WO2018092944A1 - 경직 평가 장치, 방법 및 시스템 - Google Patents

경직 평가 장치, 방법 및 시스템 Download PDF

Info

Publication number
WO2018092944A1
WO2018092944A1 PCT/KR2016/013319 KR2016013319W WO2018092944A1 WO 2018092944 A1 WO2018092944 A1 WO 2018092944A1 KR 2016013319 W KR2016013319 W KR 2016013319W WO 2018092944 A1 WO2018092944 A1 WO 2018092944A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
measured
angular velocity
joint
angle
Prior art date
Application number
PCT/KR2016/013319
Other languages
English (en)
French (fr)
Inventor
김종현
최서영
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to US16/461,535 priority Critical patent/US11317855B2/en
Priority to PCT/KR2016/013319 priority patent/WO2018092944A1/ko
Priority to KR1020197015055A priority patent/KR102254024B1/ko
Publication of WO2018092944A1 publication Critical patent/WO2018092944A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1071Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring angles, e.g. using goniometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7425Displaying combinations of multiple images regardless of image source, e.g. displaying a reference anatomical image with a live image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7242Details of waveform analysis using integration

Definitions

  • the embodiments below relate to stiffness evaluation devices, methods and systems.
  • Spasticity refers to muscle tension that increases in proportion to muscle elongation rate due to overreaction of stretch reflexes.
  • renal reflex refers to a phenomenon in which tension is increased by reflexively contracting the elongated muscle as if the skeletal muscle is elongated continuously.
  • MTS Modified Tardieu Scale
  • MAS Modified Ashworth Scale
  • Korean Patent No. 10-1181077 discloses an apparatus and method for evaluating thigh back muscle tension and flexibility.
  • An object according to one embodiment is to provide a clinically friendly stiffness evaluation device, method and system by applying the evaluation tool utilized in the clinical field.
  • An object according to one embodiment is to provide a rigid evaluation device, method and system for improving the accuracy of the evaluation and the reliability of the evaluation using an inertial sensor.
  • An object according to an embodiment is to provide a stiffness evaluation device, method and system that aids the user's intuitive judgment using visual bio-feedback.
  • the stiffness evaluation system may include: a first sensing unit attached to a distal end of the human body based on a joint of the human body and measuring acceleration of the distal end or an angular velocity of the distal end; A second sensing part attached to the proximal part of the human body and measuring acceleration of the proximal part or angular velocity of the proximal part; A processor configured to determine an angle of a joint formed between the proximal part and the distal end based on the measured acceleration or the measured angular velocity, and determine a stiffness point at which the movement of the distal end is resisted; And a display unit displaying rigid evaluation information for stiffness evaluation based on the angle of the joint and the stiffening time point.
  • the processor may determine an angle of the joint by calculating a rotation transformation matrix based on the measured acceleration when an acceleration in a direction crossing the sagittal plane of the human body occurs among the measured accelerations.
  • the processing unit includes a quasi-static mode for determining the angle of the joint based on the measured acceleration, and a dynamic mode for determining the angle of the joint based on the measured angular velocity. It may be determined whether the quasi-static mode or the dynamic mode is based on the measured acceleration and the measured angular velocity.
  • the processor may determine the quasi-static mode when the magnitude of the measured acceleration is within the first range and the magnitude of the measured angular velocity is within the second range.
  • the processor when determined in the quasi-static mode, based on the first acceleration on the sagittal surface of the human body and the second acceleration on the sagittal surface intersecting the first acceleration of the acceleration measured by the first detection unit Acquiring a first angle and acquiring a second angle based on a fourth acceleration on the sagittal plane and a fifth acceleration on the sagittal plane intersecting the fourth acceleration among the accelerations measured by the second sensing unit;
  • An angle of the joint may be determined based on one angle and the second angle.
  • the processor when determined as the dynamic mode, acquires a first angular displacement by integrating the angular velocity measured by the first sensing unit, and obtains a second angular displacement by integrating the angular velocity measured by the second sensing unit.
  • the angle of the joint may be determined based on the first angular displacement and the second angular displacement.
  • the processing unit calculates the magnitude of the rate of change of the angular velocity measured by the first sensing unit or the magnitude of the rate of change of the angular velocity measured by the second sensing unit, and calculates the time at the rate of change whose magnitude is the maximum among the magnitudes of the calculated rate of change.
  • the stiffness time point can be determined.
  • the processing unit may include: a first speed mode that determines, when the measured angular velocity is a first speed, an angle of a joint having a maximum size among the angles of the joint as a movable angle; And a second speed mode in which the angle of the joint at the time of stiffness is determined as a locking angle when the measured angular velocity is a second speed greater than the first speed.
  • the processing unit may determine a rigid evaluation score of the rigid evaluation information based on the movable angle, the locking angle, and the rigid time.
  • the first sensing unit may measure an acceleration in the longitudinal direction of the distal end on the sagittal plane of the human body, an acceleration crossing the longitudinal direction of the distal end on the sagittal plane, and an angular velocity in the direction crossing the sagittal plane. have.
  • the processor may determine the attachment state of the first sensing unit and the attachment state of the second sensing unit based on the measured acceleration or the measured angular velocity, and the display unit may include the attaching state and the attaching state of the first sensing unit.
  • the sensor misattachment warning signal may be displayed according to the attachment state of the second detection unit.
  • the processor may determine the velocity of the joint based on the measured acceleration or the measured angular velocity, and the display may display whether the velocity of the joint reaches a preset error range of a target velocity.
  • the stiffness evaluation apparatus is attached to the distal end of the human body based on the joint of the human body, the acceleration in the first direction which is a direction crossing the longitudinal direction of the distal end, the second crossing the first direction
  • An acceleration in a fourth direction attached to the proximal portion of the human body and intersecting the longitudinal direction of the proximal portion, an acceleration in a fifth direction crossing the fourth direction, or in the fourth and fifth directions, respectively.
  • a second sensing unit for obtaining a second measurement including an angular velocity with respect to an intersecting sixth direction; And a display unit connected to the first sensing unit and the second sensing unit and displaying rigid evaluation information for stiffness evaluation based on the first measured value and the second measured value.
  • the display unit may display a value obtained by calculating the angular velocity with respect to the third direction and the angular velocity with respect to the sixth direction as the velocity of the joint.
  • the display unit may display the speed of the joint in real time, and display whether the speed of the joint reaches the target speed.
  • the first measurement value may further include an acceleration in the third direction
  • the second measurement value may further include an acceleration in the sixth direction
  • the display unit may further include an acceleration in the third direction. It may be displayed whether or not the magnitude of and the magnitude of the acceleration in the sixth direction is included in the preset size range.
  • a stiffness evaluation method includes measuring acceleration or angular velocity of a distal end of a human body and acceleration or angular velocity of a proximal part of a human body based on a joint of the human body; Determining whether the quasi-static mode and the dynamic mode are based on the measured acceleration and the measured angular velocity; Determining the angle of the joint based on the measured acceleration in the quasi-static mode, and determining the angle of the joint based on the measured angular velocity in the dynamic mode; Determining a point of stiffness in which movement of the distal end is resisted; And determining a stiffness evaluation score based on the determined angle of the joint and the determined stiffness time point.
  • the stiffness evaluation method after measuring the acceleration or angular velocity of the distal end of the human body, and the acceleration or angular velocity of the proximal part of the human body, the acceleration in the direction intersecting the sagittal plane of the human body of the measured distal acceleration and measured proximal part If the acceleration in the direction intersecting the sagittal surface of the acceleration of the outside of the preset size range, may further include displaying a sensor misattachment warning signal.
  • the measured angular velocity of the distal end portion and the measured proximal angular velocity are determined to determine the angular velocity of the joint, and whether the angular velocity of the joint reaches a target velocity. It may further comprise the step of indicating.
  • the stiffness evaluation method before the step of determining whether the quasi-static mode and the dynamic mode, the acceleration component in the direction intersecting the sagittal plane of the human body of the acceleration of the measured distal end and the sagittal plane of the measured proximal acceleration
  • the method may further include calculating a preset rotation transformation matrix for each of the measured end portion acceleration and the measured proximal portion acceleration.
  • the stiffness evaluation device, method and system according to one embodiment may be clinically friendly by applying an evaluation tool utilized in the clinical field.
  • the stiffness evaluation device, method and system according to an embodiment may use an inertial sensor to improve the accuracy of the evaluation and the reliability of the evaluation.
  • the stiffness evaluation device, method, and system according to one embodiment may use visual bio-feedback to help an intuitive judgment of the user.
  • FIG. 1 is a view schematically showing a stiffness evaluation system according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating a detector according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating a stiffness evaluation method according to an embodiment.
  • FIG. 4 is a diagram illustrating a method of determining an angle of a joint, according to an exemplary embodiment.
  • FIG. 5 is a flowchart illustrating a method of determining an angle of a joint according to an exemplary embodiment.
  • FIG. 6 is a flowchart illustrating a method of determining a quasi-static mode and a dynamic mode according to an embodiment.
  • FIG. 7 is a graph illustrating a method of determining a stiffness time point according to an exemplary embodiment.
  • FIG. 8 is a diagram schematically illustrating a display unit according to an exemplary embodiment.
  • FIG. 9 is a diagram schematically illustrating a display unit according to an exemplary embodiment.
  • FIG. 10 is a view schematically showing a stiffness evaluation apparatus and system according to an embodiment.
  • FIG. 11 is a view schematically showing a stiffness evaluation apparatus and system according to an embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • the stiffness evaluation system 1 measures the angle and stiffness point of the joint by repeatedly rotating the distal end of the human body based on the joint of the human body according to the evaluation tool. It is used to display the stiffness evaluation score, Figure 1 is shown to rotate the shank around the knee joint (knee joint) of the human body, but is not limited to this based on the elbow joint of the human body It can also be used to rotate the lower arm or to rotate the foot about the ankle joint.
  • the stiffness evaluation system 1 may include the first sensing unit 11, the second sensing unit 12, the processing unit 13, and the display unit 14.
