WO2018092962A1 - 산소 발생 스캐폴드 및 이의 제조방법 - Google Patents

산소 발생 스캐폴드 및 이의 제조방법 Download PDF

Info

Publication number
WO2018092962A1
WO2018092962A1 PCT/KR2016/013466 KR2016013466W WO2018092962A1 WO 2018092962 A1 WO2018092962 A1 WO 2018092962A1 KR 2016013466 W KR2016013466 W KR 2016013466W WO 2018092962 A1 WO2018092962 A1 WO 2018092962A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdms
cao
oxygen
scaffold
islets
Prior art date
Application number
PCT/KR2016/013466
Other languages
English (en)
French (fr)
Inventor
안규리
조동우
이은미
정지인
이희경
자히드알람
Original Assignee
서울대학교 산학협력단
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 포항공과대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2018092962A1 publication Critical patent/WO2018092962A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/022Artificial gland structures using bioreactors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to an oxygen generating scaffold comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane and a method for producing the same.
  • PDMS polydimethylsiloxane
  • PCL polycaprolactone
  • Diabetes is a leading global disease that affects about 422 million adults in 2014. Since 1980, the prevalence has nearly doubled, rising from 4.7% to 8.5% of the adult population, according to the 2016 WHO Global Diabetes Report 2016.
  • pancreatic islet transplantation has been widely recognized as one of the promising therapies for insulin-dependent diabetes patients.
  • Intrahepatic islet transplantation known by the Edmonton group, is very effective in porcine islet transplantation (Zhu HT et al., Frontiers in surgery, 1: 7, 2014).
  • Islet encapsulation can be divided into microencapsulation and macroencapsulation according to the size of the structure (Silva Al et al., Medicinal research reviews, 26 (2): 181-222, 2006).
  • Microencapsulation is an islet encapsulation method that covers single or small amounts of islets using alginic acid or polyethylene glycol (PEG) (Chang TM, Science, 146 (3643): 524-5, 1964).
  • Giant encapsulation is a method of encapsulating a large amount of islets, usually encapsulating into membranes or fibers.
  • Giant encapsulation technology blocks the attack from the recipient's immune system by covering heterologous islets or insulin producing cells (Qi M et al., Biomaterials, 25 (27): 5885-92, 2004).
  • encapsulation techniques can reduce or prevent chronic administration of immunosuppressive agents and their side effects (Cho S et al., Integrative biology: quantitative biosciences from nano to macro, 5 (5): 828-34, 2013 ).
  • Another advantage of macroencapsulation is that it can be eliminated with minimal risk when the graft eases and the device needs to be removed (Sakata N et al., World journal of gastrointestinal pathophysiology, 3 (1): 19-26, 2012 ).
  • pancreatic islet transplantation of macroencapsulosis has achieved normal blood glucose in diabetic rats for more than a month (Lembert N et al., Cell transplantation, 14 (2-3): 97-108, 2005).
  • the major drawback of macroencapsulation technology is that the capsule's membrane is thicker and the distance from the capsule to the pancreatic islet is limited, limiting the oxygen supply to the pancreatic islet (Beck J et al., Tissue engineering, 13 (3): 589-99, 2007), impairing pancreatic viability and insulin secretion (Efrat S, Trends in molecular medicine, 8 (7): 334-39, 2002).
  • PDMS used in the present invention is known to have excellent biocompatibility and biostability (Pedraza E et al., Journal of biomaterials science Polymer edition, 24 (9): 1041-56, 2013), The pharmacy (US Food and Drug Administration, FDA) approved PDMS in 2006.
  • the use of PDMS as a substance with many years of clinical profile has the advantage of preserving the recoverability by biostability (Song Y et al., Die Pharmazie, 67 (5): 394-9, 2012).
  • PCL is another FDA-approved biomaterial used for drug delivery or suture to the human body.
  • PCL is suitable as an implantable biomaterial because it is degraded by hydrolysis of ester bonds under physiological conditions such as the human body (Loh XJ et al., Biomaterials, 29 (22): 3185-94, 2008).
  • Porcine pancreatic islet transplantation has the potential for clinical application (Zhu HT et al., Frontiers in surgery,: 7, 2014). Efforts to develop pancreatic islet cell dysfunction have resulted in the use of oxygen generating scaffolds, including PDMS-CaO 2 ring constructs and PCL membranes, to improve the survival rate of neonatal pig pancreatic islets and insulin secretion function against glucose stimulation. It was confirmed that the present invention can be completed.
  • One object of the present invention is to provide an oxygen generating scaffold comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane.
  • PDMS polydimethylsiloxane
  • PCL polycaprolactone
  • Another object of the present invention is to provide a method for producing an oxygen generating scaffold comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane.
  • PDMS polydimethylsiloxane
  • PCL polycaprolactone
  • the present invention is an oxygen generating scaffold comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane, the PCL membrane on the top and bottom of the PDMS-CaO 2 ring structure
  • a PDMS polydimethylsiloxane
  • PCL polycaprolactone
  • the invention also comprises the steps of (a) preparing a PDMS-CaO 2 ring structure; (b) preparing a PCL membrane; (c) preparing a PDMS and covering the surface of the PDMS-CaO 2 ring structure prepared in step (a); And (d) oxygen comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane comprising adhering a PCL membrane to the top and bottom surfaces of the PDMS-CaO 2 ring structure overlying the PDMS.
  • a method of making a generation scaffold is provided.
  • the oxygen generating scaffold according to the present invention can overcome the loss of the function of the islet cells due to apoptosis and necrosis caused by the oxygen supply is not smooth due to the encapsulation of the pancreatic islets, the survival rate and glucose stimulation Insulin secretion can be improved.
  • the system is simple, by injecting the pancreatic islets through the side to prevent external loss of the pancreatic islets, the risk is relatively low. Therefore, it can be widely used in the field of biomedical technology such as diabetes treatment using bio artificial pancreatic islets.
  • FIG. 1 is a schematic diagram of a method for producing an oxygen generating scaffold.
  • FIG. 2 is an explanatory diagram showing an injection method of an oxygen generating scaffold of a newborn pig pancreatic islet.
  • the scaffold shows a photograph and concept of an oxygen generating scaffold (diameter: 8 mm, height: 1.5 mm).
  • the scaffold consists of a ring-shaped structure made of PCL membrane and PDMS-CaO 2 .
  • Figure 4 shows the results of the strength test of the oxygen generating scaffold by the addition of CaO 2 .
  • FIG. 5 is a photograph of the PDMS-CaO 2 complex and various CaO 2 The result of measuring the released oxygen at the concentration is shown.
  • Oxygen concentration released from the scaffold in 1 ⁇ PBS was quantified using an RDO®sensor. The measurement was performed using a stirrer at 100 rpm speed for 24 hours at room temperature.
  • FIG. 6 is a photograph of oxygen bubble generation in the PDMS-CaO 2 scaffold 30 days after culture.
  • Figure 7 shows the results of analyzing the viability and proliferation of MIN-6 cells.
  • A shows the result of CCK-8 analysis.
  • MIN-6 cells (2 ⁇ 10 5 cells per well) were incubated with or without PDMS-CaO 2 scaffold at 0.2 mM (normal oxygen, left) or 0.01 mM (hypoxia, right) oxygen partial pressure for 7 days.
  • MIN-6 cell viability was increased in constructs containing PDMS-CaO 2 scaffolds.
  • B shows the result of the cell proliferation assay. MIN-6 cells were incubated for 9 days in normal or hypoxic conditions and total protein was assessed. Addition of PDMS-CaO 2 ring constructs under hypoxic culture conditions resulted in a significant increase in total protein.
  • Figure 8 shows the results of analyzing the viability of NPCC and the activity of caspase 3 and 7.
  • A shows the result of CCK-8 analysis.
  • NPCC viability was increased in the PDMS-CaO 2 scaffold group. Cells were found to have higher viability than controls under hypoxic conditions on days 1, 2 and 5 after culture. The advantages and benefits of PDMS-CaO 2 scaffolds have been demonstrated by the improvement of NPCC viability.
  • B shows the results of caspase 3 and 7 activity assays. The addition of PDMS-CaO 2 scaffolds resulted in a significant decrease in caspase activity. PDMS-CaO 2 scaffolds were found to block the hypoxic-induced apoptosis of NPCC on days 7 and 14. *: P ⁇ 0.05, **: P ⁇ 0.01, ***: P ⁇ 0.001. All P values are a comparison of control or PDMS and treatment groups and are expressed as mean standard error.
  • FIG. 10 shows the oxygen uptake in NPCC.
  • the left side shows the results under normal oxygen conditions and the right side shows the results under hypoxic conditions.
  • Oxygen concentrations were monitored for 300 IEQ NPCC incubated for 3 days with or without PDMS-CaO 2 scaffold.
  • OCR in the control and PDMS groups was consistently low over 1 hour.
  • OCR in most PDMS-CaO 2 groups increased under normal and hypoxic conditions.
  • Figure 11 shows the expression level of reactive oxygen species of NPCC.
  • B is a statistical analysis (Imaris 7.7.2) of day 1 ROS-positive expression (Imaris 7.7.2), confirming that day 1 ROS-positive expression of PDMS-CaO 2 group is lower than the control group (**: P ⁇ 0.01). All P values are a comparison of control and treatment groups and are expressed as mean ⁇ standard error.
  • FIG. 13 shows the stability test results of the oxygen generating scaffold.
  • A shows images of mice receiving oxygenated scaffolds implanted (*; oxygenated scaffolds).
  • B shows images of oxygenated scaffolds in rat skin at 2, 4, 6, and 8 months post oxygenated scaffold implantation.
  • the present invention provides an oxygen generating scaffold comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane, wherein a PCL membrane is adhered to the upper and lower surfaces of the PDMS-CaO 2 ring structure.
  • An oxygen generating scaffold characterized by the above-mentioned.
  • tissue engineering is a term used in tissue engineering, and refers to a structure using a combination of cells and various substances by seating living cells.
  • the CaO 2 content of the PDMS-CaO 2 ring structure is preferably 25 to 75% by weight. If the CaO 2 content is 25% by weight or less, it is not preferable because oxygen supply for the survival of the cell is not smooth, and when the CaO 2 content is 75% by weight or more, the generation amount of H 2 O 2 as an intermediate product is high and the toxicity is feared. This is undesirable.
  • the islets may be injected into the side surface of the oxygen generating scaffold, and may be used for islet transplantation.
  • the present invention provides a method for manufacturing a PDMS-CaO 2 ring structure; (b) preparing a PCL membrane; (c) preparing a PDMS and covering the surface of the PDMS-CaO 2 ring structure prepared in step (a); And (d) oxygen comprising a PDMS (polydimethylsiloxane) -CaO 2 ring structure and a PCL (polycaprolactone) membrane comprising adhering a PCL membrane to the top and bottom surfaces of the PDMS-CaO 2 ring structure overlying the PDMS. It relates to a method for producing a generating scaffold (FIG. 1).
  • the step (a) may be characterized in that the PDMS-CaO 2 ring structure is prepared by mixing 25 to 75% by weight of CaO 2 in PDMS. If the CaO 2 content is 25% by weight or less, it is not preferable because oxygen supply for the survival of the cell is not smooth, and when the CaO 2 content is 75% by weight or more, the generation amount of H 2 O 2 as an intermediate product is toxic This is undesirable.
  • step (d) it may be characterized in that it further comprises the step of curing at 30 to 70 °C, for 4 to 8 hours, more preferably at 50 °C for 6 hours. .
  • the present invention relates to an oxygen generating scaffold manufactured by the method for producing an oxygen generating scaffold.
  • the islets may be injected into the side surface of the oxygen generating scaffold, and may be used for islet transplantation (FIG. 2).
  • Example 1 oxygen generation Scaffold making
  • the PDMS is conjugated so that the PDMS-CaO 2 from top to bottom.
  • the structure was covered with a PCL membrane. This structure was cured at 50 ° C. for 6 hours. All procedures were performed in aseptic condition. The bonded structure was cured again at 60 ° C. for 24 hours (FIG. 1).
