置与基于CT影像或三维模型规划出的导航路径的偏离关系,调整消融导管在气道中的位置和方向,直到将消融导管导航至初始消融区域。
可选的,消融导管包括两个定位传感器,分别是第一定位传感器和第二定位传感器;其中,第一定位传感器位于消融导管头部,并且第一定位传感器和第二定位传感器间隔一定距离。在一种应用场景中,消融导管的两个定位传感器同时处于工作状态,即两个定位传感器都会感应于消融导管所在气道位置处的电磁场而产生感应电流并且都会传输给控制系统。基于此,在第一导航阶段,控制系统可以选择第一定位传感器,根据第一定位传感器因感应于消融导管所在气道位置处的电磁场而产生的感应电流,计算消融导管在气道中的实际位置;或者,可以选择第二定位传感器,根据第二定位传感器因感应于消融导管所在气道位置处的电磁场而产生的感应电流,计算消融导管在气道中的实际位置;或者,可以选择第一定位传感器和第二定位传感器, 根据第一定位传感器和第二定位传感器因感应于消融导管所在气道位置处的电磁场而产生的感应电流,计算消融导管在气道中的实际位置。在另一种应用场景中,两个定位传感器中的一个定位传感器处于工作状态,则可以基于处于工作状态的定位传感器因感应于消融导管所在气道位置处的电磁场而产生感应电流,计算消融导管在气道中的实际位置。
可选的,上述根据偏离关系调整消融导管在气道中的位置和方向可以采用但不限于以下方式:在CT影像或三维模型上,跟踪消融导管在气道中的位置和方向;其中,CT影像或三维模型上会显示到初始消融区域的导航路径,这样基于CT影像或三维模型,可以确定消融导管在气道中的实际位置与导航路径的偏离关系,基于此偏离关系可以调整所述消融导管在所述气道中的位置和方向,直到将消融导管导航至初始消融区域。
可选的,将消融导管导航至初始消融区域可以是:将消融导管的消融中心导航至初始消融区域的中心,以使消融导管实际所能消融的区域能够更加有效地覆盖所规划的初始消融区域。
当将消融导管导航至初始消融区域之后,可以控制消融导管对初始消融区域进行消融。如果整个病变区域仅包括初始消融区域,则将消融导管导航至初始消融区域后,整个导航过程结束。如果整个病变区域还包括初始消融区域之外的其它消融区域,则在对初始消融区域进行消融后,需要继续对其它消融区域进行消融处理,这意味着需要将消融导管导航至其它消融区域,即进入第二导航阶段。
第二导航阶段:消融导管到达初始消融区域,意味着消融导管在病变区域,并且如果还有其它消融区域,意味着消融导管需要从当前所在消融区域移动到另一个消融区域。如果预先规划了消融区域之间的导航路径,则可以从一个消融区域沿规划的路径移动到另一个消融区域;如果没有预先规划消融区域之间的导航路径,则可以随机选择需要到达的下一个消融区域。在消融导管在病变区域移动的过程中,定位传感器处于工作状态,可基于定位传感器定位消融导管在病变区域中的实际位置,并根据消融导管在病变区域中 的实际位置与其它消融区域的偏离关系,调整消融导管在病变区域中的移动方向,直到将消融导管导航至其它消融区域。可选的,如果预先规划了消融区域之间的导航路径,则在导航过程中,需要同时结合消融导管在病变区域中的实际位置、消融区域之间的导航路径以及消融区域中心三者之间的偏离关系,调整消融导管在病变区域中的移动方向,直到将消融导管导航至其它消融区域。
如果其它消融区域为一个,则可以直接将消融导管从初始消融区域导航至该消融区域即可;如果其它消融区域为多个,则需要对消融导管进行多次导航,每次将消融导管导航至一个消融区域,当对该消融区域进行消融处理后,再从该消融区域导航至下一个消融区域。
可选的,消融导管包括两个定位传感器,分别是第一定位传感器和第二定位传感器;其中,第一定位传感器位于消融导管头部,并且第一定位传感器和第二定位传感器间隔一定距离。在一种应用场景中,消融导管的两个定位传感器同时处于工作状态,即两个定位传感器都会感应于消融导管所在气道位置处的电磁场而产生感应电流并且都会传输给控制系统。基于此,在第二导航阶段,控制系统可以选择位于消融电极后面的第二定位传感器,根据第二定位传感器因感应于消融导管所在气道位置处的电磁场而产生的感应电流,计算消融导管在气道中的实际位置。由于第二定位传感器位于消融电极后端,受消融电极的干扰较小,基于第二定位传感器计算消融导管在气道中的实际位置,有利于提高计算结果的精度。可选的,为了进一步降低消融电极带来的电磁干扰,还可以为第二定位传感器以及与第二定位传感器连接的导线设置屏蔽层。在另一种应用场景中,可以控制第二定位传感器处于工作状态,第一定位传感器处于非工作状态。值得说明的是,使用第二定位传感器是优选方式,但并不限于此。
可选的,上述根据偏离关系调整消融导管在病变区域中的位置和方向可以采用但不限于以下方式:在CT影像或三维模型上,跟踪消融导管在病变区域中的位置和方向;其中,CT影像或三维模型上会显示其它消融区域的位置, 这样基于CT影像或三维模型,可以确定消融导管在病变区域中的位置和其它消融区域的偏离关系,于是可以基于此偏离关系调整消融导管在病变区域中的位置和方向,直到将消融导管导航至其它消融区域。
可选的,将消融导管导航至其它消融区域可以是:将消融导管的消融中心导航至其它消融区域的中心,以使消融导管实际所能消融的区域能够更加有效地覆盖其它消融区域。
由上述可见,本实施例在CT影像或者三维模型的基础上,配合消融导管携带的定位传感器进行消融过程中的路径导航;其中,基于CT影像或者三维模型规划的导航路径并结合定位传感器,可以将消融导管定位到病变区域中的初始消融区域;进一步,在病变区域中,基于定位传感器依次将消融导管定位到其它消融区域,可以解决现有技术因受支气管镜可达范围的限制无法准确地将消融导管定位到病灶位置的问题,可以准确地将消融导管导航至支气管镜无法到达的病灶位置,如肺部外周的病灶位置,不再受支气管镜可达范围的限制,尤其适用于一些支气管镜无法到达的病灶位置。另外,在本实施例的导航过程中,不需要X光辅助导航,可以避免X光对人体造成的辐射伤害。