  • the first sensing unit 11 may measure the acceleration of the distal end D connected to the joint J or the angular velocity of the distal end D based on the joint J of the human body H. Can be. To this end, the first sensing unit 11 may be attached to the distal end D of the human body H based on the joint J of the human body H. For example, the first sensing unit 11 has an acceleration in the three axis directions x1, y1, z1 in the distal end D, or an angular velocity in each of the three axis directions. It may be an inertial sensor or an inertial measurement unit (IMU) measuring (wx1, wy1, wz1).
  • IMU inertial measurement unit
  • the first sensing unit 11 may measure two accelerations ax1 and ay1 parallel to and intersecting with the sagittal plane and an acceleration az1 in the direction crossing the sagittal plane.
  • the first sensing unit 11 includes a first acceleration ax1 that is an acceleration in a first direction that is a direction crossing the longitudinal direction of the distal end D, and a second direction that is a longitudinal direction of the distal end D.
  • the second acceleration az1 the acceleration in the third direction, which intersects the first acceleration ax1 and the second acceleration ay1 and intersects the sagittal plane, respectively. It can be measured.
  • the first sensing unit 11 may include a first angular velocity wx1 that is an angular velocity with respect to the first direction, a second angular velocity wy1 that is an angular velocity with respect to the second direction, and a third angular velocity with respect to the third direction.
  • the angular velocity wz1 can be measured.
  • the second sensing unit 12 may be attached to the proximal portion P based on the joint of the human body H. Similarly to the first sensing unit 11, the second sensing unit 12 has an acceleration (ax2, ay2, az2) or each of the three axes in the proximal portion P (x2, y2, z2). The angular velocities wx2, wy2 and wz2 with respect to the three axis directions can be measured.
  • the processor 13 may perform the stiffness evaluation by applying an evaluation tool mainly used in the clinical field based on the measured acceleration or the measured acceleration.
  • 3 illustrates a case of applying the MTS, but is not limited thereto, and other evaluation tools may also be applied.
  • a case of applying the MTS will be described.
  • a user for example, a doctor, a rehabilitation therapist, etc.
  • the human body H in a state where the fixed joint HJ of the human body H is fixed at three speeds V1, V2, and V3.
  • Distal end (D) can be rotated about the joint (J).
  • the three speeds V1, V2, and V3 may be preset by the user according to the physical condition of the human body and the evaluation method.
  • the first speed V1 is the slowest possible speed
  • the second speed V2 is the speed at which a portion of the human body H, ie, the distal end D falls
  • the third speed V3 is greater than the free fall. It can be defined as speed as fast as possible.
  • the user can measure the movable angle R2 which is the movable range of the joint J when the distal end D of the human body H is rotated with respect to the joint J at the first speed V1. Can be. Subsequently, when the user rotates the distal end D of the human body H based on the joint J at the second speed V2 or the third speed V3, the movement of the distal end D receives resistance.
  • the catch angle R1 which is the movable range of the joint J at the time point T R can be measured.
  • the processor 13 may include a first speed mode for determining the movable angle R2 and a second speed mode for determining the locking angle R1. Specifically, the processor 13 may calculate, ie, add, the angular velocity measured by the first sensing unit 11 and the second sensing unit 12 as the velocity of the joint J, that is, the angular velocity of the joint J. have. In the first speed mode, when the measured angular velocity of the joint J is the first speed V1, the processor 13 may set the angle of the joint having the largest size among the angles ⁇ of the joints to the movable angle R2. Can be determined.
  • the angle ⁇ of the joint refers to an acute angle among the angles formed by the proximal portion P and the distal portion D.
  • the joint angle in the case where the angular velocity of the measured joint (J) of the first speed (V1) greater second speed (V2) or the third speed (V3) than, stiffening time (T R) (phi) can be determined as the locking angle R1.
  • the processor 13 determines the angle ⁇ of the joint at the point of time when the magnitude of the rate of change of the measured angular velocity becomes maximum, that is, the point of angular deceleration, as the locking angle R1. Can be.
  • the processing unit 13 has a time interval from the time of the initial state at which the distal end D starts to move to the time when the magnitude of the rate of change of the measured angular velocity is maximum.
  • the angle ⁇ of the joint at the point when the magnitude of the rate of change of the measured angular velocity becomes maximum may be determined as the locking angle R1.
  • the reference time interval may be set to about 1 second.
  • the processor 13 may determine whether the second speed V2 or the third speed V3 has reached a target velocity in order to determine the locking angle R1.
  • the three speeds V1, V2, and V3 may be preset in the processor 13 by the user according to a physical condition of the human body and an evaluation method. According to this method, the rigid situation in which the movement of the distal end D is resisted is accurately reflected in the processing unit 13, thereby ensuring the accuracy and reliability of the evaluation.
  • Processor 13 on the basis of the operation angle (R2), engaging angle (R1) and a rigid point (T R), it is possible to determine the stiffness rating. For example, if the stiffness point T R is 8 seconds and the locking angle R1 is at a certain value (eg, about 112 °), the quality of muscle reaction is It can be evaluated with three points.
  • the processor 13 may determine the angle ⁇ of the joint formed between the distal end D and the proximal part P based on the measured acceleration or the measured angular velocity. Specifically, the processor 13 may determine whether accelerations az1 and az2 in a direction intersecting the sagittal plane of the human body occur among the measured accelerations (S110), and measure the measured accelerations and measurements.
  • the quasi-static mode and the dynamic mode may be determined based on the measured angular velocity (S120), and the distal end D and the proximal part P based on the acceleration measured in the quasi-static mode.
  • the angle ⁇ of the joint may be determined based on the angles calculated in the quasi-static mode and the dynamic mode, respectively (S150).
  • the processor 13 may determine whether accelerations az1 and az2 in a direction crossing the sagittal plane of the human body occur among the measured accelerations (S110). When accelerations az1 and az2 in a direction intersecting the sagittal plane occur, the processor 13 may calculate a rotation transformation matrix Rzxy based on the measured accelerations (S112). Here, the rotation transformation matrix Rzxy converts the accelerations az1 and az2 in the direction intersecting the sagittal plane to zero, and at the same time, the accelerations ax1, ay1; ax2 and ay2 parallel to the sagittal plane and intersect with each other.
  • the angle of the joint ( ⁇ ) can be calculated accurately, and the accuracy and reliability of the evaluation can be improved.
  • the processor 13 may determine the attachment state of the first detection unit 11 and the attachment state of the second detection unit 12 based on the measured acceleration and the measured angular velocity. The processor 13 determines whether the accelerations az1 and az2 in the direction intersecting the sagittal plane of the human body occur among the measured accelerations, and the accelerations az1 and az2 in the direction intersecting the sagittal plane. When is generated, it may be determined whether the attachment state of the first detection unit 11 and / or the attachment state of the second detection unit 12 is normal or abnormal. For example, the processor 13 may determine whether the magnitude of the acceleration az1 in the third direction and the magnitude of the acceleration az2 in the sixth direction are included in the preset size range.
  • the processor 13 may determine whether the quasi-static mode and the dynamic mode are based on the measured acceleration and the measured angular velocity (S120).
  • the quasi-static mode is defined as the mode for determining the angle ⁇ of the joint based on the measured acceleration
  • the dynamic mode is defined as the mode for determining the angle ⁇ of the joint based on the measured angular velocity.
  • the processor 13 may determine the quasi-static mode when the magnitude of the measured accelerations a1 and a2 is within the first range and the measured angular velocities wz1 and wz2 are within the second range.
  • the range may be determined in the dynamic mode (S122).
  • the processor 13 may determine the change amount of the acceleration and the change amount of the angular velocity from the measured acceleration and the measured angular velocity, respectively, and determine the quasi-static mode when the change amount of the angular velocity and the change amount of the angular velocity are smaller than a preset reference value.
  • the first range may be set to about 9.6 m / s 2 or more and 10.0 m / s 2 or less
  • the second range may be set to about ⁇ 5 rad / s or more and 5 rad / s or less.
  • the magnitude of the measured accelerations a1 and a2 is adjacent to about 9.81 m / s 2 , which is the magnitude of gravity acceleration, and the magnitude of the measured angular velocity wz1 and wz2 is within about 5 rad / s.
  • the velocity of the proximal portion P or the distal portion D of the human body H is assumed to remain almost constant, whereby the angle of the joint ⁇ is determined based on the acceleration in the quasi-static mode when the acceleration continues to change. Determining the angle of the joint ⁇ based on the angular velocity in the dynamic mode may be more accurate than determining the result, thereby improving the accuracy and reliability of the evaluation.
  • the processor 13 may calculate (S130) an angle formed between the distal end D and the proximal part P with respect to the coronal plane based on the acceleration measured in the quasi-static mode, and based on the angular velocity measured in the dynamic mode.
  • the distal end portion D and the proximal portion P may be calculated at S140.
  • a first acceleration (ax1) and the distal end (D) based on the second acceleration (ay1) is to obtain the angle of the first angle ( ⁇ 1) forms with respect to the coronal have.
  • the processor 13 may obtain a second angle ⁇ 2 , which is an angle formed by the proximal portion P with respect to the coronal plane, based on the fourth acceleration ax2 and the fifth acceleration aay2.
  • the first angle ⁇ 1 and the second angle ⁇ 2 may be determined by the following equation.
  • the first angle ⁇ 1 is a value obtained by dividing the first acceleration ax1 on the sagittal plane of the human body among the accelerations measured by the first detection unit 11 by the second acceleration ay1. It can be obtained by calculating the arc tangent.
  • the second angle ⁇ 2 is calculated by calculating the arc tangent to a value obtained by dividing the fourth acceleration ax2 on the sagittal plane of the human body by the fifth acceleration aay2 among the accelerations measured by the second sensing unit 12. Can be obtained.
  • the processor 13 may acquire the first angular displacement ⁇ 1 by integrating the angular velocity wz1 measured by the first detector 11.
  • the processor 13 may acquire the second angular displacement ⁇ 2 by integrating the angular velocity wz2 measured by the second detector 12.