  • a ratio of Sealgard silicone elastomer 184 to Sealgard curing agent 184 is 10: 1.
  • PDMS (10: 1) was prepared. Calcium peroxide (Sigma-Aldrich, 466271) was added to the prepared PDMS at a rate of 25 w / w% and mixed. The mixed PDMS-calcium peroxide was injected into a 100 mm diameter Petri dish (polystyrene). PDMS-calcium peroxide in a Petri dish was placed in a desiccator connected to a vacuum pump, and a vacuum pump was operated to remove air bubbles for 10 minutes.
  • the air bubble-free PDMS-calcium peroxide was cured at 60 ° C. for 4 hours. PDMS-calcium peroxide was then separated from the Petri dish. A PDMS-calcium peroxide in the form of a ring structure with the same diameter was produced while punching out PDMS-calcium peroxide with a 8 mm diameter biopsy punch. A 6 mm diameter biopsy punch was used to punch the center of PDMS-calcium peroxide in the form of a ring structure of 8 mm in diameter. Through this process, PDMS-calcium peroxide in the form of hollow and 1mm thick was prepared.
  • Porous membranes were fabricated using an in-house printer (multi-head lamination system, MHDS).
  • the nozzle material: stainless steel
  • the metal syringe material: stainless steel
  • PCL Polycaprolactone
  • the metal syringe was fixed to the heating block and heated to 120 ° C.
  • the melted PCL was dispersed by applying a pneumatic pressure of 700 kPa.
  • Pneumatically melted PCL was dispersed to the nozzle tip.
  • the environment in which melted PCL is dispersed is 18 ambient conditions. Thus, during the printing process, the melted PCL from the nozzle tip cooled and solidified as soon as the material was sprayed.
  • the desired path for printing was pre-set and converted into machine instructions and entered into a printing system such as MHDS.
  • Running the entered command prints the distributed PCL by sequential operation (e.g. on / off of pneumatic and feed direction and speed of the nozzle).
  • the PCL membrane of the oxygen generating scaffold was made into a circle with a diameter of 8 mm.
  • PDMS (10: 1) was prepared by mixing a ratio of Sealgard silicone elastomer 184 to Sealgard curing agent 184 in a ratio of 10: 1.
  • the PDMS-calcium peroxide prepared in 1-1-1 was lightly covered with PDMS.
  • the surface of PDMS-covered PDMS-calcium peroxide and the PCL membrane prepared in 1-1-2 were faced to each other and bonded.
  • a thin layer of PDMS was used to bond the PCL membrane in the same manner.
  • PDMS-calcium peroxide to which the film was attached up and down was cured at 50 ° C. for 6 hours.
  • the oxygen generating scaffold was designed and manufactured in the form of a PDMS-calcium peroxide (PDMS-CaO 2 ) ring.
  • Ca (OH) 2 is an intermediate product of oxygen evolution by CaO 2 and H 2 O reactions (FIG. 3).
  • Ca (OH) 2 is strongly basic. Therefore, according to the FDA, it is defined as an irritant.
  • 2 of Ca (OH) prepared in accordance with Annex II of REACH Regulation LD50 of Ca (OH) 2 was measured at 2.5 g / kg (100 cm 2 , 24 h) in rabbits based on a material safety data sheet for.
  • the final concentration of Ca (OH) 2 per oxygen generating scaffold was around 25 mg, which is below the limit, thus confirming that Ca (OH) 2 is not toxic in the oxygen generating scaffold system.
  • the strength of the oxygen generating scaffolds with different ratios of CaO 2 was then analyzed.
  • PDMS-CaO 2 containing 25, 50 and 75% CaO 2 (w / w) Scaffolds were incubated in 1 ⁇ PBS. The result is CaO 2 It was shown that the strength increased as the ratio increased (FIG. 4).
  • the concentration of oxygen released from the scaffold in phosphate buffered saline (PBS) was quantified using a Rugged Dissolved Oxygen (RDO®) sensor (In-Situ® Inc., CO, USA). Measurements were taken every 15 minutes for 24 hours at room temperature at agitation speed 100 rpm. Oxygen release was measured in F10 culture medium for a period of up to 30 days.
  • RDO® Rugged Dissolved Oxygen
  • the released oxygen concentration was measured in 1 X PBS in the range of normal oxygen and low oxygen conditions (0.25-0.35 mM). There was a burst of oxygen release after 50 minutes and constant oxygen evolution was observed for 24 hours from a single scaffold (FIG. 5). It was confirmed that oxygen bubbles were generated visually even up to 30 days (FIG. 6).
  • Example 3 MIN-6 cells Viability And proliferation analysis
  • MIN-6 cells were recovered from the monolayer with 0.25% ( w / v ) trypsin-EDTA (Thermo Fisher Scientific, Mass., USA) and numbered using 0.4% trypan blue solution (Thermo Fisher Scientific, Mass., USA). Counted. MIN-6 cells were co-cultured with PDMS or PDMS-CaO 2 scaffolds at normal and hypoxic conditions with a loading density of 2 ⁇ 10 5 cells per well. Control cells were incubated without scaffolds. MIN-6 cells were incubated for 7 days, and cell viability was tested on Days 1, 2, 3, 5 and 7 by CCK-8 assay kit according to the manufacturer's protocol (Dojindo Laboratories, Kumamoto, Japan). Measured.
  • MIN-6 cells (1 ⁇ 10 5 ) were incubated at normal and hypoxic conditions for 9 days.
  • Total protein concentration of MIN-6 cells was measured using a Bradford assay kit (Bradford assay kit, Bio Rad Laboratories. Inc., PA, USA). BSA of Bio-Rad Protein Assay Standard II was used as standard concentration calculation.
  • Example 4 pig neoplasia pancreatic cell cluster ( NPCC ) Separation
  • NPCCs were isolated from 3 and 5 day old piglets (Landrace and Yorkshire) and their weight was approximately 1.0 to 2.0 kg. NPCC was isolated with some modifications to previously established methods (Korbutt GS et al., The Journal of clinical investigation, 97 (9): 2119-29, 1996). An algorithm was used to calculate 150 ⁇ m diameter pancreatic equivalent number (IEQ) (Cardona K et al., Nature medicine, 12 (3): 304-6, 2006). The protocol for animal use was approved by the Seoul National University Laboratory Animal Steering Committee (SNU-151103-1) in accordance with Seoul National University's Guidelines for the Protection and Use of Laboratory Animals.
  • IEQ pancreatic equivalent number
  • caspase 3 and 7 activity approximately 500 IEQ NPCC were incubated for 14 days in normal and hypoxic conditions. Caspase 3/7 activity was measured on days 7 and 14 using Caspase-Glo® 3/7 reagent, Promega, WI, USA, according to the manufacturer's instructions ( Thaler R et al., Biochemical pharmacology, 85 (2): 173-85, 2013). After removing the medium from each well, sufficient Caspase-Glo® 3/7 reagent was mixed into the medium in a ratio of 1: 1. Finally, caspase 3/7 activity was analyzed using a luminometer (VICTOR TM Light, PerkinElmer, Mass., USA). Initial detection was determined from wells containing cell free culture medium.
  • VICTOR TM Light PerkinElmer, Mass., USA
  • NPCC The viability of NPCC was increased in constructs containing PDMS-CaO 2 scaffolds.
  • a single PDMS-CaO 2 scaffold was placed with the control (no material) or NPCC containing the PDMS scaffold.
  • the PDMS-CaO 2 scaffold group had higher viability per CCK-8 assay, compared to the control and PDMS scaffold only group (FIG. 8A). These results highlight the scaffold's potential in improving pancreatic viability.
  • the level of caspase 3 and 7 activity in the CaO 2 scaffold group was lower than in the control or PDMS group.
  • PDMS-CaO 2 prevented hypoxic-induced cell death of NPCC (FIG. 8B).
  • the hyperoxygen environment is believed to be opposed to the negative effects of hypoxia on the pancreatic islets. It is known that insulin accumulation in pancreatic islets is reduced in medium cultured under hyperoxygen conditions (Kulkarni AC et al., Antioxidants & redox signaling, 9 (10): 1717-30, 2007). Although NPCC viability was increased under hypoxic conditions in the PDMS-CaO 2 scaffold group, GSIS of NPCC did not appear to increase in the PDMS-CaO 2 scaffold group (FIG. 8). Thus, it can be assumed that the hyperoxygen is not related to the glucose-induced insulin secretion of the pancreatic islets.
  • Example 6 hypoxic cell staining and evaluation
  • hypoxic cells were stained according to the manufacturer's instructions using the Hypoxyprobe TM-1 kit (Hypoxyprobe, Inc., MA, USA) (Varia MA et al., Gynecologic oncology, 71 (2): 270-7, 1998 ). All images were collected using a Leica SP5 spectral confocal microscope and analyzed using Imaris 7.7.2 (Bitplane AG, Zurich, Switzerland). Hypoxic cells were assessed by hypooxyprobe-1 (Hyp-1, pimonidazole hydrochloride) staining. Pimonidazole specifically binds to a thiol-containing protein in hypoxic cells.
  • Hyp-1 expression levels decreased in the PDMS-CaO 2 group under hypoxic conditions. However, no effective change was observed for the expression of Hyp-1-positive cells under normal oxygen conditions (FIG. 9A). The proportion of Hyp-1-positive cells was reduced in NPCC with PDMS-CaO 2 scaffold at Day 3 (FIG. 9B). Oxygen generating scaffolds provide sufficient oxygen to the NPCC, thereby providing PDMS-CaO 2 The percentage of hypoxic cells in the group was confirmed to be lower than the control.
  • NPCC phosphorescence lifetime of the oxygen-sensitive probe using an oxygen uptake assay kit (Cayman, MI, USA). Briefly, NPCC was planted in 96-well plates at 300 IEQ per well. Oxygen dissolved in medium around the cells was measured every 3 minutes for a total of 1 hour. Relative fluorescence units of OCR were measured using a Spectramax M5 plate reader (Molecular Devices, Calif., USA) (Papas KK et al., Current opinion in organ transplantation, 14 (6): 674-82, 2009).
  • OCR was evaluated in NPCC incubated for 3 days in PDMS or PDMS-CaO 2 scaffolds to confirm that the oxygen generating scaffolds provide supplemental oxygen to NPCC.
  • OCR was higher in the PDMS-CaO 2 group than in the control group. OCR did not increase significantly in the control and PDMS groups; However, when NPCC was added to the PDMS-CaO 2 scaffold, there was a difference in each experimental group, but most PDMS-CaO 2 groups had higher levels of OCR at Day 3 than the control and PDMS groups (FIG. 10). ). These results indicate that PDMS-CaO 2 scaffolds can provide the oxygen needed for survival through normal metabolism of NPCC at low oxygen.
  • ROS of NPCC was measured using CellROX® Oxidative Stress Reagents (Molecular Probes, OR, USA) (Hamanaka RB et al., Trends in biochemical sciences, 35 (9): 505-13, 2010).
  • NPCCs were planted in 24 well plates at 1500 IEQ per well. ROS-positive live cells were measured on Day 1, Day 5 and Day 9.
  • CellROX®reagent was added to a final concentration of 5 ⁇ M and NPCC was incubated at 37 ° C. for 30 minutes. NPCC was rinsed three times with 1 ⁇ PBS. Finally, NPCC images were collected using a Leica SP5 spectral confocal microscope and analyzed using Imaris 7.7.2.
  • NPCC of 300 IEQ was incubated in PDMS or PDMS-CaO 2 scaffolds for 2 days under normal or hypoxic conditions.
  • concentration of secreted insulin protein in the buffer was measured using the DIAsource INS-Irma kit (DIAsource ImmunoAssays SA, Louvain-la-Neuve, Belgium).
  • NPCC was incubated under normal and hypoxic conditions in PDMS or PDMS-CaO 2 scaffolds for 2 days. These results show the advantage of the presence of PDMS-CaO 2 scaffold under hypoxic conditions (FIG. 12).
  • Wild-type BALB / c mice male, 8-10 weeks old were purchased from Raonbio (Yongin, South Korea). Recipient rats were anesthetized and then shaved. The back skin was lifted 10 mm vertically with the first row of scissors, and the back skin was incised. The oxygen generating scaffold was placed on the incision, the incision site was closed and disinfected with a disinfectant (povidone-iodine). After disinfection, recipient animals were transferred to clean cages. The implantation device was extracted and observed up to 8 months after implantation (FIG. 13).
  • the oxygen generating scaffold according to the present invention can overcome the loss of the function of the islet cells due to apoptosis and necrosis caused by the oxygen supply is not smooth due to the encapsulation of the pancreatic islets, the survival rate and glucose stimulation Insulin secretion can be improved.
  • the system is simple, by injecting the pancreatic islets through the side to prevent external loss of the pancreatic islets, the risk is relatively low. Therefore, it can be widely used in the field of biomedical technology such as diabetes treatment using bio artificial pancreatic islets.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드 및 이의 제조방법에 관한 것으로, 본 발명에 따른 산소 발생 스캐폴드를 이용하면 췌도의 피막화로 인해 산소 공급이 원활하지 못해 발생하는 세포사멸 및 괴사로 췌도 세포의 기능이 상실되는 것을 극복할 수 있으며, 췌도의 생존율과 글루코스 자극에 대한 인슐린 분비 기능을 향상시킬 수 있다. 아울러, 시스템이 단순하며, 췌도를 옆면을 통해 주입함으로써 췌도의 외부 소실을 방지할 수 있어, 그 위험성이 비교적 낮다. 따라서, 바이오 인공 췌도를 이용한 당뇨병 치료 등 생명의학 기술 분야에서 널리 활용될 수 있다.