图3为本申请又一实施例提供的医疗路径导航方法的流程示意图。该方法同样可基于图1所示消融导管实施,如图3所示,该方法包括:
301、在病变器官的CT影像或者三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个。
302、根据导航路径,将带有定位传感器的消融导管送入通往所述病变区域的气道中。
303、在消融导管在所述气道中移动的过程中,控制消融导管到达预定的配准用隆突部位,并基于定位传感器定位隆突部位在所述气道中的实际位置。
304、根据隆突部位在所述气道中的实际位置,对所述气道所在磁场坐标系与CT影像或三维模型所在坐标系进行坐标进行配准,以获得所述磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系。
305、在消融导管在所述气道中移动的过程中,基于定位传感器定位消融导管在所述气道中的实际位置,基于所述磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系,确定消融导管在所述气道中的实际位置与导航路径的偏离关系,基于所述偏离关系调整消融导管在所述气道中的位置和方向,直到将消融导管导航至初始消融区域。
306、在消融导管在所述病变区域移动的过程中,基于定位传感器定位消融导管在所述病变区域中的实际位置,基于所述磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系,确定消融导管在所述病变区域中的实际位置与上述至少一个消融区域中除初始消融区域外的其它消融区域的偏离关系,基于所述偏离关系调整消融导管在所述病变区域中的位置和方向,直到将消融导管导航至其它消融区域。
在本实施例中,采用消融导管对病变器官进行消融治疗,需要将消融导管导航至病变器官的病变区域。本实施例中将消融导管导航至病变区域的过程也分为几个阶段,包括:路径规划阶段、配准阶段、第一导航阶段以及第二导航阶段。
本实施例中的路径规划阶段,与图2所示实施例中的路径导航阶段相同,可参见图2所示实施例,在此不再赘述。
基于该导航路径,将消融导管送入通往病变区域的气道中,消融导管会在气道中移动。在本实施例中,规划出导航路径之后,并不是直接进入第一导航阶段,而是进入配准阶段。配准阶段主要目的是:在对消融导管导航之前,对气道所在磁场坐标系与CT影像或三维模型所在坐标系进行配准,以获得磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系,为后续基于导航路径的第一导航阶段和第二导航阶段提供条件,从而提高定位精度。
配准阶段包括:预定配准用隆突部位。本实施例并不限定配准用隆突部位的数量,例如可以是3或5等。优选的,配准用隆突部位可以是主隆突,左主支气管第一级分叉处的隆突,以及右主支气管第一级分叉处的隆突,但并不限于此。或者,也可以在导航路径上进行关键点标记,将气道中对应关 键点标记的位置作为配准用关键位置。在消融导管在气道中移动的过程中,可以控制消融导管到达预定的配准用隆突部位,并基于定位传感器定位隆突部位在所述气道中的实际位置(即该隆突部位在磁场坐标系中的位置坐标);然后,根据隆突部位在所述气道中的实际位置和隆突标记在CT影像或三维模型上的位置坐标,对所述气道所在磁场坐标系与CT影像或三维模型所在坐标系进行配准,以获得磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系。
可选的,在上述到达隆突部位的过程中,可以使用支气管镜引导,在支气管镜的影像辅助下到达隆突部位,并使用当前带有定位传感器的工具(如消融导管)的前端碰触隆突上选定的位置,以获取隆突实际位置的精确坐标。
在本实施例中的第一导航阶段中,在消融导管在气道中移动的过程中,定位传感器因感应于消融导管所在气道位置处的电磁场而产生感应电流并输出至控制系统;控制系统根据定位传感器输出的感应电流计算消融导管在气道中的实际位置和方向,即消融导管在气道所在电磁场坐标系中的位置坐标和朝向;基于电磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系,将消融导管在气道中的实际位置映射到CT影像或三维模型上;其中,CT影像或三维模型上会显示实现规划好的导航路径,这样在CT影像或三维模型上会显示消融导管位置和方向与导航路径之间的偏离关系,进而基于该偏离关系调整消融导管在气道中的位置和方向,直到将消融导管导航至初始消融区域。关于第一导航阶段的其它描述,可参见图2所示实施例,在此不再赘述。
在本实施例中的第二导航阶段中,在消融导管在病变区域移动的过程中,定位传感器因感应于消融导管所在病变区域位置处的电磁场而产生感应电流并输出至控制系统;控制系统根据定位传感器输出的感应电流计算消融导管在病变区域中的实际位置,即消融导管在病变区域所在电磁场坐标系中的位置坐标和朝向;基于电磁场坐标系与CT影像或三维模型所在坐标系之间的映射关系,将消融导管在病变区域中的实际位置映射到CT影像或三维模型上; 其中,CT影像或三维模型上会显示其它消融区域中心的位置,这样在CT影像或三维模型上会显示消融导管的位置和方向与其它消融区域中心之间的偏离关系,进而基于该偏离关系调整消融导管的位置和方向,直到将消融导管导航至其它消融区域。关于第二导航阶段的其它描述,可参见图2所示实施例,在此不再赘述。