  • the first angular displacement ⁇ 1 and the second angular displacement ⁇ 2 may be determined by the following equation.
  • the processor 13 may determine the angle ⁇ of the joint based on the angles calculated in the quasi-static mode and the dynamic mode, respectively (S150). Specifically, the angle ⁇ of the joint may be determined by the following equation.
  • the distal end D and the proximal part P of the human body H are modeled as a link connected to the joint of the fixed joint HJ and the joint J, respectively.
  • can be easily calculated and its accuracy is also guaranteed to improve the accuracy and reliability of the evaluation.
  • the speed of evaluation can also be ensured.
  • the basic concept of determining the angle ⁇ of the joint described above may be applied to various embodiments.
  • the above description is only one method for determining the angle of the joint ( ⁇ ), it is noted that the embodiments are not necessarily limited as above.
  • the processor 13 may determine the stiffness point T R at which the movement of the distal end D receives resistance. Referring to the graph of FIG. 7, a graph of the rate of change of the angular velocity (angular acceleration) with time is shown.
  • the processor 13 may set, as the angular acceleration in the y-axis direction, the rate of change of the angular velocity obtained by differentiating the angular velocity measured by the first sensing unit 11 or the angular velocity measured by the second sensing unit 12. In this case, it is possible to change the size of the angular rate to determine the time (T R) at the change ratio of the maximum angular velocity, that is, the maximum angular acceleration as the magnitude rigid point.
  • the processor 13 may process the spasm evaluation information for the spasms by determining the angle at which the movement of the distal end D starts and the start time when the spasms are not muscle spasms.
  • the display unit 14 can display the rigidity evaluation information for the rigidity evaluation based on the angle ⁇ of the joint and the rigidity time point T R.
  • the display unit 14 may provide rigid evaluation information to the user in two forms, namely, setup and visual biofeedback.
  • the display unit 14 may allow the user to select whether to rotate the distal end relative to the elbow joint, the knee joint, or the ankle joint in a setup screen.
  • the display unit 14 may be attached to the right side part of the human body or the left side part of the human body. You can choose whether or not.
  • the display unit 14 is a kind of sensor depending on whether the attachment state of the first detection unit 11 and / or the attachment state of the second detection unit 12 is normal or abnormal. Incorrect warning signal can be displayed. For example, when the first sensing unit 11 is attached to a shank, which is a moving part, and the second sensing unit 12 is attached to a thigh, at a fixing part.
  • the display unit 14 displays a blue signal indicating that the attachment state of the first detection unit 11 is normal. May be displayed, and a red signal indicating that the attachment state of the second detection unit 12 is abnormal may be displayed.
  • the first sensing unit 11 can intuitively recognize the attachment state of the first sensing unit 11 and / or the second sensing unit 12. It is possible to improve the accuracy and reliability of the evaluation by correctly attaching the (11) and / or the second sensing unit 12 to the corresponding place.
  • the display unit 14 may display a target velocity input by the user. In addition, the display unit 14 may display whether the determined velocity of the joint J reaches within a preset error range of the target velocity.
  • the error range may be variously set according to a user's use environment, characteristics of the human body H, and the like.
  • the display unit 14 may display a blue signal indicating that the speed of the joint J has reached the target speed when the speed of the joint J reaches within an error range of about 10% of the target speed. have.
  • the display unit 14 may display the speed and the target speed of the joint J in real time in the form of a bar graph and a number.
  • the display unit 14 may display whether the first sensing unit 11 and / or the second sensing unit 12 are correctly aligned and attached to the distal end D and / or the proximal portion P.
  • FIG. For example, when the acceleration crossing the sagittal plane does not occur among the accelerations measured by the first sensing unit 11 and / or the second sensing unit 12, the blue signal indicates whether or not sagittal plane movement occurs. May be displayed.
  • the display unit 14 determines whether the time interval from the initial point in time at which the distal end D starts to move to the point at which the magnitude of the rate of change of the measured angular velocity becomes maximum is smaller than the preset reference time interval. I can display it.
  • the reference time interval may be set within 1 second, and from the initial state at which the distal end D starts to move from the point in time at which the rate of change of the measured angular velocity is maximized.
  • the display unit 14 may display a blue signal as to whether the time interval is within 1 second.
  • the display unit 14 indicates success if the above two conditions are satisfied. can do. For example, when the above two conditions are satisfied, the display unit 14 may display a blue signal for success, and may accumulate and display an angular velocity value of the joint at the time of success.
  • the user when the user uses the stiffness evaluation system 1, the user can intuitively grasp the current joint speed and whether the target speed is reached in real time, so that the user can feedback in real time whether the evaluation is being performed well. As a result, the accuracy and reliability of the evaluation can be improved.
  • the stiffness evaluation system 1 may include a communication module (not shown).
  • the communication module is configured to receive inertia information including acceleration measured from the first sensing unit 11 and / or the second sensing unit 12 or measured angular velocity of the processing unit 13 and / or the display unit 14. Can be delivered to.
  • the communication module may be a Bluetooth module that enables near field communication.
  • the stiffness evaluation device may include a first sensing unit 11, a second sensing unit 12, and a display unit 14.
  • the display unit 14 may have a form of a terminal, and in this case, the processor may perform the above-described function as a form of an application.
  • the display unit 14 may display whether the first detecting unit 11 is attached and / or whether the second detecting unit 12 is attached, and displays the (angular) velocity and the target velocity of the current joint in real time. can do.
  • the stiffness evaluation device or system 2 may include a first sensing unit 21, a second sensing unit 22, and a display unit (not shown).
  • the processing unit may be embedded in the first sensing unit 21 and / or the second sensing unit 22 or may be separately provided.
  • the first sensing unit 21 may be attached to the lower arm D ′ based on the elbow joint J ′, and the second sensing unit 22 may be attached to the upper arm P ′. Can be.
  • the stiffness evaluation apparatus or system 3 may include a first sensing unit 31, a second sensing unit 32, and a display unit (not shown).
  • the first sensing unit 31 may be attached to the instep D ′′ around the ankle joint J ′′, and the second sensing unit 32 may be attached to the ankle P ′′.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Geometry (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

일 실시예에 따른 경직 평가 시스템은, 인체의 관절을 기준으로 상기 인체의 근위부에 부착되고, 상기 근위부의 가속도 또는 상기 근위부의 각속도를 측정하는 제1감지부; 상기 인체의 말단부에 부착되고, 상기 말단부의 가속도 또는 상기 말단부의 각속도를 측정하는 제2감지부; 측정된 가속도 또는 측정된 각속도에 기초하여 상기 근위부와 상기 말단부가 이루는 관절의 각도를 결정하고, 상기 말단부의 움직임이 저항을 받는 경직 시점을 결정하는 처리부; 및 상기 관절의 각도와 상기 경직 시점에 기초하여 경직 평가를 위한 경직 평가 정보를 표시하는 표시부를 포함할 수 있다.

Description

경직 평가 장치, 방법 및 시스템
이하, 실시예들은 경직 평가 장치, 방법 및 시스템에 관한 것이다.
경직(spasticity)이란 신장 반사(stretch reflex)의 과흥분으로 인한 근육 신장 속도에 비례하여 증가하는 근육 긴장을 말한다. 여기서 신장 반사란 골격근을 지속적으로 신장할 때 그 신장에 저항하듯 신장된 근육에 반사적으로 수축이 일어나 긴장이 고조되는 현상을 말한다.
이러한 경직을 평가하기 위한 평가 도구로서 MTS(Modified Tardieu Scale), MAS(Modified Ashworth Scale) 등이 임상 분야에서 사용되고 있다. 그 중 MTS는 근육 경직을 측정하기 위한 평가 도구로서, 술자가 느린 속도와 빠른 속도의 두 가지 속도로 수동적으로 팔 또는 다리를 움직임으로써 경직의 양 및 경직이 느껴지는 저항점의 각도를 기록하여 측정한다.
예를 들어, 한국등록특허 제10-1181077호는 넓적다리 뒷근육 긴장도 및 유연성 평가 장치 및 방법을 개시한다.
일 실시예에 따른 목적은 임상 분야에서 활용되는 평가 도구가 적용됨으로써 임상 친화적인 경직 평가 장치, 방법 및 시스템을 제공하는 것이다.
일 실시예에 따른 목적은 관성 센서를 이용하여 평가의 정확성과 평가의 신뢰도를 향상시키는 경직 평가 장치, 방법 및 시스템을 제공하는 것이다.
일 실시예에 따른 목적은 시각적 바이오-피드백(visual bio-feedback)을 이용하여 사용자의 직관적인 판단을 돕는 경직 평가 장치, 방법 및 시스템을 제공하는 것이다.
일 실시예에 따른 경직 평가 시스템은, 인체의 관절을 기준으로 상기 인체의 말단부에 부착되고, 상기 말단부의 가속도 또는 상기 말단부의 각속도를 측정하는 제1감지부; 상기 인체의 근위부에 부착되고, 상기 근위부의 가속도 또는 상기 근위부의 각속도를 측정하는 제2감지부; 측정된 가속도 또는 측정된 각속도에 기초하여 상기 근위부와 상기 말단부가 이루는 관절의 각도를 결정하고, 상기 말단부의 움직임이 저항을 받는 경직 시점을 결정하는 처리부; 및 상기 관절의 각도와 상기 경직 시점에 기초하여 경직 평가를 위한 경직 평가 정보를 표시하는 표시부를 포함할 수 있다.
상기 처리부는, 상기 측정된 가속도 중 인체의 시상면(sagittal plane)에 교차하는 방향의 가속도가 발생할 경우, 상기 측정된 가속도에 회전변환행렬을 연산하여 상기 관절의 각도를 결정할 수 있다.
상기 처리부는, 측정된 가속도에 기초하여 상기 관절의 각도를 결정하는 준정적 모드(quasi-static mode)와, 측정된 각속도에 기초하여 상기 관절의 각도를 결정하는 동적 모드(dynamic mode)를 포함하고, 상기 측정된 가속도와 상기 측정된 각속도에 기초하여 준정적 모드 또는 동적 모드 여부를 판단할 수 있다.