Description

산소 발생 스캐폴드 및 이의 제조방법
본 발명은 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드 및 이의 제조방법에 관한 것이다.
당뇨병은 2014년에 대략 4억2천2백만 성인에 발병한 주요한 세계적인 질병이다. 1980년 이래로 그 유병률이 거의 두 배가 되었으며, 2016년 세계 당뇨병 보고서(WHO Global Diabetes Report 2016)에 따르면 성인 인구의 4.7%에서 8.5%로 증가하였다. 인슐린-의존적 당뇨병에 대한 다양한 치료법 중에서, 췌도 이식은 인슐린 의존적 당뇨병 환자에게 희망적인 치료법 중 하나로써 널리 인식되어 왔다. 그러나, 장기 공여자의 큰 부족으로 인해, 장기 공급과 수요의 균형이 맞지 않는 실정이다. 따라서, 돼지 이종-췌도의 임상적 적용에 대한 연구가 중요하다. 에드몬튼(Edmonton) 그룹에 의해 알려진 간문맥내 췌도 이식은 돼지 췌도 이식에서 매우 효과적이다(Zhu HT et al., Frontiers in surgery, 1:7, 2014). 그러나, 간 조직의 특성에 따른 몇몇 한계점이 있다(Shapiro AM et al., The New England journal of medicine, 343(4):230-8, 2000). 간 정맥으로 이식된 췌도가 저산소 분압, 열악한 맥관 구조 환경, 및 급성혈액매개성 염증반응(IBMIR)에 노출되어, 주입 후 큰 감염 및 응고 반응을 통해 이식된 췌도의 즉각적인 손실을 야기한다(McCall M et al., Cold Spring Harbor perspectives in medicine, 2(7):a007823, 2012; Korsfren O et al., Diabetologia, 51(2):227-32, 2008; Pawelec K et al., Annals of the New York Academy of Sciences, 1150:230-3, 2008; Ozmen L et al., Diabetes, 51(6):1779-84, 2002; Moberg L et al., Clinical and experimental immunology, 142(1):125-31, 2005; Naziruddin B et al., American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 14(2):428-37, 2014).
위와 같은 문제점들을 극복하기 위하여, 많은 연구자들이 췌도의 피막화 기술을 연구해왔다(Smink AM et al., Diabetes, 62(5):1357-64, 2013; O'sullivan ES et al., Endocrine reviews, 32(6):827-44, 2011; Krishnan R et al., The review of diabetic studies: RDS, 11(1):84-101, 2014; Ludwig B et al., Langenbeck's archives of surgery/ Deutsche Gesellschaft fur Chirurgie, 400(5):531-40, 2015; Tomei AA et al., Expert opinion on biological therapy, 15(9):1321-36, 2015; Scharp DW et al., World journal of surgery, 8(2):221-9, 1984). 췌도 피막화는 구조의 크기에 따라 미세피막화 및 거대피막화로 구분될 수 있다(Silva Al et al., Medicinal research reviews, 26(2):181-222, 2006). 미세피막화는 알긴산 또는 폴리에틸렌글리콜(PEG)를 이용하여, 단일 또는 적은 양의 췌도를 감싸는 췌도 피막화 방법이다(Chang TM, Science, 146(3643):524-5, 1964). 거대피막화는 많은 양의 췌도를 피막화하는 방법으로, 대개 막 또는 섬유로 형성되는 피막화 방법이다.
거대피막화 기술은 이종 췌도 또는 인슐린 생산 세포를 감싸줌으로써 수혜자의 면역체계로부터의 공격을 차단한다(Qi M et al., Biomaterials, 25(27):5885-92, 2004). 따라서, 피막화 기술은 면역억제제의 만성적인 투여 및 그의 부작용을 감소시키거나 방지할 수 있다(Cho S et al., Integrative biology: quantitative biosciences from nano to macro, 5(5):828-34, 2013). 거대피막화의 다른 장점은 이식의 편이 및 장치를 제거할 필요 있을 때 최소한의 위험으로 제거할 수 있다는 것이다(Sakata N et al., World journal of gastrointestinal pathophysiology, 3(1):19-26, 2012). 게다가, 거대피막화된 췌도는 인슐린 분비 기능을 통해서(Petersen P et al., Transplantation proceedings, 34(1):194-5, 2002; Lembert N et al., Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology and German Diabetes Association, 109(2):116-9, 2001), 거대피막화 장치의 췌도 이식은 한달 넘게 당뇨병 쥐의 정상혈당을 달성하였다(Lembert N et al., Cell transplantation, 14(2-3):97-108, 2005).
거대피막화 기술의 주요한 단점은 캡슐의 막이 두껍고 캡슐로부터 췌도에의 거리가 더 멀어, 췌도에의 산소 공급이 제한되기 때문에(Beck J et al., Tissue engineering, 13(3):589-99, 2007), 췌도 생존능과 인슐린 분비 기능을 약화시키는 것이다(Efrat S, Trends in molecular medicine, 8(7):334-39, 2002). 지금까지 거대피막화 장치 내 산소 전달 기능을 보완하기 위해 고체 과산화물을 이용하는 것이 보고되었는데, 이는 물과 반응하여 과산화수소뿐만 아니라 산소를 발생시키는 원리이다(Harrison BS et al., Biomaterials, 28(31):4628-34, 2007; Oh SH et al., Biomaterials, 30(5):757-62, 2009). 그러나, 이는 산소 발생 과정에서 수산기 라디칼이 생성될 수 있기 때문에, 중간 생성물인 과산화수소(H2O2)가 세포 독성을 가질 수 있는 점과 오로지 주변 세포 및 조직에만 산소를 전달하는 제한점을 가진다. 현재싸지 칼슘 과산화물을 이용하는 피막화 기술의 플랫폼은 저산소 조건하에서 세포 생존능을 유지하고 국소성 빈혈 시 괴사를 막기 위한 산소의 전달 시스템으로서 개발되었다(Oh SH et al., Biomaterials, 30(5):757-62, 2009; Ludwig B et al., Proceedings of the National Academy of Sciences of the United States of America, 109(13):5022-7, 2012; Pedraza E et al., Proceedings of the National Academy of Sciences of the United States of America, 109(11):4245-50, 2012).
한편, 본 발명에 사용된 PDMS는 우수한 생체적합성 및 생체안정성을 가지는 것으로 알려져 있고(Pedraza E et al., Journal of biomaterials science Polymer edition, 24(9):1041-56, 2013), 이미 미국 식품의약국(U.S. Food and Drug Administration, FDA)은 2006년에 PDMS를 승인하였다. 다년간의 임상적 프로필을 가진 물질로써 PDMS의 사용은 생체안정성에 의한 회복가능성의 보존의 이점을 가진다(Song Y et al., Die Pharmazie, 67(5):394-9, 2012).
PCL은 인체에의 약물 전달 또는 봉합을 위해 사용되는 또 다른 하나의 FDA-승인된 생체물질이다. PCL은 인체와 같은 생리학적 조건하에서 에스터 결합의 가수분해에 의해 분해되기 때문에 이식 가능한 생체물질로서 적합하다 (Loh XJ et al., Biomaterials, 29(22):3185-94, 2008).
췌도의 생존 및 그 기능에 있어서 적절한 산소 공급은 중요하다. 저산소 조건에 따른 췌도 혈관재생의 지연은 저산소-유도 췌도 세포자살을 야기한다 (Dionne KE e t al., Diabetes, 42(1):12-21, 1993). 또한, 산소 공급은 췌도의 혈관재생, 당뇨병의 혈당 조절 기능을 향상시켰고(Montazeri L et al., Biomaterials, 89:157-65, 2016, Cantley J et al., Diabetes, obesity & metabolism, 12 Suppl 2L159-67, 2010), 시험관내 설치류, 영장류, 및 인간의 췌도의 대사 기능과 글루코스-의존적 인슐린 분비를 향상시키는 역할을 하는 것이 보고된바 있다(Ludwig B et al., Proceedings of the National Academy of Sciences of the United States of America, 109(13):5022-7, 2012).
그러나, 돼지 췌도의 산소 발생 스캐폴드의 효과는 아직까지 평가되지 않았다. 돼지 췌도 이식은 임상 적용의 가능성을 갖고 있기에(Zhu HT et al., Frontiers in surgery, :7, 2014) 본 발명자들은 췌도의 피막화로 인해 산소 공급이 원활하지 못해 발생하는 세포사멸 및 세포괴사로 인한 췌도 세포 기능 상실을 막을 수 있는 구조체를 개발하고자 노력한 결과, PDMS-CaO2 링 구조물 및 PCL 막을 포함하는 산소 발생 스캐폴드를 이용하여, 신생돼지 췌도의 생존율과 글루코스 자극에 대한 인슐린 분비 기능을 향상시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.
본 발명의 일 목적은 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드를 제공하는데 있다.