由此可见,本实施例不仅可以在CT影像或者三维模型的基础上,配合消融导管携带的定位传感器进行消融过程中的路径导航,解决因受支气管镜可达范围的限制无法准确地将消融导管定位到病灶位置的问题,可以准确地将消融导管定位到病变位置;而且通过坐标配准,可以进一步提高导航路径的精确性,提高定位精度。
除了上述医疗路径导航方法之外,本申请实施例还提供一种医疗路径规划方法,该方法如图4所示,包括以下步骤:
401、导入病变器官的CT数据,以构建CT影像和三维模型。
402、基于所述CT影像或三维模型,确定病变器官上的病变区域。
403、根据所使用的消融导管的单次消融范围,将所述病变区域划分为至少一个消融区域。
404、从至少一个消融区域中,选定初始消融区域。
405、在CT影像或者三维模型上,规划到初始消融区域的导航路径。
结合图5a-5g,对上述方法步骤进行说明。
首先,要根据病变器官的CT数据,构建CT影像和三维模型,并确定病变器官上的病变区域,如图5a所示。图5a中的阴影区域为病变区域。另外,如图5a所示,病变区域可以是任意形状的单连通封闭三维区域,例如可以是规则形状的单连通封闭三维区域,例如椭球形;或者,也可以定义为任何不规则形状的单连通封闭三维区域。
接着,需要根据所使用的消融导管的单次消融范围,将病变区域划分为至少一个消融区域。
在实施消融术时,需要确定使用的消融导管。在本实施例中,将消融导 管一次消融产生的有效(确实杀死区域内细胞)的消融区域称作单次消融范围;单次消融范围的形状一般定义为球形或椭球形,可由消融电极的相对位置等因素决定;另外,还可通过控制消融的功率、时间等参数调整单次消融范围的大小。
对于简单情况,可以使用一个消融区域覆盖整个病变区域,如图5b所示;图5b中的虚线圈表示消融区域。
对于复杂情况,可以使用多个消融区域覆盖整个病变区域,如图5c和图5d所示;图5c中的三个虚线圈分别表示一个消融区域,意味着需要进行三次消融;图5d中的四个虚线圈分别表示一个消融区域,意味着需要进行四次消融。
值得说明的是,在多个消融区域的情况下,不同消融区域的大小可以相同,也可以不相同。
接着,需要从至少一个消融区域中,选定一个来代表病变区域,并将被选定的消融区域称为初始消融区域。以图5c所示三个消融区域为例说明消融过程,则选定的初始消融区域如图5e所示。图5e中的虚线圈表示初始消融区域。
其中,选定初始消融区域的方式不做限定,可以是随机选择,也可以选择最远的,或者选择最近的,或者选择区域范围最大等等。
接着,可以在CT影像或三维模型上,规划到初始消融导管区域的导航路径。
当消融导管到达初始消融区域后,可以对初始消融区域进行消融。当对初始消融区域成功地进行消融后,可以从初始消融区域移动到下一个消融区域,如图5f所示,并对图5f所示消融区域进行消融处理。在对图5f所示消融区域进行消融之后,可以继续移动到下一个消融区域,如图5g所示,重复执行,直到对所有消融区域进行消融。在图5f和图5g中,深灰色区域表示病变区域中已经消融过的区域,浅灰色区域表示尚未消融的区域。
本实施例提供的医疗路径规划方法,通过对病变区域进行划分,不再受 椭球形的限制,使得规划过程和后续消融过程的灵活性更强,效率也较高。
需要说明的是,上述实施例所提供方法的各步骤的执行主体均可以是同一设备,或者,该方法也由不同设备作为执行主体。比如,步骤201至步骤203的执行主体可以为设备A;又比如,步骤201和202的执行主体可以为设备A,步骤203的执行主体可以为设备B;等等。
图6为本申请又一实施例提供的医疗路径导航系统的结构示意图。如图6所示,该系统包括:路径规划装置61、带有定位传感器的消融导管62以及路径导航装置63。
其中,路径规划装置61,用于在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个。
消融导管62,用于依据所述导航路径被送入通往所述病变区域的气道中,以对病变区域进行消融。
路径导航装置63包括:显示模块631和导航模块633。
其中,显示模块631,用于显示所述CT影像或者三维模型以及所述导航路径,以给导航模块633提供导航依据。
导航模块633,用于在消融导管62在所述气道中移动的过程中,基于所述定位传感器定位消融导管62在所述气道中的实际位置,根据消融导管62在所述气道中的实际位置与所述导航路径的偏离关系,调整消融导管62在所述气道中的位置和方向,直到将消融导管62导航至所述初始消融区域。
导航模块633,还用于在消融导管62在所述病变区域移动的过程中,基于所述定位传感器定位消融导管62在所述病变区域中的实际位置,并根据消融导管62在所述病变区域中的实际位置与所述至少一个消融区域中除所述初始消融区域外的其它消融区域的偏离关系,调整消融导管62在所述病变区域中的位置和方向,直到将消融导管62导航至所述其它消融区域。在一可选实施方式中,如图7所示,路径导航装置63还包括:配准模块634。
配准模块634,用于在导航模块633对消融导管62导航之前,在消融导 管62在所述气道中移动的过程中,控制消融导管62到达预定的配准用隆突部位,并基于所述定位传感器定位所述隆突部位在所述气道中的实际位置;以及根据所述隆突部位在所述气道中的实际位置,对所述气道所在磁场坐标系与所述CT影像或三维模型所在坐标系进行坐标配准,以获得所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系。