상기 처리부는, 상기 측정된 가속도의 크기가 제1범위 내이고 상기 측정된 각속도의 크기가 제2범위 내인 경우 준정적 모드로 판단할 수 있다.
상기 처리부는, 상기 준정적 모드로 판단된 경우, 상기 제1감지부에서 측정된 가속도 중 인체의 시상면 상의 제1가속도 및 상기 제1가속도에 교차하는 상기 시상면 상의 제2가속도에 기초하여 제1각도를 획득하고, 상기 제2감지부에서 측정된 가속도 중 상기 시상면 상의 제4가속도 및 상기 제4가속도에 교차하는 상기 시상면 상의 제5가속도에 기초하여 제2각도를 획득하고, 상기 제1각도와 상기 제2각도에 기초하여 상기 조인트의 각도를 결정할 수 있다.
상기 처리부는, 상기 동적 모드로 판단된 경우, 상기 제1감지부에서 측정된 각속도를 적분하여 제1각변위를 획득하고, 상기 제2감지부에서 측정된 각속도를 적분하여 제2각변위를 획득하고, 상기 제1각변위와 상기 제2각변위에 기초하여 상기 조인트의 각도를 결정할 수 있다.
상기 처리부는, 상기 제1감지부에서 측정된 각속도의 변화율의 크기 또는 상기 제2감지부에서 측정된 각속도의 변화율의 크기를 연산하고, 연산된 변화율의 크기 중 크기가 최대인 변화율에서의 시간을 상기 경직 시점으로 결정할 수 있다.
상기 처리부는, 상기 측정된 각속도가 제1속도인 경우, 상기 관절의 각도 중 크기가 최대인 관절의 각도를 가동 각도로 결정하는 제1속도모드; 및 상기 측정된 각속도가 상기 제1속도보다 큰 제2속도인 경우, 상기 경직 시점에서의 관절의 각도를 걸림 각도로 결정하는 제2속도모드를 포함할 수 있다.
상기 처리부는, 상기 가동 각도, 상기 걸림 각도 및 상기 경직 시점에 기초하여 상기 경직 평가 정보 중 경직 평가 점수를 결정할 수 있다.
상기 제1감지부는, 인체의 시상면 상에서 상기 말단부의 길이 방향으로의 가속도와, 상기 시상면 상에서 상기 말단부의 길이 방향에 교차하는 가속도와, 상기 시상면에 교차하는 방향에 대한 각속도를 측정할 수 있다.
상기 처리부는, 상기 측정된 가속도 또는 상기 측정된 각속도에 기초하여 상기 제1감지부의 부착 상태 및 상기 제2감지부의 부착 상태를 판단할 수 있고, 상기 표시부는, 상기 제1감지부의 부착 상태 및 상기 제2감지부의 부착 상태에 따라 센서 오부착 경고 신호를 표시할 수 있다.
상기 처리부는, 상기 측정된 가속도 또는 측정된 각속도에 기초하여 상기 관절의 속도를 결정하고, 상기 표시부는, 상기 관절의 속도가 목표 속도의 미리 설정된 오차 범위 내에 도달하는지 여부를 표시할 수 있다.
일 실시예에 따른 경직 평가 장치는, 인체의 관절을 기준으로 상기 인체의 말단부에 부착되고, 상기 말단부의 길이 방향에 교차하는 방향인 제1방향으로의 가속도, 상기 제1방향에 교차하는 제2방향으로의 가속도 또는 상기 제1방향과 상기 제2방향에 각각 교차하는 제3방향에 대한 각속도를 포함하는 제1측정치를 획득하는 제1감지부; 상기 인체의 근위부에 부착되고, 상기 근위부의 길이 방향에 교차하는 방향인 제4방향으로의 가속도, 상기 제4방향에 교차하는 제5방향으로의 가속도 또는 상기 제4방향과 상기 제5방향에 각각 교차하는 제6방향에 대한 각속도를 포함하는 제2측정치를 획득하는 제2감지부; 및 상기 제1감지부와 상기 제2감지부에 연결되고, 상기 제1측정치와 상기 제2측정치에 기초하여 경직 평가를 위한 경직 평가 정보를 표시하는 표시부를 포함할 수 있다.
상기 표시부는, 상기 제3방향에 대한 각속도와 상기 제6방향에 대한 각속도를 연산한 값을 관절의 속도로서 표시할 수 있다.
상기 표시부는, 상기 관절의 속도를 실시간으로 표시하고, 상기 관절의 속도가 목표 속도의 도달 여부를 표시할 수 있다.
상기 제1측정치는, 상기 제3방향으로의 가속도를 더 포함할 수 있고, 상기 제2측정치는 상기 제6방향으로의 가속도를 더 포함할 수 있고, 상기 표시부는, 상기 제3방향으로의 가속도의 크기와 상기 제6방향으로의 가속도의 크기가 미리 설정된 크기범위에 포함되는지 여부를 표시할 수 있다.
일 실시예에 따른 경직 평가 방법은, 인체의 관절을 기준으로, 인체의 말단부의 가속도 또는 각속도와, 인체의 근위부의 가속도 또는 각속도를 측정하는 단계; 측정된 가속도와 측정된 각속도에 기초하여 준정적 모드와 동적 모드 여부를 판단하는 단계; 준정적 모드인 경우 측정된 가속도에 기초하여 관절의 각도를 결정하고, 동적 모드인 경우 측정된 각속도에 기초하여 관절의 각도를 결정하는 단계; 상기 말단부의 움직임이 저항을 받는 경직 시점을 결정하는 단계; 및 결정된 관절의 각도와 결정된 경직 시점에 기초하여 경직 평가 점수를 결정하는 단계를 포함할 수 있다.
상기 경직 평가 방법은, 인체의 말단부의 가속도 또는 각속도와, 인체의 근위부의 가속도 또는 각속도를 측정하는 단계 이후에, 측정된 말단부의 가속도 중 인체의 시상면에 교차하는 방향으로의 가속도와 측정된 근위부의 가속도 중 상기 시상면에 교차하는 방향으로의 가속도가 미리 설정된 크기범위 외인 경우, 센서 오부착 경고 신호를 표시하는 단계를 더 포함할 수 있다.
상기 경직 평가 방법은, 센서 오부착 경고 신호를 표시하는 단계 이후에, 측정된 말단부의 각속도와 측정된 근위부의 각속도를 연산하여 상기 관절의 각속도를 결정하고, 상기 관절의 각속도가 목표 속도에 도달하는지 여부를 표시하는 단계를 더 포함할 수 있다.
상기 경직 평가 방법은, 준정적 모드와 동적 모드 여부를 판단하는 단계 이전에, 측정된 말단부의 가속도 중 인체의 시상면에 교차하는 방향으로의 가속도 성분과 측정된 근위부의 가속도 중 상기 시상면에 교차하는 방향으로의 가속도 성분이 미리 설정된 크기범위 외인 경우, 측정된 말단부의 가속도와 측정된 근위부의 가속도에 각각 미리 설정된 회전변환행렬을 연산하는 단계를 더 포함할 수 있다.
일 실시예에 따른 경직 평가 장치, 방법 및 시스템은 임상 분야에서 활용되는 평가 도구가 적용됨으로써 임상 친화적일 수 있다.
일 실시예에 따른 경직 평가 장치, 방법 및 시스템은 관성 센서를 이용하여 평가의 정확성과 평가의 신뢰도를 향상시킬 수 있다.
일 실시예에 따른 경직 평가 장치, 방법 및 시스템은 시각적 바이오-피드백(visual bio-feedback)을 이용하여 사용자의 직관적인 판단을 도울 수 있다.
일 실시예에 따른 경직 평가 장치, 방법 및 시스템의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 일 실시예에 따른 경직 평가 시스템을 개략적으로 나타낸 도면이다.
도 2는 일 실시예에 따른 감지부를 개략적으로 나타낸 도면이다.
도 3은 일 실시예에 따른 경직 평가 방식을 나타낸 도면이다.
도 4는 일 실시예에 따른 관절의 각도를 결정하는 방법을 나타낸 도면이다.
도 5는 일 실시예에 따른 관절의 각도를 결정하는 방법을 나타낸 흐름도이다.
도 6은 일 실시예에 따른 준정적 모드와 동적 모드를 판단하는 방법을 나타낸 흐름도이다.
도 7은 일 실시예에 따른 경직 시점을 결정하는 방법을 나타낸 그래프이다.
도 8은 일 실시예에 따른 표시부를 개략적으로 나타낸 도면이다.
도 9는 일 실시예에 따른 표시부를 개략적으로 나타낸 도면이다.
도 10은 일 실시예에 따른 경직 평가 장치 및 시스템을 개략적으로 나타낸 도면이다.
도 11은 일 실시예에 따른 경직 평가 장치 및 시스템을 개략적으로 나타낸 도면이다.
이하, 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
도 1 내지 도 8을 참조하면, 일 실시예에 따른 경직 평가 시스템(1)은, 사용자가 인체의 관절을 기준으로 인체의 말단부를 반복 회전시킴으로써 관절의 각도와 경직 시점을 측정하여 평가 도구에 따른 경직 평가 점수를 표시하는 데 사용되는 것으로, 도 1에는 인체의 무릎 관절(knee joint)을 중심으로 정강이(shank)를 회전시키는 모습이 도시되어 있으나, 이에 제한되는 것은 아니고 인체의 팔꿈치 관절을 기준으로 하완(lower arm)을 회전시키거나, 발목 관절을 기준으로 발(foot)을 회전시킬 때에도 사용될 수 있다. 경직 평가 시스템(1)은, 제1감지부(11), 제2감지부(12), 처리부(13) 및 표시부(14)를 포함할 수 있다.