본 발명의 다른 목적은 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드의 제조방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드로서, PDMS-CaO2 링 구조물의 상·하면에 PCL 막이 접착되어 있는 것을 특징으로 하는, 산소 발생 스캐폴드를 제공한다.
본 발명은 또한, (a) PDMS-CaO2 링 구조물를 제조하는 단계; (b) PCL 막을 제조하는 단계; (c) PDMS를 제조하여 상기 (a) 단계에서 제조된 PDMS-CaO2 링 구조물의 표면에 덮는 단계; 및 (d) PDMS가 표면에 덮인 PDMS-CaO2 링 구조물의 상·하면에 PCL 막을 접착시키는 단계를 포함하는 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드의 제조방법을 제공한다.
본 발명에 따른 산소 발생 스캐폴드를 이용하면 췌도의 피막화로 인해 산소 공급이 원활하지 못해 발생하는 세포사멸 및 괴사로 췌도 세포의 기능이 상실되는 것을 극복할 수 있으며, 췌도의 생존율과 글루코스 자극에 대한 인슐린 분비 기능을 향상시킬 수 있다. 아울러, 시스템이 단순하며, 췌도를 옆면을 통해 주입함으로써 췌도의 외부 소실을 방지할 수 있어, 그 위험성이 비교적 낮다. 따라서, 바이오 인공 췌도를 이용한 당뇨병 치료 등 생명의학 기술 분야에서 널리 활용될 수 있다.
도 1은 산소 발생 스캐폴드의 제작 방법에 대한 모식도이다.
도 2는 신생 돼지 췌도의 산소 발생 스캐폴드 내 주입법을 나타낸 설명도이다.
도 3은 산소 발생 스캐폴드(직경: 8mm, 높이: 1.5mm)의 사진 및 컨셉을 나타낸 것이다. 스캐폴드는 PCL 막 및 PDMS-CaO2로 만들어진 링-형태 구조로 구성되어 있다.
도 4는 CaO2의 첨가에 의한 산소 발생 스캐폴드의 강도 시험 결과를 나타낸 것이다.
도 5는 PDMS-CaO2 복합체의 사진 및 다양한 CaO2 농도에서의 방출된 산소를 측정한 결과를 나타낸 것이다. 1 X PBS 내 스캐폴드로부터 방출된 산소 농도를 RDO®sensor를 이용하여 정량하였다. 측정은 실온에서 24시간 동안 100 rpm 속도로 교반자를 이용하여 수행하였다.
도 6은 배양 후 30일 차의 PDMS-CaO2 스캐폴드에서의 산소 기포 발생 사진이다.
도 7은 MIN-6 세포의 생존능 및 증식을 분석한 결과를 나타낸 것이다. A는 CCK-8 분석 결과를 나타낸 것이다. MIN-6 세포(웰 당 2 X 105 세포)를 7일 동안 0.2mM(정상산소, 왼쪽) 또는 0.01mM(저산소, 오른쪽) 산소 분압에서 PDMS- CaO2 스캐폴드와 함께 또는 없이 배양하였다. PDMS-CaO2 스캐폴드를 함유하는 구조체 내에서 MIN-6 세포 생존능이 증가하였다. B는 세포 증식 분석 결과를 나타낸 것이다. MIN-6 세포를 정상산소 또는 저산소 조건에서 9일 동안 배양하고, 총 단백질을 평가하였다. 저산소 배양 조건하에서 PDMS-CaO2 링 구조물의 첨가는 총 단백질의 현저한 증가를 야기하였다. 이러한 결과는 저산소 조건하에서 산소 발생 물질의 존재의 이점을 나타내는 것이다. *: P< 0.05, **: P< 0.01, ***: P< 0.001. 모든 P 값은 대조군 또는 PDMS 군에 대비한 것이고, 평균±표준오차로 나타낸 것이다.
도 8은 NPCC의 생존능 및 카스파제 3 및 7의 활성을 분석한 결과를 나타낸 것이다. A는 CCK-8 분석 결과를 나타낸 것이다. NPCC 생존능은 PDMS-CaO2 스캐폴드 군에서 증가하였다. 세포들은 배양 후 1일, 2일 및 5일 차에 저산소 조건하에서 대조군 보다 높은 생존능을 가지는 것으로 확인되었다. PDMS-CaO2 스캐폴드의 장점 및 이점이 NPCC 생존능의 향상에 의해 증명되었다. B는 카스파제 3 및 7 활성 분석 결과를 나타낸 것이다. PDMS-CaO2 스캐폴드의 첨가는 카스파제 활성의 현저한 감소를 야기하였다. PDMS-CaO2 스캐폴드는 7일 및 14일 차에 NPCC의 저산소-유도 세포자살을 막는 것으로 확인되었다. *: P< 0.05, **: P< 0.01, ***: P< 0.001. 모든 P 값은 대조군 또는 PDMS 군과 처리군을 비교한 것이고, 평균표준오차로 나타낸 것이다.
도 9는 PDMS-CaO2 스캐폴드와 공-배양된 NPCC 내 저산소 세포 평가 결과를 나타낸 것이다. A는 저산소 세포의 공초점 현미경 이미지를 나타낸 것이다. NPCC(1,500 IEQ)를 3일 동안 정상산소 또는 저산소에서 PDMS-CaO2 스캐폴드와 함께 또는 없이 배양한 후, DAPI(핵, 청색) 및 항-Hyp-1-항체(적색)으로 염색하였다(스케일 바=50 μm). B는 저산소 양성 세포의 통계학적 분석 결과를 나타낸 것이다. 대조군에 비해 PDMS-CaO2 군에서 저산소 사인을 나타내는 세포가 적게 발생하였다(*: P< 0.05). 모든 P 값은 대조군 또는 PDMS 군과 처리군을 비교한 것이고, 평균±표준오차로 나타낸 것이다.
도 10은 NPCC 내 산소 흡수량을 나타낸 것이다. 왼쪽은 정상산소 조건하에서의 결과를, 오른쪽은 저산소 조건하에서의 결과를 나타낸 것이다. PDMS-CaO2 스캐폴드와 함께 또는 없이 3일 동안 배양된 300 IEQ NPCC에 대하여 산소 농도를 모니터하였다. 대조군 및 PDMS 군 내 OCR은 1시간 넘게 일정하게 낮았다. 반면, 대부분의 PDMS-CaO2 군의 OCR은 정상산소 및 저산소 조건하에서 증가하였다.
도 11은 NPCC의 활성산소종 발현 수준을 나타낸 것이다. A는 1일, 5일 및 9일 차의 ROS 양성 세포의 공초점 현미경 이미지를 나타낸 것이다. Leica SP5 스펙트럼 공초점 현미경으로 이미지를 얻었다(스케일 바=100 μm). B는 1일 차의 ROS-양성 발현(%)의 통계학적 분석(Imaris 7.7.2)으로, 1일 차에 PDMS-CaO2 군의 ROS-양성 발현이 대조군 보다 낮은 것을 확인하였다(**: P< 0.01). 모든 P 값은 대조군과 처리군을 비교한 것이고, 평균±표준오차로 나타낸 것이다.
도 12는 NPCC의 글루코스-자극 인슐린 분비량의 결과를 나타낸 것이다. 2일 동안 정상산소 또는 저산소 조건하에서 배양된 300 IEQ NPCC로부터의 정적 글루코스-자극에 의한 인슐린 분비를 평가하였다. SI 값을 인슐린 분비 지수로 나타내었는데, 이는 저(2.5mM) 글루코스 용액과 비교하여 고(20 mM) 글루코스 용액 내의 인슐린 분비량의 배(fold) 변화를 나타낸다(n=3) (저산소; 대조군 vs PDMS-CaO2, *: P <0.05).
도 13은 산소 발생 스캐폴드의 안정성 시험 결과를 나타낸 것이다. A는 산소 발생 스캐폴드 이식 후 수령 쥐의 이미지를 나타낸 것이다(◀; 산소 발생 스캐폴드). B는 산소 발생 스캐폴드 이식 후 2개월, 4개월, 6개월 및 8개월 차의 쥐 피부 내 산소 발생 스캐폴드의 이미지를 나타낸 것이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드로서, PDMS-CaO2 링 구조물의 상·하면에 PCL 막이 접착되어 있는 것을 특징으로 하는, 산소 발생 스캐폴드에 관한 것이다.
본 발명에서 사용된 용어 "스캐폴드"란 조직공학(Tissue engineering)에서 사용되는 용어로서, 생체 세포를 안착시켜 세포와 여러 가지 물질들의 조합을 이용한 어떤 구조물을 말한다.
본 발명에 있어서, 상기 PDMS-CaO2 링 구조물의 CaO2 함량이 바람직하게는 25 내지 75 중량%인 것을 특징으로 할 수 있다. CaO2 함량이 25 중량% 이하인 경우에는 세포의 생존에 필요한 산소의 공급이 원활하지 않아 바람직하지 않고, CaO2 함량이 75 중량% 이상인 경우에는 중간산물인 H2O2의 발생량이 많아 독성이 우려되므로 바람직하지 않다.
본 발명에 있어서, 산소 발생 스캐폴드의 옆면으로 췌도를 주입할 수 있는 것을 특징으로 할 수 있고, 췌도 이식에 사용되는 것을 특징으로 할 수 있다.
본 발명은 다른 관점에서, (a) PDMS-CaO2 링 구조물를 제조하는 단계; (b) PCL 막을 제조하는 단계; (c) PDMS를 제조하여 상기 (a) 단계에서 제조된 PDMS-CaO2 링 구조물의 표면에 덮는 단계; 및 (d) PDMS가 표면에 덮인 PDMS-CaO2 링 구조물의 상·하면에 PCL 막을 접착시키는 단계를 포함하는 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드의 제조방법에 관한 것이다(도 1).
본 발명에 있어서, 상기 (a) 단계는 PDMS에 바람직하게는 25 내지 75 중량%의 CaO2를 혼합하여 PDMS-CaO2 링 구조물를 제조하는 것을 특징으로 할 수 있다. CaO2 함량이 25 중량% 이하인 경우에는 세포의 생존에 필요한 산소의 공급이 원활하지 않아 바람직하지 않고, CaO2 함량이 75 중량% 이상인 경우에는 중간산물인 H2O2의 발생량이 많아 독성이 우려되므로 바람직하지 않다.
본 발명에 있어서, 상기 (d) 단계 후에 바람직하게는 30 내지 70 ℃에서, 4 내지 8 시간 동안, 보다 바람직하게는 50 ℃에서 6시간 동안 큐어링하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, 상기 산소 발생 스캐폴드의 제조방법에 의해 제조된 산소 발생 스캐폴드에 관한 것이다.
본 발명에 있어서, 산소 발생 스캐폴드의 옆면으로 췌도를 주입할 수 있는 것을 특징으로 할 수 있고, 췌도 이식에 사용되는 것을 특징으로 할 수 있다(도 2).
[실시예]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
실시예 1: 산소 발생 스캐폴드의 제작
1-1: 산소 발생 스캐폴드의 제작
칼슘 과산화물 파우더(시그마-알드리치, MO, USA)와 PDMS(5:1 vol/vol PDMS 단량체/백금 촉매, PTV 615, GE 실리콘스)를 혼합하고 아크릴 몰드(8 mm 직경, 1 mm 높이)에 로딩하여 링-형태 구조물을 만들었다. 기포를 10분 동안 진공 처리하여 제거하고, 구조를 60℃에서 4시간 동안 큐어링하였다. 굳힌 구조를 직경 8 mm 및 6 mm의 펀치 생검을 이용하여 페트리 접시로부터 제거하였다. 폴리카프로락톤(PCL) 막을 멀티-헤드 적층 시스템 프린터(multi-head deposition system printer)를 이용하여 제조하였다. PCL 과립을 120℃에서 녹이고 막 형태로 제조하였다. 마지막으로, PDMS를 접합시켜 위에서 아래까지 PDMS-CaO2 구조를 PCL 막으로 덮었다. 이 구조를 50℃에서 6시간 동안 큐어링하였다. 모든 과정은 무균 상태에서 수행하였다. 접합된 구조를 다시 60℃에서 24시간 동안 큐어링하였다(도 1).