可选的,导航模块633在根据所述偏离关系调整消融导管62在所述气道中的位置和方向时,具体用于:基于所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系,将所述消融导管在所述气道中的实际位置映射到所述CT影像或三维模型上;根据所述CT影像或三维模型上显示的所述消融导管的位置和方向与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向。
相应地,导航模块633在根据所述偏离关系调整消融导管62在所述病变区域中的位置和方向时,具体用于:基于所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系,将所述消融导管在所述病变区域中的实际位置映射到所述CT影像或三维模型上;根据所述CT影像或三维模型上显示的确定所述消融导管在所述CT影像或三维模型上的映射的位置和方向与所述其它消融区域的偏离关系,并根据所述消融导管在所述CT影像或三维模型上的映射位置与所述其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向。可选的,导航模块633在基于所述定位传感器定位消融导管62在所述气道中的实际位置时,具体用于:根据所述定位传感器因感应于消融导管62所在气道位置处的电磁场而产生的感应电流,计算消融导管62在所述气道中的实际位置;
导航模块633在基于所述定位传感器定位消融导管62在所述病变区域中的实际位置时,具体用于:根据所述定位传感器因感应于消融导管62所在病变区域位置处的电磁场而产生的感应电流,计算消融导管62在所述病变区域中的实际位置。
在一可选实施方式中,所述定位传感器包括第一定位传感器和第二定位 传感器;所述第一定位传感器位于消融导管62头部,且所述第一定位传感器和所述第二定位传感器分别位于消融导管62上消融电极的两侧。
基于上述定位传感器结构,导航模块633在基于所述定位传感器定位消融导管62在所述气道中的实际位置时,具体用于:根据所述第一定位传感器和/或所述第二定位传感器因感应于消融导管62所在气道位置处的电磁场而产生的感应电流,计算消融导管62在所述气道中的实际位置;相应地,导航模块633在基于所述定位传感器定位消融导管62在所述病变区域中的实际位置时,具体用于:根据所述第二定位传感器因感应于消融导管62所在病变区域位置处的电磁场而产生的感应电流,计算消融导管62在所述病变区域中的实际位置。
在一可选实施方式中,如图8所示,路径规划装置61包括:影像构建模块611、消融区域划分模块612、初始选定模块613以及路径规划模块614。
影像构建模块611,用于导入病变器官的CT数据,以构建CT影像和三维模型。
消融区域划分模块612,用于基于所述CT影像或三维模型,确定所述病变器官上的病变区域,并根据所使用的消融导管的单次消融范围,将所述病变区域划分为至少一个消融区域。
初始选定模块613,用于从所述至少一个消融区域中,选定初始消融区域。
路径规划模块614,用于在所述CT影像或者三维模型上,规划到所述初始消融区域的导航路径。
在本实施例提供的医疗路径导航系统中,在CT影像或者三维模型的基础上,配合消融导管携带的定位传感器进行消融过程中的路径导航;其中,基于CT影像或者三维模型规划的导航路径并结合定位传感器,可以将消融导管定位到病变区域中的初始消融区域,进一步,在病变区域中,基于定位传感器依次将消融导管定位到其它消融区域,可以解决因受支气管镜可达范围的限制而无法准确地将消融导管定位到病灶位置的问题,可以精确地将支气管镜导航至支气管镜无法到达的病灶位置,如肺部外周的病灶位置。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种医疗路径导航方法,其特征在于,包括:
    在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个;
    根据所述导航路径,将带有定位传感器的消融导管送入通往所述病变区域的气道中;
    在所述消融导管在所述气道中移动的过程中,基于所述定位传感器定位所述消融导管在所述气道中的实际位置,根据所述消融导管在所述气道中的实际位置与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向,直到将所述消融导管导航至所述初始消融区域;以及
    在所述消融导管在所述病变区域移动的过程中,基于所述定位传感器定位所述消融导管在所述病变区域中的实际位置,并根据所述消融导管在所述病变区域中的实际位置与所述至少一个消融区域中除所述初始消融区域外的其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向,直到将所述消融导管导航至所述其它消融区域。
  2. 根据权利要求1所述的方法,其特征在于,在对所述消融导管导航之前,所述方法还包括:
    在所述消融导管在所述气道中移动的过程中,控制所述消融导管到达预定的配准用隆突部位,并基于所述定位传感器定位所述隆突部位在所述气道中的实际位置;
    根据所述隆突部位在所述气道中的实际位置,对所述气道所在磁场坐标系与所述CT影像或三维模型所在坐标系进行坐标配准,以获得所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述消融导管在所述气道中的实际位置与所述导航路径的偏离关系,调整所述消融导管在所 述气道中的位置和方向,包括:
    基于所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系,将所述消融导管在所述气道中的实际位置和方向映射到所述CT影像或三维模型上;