제1감지부(11)는, 인체(H)의 관절(J)을 기준으로 관절(J)에 연결된 말단부(D)의 가속도(acceleration) 또는 말단부(D)의 각속도(angular velocity)를 측정할 수 있다. 이를 위하여, 제1감지부(11)는, 인체(H)의 관절(J)을 기준으로 인체(H)의 말단부(D)에 부착될 수 있다. 예를 들어, 제1감지부(11)는, 말단부(D)에서의 각각의 3축 방향(x1, y1, z1)으로의 가속도(ax1, ay1, az1) 또는 각각의 3축 방향에 대한 각속도(wx1, wy1, wz1)를 측정하는 관성 센서(inertial sensor) 또는 관성 측정 유닛(inertial measurement unit, IMU)일 수 있다. 제1감지부(11)는, 시상면(sagittal plane)에 평행하고 서로 교차하는 2개의 가속도(ax1, ay1)와, 시상면에 교차하는 방향으로의 가속도(az1)를 측정할 수 있다. 다시 말하면, 제1감지부(11)는, 말단부(D)의 길이 방향에 교차하는 방향인 제1방향으로의 가속도인 제1가속도(ax1)와, 말단부(D)의 길이 방향인 제2방향으로의 가속도인 제2가속도(ay1)와, 제1가속도(ax1) 및 제2가속도(ay1)와 각각 교차하고 시상면에 교차하는 방향인 제3방향으로의 가속도인 제3가속도(az1)를 측정할 수 있다. 또한, 제1감지부(11)는, 제1방향에 대한 각속도인 제1각속도(wx1)와, 제2방향에 대한 각속도인 제2각속도(wy1)와, 제3방향에 대한 각속도인 제3각속도(wz1)를 측정할 수 있다.
제2감지부(12)는, 인체(H)의 관절을 기준으로 근위부(P)에 부착될 수 있다. 제1감지부(11)와 마찬가지로, 제2감지부(12)는, 근위부(P)에서의 각각의 3축 방향(x2, y2, z2)으로의 가속도(ax2, ay2, az2) 또는 각각의 3축 방향에 대한 각속도(wx2, wy2, wz2)를 측정할 수 있다.
처리부(13)는, 측정된 가속도 또는 측정된 가속도에 기초하여, 임상 분야에서 주로 사용되는 평가 도구를 적용함으로써 경직 평가를 수행할 수 있다. 도 3에는 MTS를 적용하는 경우에 대하여 도시되어 있으나, 이에 제한되는 것은 아니고 다른 평가 도구 또한 적용될 수 있다. 본원에서는 예시적으로 MTS를 적용하는 경우에 대하여 설명하기로 한다.
MTS에 따르면, 사용자(예를 들어, 의사, 재활치료사 등)는, 3가지 속도(V1, V2, V3)로 인체(H)의 고정관절(HJ)을 고정시킨 상태에서, 인체(H)의 말단부(D)를 관절(J)을 기준으로 회전시킬 수 있다. 3가지 속도(V1, V2, V3)는 인체의 신체 조건과 평가 방식 등에 따라 사용자에 의하여 미리 설정될 수 있다. 제1속도(V1)는 가능한 한 가장 느린 속도로, 제2속도(V2)는 인체(H)의 일부분, 즉 말단부(D)가 떨어지는 속도로, 제3속도(V3)는 자유 낙하보다 더 큰 속도로 가능한 한 빠른 속도로서 정의될 수 있다. 이러한 전제에서, 사용자는 제1속도(V1)로 인체(H)의 말단부(D)를 관절(J)을 기준으로 회전할 때, 관절(J)의 가동 범위인 가동 각도(R2)를 측정할 수 있다. 이후, 사용자는 제2속도(V2) 또는 제3속도(V3)로 인체(H)의 말단부(D)를 관절(J)을 기준으로 회전할 때, 말단부(D)의 움직임이 저항을 받는 경직 시점(TR)에서의 관절(J)의 가동 범위인 걸림 각도(catch angle, R1)를 측정할 수 있다.
처리부(13)는, 가동 각도(R2)를 결정하는 제1속도모드 및 걸림 각도(R1)를 결정하는 제2속도모드를 포함할 수 있다. 구체적으로, 처리부(13)는, 제1감지부(11) 및 제2감지부(12)에서 측정된 각속도를 연산, 즉 더하여 관절(J)의 속도, 즉 관절(J)의 각속도로 결정할 수 있다. 제1속도모드에서, 측정된 관절(J)의 각속도가 제1속도(V1)인 경우, 처리부(13)는, 관절의 각도(φ) 중 크기가 최대인 관절의 각도를 가동 각도(R2)로 결정할 수 있다. 여기서, 관절의 각도(φ)는, 근위부(P)와 말단부(D)가 이루는 각도 중 예각을 말한다. 제2속도모드에서, 측정된 관절(J)의 각속도가 제1속도(V1)보다 큰 제2속도(V2) 또는 제3속도(V3)인 경우, 경직 시점(TR)에서의 관절의 각도(φ)를 걸림 각도(R1)로 결정할 수 있다. 다시 말하면, 처리부(13)는, 측정된 각속도의 변화율의 크기가 최대가 되는 시점, 즉 각감속(angular deceleration)이 최대가 되는 시점에서의 관절의 각도(φ)를 걸림 각도(R1)로 결정할 수 있다. 또한, 처리부(13)는, 걸림 각도(R1)를 결정하기 위하여, 말단부(D)가 움직이기 시작하는 초기 상태의 시점으로부터 측정된 각속도의 변화율의 크기가 최대가 되는 시점까지의 시간 간격이 미리 설정된 기준 시간 간격보다 작은 경우, 측정된 각속도의 변화율의 크기가 최대가 되는 시점에서의 관절의 각도(φ)를 걸림 각도(R1)로 결정할 수 있다. 예를 들어, 기준 시간 간격은 약 1초로 설정될 수 있다. 또한, 처리부(13)는, 걸림 각도(R1)를 결정하기 위하여, 제2속도(V2) 또는 제3속도(V3)가 목표 속도(target velocity)에 도달하였는지 여부를 판단할 수 있다. 여기서, 3가지 속도(V1, V2, V3)는 인체의 신체 조건과 평가 방식 등에 따라 사용자에 의하여 처리부(13)에 미리 설정될 수 있다. 이와 같은 방식에 의하면, 말단부(D)의 움직임이 저항을 받는 경직 상황이 처리부(13)에 정확하게 반영되어 평가의 정확성과 신뢰성이 보장될 수 있다.
처리부(13)는, 가동 각도(R2), 걸림 각도(R1) 및 경직 시점(TR)에 기초하여, 경직 평가 점수를 결정할 수 있다. 예를 들어, 경직 시점(TR)이 8초(sec)이고, 걸림 각도(R1)가 어떠한 특정값(예를 들어, 약 112°)인 경우, 근육 반응의 질(Quality of muscle reaction)은 3점으로 평가될 수 있다.
처리부(13)는, 측정된 가속도 또는 측정된 각속도에 기초하여 말단부(D)와 근위부(P)가 이루는 관절의 각도(φ)를 결정할 수 있다. 구체적으로, 처리부(13)는, 측정된 가속도 중 인체의 시상면(sagittal plane)에 교차하는 방향의 가속도(az1, az2)가 발생하는지 여부를 판단(S110)할 수 있고, 측정된 가속도와 측정된 각속도에 기초하여 준정적 모드(quasi-static mode)와 동적 모드(dynamic mode) 여부를 판단(S120)할 수 있고, 준정적 모드에서 측정된 가속도에 기초하여 말단부(D)와 근위부(P)가 관상면(coronal plane)에 대하여 이루는 각도를 연산(S130)할 수 있고, 동적 모드에서 측정된 각속도에 기초하여 말단부(D)와 근위부(P)가 관상면에 대하여 회전된 각도를 연산(S140)할 수 있고, 준정적 모드와 동적 모드에서 각각 연산된 각도에 기초하여 관절의 각도(φ)를 결정(S150)할 수 있다.
처리부(13)는, 측정된 가속도 중 인체의 시상면(sagittal plane)에 교차하는 방향의 가속도(az1, az2)가 발생하는지 여부를 판단(S110)할 수 있다. 시상면에 교차하는 방향의 가속도(az1, az2)가 발생하는 경우, 처리부(13)는, 측정된 가속도에 회전변환행렬(Rzxy)을 연산(S112)할 수 있다. 여기서, 회전변환행렬(Rzxy)은, 시상면에 교차하는 방향의 가속도(az1, az2)를 0으로 변환함과 동시에, 시상면에 평행하고 서로 교차하는 방향의 가속도(ax1, ay1; ax2, ay2)에 보상해주는 행렬을 말한다. 이와 같은 방식에 의하면, 제1감지부(11) 및/또는 제2감지부(12)가 시상면에 평행한 방향으로 근위부(P) 및/또는 말단부(D)에 각각 배치되었는지 여부에 관계없이, 제1감지부(11) 및/또는 제2감지부(12)가 시상면에 평행한 방향으로 근위부(P) 및/또는 말단부(D)에 각각 배치된 것으로 보정해줌으로써, 관절의 각도(φ)를 정확하게 계산해 낼 수 있으며, 평가의 정확성과 신뢰성이 향상될 수 있다.
처리부(13)는, 측정된 가속도와 측정된 각속도에 기초하여 제1감지부(11)의 부착 상태 및 제2감지부(12)의 부착 상태를 판단할 수 있다. 처리부(13)는, 측정된 가속도 중 인체의 시상면(sagittal plane)에 교차하는 방향의 가속도(az1, az2)가 발생하였는지 여부를 판단하여, 시상면에 교차하는 방향의 가속도(az1; az2)가 발생한 경우, 제1감지부(11)의 부착 상태 및/또는 제2감지부(12)의 부착 상태가 정상 또는 비정상인지 여부를 판단할 수 있다. 예를 들어, 처리부(13)는, 제3방향으로의 가속도(az1)의 크기와 제6방향으로의 가속도(az2)의 크기가 미리 설정된 크기 범위에 포함되는지 여부를 판단할 수 있다.