1-1-1: PDMS -칼슘 과산화물( Calcuim peroxide)의 제작
실가드 184 실리콘 탄성중합체 키트(Sylgard 184 silicone elastomer kit)를 이용하여, 실가드 실리콘 탄성중합체 184(Sylgard silicone elastomer 184) 대 실가드 경화제 184(Sylgard curing agent 184)의 비율을 10:1로 혼합하여 PDMS(10:1)를 제조하였다. 제조한 PDMS에 칼슘 과산화물(시그마-알드리치, 466271)를 25 w/w%의 비율로 넣고 혼합하였다. 혼합한 PDMS-칼슘 과산화물을 직경 100 mm 페트리 접시(폴리스티렌)에 주입하였다. 진공펌프가 연결된 데시케이터에 페트리 접시에 담긴 PDMS-칼슘 과산화물을 넣고 진공 펌프를 작동하여 10분간 공기 기포(air bubble)를 제거하였다. 공기 기포를 제거한 PDMS-칼슘 과산화물을 60℃에서 4시간 동안 큐어링하였다. 그 후 페트리 접시에서 PDMS-칼슘 과산화물을 분리하였다. 직경 8 mm 생검 펀치로 PDMS-칼슘 과산화물을 펀칭하면서 동일 직경을 가진 링 구조물 형태의 PDMS-칼슘 과산화물을 제작하였다. 직경 6mm 생검 펀치로 직경 8mm의 링 구조물 형태의 PDMS-칼슘 과산화물의 정가운데를 펀칭하였다. 이 과정을 통해 속이 비고 두께가 1mm인 형태의 PDMS-칼슘 과산화물을 제작하였다.
1-1-2: 폴리카프로락톤 ( PCL ) 막의 제작
인-하우스 프린터(멀티-헤드 적층 시스템, MHDS)를 이용하여 다공성 막을 제작하였다. 노즐(재질: 스테인리스 스틸)과 금속 주사기(재질: 스테인리스 스틸)를 로킹하였다. 금속 주사기 내부에 폴리카프로락톤(PCL) 과립을 넣었다. 금속 주사기를 가열 블록에 고정하여 120℃로 가열하였다. 녹은 PCL에 700kPa의 공압을 가하여 분산시켰다. 공압에 의해 녹은 PCL이 노즐 끝으로 분산되었다. 녹은 PCL이 분산되는 환경은 18 앰비언트(ambient) 조건이다. 따라서 프린팅 과정 동안 노즐 끝에서 나온 녹은 PCL이 냉각되면서 재료가 분사되는 즉시 굳었다. 프린팅을 위해 원하는 경로를 미리 짜두고 이것을 기계 명령어로 변환하여 MHDS와 같은 프린팅 시스템에 입력하였다. 입력된 명령어를 작동시키면 순차적인 작동(예를 들어, 공압의 on/off 및 노즐의 이송 방향과 속도)에 의해 분산된 PCL이 프린팅된다. 산소 발생 스캐폴드의 PCL 막을 직경 8 mm의 원형으로 제작하였다.
1-1-3: PDMS - CaO 2 벽과 PCL 막의 결합
실가드 실리콘 탄성중합체 184(Sylgard silicone elastomer 184) 대 실가드 경화제 184(Sylgard curing agent 184)의 비율을 10:1로 혼합하여 PDMS(10:1)를 제조하였다. 상기 1-1-1에서 제조한 PDMS-칼슘 과산화물의 표면에 PDMS를 얇게 덮었다. PDMS가 덮여진 PDMS-칼슘 과산화물의 표면과 상기 1-1-2에서 제작한 PCL 막을 마주 보게 하여 접착시켰다. PDMS-칼슘 과산화물의 반대쪽 표면에도 PDMS를 얇게 덮어 같은 방법으로 PCL 막을 접착시켰다. 상하로 막이 접착된 PDMS-칼슘 과산화물을 50℃에서 6시간 동안 큐어링하였다.
1-2: 제작된 산소 발생 스캐폴드의 강도 확인
상기 언급한 바와 같이 산소 발생 스캐폴드를 PDMS-칼슘 과산화물(PDMS-CaO2) 링의 형태로 디자인하여 제작하였다. Ca(OH)2는 CaO2 및 H2O 반응에 의한 산소 발생의 중간 생성물이다(도 3). Ca(OH)2는 강한 염기성이다. 그러므로, FDA에 따르면 자극물로 정의된다. Ca(OH)2의 생체안전성의 측면에서, REACH Regulation의 Annex Ⅱ에 따라 제조된 Ca(OH)2 에 대한 물질 안전성 데이터 시트를 기반으로 Ca(OH)2의 LD50을 토끼에서 2.5 g/kg (100 cm2, 24 시간)으로 측정하였다. 산소 발생 스캐폴드 당 Ca(OH)2의 최종 농도는 25 mg 정도였는데, 이는 한계 미만이므로, 산소 발생 스캐폴드 시스템에서, Ca(OH)2는 독성이 아니라는 것을 확인할 수 있었다.
그 후 다른 비율의 CaO2에 따른 산소 발생 스캐폴드의 강도를 분석하였다. 25, 50 및 75 % CaO2 (w/w)를 함유하는 PDMS-CaO2 스캐폴드를 1 X PBS에서 배양하였다. 그 결과 CaO2 비율이 증가함에 따라 강도가 증가하는 것으로 나타났다(도 4).
실시예 2: 산소 방출의 측정
2-1: 산소 방출의 측정
인산완충생리식염수(PBS) 내 스캐폴드로부터 방출된 산소의 농도를 러그드 디잘브드 옥시전(Rugged Dissolved Oxygen; RDO®) 센서(In-Situ®Inc., CO, USA)를 이용하여 정량하였다. 교반 속도 100 rpm에서 실온에서 24시간 동안 매 15분 마다 측정을 수행하였다. 산소 방출을 30일까지의 기간 동안 F10 배양 배지에서 측정하였다.
2-2: 방출된 산소의 측정
방출된 산소 농도를 정상산소 및 저산소 조건 범위에서(0.25-0.35 mM) 1 X PBS에서 측정하였다. 50분 후 솟구치는 산소 방출이 있었고, 단일 스캐폴드로부터 24시간 동안 일정한 산소 발생이 관찰되었다(도 5). 30일까지도 육안으로 산소 기포가 발생하는 것을 확인할 수 있었다(도 6).
실시예 3: MIN-6 세포의 생존능 및 증식 분석
3-1: MIN-6 세포 배양
MIN-6 세포를 37℃에서 5% CO2 및 95% 공기로 평형이 유지된 둘베코 수정 이글 배지(Dulbecco's modified Eagle's medium; DMEM, WelGENE, 대구, 대한민국)에서 성장시켰다. 배지를 15% 소태아혈청(FBS, Gibco®, Life Technologies, CA, USA) 및 1% 항생제-항진균제(Gibco®, Life Technologies, CA, USA)로 보충하였다.
3-2: MIN-6 세포의 생존능 분석
MIN-6 세포를 0.25% (w/v) 트립신-EDTA (Thermo Fisher Scientific, MA, USA)로 단분자층으로부터 회수하고, 0.4% 트리판 블루 용액(Thermo Fisher Scientific, MA, USA)을 이용하여 수를 세었다. MIN-6 세포를 웰 당 2 X 105 세포의 로딩 밀도로 정상산소 및 저산소 조건에서 PDMS 또는 PDMS-CaO2 스캐폴드와 함께 공-배양하였다. 대조군 세포를 스캐폴드 없이 배양하였다. MIN-6 세포를 7일 동안 배양하고, 세포 생존능을 CCK-8 분석 키트에 의해 제조자의 프로토콜(Dojindo Laboratories, 구마모토, 일본)에 따라 1일, 2일, 3일, 5일 및 7일 차에 측정하였다.
3-3: MIN-6 세포의 증식 분석
MIN-6 세포(1 X 105)를 9일 동안 정상산소 및 저산소 조건에서 배양하였다. MIN-6 세포의 총 단백질 농도를 브래드퍼드 분석 키트(Bradford assay kit, Bio Rad Laboratories. Inc., PA, USA)를 이용하여 측정하였다. 바이오-라드 단백질 분석 표준 Ⅱ의 BSA를 표준 농도 계산으로 사용하였다.
3-4: MIN-6 세포의 생존능 및 증식 분석 결과
PDMS-CaO2 스캐폴드 및 PDMS 스캐폴드 상에 배양된 세포의 생존능을 비교하기 위하여, MIN-6 세포(2 X 105 세포/웰, n = 9)를 PDMS-CaO2 스캐폴드와 함께 또는 없이 정상산소(0.2 mM) 및 저산소(0.01 mM) 조건에서 7일 동안 배양하였다. MIN-6 세포의 생존능이 PDMS-CaO2 스캐폴드를 함유하는 구조물에서 증가하였다. 단일의 PDMS-CaO2 스캐폴드를 대조군(물질 없음) 또는 PDMS 스캐폴드를 함유하는 MIN-6 세포와 함께 두었다. PDMS-CaO2 스캐폴드 군이 대조군 및 PDMS 스캐폴드만 있는 군에 비해 더 높은 생존능을 가졌다(도 7A). 정상산소 및 저산소 조건하에서 MIN-6 세포의 증식에 대한 PDMS-CaO2 스캐폴드의 효과를 MIN-6 세포(1 X 105 웰 당 세포)를 PDMS 또는 PDMS-CaO2 스캐폴드와 9일 동안 배양하여 조사하였다. 예상대로, 총 단백질이 대조군에 비해 PDMS-CaO2 스캐폴드를 가진 세포에서 두 배 이상 높게 증가하였다(도 7B).
실시예 4: 돼지 신생 췌장 세포 클러스터( NPCC )의 분리
NPCC를 3일 내지 5일 령의 신생돼지(Landrace and Yorkshire)로부터 분리하였는데, 이들의 체중은 대략 1.0 내지 2.0 kg이다. 이전에 수립된 방법에 약간의 변형을 하여 NPCC를 분리하였다(Korbutt GS et al., The Journal of clinical investigation, 97(9):2119-29, 1996). 알고리즘을 150 μm 직경 췌도 당량수(IEQ)를 계산하는데 사용하였다(Cardona K et al., Nature medicine, 12(3):304-6, 2006). 동물 사용에 대한 프로토콜은 서울대학교의 실험동물 보호 및 이용을 위한 지침에 따라 서울대학교 실험동물운영위원회(SNU-151103-1)의 승인을 받았다.
실시예 5: NPCC의 생존능 카스파제 3 및 7의 활성 분석
5-1: 시험관내 (in vitro) 분석을 위한 PDMS PDMS - CaO 2 스캐폴드를 이용한 NPCC 주입(seeding)
장시간 배양 동안 클러스터 분해(cluster degradation) 또는 웰-플레이트 바닥에의 접착에 의한 NPCC 손실을 막기 위하여, 시험관내 분석을 Millicell®cell culture insert (Merck Millipore Ltd., Darmstadt, Germany)를 이용하여 수행하였다. 24-웰 배양-플레이트(Falcon Multiwell; Becton, Dickinson)에 두고, 그 다음 600 μl 부피의 F10 배양 배지를 첨가하였다. NPCC는 PDMS 및 PDMS-CaO2 스캐폴드에 로딩된 후, Millicell®cell culture inserts로 이동시켰다. 마지막으로, 400 μl 부피의 F10 배양 배지를 첨가하고, 정상산소 및 저산소 조건에서 배양하였다.