    根据所述CT影像或三维模型上显示的所述消融导管的位置和方向与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向;
    相应地,所述根据所述消融导管的实际位置与所述至少一个消融区域中除所述初始消融区域外的其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向,包括:
    基于所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系,将所述消融导管在所述病变区域中的实际位置和方向映射到所述CT影像或三维模型上;
    根据所述CT影像或三维模型上显示的所述消融导管的位置和方向与所述其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述定位传感器定位所述消融导管在所述气道中的实际位置,包括:
    根据所述定位传感器因感应于所述消融导管所在气道位置处的电磁场而产生的感应电流,计算所述消融导管在所述气道中的实际位置;
    所述基于所述定位传感器定位所述消融导管在所述病变区域中的实际位置,包括:
    根据所述定位传感器因感应于所述消融导管所在病变区域位置处的电磁场而产生的感应电流,计算所述消融导管在所述病变区域中的实际位置。
  5. 根据权利要求4所述的方法,其特征在于,所述定位传感器包括第一定位传感器和第二定位传感器,所述第一定位传感器位于所述消融导管头部;
    所述根据所述定位传感器因感应于所述消融导管所在气道位置处的电磁场而产生的感应电流,计算所述消融导管在所述气道中的实际位置,包括:
    根据所述第一定位传感器和/或所述第二定位传感器因感应于所述消融导管所在气道位置处的电磁场而产生的感应电流,计算所述消融导管在所述气道中的实际位置;
    所述根据所述定位传感器因感应于所述消融导管所在病变区域位置处的电磁场而产生的感应电流,计算所述消融导管在所述病变区域中的实际位置,包括:
    根据所述第二定位传感器因感应于所述消融导管所在病变区域位置处的电磁场而产生的感应电流,计算所述消融导管在所述病变区域中的实际位置。
  6. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述消融导管进行消融过程中,关闭所述定位传感器。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径之前,还包括:
    导入所述病变器官的CT数据,构建CT影像和三维模型;
    基于所述CT影像或三维模型,确定所述病变器官上的所述病变区域;以及
    根据所述消融导管的单次消融范围,将所述病变区域划分为所述至少一个消融区域。
  8. 根据权利要求7所述的方法,其特征在于,所述病变区域为任意形状的单连通封闭三维区域。
  9. 一种医疗路径规划方法,其特征在于,包括:
    导入病变器官的CT数据,以构建CT影像和三维模型;
    基于所述CT影像或三维模型,确定所述病变器官上的病变区域;
    根据所使用的消融导管的单次消融范围,将所述病变区域划分为至少一个消融区域;
    从所述至少一个消融区域中,选定初始消融区域;
    在所述CT影像或者三维模型上,规划到所述初始消融区域的导航路径。
  10. 根据权利要求9所述的方法,其特征在于,所述病变区域为任意形状的单连通封闭三维区域。
  11. 一种医疗路径导航系统,其特征在于,包括:路径规划装置、路径导航装置以及带有定位传感器的消融导管;
    所述路径规划装置,用于在病变器官的CT影像或者由CT数据重建的三维模型上,规划到初始消融区域的导航路径;所述初始消融区域属于病变区域包括的至少一个消融区域中的一个;
    所述消融导管,用于依据所述导航路径被送入通往所述病变区域的气道中,以对所述病变区域进行消融;
    所述路径导航装置包括:显示模块和导航模块;
    所述显示模块,用于显示所述CT影像或者三维模型以及所述导航路径;
    所述导航模块,用于在所述消融导管在所述气道中移动的过程中,基于所述定位传感器定位所述消融导管在所述气道中的实际位置,根据所述消融导管在所述气道中的实际位置与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向,直到将所述消融导管导航至所述初始消融区域;
    所述导航模块,还用于在所述消融导管在所述病变区域移动的过程中,基于所述定位传感器定位所述消融导管在所述病变区域中的实际位置,并根据所述消融导管在所述病变区域中的实际位置与所述至少一个消融区域中除所述初始消融区域外的其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向,直到将所述消融导管导航至所述其它消融区域。
  12. 根据权利要求11所述的系统,其特征在于,所述路径导航装置还包括:配准模块;
    所述配准模块,用于在所述导航模块对所述消融导管导航之前,在所述消融导管在所述气道中移动的过程中,控制所述消融导管到达预定的配准用隆突部位,并基于所述定位传感器定位所述隆突部位在所述气道中的实际位置;以及根据所述隆突部位在所述气道中的实际位置,对所述气道所在磁场 坐标系与所述CT影像或三维模型所在坐标系进行坐标配准,以获得所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系。