처리부(13)는, 측정된 가속도와 측정된 각속도에 기초하여 준정적 모드(quasi-static mode)와 동적 모드(dynamic mode) 여부를 판단(S120)할 수 있다. 준정적 모드는, 측정된 가속도에 기초하여 관절의 각도(φ)를 결정하는 모드로 정의되고, 동적 모드는, 측정된 각속도에 기초하여 관절의 각도(φ)를 결정하는 모드로 정의된다. 구체적으로, 처리부(13)는, 측정된 가속도(a1; a2)의 크기가 제1범위 내이고 측정된 각속도(wz1; wz2)가 제2범위 내인 경우 준정적 모드로 판단할 수 있고, 그 외의 범위는 동적 모드로 판단(S122)할 수 있다. 이를 위하여, 처리부(13)는, 측정된 가속도와 측정된 각속도로부터 각각 가속도의 변화량과 각속도의 변화량을 결정하고 각속도의 변화량과 각속도의 변화량이 미리 설정된 기준값보다 작을 때, 준정적 모드로 판단할 수 있다. 예를 들어, 제1범위는 약 9.6 m/s2 이상 10.0 m/s2 이하로 설정될 수 있고, 제2범위는 약 -5 rad/s 이상 5 rad/s 이하로 설정될 수 있다. 이와 같은 방식에 의하면, 측정된 가속도(a1; a2)의 크기가 중력가속도의 크기인 약 9.81 m/s2에 인접한 경우 및 측정된 각속도(wz1; wz2)의 크기가 약 5 rad/s 이내인 경우, 인체(H)의 근위부(P) 또는 말단부(D)의 속도는 거의 일정하게 유지되는 것으로 간주함으로써, 가속도가 계속하여 변하는 경우에 준정적 모드에서 가속도에 기초하여 관절의 각도(φ)를 결정하는 것보다 동적 모드에서 각속도에 기초하여 관절의 각도(φ)를 결정하는 것이 결과값이 더욱 정확할 수 있으며, 이에 따라 평가의 정확성과 신뢰성이 향상될 수 있다.
처리부(13)는, 준정적 모드에서 측정된 가속도에 기초하여 말단부(D)와 근위부(P)가 관상면에 대하여 이루는 각도를 연산(S130)할 수 있고, 동적 모드에서 측정된 각속도에 기초하여 말단부(D)와 근위부(P)가 관상면에 대하여 회전된 각도를 연산(S140)할 수 있다.
준정적 모드에서, 처리부(13)는, 제1가속도(ax1)와 제2가속도(ay1)에 기초하여 말단부(D)가 관상면에 대하여 이루는 각도인 제1각도(θ1)를 획득할 수 있다. 또한, 처리부(13)는, 제4가속도(ax2)와 제5가속도(ay2)에 기초하여 근위부(P)가 관상면에 대하여 이루는 각도인 제2각도(θ2)를 획득할 수 있다. 구체적으로, 제1각도(θ1) 및 제2각도(θ2)는, 아래와 같은 수학식에 의하여 결정될 수 있다.
Figure PCTKR2016013319-appb-I000001
(여기서, i = 1, 2).
위와 같은 수학식에 따르면, 제1각도(θ1)는, 제1감지부(11)에서 측정된 가속도 중 인체의 시상면 상의 제1가속도(ax1)를 제2가속도(ay1)로 나눈 값에 아크탄젠트를 연산하여 획득될 수 있다. 마찬가지로, 제2각도(θ2)는, 제2감지부(12)에서 측정된 가속도 중 인체의 시상면 상의 제4가속도(ax2)를 제5가속도(ay2)로 나눈 값에 아크탄젠트를 연산하여 획득될 수 있다.
동적 모드에서, 처리부(13)는, 제1감지부(11)에서 측정된 각속도(wz1)를 적분하여 제1각변위(θ1)를 획득할 수 있다. 처리부(13)는, 제2감지부(12)에서 측정된 각속도(wz2)를 적분하여 제2각변위(θ2)를 획득할 수 있다. 구체적으로, 제1각변위(θ1) 및 제2각변위(θ2)는, 아래와 같은 수학식에 의하여 결정될 수 있다.
Figure PCTKR2016013319-appb-I000002
처리부(13)는, 준정적 모드와 동적 모드에서 각각 연산된 각도에 기초하여 관절의 각도(φ)를 결정(S150)할 수 있다. 구체적으로, 관절의 각도(φ)는 아래와 같은 수학식에 의하여 결정될 수 있다.
Figure PCTKR2016013319-appb-I000003
(여기서,
Figure PCTKR2016013319-appb-I000004
는, 관절의 각도(φ),
Figure PCTKR2016013319-appb-I000005
은, 제1각도 또는 제1각변위,
Figure PCTKR2016013319-appb-I000006
는, 제2각도 또는 제2각변위).
이와 같은 방식에 의하면, 인체(H)의 말단부(D)와 근위부(P)를 각각 고정관절(HJ)와 관절(J)의 조인트(joint)에 연결된 링크(link)로 모델링하여 관절의 각도(φ)를 용이하게 계산할 수 있을 뿐만 아니라 그 정확성 또한 보장되어 평가의 정확성과 신뢰성을 향상시킬 수 있다. 뿐만 아니라, 계산 속도가 현저히 빠르므로, 평가의 신속성 또한 보장될 수 있다.
이상과 같이 앞서 설명한 관절의 각도(φ)를 결정하는 기본 개념은 다양한 실시예에 적용될 수 있다. 한편, 이상의 설명은 관절의 각도(φ)를 결정하기 위한 하나의 방법에 불과하며, 실시예들이 반드시 위와 같이 제한되는 것은 아님을 밝혀둔다.
처리부(13)는, 말단부(D)의 움직임이 저항을 받는 경직 시점(TR)을 결정할 수 있다. 도 7의 그래프를 참조하면, 시간에 따른 각속도의 변화율(각가속도)의 그래프가 도시된다. 처리부(13)는, 제1감지부(11)에서 측정된 각속도 또는 제2감지부(12)에서 측정된 각속도를 미분한 각속도의 변화율을 y축 방향의 각가속도로서 설정할 수 있다. 이 경우, 각속도의 변화율의 크기가 최대인 각속도의 변화율, 즉 크기가 최대인 각가속도에서의 시간(TR)을 경직 시점으로 결정할 수 있다. 이와 같은 방식에 의하면, 사용자가 제2속도(V2) 또는 제3속도(V3)로 말단부(D)를 관절(J)을 기준으로 회전할 때, 경직이 발생하면 인체(H)의 말단부(D)가 더 이상 제2속도(V2) 또는 제3속도(V3)로 회전될 수 없고 급격하게 속도가 저하되는 시점이 발생할 수 있으므로, 이러한 시점을 경직 시점으로 채택함으로써 경직 시점 설정의 정확성과 신뢰성을 보장하여 경직 평가를 올바르게 수행할 수 있다.
추가적으로, 처리부(13)는, 근육 경직이 아닌 간대성 경련의 경우, 말단부(D)의 움직임이 떨리기 시작하는 각도와 시작 시점을 결정하여 간대성 경련을 위한 경련 평가 정보를 처리할 수 있다.
표시부(14)는, 관절의 각도(φ)와 경직 시점(TR)에 기초하여 경직 평가를 위한 경직 평가 정보를 표시할 수 있다. 표시부(14)는, 설정(Setup)과 비주얼 바이오피드백(Visual Biofeedback)의 두 가지 형태로 사용자에게 경직 평가 정보를 제공할 수 있다.
표시부(14)는, 설정(Setup) 화면에서, 사용자에게 팔꿈치 관절, 무릎 관절 또는 발목 관절을 기준으로 말단부를 회전할지 여부를 선택하게 할 수 있다. 또한, 설정 화면에서, 표시부(14)는, 제1감지부(11) 및 제2감지부(12)가 인체의 우측(right side) 부분에 부착되는지 또는 인체의 좌측(left side) 부분에 부착되는지를 선택하게 할 수 있다. 또한, 표시부(14)의 설정 화면에서, 표시부(14)는, 제1감지부(11)의 부착 상태 및/또는 제2감지부(12)의 부착 상태가 정상 또는 비정상인지 여부에 따라 일종의 센서 오부착 경고 신호를 표시할 수 있다. 예를 들어, 제1감지부(11)가 움직이는 부분(moving part)인 정강이(shank)에 부착되고, 제2감지부(12)가 고정 부분(fixing part)에 허벅지(thigh)에 부착되었을 때, 제1감지부(11)의 부착 상태가 정상이고 제2감지부(12)의 부착 상태가 비정상인 경우, 표시부(14)는, 제1감지부(11)의 부착 상태가 정상이라는 청색 신호를 표시할 수 있고, 제2감지부(12)의 부착 상태가 비정상이라는 적색 신호를 표시할 수 있다. 이와 같은 방식에 의하면, 사용자가 경직 평가 시스템(1)을 사용할 때, 직관적으로 제1감지부(11) 및/또는 제2감지부(12)의 부착 상태를 인식할 수 있으므로, 제1감지부(11) 및/또는 제2감지부(12)를 해당하는 곳에 올바르게 부착함으로써 평가의 정확성과 신뢰성을 향상시킬 수 있다.