구체적으로, NPCC를 산소 발생 스캐폴드로 주사기를 이용하여 주입하였다(도 8). NPCC를 배양 배지(150 IEQ/웰, n=10)내 24-웰 플레이트에 두고, 정상산소(0.2 mM) 및 저산소(0.01 mM) 조건에서 PDMS-CaO2 스캐폴드와 함께 또는 없이 7일 동안 배양하였다.
5-2: 카스파제 3 및 7 활성 측정
카스파제 3 및 7 활성을 측정하기 위하여, 대략 500 IEQ NPCC를 정상산소 및 저산소 조건에서 14일 동안 배양하였다. 카스파제 3/7 활성을 카스파제-글로®3/7 시약(Caspase-Glo®3/7 reagent, Promega, WI, USA)을 이용하여 제조자의 지시에 따라 7일 및 14일 차에 측정하였다(Thaler R et al., Biochemical pharmacology, 85(2):173-85, 2013). 각각의 웰로부터 배지를 제거한 후, 충분한 카스파제-글로®3/7 시약을 1:1의 비율로 배지에 혼합하였다. 마지막으로, 카스파제 3/7 활성을 루미노미터(VICTORTM Light, PerkinElmer, MA, USA)를 이용하여 분석하였다. 세포 없는 배양 배지를 함유하는 웰로부터 초기 검출을 결정하였다.
5-3: NPCC 생존능 세포자살 -관련 카스파제 3 및 7의 활성 분석 결과
NPCC의 생존능이 PDMS-CaO2 스캐폴드를 함유하는 구조체에서 증가하였다. 단일의 PDMS-CaO2 스캐폴드를 대조군(물질 없음) 또는 PDMS 스캐폴드를 함유하는 NPCC와 함께 두었다. PDMS-CaO2 스캐폴드 군이 대조군 및 PDMS 스캐폴드만 있는 군에 비해, CCK-8 분석마다, 더 높은 생존능을 가졌다(도 8A). 이러한 결과는 췌도 생존능을 향상시키는데 있어서 스캐폴드의 잠재력을 강조하는 것이다. 카스파제 활성 분석을 위하여, NPCC(300 IEQ/웰, n=5)를 정상산소(0.2 mM) 및 저산소(0.01 mM) 조건에서 PDMS-CaO2 스캐폴드와 함께 또는 없이 14일 동안 배양하였다. CaO2 스캐폴드 군에서 카스파제 3 및 7의 활성 수준이 대조군 또는 PDMS 군에 비해 더 낮았다. 결론적으로, PDMS-CaO2가 NPCC의 저산소-유도 세포 사멸을 막는다는 것을 확인할 수 있었다(도 8B).
과다산소 환경은 췌도 내 저산소의 부정적 효과와 반대되는 것으로 여겨진다. 과다산소 조건하에서 배양되는 배지에서 췌도에의 인슐린 축적이 감소한다는 것이 알려져 있다(Kulkarni AC et al., Antioxidants & redox signaling, 9(10):1717-30, 2007). 비록 NPCC 생존능이 PDMS-CaO2 스캐폴드 군에서 저산소 조건하에서 증가하였지만, NPCC의 GSIS가 PDMS-CaO2 스캐폴드 군에서 증가하지 않은 것으로 나타났다(도 8). 이로써, 과다산소는 췌도의 글루코스-유도 인슐린 분비에 관련되지 않은 것으로 추정할 수 있다.
실시예 6: 저산소 세포 염색 및 평가
6-1: 저산소 세포 염색
대략 1,500 IEQ NPCC를 정상산소 및 저산소 조건에서 3일 동안 배양하였다. 저산소 세포를 하이폭시프로브 TM-1 키트(Hypoxyprobe, Inc., MA, USA)를 이용하여 제조자의 지시에 따라 염색하였다(Varia MA et al., Gynecologic oncology, 71(2):270-7, 1998). 레이카(Leica) SP5 스펙트럼 공초점 현미경을 이용하여 모든 이미지를 수집하고, Imaris 7.7.2 (Bitplane AG, Zurich, Switzerland)를 이용하여 분석하였다. 저산소 세포를 하이폭시프로브-1(Hyp-1, 피모니다졸 염산염) 염색에 의해 평가하였다. 피모니다졸은 저산소 세포 내에서 티올-함유 단백질에 특이적으로 결합한다.
6-2: 저산소 세포 평가
Hyp-1 발현 수준이 저산소 조건하에서 PDMS-CaO2 군에서 감소하였다. 그러나, 정상산소 조건하에서 Hyp-1-양성 세포의 발현에 유효한 변화가 관찰되지 않았다(도 9A). Hyp-1-양성 세포의 비율이 3일 차에 PDMS-CaO2 스캐폴드를 가진 NPCC에서 감소하였다(도 9B). 산소 발생 스캐폴드가 NPCC에 충분한 산소를 제공함으로써, PDMS-CaO2 군 내 저산소 세포의 비율이 대조군 보다 더 낮은 것을 확인할 수 있었다.
실시예 7: NPCC 내 산소 흡수량(OCR) 분석
7-1: 산소 흡수량 분석
세포에 보충적인 산소를 제공하는데 있어서 산소 발생 스캐폴드의 효율성을 측정하기 위하여, 세포에 의한 PDMS-CaO2 스캐폴드로부터의 산소 흡수량을 측정하였다. NPCC의 OCR를 산소 흡수량 분석 키트(Cayman, MI, USA)를 이용하여 산소-민감성 프로브의 인광 수명을 알아내어 측정하였다. 간략히, NPCC를 웰 당 300 IEQ로 96-웰 플레이트에 심었다. 세포 주위의 배지에 용해된 산소를 총 1시간 동안 3분 마다 측정하였다. OCR의 상대적인 형광 유닛을 스펙트라맥스 M5 플레이트 리더(Molecular Devices, CA, USA)를 이용하여 측정하였다(Papas KK et al., Current opinion in organ transplantation, 14(6):674-82, 2009).
7-2: NPCC 내 산소 흡수량 분석 결과
산소 발생 스캐폴드가 NPCC에 보충 산소를 제공하는지 확인하기 위하여, PDMS 또는 PDMS-CaO2 스캐폴드에서 3일 동안 배양된 NPCC에서 OCR을 평가하였다. 미토콘드리아 기능과 관련된, 다양한 분야에서 췌도를 포함하는 세포(47-49) 및 조직 공학 구조체 내 β 세포(Papas KK et al., Biotechnology and bioengineering, 66(4):231-7, 1999; Mukundan NE et al., Biochemical and biophysical research communications, 210(1):113-8, 1995)의 정상적인 물질대사를 평가하기 위하여, OCR 측정을 널리 사용하여 왔다(Schwitalla S et al., Anaesthesiologie und Reanimation, 26(4):88-94, 2001). PDMS-CaO2 군에서 OCR이 대조군 보다 더 높았다. 대조군 및 PDMS 군에서 OCR은 크게 증가하지 않았다; 그러나, NPCC가 PDMS-CaO2 스캐폴드에 첨가되었을 때, 각 실험군별로 차이가 있었지만, 대부분의 PDMS-CaO2 군은 대조군 및 PDMS군에 비해 3일 차에 더 높은 수준의 OCR을 가졌다(도 10). 이러한 결과는 PDMS-CaO2 스캐폴드가 저산소에서 NPCC의 정상적인 물질대사를 통한 생존에 필요한 산소를 제공할 수 있다는 것을 나타낸다.
실시예 8: NPCC의 활성산소종 ( ROS ) 분석
8-1: NPCC의 활성산소종 분석
CellROX®Oxidative Stress Reagents (Molecular Probes, OR, USA)를 이용하여 NPCC의 ROS를 측정하였다(Hamanaka RB et al., Trends in biochemical sciences, 35(9):505-13, 2010). NPCC를 웰 당 1,500 IEQ로 24 웰 플레이트에 심었다. ROS-양성인 살아있는 세포를 1일, 5일 및 9일 차에 측정하였다. CellROX®reagent를 최종 농도 5 μM에 첨가하고, NPCC를 37℃에서 30분 동안 배양하였다. NPCC를 1 X PBS로 세 번 헹구었다. 마지막으로, NPCC 이미지를 레이카 SP5 스펙트럼 공초점 현미경을 이용하여 수집하고, Imaris 7.7.2를 이용하여 분석하였다.
8-2: NPCC의 활성산소종 발현 수준
NPCC를 상기 언급한 바와 같이, 1일, 5일, 및 9일 차에 활성산소종의 발현을 확인한 결과, 정상산소 및 저산소 조건하에서 5일 및 9일 차에 대조군 및 PDMS 군에서 ROS 수준이 증가하였다. PDMS-CaO2 군에서는 1일 차에 대조군 및 PDMS 군에 비해 더 낮은 ROS 발현을 가졌다(도 11).
실시예 9: NPCC의 GSIS 분석
9-1: NPCC의 GSIS 분석
300 IEQ의 NPCC를 정상산소 또는 저산소 조건에서 2일 동안 PDMS 또는 PDMS-CaO2 스캐폴드에서 배양하였다. 완충액 내 분비된 인슐린 단백질의 농도를 DIAsource INS-Irma kit (DIAsource ImmunoAssays SA, Louvain-la-Neuve, Belgium)를 이용하여 측정하였다.
9-2: GSIS 분석 결과
NPCC를 2일 동안 PDMS 또는 PDMS-CaO2 스캐폴드에서 정상산소 및 저산소 조건하에서 배양하였다. 이러한 결과는 저산소 조건하에서 PDMS-CaO2 스캐폴드의 존재의 이점을 나타낸다(도 12).
실시예 10: 산소 발생 스캐폴드의 안정성 시험
야생형 BALB/c 쥐(수컷, 8-10 주령)를 라온바이오(용인, 대한민국)으로부터 구입하였다. 수혜자 쥐를 마취시킨 다음 털을 깎았다. 등 피부를 가위 첫 줄로 10 mm 수직으로 들어올리고, 등 피부의 절개를 하였다. 산소 발생 스캐폴드를 절개 상에 두고, 절개 부위를 봉합하고 소독제(포비돈-아이오딘)로 소독하였다. 소독 후, 수령 동물을 깨끗한 우리로 이동시켰다. 이식 장치를 이식 후 8개월까지 적출하여 관찰하였다(도 13).
BALB/c 쥐의 산소 발생 스캐폴드 이식물 주위에 새로운 혈관을 관찰하였다. 그 결과, 산소 발생 스캐폴드에 의한 충분한 산소 공급이 산소 발생 스캐폴드 이식 부위 주위의 혈관형성을 향상시키는데 도움이 된다는 것을 나타낸다.
통계적 분석
본페로니 비교 시험(Bonferroni comparison test)에 따라 일원분산분석(one-way ANOVA)을 통계적 분석을 위해 수행하였다. 데이터를 평균±SEM으로 나타내었고, 0.05 미만의 P값을 유효한 것으로 간주하였다. 모든 분석은 GraphPad Prism®(Version 6.01; GraphPad, CA, USA)를 이용하여 수행하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 산소 발생 스캐폴드를 이용하면 췌도의 피막화로 인해 산소 공급이 원활하지 못해 발생하는 세포사멸 및 괴사로 췌도 세포의 기능이 상실되는 것을 극복할 수 있으며, 췌도의 생존율과 글루코스 자극에 대한 인슐린 분비 기능을 향상시킬 수 있다. 아울러, 시스템이 단순하며, 췌도를 옆면을 통해 주입함으로써 췌도의 외부 소실을 방지할 수 있어, 그 위험성이 비교적 낮다. 따라서, 바이오 인공 췌도를 이용한 당뇨병 치료 등 생명의학 기술 분야에서 널리 활용될 수 있다.