  13. 根据权利要求12所述的系统,其特征在于,所述导航模块具体用于:
    基于所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系,将所述消融导管在所述气道中的实际位置和方向映射到所述CT影像或三维模型上;
    根据所述CT影像或三维模型上显示的所述消融导管的位置和方向与所述导航路径的偏离关系,调整所述消融导管在所述气道中的位置和方向;
    相应地,所述导航模块具体用于:
    基于所述磁场坐标系与所述CT影像或三维模型所在坐标系之间的映射关系,将所述消融导管在所述病变区域中的实际位置和方向映射到所述CT影像或三维模型上;
    根据所述CT影像或三维模型上显示的所述消融导管位置和方向与所述其它消融区域的偏离关系,调整所述消融导管在所述病变区域中的位置和方向。
  14. 根据权利要求11-13任一项所述的系统,其特征在于,
    所述导航模块具体用于:根据所述定位传感器因感应于所述消融导管所在气道位置处的电磁场而产生的感应电流,计算所述消融导管在所述气道中的实际位置;
    所述导航模块具体用于:根据所述定位传感器因感应于所述消融导管所在病变区域位置处的电磁场而产生的感应电流,计算所述消融导管在所述病变区域中的实际位置。
  15. 根据权利要求11-13任一项所述的系统,其特征在于,所述路径规划装置包括:
    影像构建模块,用于导入病变器官的CT数据,以构建CT影像和三维模型;
    消融区域划分模块,用于基于所述CT影像或三维模型,确定所述病变器 官上的病变区域,并根据所使用的消融导管的单次消融范围,将所述病变区域划分为至少一个消融区域;
    初始选定模块,用于从所述至少一个消融区域中,选定初始消融区域;
    路径规划模块,用于在所述CT影像或者三维模型上,规划到所述初始消融区域的导航路径。
PCT/CN2016/113824 2016-11-23 2016-12-30 医疗路径导航方法、规划方法及系统 WO2018094847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16922382.3A EP3545895A4 (en) 2016-11-23 2016-12-30 MEDICAL TRAVEL NAVIGATION PROCEDURE AND SYSTEM AND MEDICAL TRAVEL PLANNING PROCEDURE
US16/463,301 US20190374283A1 (en) 2016-11-23 2016-12-30 Medical path navigation method, planning method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611042473.3 2016-11-23
CN201611042473.3A CN106539624B (zh) 2016-11-23 2016-11-23 医疗路径导航方法、规划方法及系统

Publications (1)

Publication Number Publication Date
WO2018094847A1 true WO2018094847A1 (zh) 2018-05-31

Family

ID=58394854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113824 WO2018094847A1 (zh) 2016-11-23 2016-12-30 医疗路径导航方法、规划方法及系统

Country Status (4)

Country Link
US (1) US20190374283A1 (zh)
EP (1) EP3545895A4 (zh)
CN (1) CN106539624B (zh)
WO (1) WO2018094847A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106344150A (zh) * 2016-11-23 2017-01-25 常州朗合医疗器械有限公司 射频消融导管及系统
CN107260300A (zh) * 2017-07-20 2017-10-20 常州朗合医疗器械有限公司 射频消融导管及系统
CN111093516B (zh) * 2017-11-21 2023-01-10 深圳迈瑞生物医疗电子股份有限公司 用于规划消融的超声系统及方法
FR3089780B1 (fr) * 2018-12-12 2022-07-22 Quantum Surgical Recalage automatique d’un bras robot pour une intervention médicale
CN110400302B (zh) * 2019-07-25 2021-11-09 杭州依图医疗技术有限公司 一种确定、显示乳房图像中病灶信息的方法及装置
CN114081625B (zh) * 2020-07-31 2023-08-25 上海微创卜算子医疗科技有限公司 导航路径规划方法、系统和可读存储介质
CN114376728A (zh) * 2020-10-16 2022-04-22 常州朗合医疗器械有限公司 医疗系统
CN112690899A (zh) * 2021-01-11 2021-04-23 北京华康同邦科技有限公司 一种利用磁场导航定位微波针的方法
CN113069206B (zh) * 2021-03-23 2022-08-05 江西麦帝施科技有限公司 一种基于电磁导航的图像引导方法及系统