비주얼 바이오피드백 화면에서, 표시부(14)는, 사용자가 입력하는 목표 속도(target velocity)를 표시할 수 있다. 또한, 표시부(14)는, 결정된 관절(J)의 속도가 목표 속도의 미리 설정된 오차 범위 내에 도달하는지 여부를 표시할 수 있다. 여기서 오차 범위는, 사용자의 사용 환경, 인체(H)의 특성 등에 따라 다양하게 설정될 수 있다. 예를 들어, 표시부(14)는, 관절(J)의 속도가 목표 속도의 10% 내외의 오차 범위 내에 도달한 경우, 관절(J)의 속도가 목표 속도에 도달하였다는 청색 신호를 표시할 수 있다. 또한, 표시부(14)는, 막대 그래프의 형태, 숫자의 형태로 관절(J)의 속도와 목표 속도를 실시간으로 표시할 수 있다. 또한, 표시부(14)는, 제1감지부(11) 및/또는 제2감지부(12)가 말단부(D) 및/또는 근위부(P)에 정확하게 정렬되어 부착되었는지 여부를 표시할 수 있다. 예를 들어, 제1감지부(11) 및/또는 제2감지부(12)로부터 측정되는 가속도 중 시상면에 교차하는 가속도가 발생하지 않는 경우, 시상면 움직임(sagittal plane movement) 여부에 청색 신호가 표시될 수 있다. 또한, 표시부(14)는, 말단부(D)가 움직이기 시작하는 초기 상태에서의 시점으로부터 측정된 각속도의 변화율의 크기가 최대가 되는 시점까지의 시간 간격이 미리 설정된 기준 시간 간격보다 작은지 여부를 표시할 수 있다. 예를 들어, 기준 시간 간격은 1초 이내(within 1 sec)로 설정될 수 있고, 말단부(D)가 움직이기 시작하는 초기 상태에서의 시점으로부터 측정된 각속도의 변화율의 크기가 최대가 되는 시점까지의 시간 간격이 1초 이내인 경우 표시부(14)는 시간 간격이 1초 이내인지 여부에 대하여 청색 신호를 표시할 수 있다. 표시부(14)는, 시상면 움직임 여부와 1초 이내인지 여부에 대하여 모두 청색 신호를 표시하는 외에도, 위 두 가지 조건이 만족되면 경직 평가가 올바르게 수행되고 있다는 점에 대하여 성공(success) 여부를 표시할 수 있다. 예를 들어, 표시부(14)는, 위 두 가지 조건이 만족되는 경우, 성공 여부에 대하여 청색 신호를 표시할 수 있고, 성공 당시의 관절의 각속도 값을 누적하여 표시할 수 있다. 이와 같은 방식에 의하면, 사용자가 경직 평가 시스템(1)을 사용할 때 직관적으로 현재 관절의 속도와, 목표 속도에 도달 여부를 실시간으로 파악할 수 있고, 이에 따라 사용자는 평가가 잘 수행되고 있는지 실시간으로 피드백을 받을 수 있으므로, 평가의 정확성과 신뢰성이 향상될 수 있다.
추가적으로, 경직 평가 시스템(1)은, 통신 모듈(미도시)을 포함할 수 있다. 통신 모듈은, 제1감지부(11) 및/또는 제2감지부(12)로부터 측정된 가속도 또는 측정된 각속도를 포함하는 관성 정보(inertial information)를 처리부(13) 및/또는 표시부(14)로 전달할 수 있다. 예를 들어, 통신 모듈은, 근거리 무선 통신을 가능하게 하는 블루투스(Bluetooth) 모듈일 수 있다.
앞서 설명한 구성 및 기능들은 경직 평가 시스템(1)의 일 예시로서 설명된 것으로서, 제1감지부(11) 및/또는 제2감지부(12)에 처리부(13) 및/또는 표시부(14)가 내장될 수 있고, 이 경우 일 실시예에 따른 경직 평가 장치로서 언급될 수 있다. 다시 말하면, 경직 평가 장치는, 제1감지부(11), 제2감지부(12) 및 표시부(14)를 포함할 수 있다. 이 때, 표시부(14)는, 단말기의 형태를 구비할 수 있고, 이 경우 처리부는 어플리케이션의 형태로서 앞서 설명한 기능을 수행할 수 있다. 표시부(14)는, 제1감지부(11)의 부착 상태 및/또는 제2감지부(12)의 부착 상태 여부를 표시할 수 있고, 현재 관절의 (각)속도와 목표 속도를 실시간으로 표시할 수 있다.
도 10을 참조하면, 일 실시예에 따른 경직 평가 장치 또는 시스템(2)은, 제1감지부(21), 제2감지부(22) 및 표시부(미도시)를 포함할 수 있다. 이 경우, 처리부는 제1감지부(21) 및/또는 제2감지부(22)에 내장될 수 있거나, 별도로 마련될 수 있다. 제1감지부(21)는 팔꿈치 관절(J')을 기준으로 하완(lower arm, D')에 부착될 수 있고, 제2감지부(22)는 상완(upper arm, P')에 부착될 수 있다.
도 11을 참조하면, 일 실시예에 따른 경직 평가 장치 또는 시스템(3)은, 제1감지부(31), 제2감지부(32) 및 표시부(미도시)를 포함할 수 있다. 제1감지부(31)는 발목 관절(J'')을 중심으로 발등(D'')에 부착될 수 있고, 제2감지부(32)는 발목(P'')에 부착될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.

Claims (20)

  1. 인체의 관절을 기준으로 상기 인체의 말단부에 부착되고, 상기 말단부의 가속도 또는 상기 말단부의 각속도를 측정하는 제1감지부;
    상기 인체의 근위부에 부착되고, 상기 근위부의 가속도 또는 상기 근위부의 각속도를 측정하는 제2감지부;
    측정된 가속도 또는 측정된 각속도에 기초하여 상기 말단부와 상기 근위부가 이루는 관절의 각도를 결정하고, 상기 말단부의 움직임이 저항을 받는 경직 시점을 결정하는 처리부; 및
    상기 관절의 각도와 상기 경직 시점에 기초하여 경직 평가를 위한 경직 평가 정보를 표시하는 표시부;
    를 포함하는 경직 평가 시스템.
  2. 제1항에 있어서,
    상기 처리부는, 상기 측정된 가속도 중 인체의 시상면에 교차하는 방향의 가속도가 발생할 경우, 상기 측정된 가속도에 회전변환행렬을 연산하여 상기 관절의 각도를 결정하는 경직 평가 시스템.
  3. 제1항에 있어서,
    상기 처리부는, 측정된 가속도에 기초하여 상기 관절의 각도를 결정하는 준정적 모드와, 측정된 각속도에 기초하여 상기 관절의 각도를 결정하는 동적 모드를 포함하고, 상기 측정된 가속도와 상기 측정된 각속도에 기초하여 준정적 모드 또는 동적 모드 여부를 판단하는 경직 평가 시스템.
  4. 제3항에 있어서,
    상기 처리부는, 상기 측정된 가속도의 크기가 제1범위 내이고 상기 측정된 각속도의 크기가 제2범위 내인 경우 준정적 모드로 판단하는 경직 평가 시스템.
  5. 제3항에 있어서,
    상기 처리부는, 상기 준정적 모드로 판단된 경우, 상기 제1감지부에서 측정된 가속도 중 인체의 시상면 상의 제1가속도 및 상기 제1가속도에 교차하는 상기 시상면 상의 제2가속도에 기초하여 제1각도를 획득하고, 상기 제2감지부에서 측정된 가속도 중 상기 시상면 상의 제4가속도 및 상기 제4가속도에 교차하는 상기 시상면 상의 제5가속도에 기초하여 제2각도를 획득하고, 상기 제1각도와 상기 제2각도에 기초하여 상기 조인트의 각도를 결정하는 경직 평가 시스템.
  6. 제3항에 있어서,
    상기 처리부는, 상기 동적 모드로 판단된 경우, 상기 제1감지부에서 측정된 각속도를 적분하여 제1각변위를 획득하고, 상기 제2감지부에서 측정된 각속도를 적분하여 제2각변위를 획득하고, 상기 제1각변위와 상기 제2각변위에 기초하여 상기 조인트의 각도를 결정하는 경직 평가 시스템.
  7. 제1항에 있어서,
    상기 처리부는, 상기 제1감지부에서 측정된 각속도의 변화율의 크기 또는 상기 제2감지부에서 측정된 각속도의 변화율의 크기를 연산하고, 연산된 변화율의 크기 중 크기가 최대인 변화율에서의 시간을 상기 경직 시점으로 결정하는 경직 평가 시스템.
  8. 제1항에 있어서,
    상기 처리부는,
    상기 측정된 각속도가 제1속도인 경우, 상기 관절의 각도 중 크기가 최대인 관절의 각도를 가동 각도로 결정하는 제1속도모드; 및
    상기 측정된 각속도가 상기 제1속도보다 큰 제2속도인 경우, 상기 경직 시점에서의 관절의 각도를 걸림 각도로 결정하는 제2속도모드;
    를 포함하는 경직 평가 시스템.
  9. 제8항에 있어서,
    상기 처리부는, 상기 가동 각도, 상기 걸림 각도 및 상기 경직 시점에 기초하여 상기 경직 평가 정보 중 경직 평가 점수를 결정하는 경직 평가 시스템.
  10. 제1항에 있어서,
    상기 제1감지부는, 인체의 시상면 상에서 상기 말단부의 길이 방향으로의 가속도와, 상기 시상면 상에서 상기 말단부의 길이 방향에 교차하는 가속도와, 상기 시상면에 교차하는 방향에 대한 각속도를 측정하는 경직 평가 시스템.
  11. 제1항에 있어서,
    상기 처리부는, 상기 측정된 가속도 또는 상기 측정된 각속도에 기초하여 상기 제1감지부의 부착 상태 및 상기 제2감지부의 부착 상태를 판단하고,
    상기 표시부는, 상기 제1감지부의 부착 상태 및 상기 제2감지부의 부착 상태에 따라 센서 오부착 경고 신호를 표시하는 경직 평가 시스템.
  12. 제1항에 있어서,
    상기 처리부는, 상기 측정된 가속도 또는 측정된 각속도에 기초하여 상기 관절의 속도를 결정하고,
    상기 표시부는, 상기 관절의 속도가 목표 속도의 미리 설정된 오차 범위 내에 도달하는지 여부를 표시하는 경직 평가 시스템.