Claims (10)

  1. PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드로서, PDMS-CaO2 링 구조물의 상·하면에 PCL 막이 접착되어 있는 것을 특징으로 하는, 산소 발생 스캐폴드.
  2. 제1항에 있어서, 상기 PDMS-CaO2 링 구조물의 CaO2 함량이 25 내지 75 중량%인 것을 특징으로 하는, 산소 발생 스캐폴드.
  3. 제1항에 있어서, 산소 발생 스캐폴드의 옆면으로 췌도를 주입할 수 있는 것을 특징으로 하는, 산소 발생 스캐폴드.
  4. 제1항에 있어서, 췌도 이식에 사용되는 것을 특징으로 하는, 산소 발생 스캐폴드.
  5. 하기 단계를 포함하는 것을 특징으로 하는 PDMS(폴리디메틸실록산)-CaO2 링 구조물 및 PCL(폴리카프로락톤) 막을 포함하는 산소 발생 스캐폴드의 제조방법:
    (a) PDMS-CaO2 링 구조물를 제조하는 단계;
    (b) PCL 막을 제조하는 단계;
    (c) PDMS를 제조하여 상기 (a) 단계에서 제조된 PDMS-CaO2 링 구조물의 표면에 덮는 단계; 및
    (d) PDMS가 표면에 덮인 PDMS-CaO2 링 구조물의 상·하면에 PCL 막을 접착시키는 단계.
  6. 제5항에 있어서, 상기 (a) 단계는 PDMS에 25 내지 75 중량%의 CaO2를 혼합하여 PDMS-CaO2 링 구조물를 제조하는 것을 특징으로 하는, 산소 발생 스캐폴드의 제조방법.
  7. 제5항에 있어서, 상기 (d) 단계 후에 30 내지 70 ℃에서, 4 내지 8 시간 동안 큐어링하는 단계를 더 포함하는 것을 특징으로 하는, 산소 발생 스캐폴드의 제조방법.
  8. 제5항 내지 제7항 중 어느 한 항의 방법에 의해 제조된 산소 발생 스캐폴드.
  9. 제8항에 있어서, 산소 발생 스캐폴드의 옆면으로 췌도를 주입할 수 있는 것을 특징으로 하는, 산소 발생 스캐폴드.
  10. 제8항에 있어서, 췌도 이식에 사용되는 것을 특징으로 하는, 산소 발생 스캐폴드.
PCT/KR2016/013466 2016-11-15 2016-11-22 산소 발생 스캐폴드 및 이의 제조방법 WO2018092962A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0151814 2016-11-15
KR1020160151814A KR101904613B1 (ko) 2016-11-15 2016-11-15 산소 발생 스캐폴드 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2018092962A1 true WO2018092962A1 (ko) 2018-05-24