CN113413213B (zh) * 2021-07-14 2023-03-14 广州医科大学附属第一医院(广州呼吸中心) Ct结果的处理方法、导航处理方法、装置与检测系统
CN113712674B (zh) * 2021-09-13 2023-05-09 上海微创微航机器人有限公司 导管机器人及系统与控制方法、可读存储介质及电子设备
CN114305656A (zh) * 2021-11-15 2022-04-12 上海市胸科医院 磁导航射频消融电极及系统
CN114504374A (zh) * 2021-12-31 2022-05-17 杭州堃博生物科技有限公司 肺部治疗组件、肺部治疗系统、肺部治疗系统的使用方法和针对肺部的治疗方法
CN114767031B (zh) * 2022-03-31 2024-03-08 常州朗合医疗器械有限公司 内窥镜设备、内窥镜的位置引导设备、系统、方法和计算机可读存储介质
CN115715703B (zh) * 2023-01-10 2023-05-02 佗道医疗科技有限公司 一种通道规划方法
CN117257459B (zh) * 2023-11-22 2024-03-12 杭州先奥科技有限公司 一种抗呼吸干扰的电磁导航支气管镜术中地图拓展方法及系统
CN117883179A (zh) * 2024-01-24 2024-04-16 天津市鹰泰利安康医疗科技有限责任公司 一种高频电穿孔脉冲消融装置及其图像引导方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316560A (zh) * 2005-12-02 2008-12-03 皇家飞利浦电子股份有限公司 使消融过程自动化以使人工干预的需要最小化
CN204364123U (zh) * 2014-11-07 2015-06-03 刘弘毅 医疗导航系统
CN105208960A (zh) * 2013-05-16 2015-12-30 直观外科手术操作公司 用于与外部成像集成的机器人医疗系统的系统和方法
WO2016003990A2 (en) * 2014-07-02 2016-01-07 Covidien Lp Methods for marking biopsy location
WO2016004000A1 (en) * 2014-07-02 2016-01-07 Covidien Lp System and method for navigating within the lung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972016B2 (en) * 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
US7998062B2 (en) * 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
ATE524106T1 (de) * 2005-08-05 2011-09-15 Koninkl Philips Electronics Nv Katheternavigationssystem
CN100536770C (zh) * 2007-03-29 2009-09-09 新奥博为技术有限公司 一种磁共振图像引导下的手术系统及手术导航方法
WO2011080666A1 (en) * 2009-12-30 2011-07-07 Koninklijke Philips Electronics N.V. Dynamic ablation device
EP2741696B1 (en) * 2011-08-09 2022-05-18 Koninklijke Philips N.V. Displacement feedback device for therapy delivery probes
US20130317339A1 (en) * 2012-05-23 2013-11-28 Biosense Webster (Israel), Ltd. Endobronchial catheter
US9603668B2 (en) * 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
CN104306072B (zh) * 2014-11-07 2016-08-31 常州朗合医疗器械有限公司 医疗导航系统及方法
CN107106194B (zh) * 2014-12-31 2020-08-25 柯惠有限合伙公司 用于治疗慢性阻塞性肺病和肺气肿的系统和方法
WO2016131636A1 (en) * 2015-02-17 2016-08-25 Koninklijke Philips N.V. Device and method for assisting in tissue ablation
US10709352B2 (en) * 2015-10-27 2020-07-14 Covidien Lp Method of using lung airway carina locations to improve ENB registration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316560A (zh) * 2005-12-02 2008-12-03 皇家飞利浦电子股份有限公司 使消融过程自动化以使人工干预的需要最小化