Family

ID=62146525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013466 WO2018092962A1 (ko) 2016-11-15 2016-11-22 산소 발생 스캐폴드 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101904613B1 (ko)
WO (1) WO2018092962A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289090A (zh) * 2018-10-31 2019-02-01 陈津 一种胰岛移植微环境及其构建方法
CN115998949A (zh) * 2022-12-16 2023-04-25 成都世联康健生物科技有限公司 一种复合产氧材料及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LEE, EUN MI: "Effect of an Oxygen-generating Scaffold on the Viability and Insulin Secretion Function of Porcine Neonatal Pancreatic Cell Clusters (NPCCs", A DOCTOR'S THESIS IN MEDICINE, August 2016 (2016-08-01), pages 1 - 93, XP055503037 *
LUDWIG, B ET AL.: "Improvement of Islet Function in a Bioartificial Pancreas by Enhanced Oxygen Supply and Growth Hormone Releasing Hormone Agonist", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 109, 2012, pages 5022 - 5027, XP055269688 *
NYITRAY, C. E. ET AL.: "Polycaprolactone Thin-film Micro- and Nanoporous Cell -encapsulation Devices", ACS NANO, vol. 9, 2015, pages 5675 - 5682, XP055318977 *
OH, S. H. ET AL.: "Oxygen Generating Scaffolds for Enhancing Engineered Tissue Survival", BIOMATERIALS, vol. 30, 2009, pages 757 - 762, XP025801467 *
PEDRAZA, E. ET AL.: "Preventing Hypoxia-induced Cell Death in Beta Cells and Islets via Hydrolytically Activated, Oxygen-generating Biomaterials", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 109, 2012, pages 4245 - 4250, XP055503057 *
WANG, J. ET AL.: "Oxygen-generating Nanofiber Cell Scaffolds with Antimicrobial Properties", ACS APPLIED MATERIALS & INTERFACES, vol. 3, 2010, pages 67 - 73, XP055503062 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109289090A (zh) * 2018-10-31 2019-02-01 陈津 一种胰岛移植微环境及其构建方法
CN115998949A (zh) * 2022-12-16 2023-04-25 成都世联康健生物科技有限公司 一种复合产氧材料及其制备方法和应用
CN115998949B (zh) * 2022-12-16 2024-04-23 成都世联康健生物科技有限公司 一种复合产氧材料及其制备方法和应用

Also Published As

Publication number Publication date
KR101904613B1 (ko) 2018-10-05
KR20180054996A (ko) 2018-05-25

Similar Documents

Publication Publication Date Title
US9763986B2 (en) Encapsulated cells for hormone replacement therapy
JPH06502080A (ja) 共培養細胞インプラントによる活性因子のイン・ビボ放出
WO2002096203A1 (en) Stem cell differentiation
MXPA04004311A (es) DIFERENCIACION DEL PáNCREAS ENDOCRINOS DE CELULAS ESTROMALES DERIVADAS DEL TEJIDO ADIPOSO Y USOS DE LAS MISMAS.
Lee et al. Effect of an oxygen‐generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters
WO2018092962A1 (ko) 산소 발생 스캐폴드 및 이의 제조방법
Ladd et al. Development of intestinal scaffolds that mimic native mammalian intestinal tissue
Fazili et al. In vivo differentiation of mesenchymal stem cells into insulin producing cells on electrospun Poly-L-Lactide acid scaffolds coated with matricaria chamomilla L. Oil
CN109069875A (zh) 产生免疫耐受反应的组合物和方法
Becker et al. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes
Day Epithelial stem cells and tissue engineered intestine
Ghaleh et al. Static and dynamic culture of human endothelial cells encapsulated inside alginate-gelatin microspheres
US8372641B2 (en) Marrow stem cell and pancreatic β cell fusion cell useful for the treatment of diabetes
Taherpour et al. The microenvironment of silk/gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton’s jelly-derived mesenchymal cells into islet-like cells
Huang et al. Oxygenated scaffolds for pancreatic endocrine differentiation from induced pluripotent stem cells
WO2018070658A1 (ko) 바이오 3d 프린팅 지지체용 원료, 및 이를 이용한 3차원 지지체의 제조방법
WO2011037416A2 (ko) 세포이식술을 위한 혼합세포복합체인 세포스페로이드의 제조방법 및 이의 이용방법
Jeon et al. Recent advances in endocrine organoids for therapeutic application
Song et al. Polyglycolic acid-islet grafts improve blood glucose and insulin concentrations in rats with induced diabetes
CN108883208A (zh) 用于治疗1型糖尿病的Si-HPMC包封的产胰岛素细胞
CN115177788B (zh) 一种具有良好力学强度及细胞活性的pcl复合生物胶原膜及其应用
Wiesner Stem Cell-based Adipose Tissue Engineering-Engineering of Prevascularized Adipose Tissue Constructs In Vitro & Investigation on Gap Junctional Intercellular Communication in Adipose-derived Stem Cells
Qujeq et al. Viability and functional recovery of pancreatic islet cells co-cultured with liver, salivary glands and intestine cells
Banerjee Strategies for Vascularizing Pancreatic Islets and Stem Cell–Derived Islet Organoids
WO2018105805A1 (ko) 신생돼지의 췌도 분리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921989

Country of ref document: EP

Kind code of ref document: A1