CN105208960A (zh) * 2013-05-16 2015-12-30 直观外科手术操作公司 用于与外部成像集成的机器人医疗系统的系统和方法
WO2016003990A2 (en) * 2014-07-02 2016-01-07 Covidien Lp Methods for marking biopsy location
WO2016004000A1 (en) * 2014-07-02 2016-01-07 Covidien Lp System and method for navigating within the lung
CN204364123U (zh) * 2014-11-07 2015-06-03 刘弘毅 医疗导航系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3545895A4

Also Published As

Publication number Publication date
CN106539624B (zh) 2019-12-03
CN106539624A (zh) 2017-03-29
EP3545895A4 (en) 2020-03-04
EP3545895A1 (en) 2019-10-02
US20190374283A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018094847A1 (zh) 医疗路径导航方法、规划方法及系统
US9968801B2 (en) Radiation treatment planning and delivery for moving targets in the heart
WO2018094848A1 (zh) 射频消融导管及系统
US10850126B2 (en) System and method for guided adaptive brachytherapy
JP6379158B2 (ja) 超音波画像誘導アブレーションアンテナ設置のためのシステムおよび方法
US8494612B2 (en) Incremental real-time recording of tracked instruments in tubular organ structures inside the human body
US9205279B2 (en) Heart tissue surface contour-based radiosurgical treatment planning
US20200146749A1 (en) Radiofrequency ablation catheter and system
EP2662115B1 (en) Control device for radiation therapy device and programme for same
US7953204B2 (en) Radiation treatment planning and delivery for moving targets in the heart
JP2015531607A (ja) 3次元物体を追跡するための方法
JP2016511027A (ja) 肺の除神経システムおよび方法
CN113440740B (zh) 沿管腔网络进行治疗的系统和方法
JP2020534079A (ja) 器具ガイド装置及び対応する方法
JP2022033159A (ja) 対象の治療をサポートするシステム
Moreira et al. Needle steering in biological tissue using ultrasound-based online curvature estimation
EP3038706B1 (en) A system and method for visualizing information in a procedure of placing sources
CN108852400A (zh) 一种实现治疗中心位置验证的方法及装置
US9471985B2 (en) Template-less method for arbitrary radiopaque object tracking in dynamic imaging
US20240017094A1 (en) Radiation treatment planning and delivery for moving targets in the heart
JP6692817B2 (ja) 対象物体の変位を計算する方法及びシステム
JP2018518277A5 (zh)
WO2014207622A1 (en) Ultrasound-guided adaptive brachytherapy
Wei et al. Dynamic intraoperative prostate brachytherapy using 3D TRUS guidance with robot assistance
Iwai et al. A tracking method of invisible tumors using surrounding features on time series X-ray images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016922382

Country of ref document: EP

Effective date: 20190624