  13. 인체의 관절을 기준으로 상기 인체의 말단부에 부착되고, 상기 말단부의 길이 방향에 교차하는 방향인 제1방향으로의 가속도, 상기 제1방향에 교차하는 제2방향으로의 가속도 또는 상기 제1방향과 상기 제2방향에 각각 교차하는 제3방향에 대한 각속도를 포함하는 제1측정치를 획득하는 제1감지부;
    상기 인체의 근위부에 부착되고, 상기 근위부의 길이 방향에 교차하는 방향인 제4방향으로의 가속도, 상기 제4방향에 교차하는 제5방향으로의 가속도 또는 상기 제4방향과 상기 제5방향에 각각 교차하는 제6방향에 대한 각속도를 포함하는 제2측정치를 획득하는 제2감지부; 및
    상기 제1감지부와 상기 제2감지부에 연결되고, 상기 제1측정치와 상기 제2측정치에 기초하여 경직 평가를 위한 경직 평가 정보를 표시하는 표시부;
    를 포함하는 경직 평가 장치.
  14. 제13항에 있어서,
    상기 표시부는, 상기 제3방향에 대한 각속도와 상기 제6방향에 대한 각속도를 연산한 값을 관절의 속도로서 표시하는 경직 평가 장치.
  15. 제14항에 있어서,
    상기 표시부는, 상기 관절의 속도를 실시간으로 표시하고, 상기 관절의 속도가 목표 속도의 도달 여부를 표시하는 경직 평가 장치.
  16. 제13항에 있어서,
    상기 제1측정치는, 상기 제3방향으로의 가속도를 더 포함하고, 상기 제2측정치는 상기 제6방향으로의 가속도를 더 포함하고,
    상기 표시부는, 상기 제3방향으로의 가속도의 크기와 상기 제6방향으로의 가속도의 크기가 미리 설정된 크기범위에 포함되는지 여부를 표시하는 경직 평가 장치.
  17. 인체의 관절을 기준으로, 인체의 말단부의 가속도 또는 각속도와, 인체의 근위부의 가속도 또는 각속도를 측정하는 단계;
    측정된 가속도와 측정된 각속도에 기초하여 준정적 모드와 동적 모드 여부를 판단하는 단계;
    준정적 모드인 경우 측정된 가속도에 기초하여 관절의 각도를 결정하고, 동적 모드인 경우 측정된 각속도에 기초하여 관절의 각도를 결정하는 단계;
    상기 말단부의 움직임이 저항을 받는 경직 시점을 결정하는 단계; 및
    결정된 관절의 각도와 결정된 경직 시점에 기초하여 경직 평가 점수를 결정하는 단계;
    를 포함하는 경직 평가 방법.
  18. 제17항에 있어서,
    인체의 말단부의 가속도 또는 각속도와, 인체의 근위부의 가속도 또는 각속도를 측정하는 단계 이후에, 측정된 말단부의 가속도 중 인체의 시상면에 교차하는 방향으로의 가속도와 측정된 근위부의 가속도 중 상기 시상면에 교차하는 방향으로의 가속도가 미리 설정된 크기범위 외인 경우, 센서 오부착 경고 신호를 표시하는 단계를 더 포함하는 경직 평가 방법.
  19. 제18항에 있어서,
    센서 오부착 경고 신호를 표시하는 단계 이후에, 측정된 말단부의 각속도와 측정된 근위부의 각속도를 연산하여 상기 관절의 각속도를 결정하고, 상기 관절의 각속도가 목표 속도에 도달하는지 여부를 표시하는 단계를 더 포함하는 경직 평가 방법.
  20. 제17항에 있어서,
    준정적 모드와 동적 모드 여부를 판단하는 단계 이전에, 측정된 말단부의 가속도 중 인체의 시상면에 교차하는 방향으로의 가속도 성분과 측정된 근위부의 가속도 중 상기 시상면에 교차하는 방향으로의 가속도 성분이 미리 설정된 크기범위 외인 경우, 측정된 말단부의 가속도와 측정된 근위부의 가속도에 각각 미리 설정된 회전변환행렬을 연산하는 단계를 더 포함하는 경직 평가 방법.
PCT/KR2016/013319 2016-11-18 2016-11-18 경직 평가 장치, 방법 및 시스템 WO2018092944A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/461,535 US11317855B2 (en) 2016-11-18 2016-11-18 Spasticity evaluation device, method and system
PCT/KR2016/013319 WO2018092944A1 (ko) 2016-11-18 2016-11-18 경직 평가 장치, 방법 및 시스템
KR1020197015055A KR102254024B1 (ko) 2016-11-18 2016-11-18 경직 평가 장치, 방법 및 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/013319 WO2018092944A1 (ko) 2016-11-18 2016-11-18 경직 평가 장치, 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2018092944A1 true WO2018092944A1 (ko) 2018-05-24

Family

ID=62145495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013319 WO2018092944A1 (ko) 2016-11-18 2016-11-18 경직 평가 장치, 방법 및 시스템

Country Status (3)

Country Link
US (1) US11317855B2 (ko)
KR (1) KR102254024B1 (ko)
WO (1) WO2018092944A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109700466A (zh) * 2019-03-04 2019-05-03 合肥工业大学 一种基于肘关节角度和角加速度的痉挛评估装置
CN109730685A (zh) * 2019-03-04 2019-05-10 合肥工业大学 一种基于踝关节角度和角加速度的痉挛评估装置
CN110680336A (zh) * 2019-10-15 2020-01-14 北京大学第一医院 一种痉挛的定量评估设备以及定量评估方法
US10724842B2 (en) * 2018-02-02 2020-07-28 Caterpillar Trimble Control Technologies Llc Relative angle estimation using inertial measurement units
WO2021074852A1 (en) * 2019-10-18 2021-04-22 Mclaren Applied Technologies Limited Sensor determination
CN112823742A (zh) * 2019-11-20 2021-05-21 纬创资通股份有限公司 关节弯曲状态判断装置及方法
US11337649B2 (en) 2016-10-31 2022-05-24 Zipline Medical, Inc. Systems and methods for monitoring physical therapy of the knee and other joints
US11849415B2 (en) 2018-07-27 2023-12-19 Mclaren Applied Technologies Limited Time synchronisation
US11898874B2 (en) 2019-10-18 2024-02-13 Mclaren Applied Technologies Limited Gyroscope bias estimation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278728B1 (ko) * 2019-08-09 2021-07-16 재단법인대구경북과학기술원 관성센서 기반의 경직 등급 자동 결정 시스템
JP7452324B2 (ja) * 2020-08-18 2024-03-19 トヨタ自動車株式会社 動作状態監視システム、訓練支援システム、動作状態監視システムの制御方法、及び、制御プログラム
KR102519213B1 (ko) * 2020-12-31 2023-04-10 순천향대학교 산학협력단 관성 센서를 이용한 기계 학습 기반의 팔꿈치 경련 정도 평가 장치 및 평가 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118649A1 (en) * 2005-07-29 2009-05-07 Cabrera Michael Normann B Apparatus and Method for Evaluating a Hypertonic Condition
JP2015217126A (ja) * 2014-05-16 2015-12-07 住友理工株式会社 角度センサ装置
KR20160097044A (ko) * 2015-02-06 2016-08-17 (주)유즈브레인넷 모션 인식기법을 이용한 관절 각도기 장치
KR101656940B1 (ko) * 2014-09-18 2016-09-13 한국산업기술대학교산학협력단 관성 측정 장치를 이용한 인체 관절 가동 범위 측정시스템
US20160317066A1 (en) * 2015-05-01 2016-11-03 Accelerated Rehabilitation Technologies, LLC Spasticity quantification device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181077B1 (ko) 2009-08-13 2012-09-07 한양대학교 산학협력단 넓적다리 뒷근육 긴장도 및 유연성 평가 장치 및 방법
FR2970408B1 (fr) * 2011-01-17 2014-01-03 Univ Compiegne Tech Dispositif de mesure de la spasticite
KR20130034245A (ko) 2011-09-28 2013-04-05 주식회사 에이치비티 재활용 운동량 측정 시스템
WO2015039206A1 (en) 2013-09-20 2015-03-26 Mddt Inc. Diagnosing and treating movement disorders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118649A1 (en) * 2005-07-29 2009-05-07 Cabrera Michael Normann B Apparatus and Method for Evaluating a Hypertonic Condition
JP2015217126A (ja) * 2014-05-16 2015-12-07 住友理工株式会社 角度センサ装置
KR101656940B1 (ko) * 2014-09-18 2016-09-13 한국산업기술대학교산학협력단 관성 측정 장치를 이용한 인체 관절 가동 범위 측정시스템
KR20160097044A (ko) * 2015-02-06 2016-08-17 (주)유즈브레인넷 모션 인식기법을 이용한 관절 각도기 장치
US20160317066A1 (en) * 2015-05-01 2016-11-03 Accelerated Rehabilitation Technologies, LLC Spasticity quantification device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11992334B2 (en) 2016-10-31 2024-05-28 Zipline Medical, Inc. Systems and methods for monitoring physical therapy of the knee and other joints
US11337649B2 (en) 2016-10-31 2022-05-24 Zipline Medical, Inc. Systems and methods for monitoring physical therapy of the knee and other joints
US10724842B2 (en) * 2018-02-02 2020-07-28 Caterpillar Trimble Control Technologies Llc Relative angle estimation using inertial measurement units
US11849415B2 (en) 2018-07-27 2023-12-19 Mclaren Applied Technologies Limited Time synchronisation
CN109700466A (zh) * 2019-03-04 2019-05-03 合肥工业大学 一种基于肘关节角度和角加速度的痉挛评估装置
CN109730685B (zh) * 2019-03-04 2024-02-13 合肥工业大学 一种基于踝关节角度和角加速度的痉挛评估装置
CN109700466B (zh) * 2019-03-04 2024-02-13 合肥工业大学 一种基于肘关节角度和角加速度的痉挛评估装置
CN109730685A (zh) * 2019-03-04 2019-05-10 合肥工业大学 一种基于踝关节角度和角加速度的痉挛评估装置
CN110680336A (zh) * 2019-10-15 2020-01-14 北京大学第一医院 一种痉挛的定量评估设备以及定量评估方法
WO2021074852A1 (en) * 2019-10-18 2021-04-22 Mclaren Applied Technologies Limited Sensor determination
US11898874B2 (en) 2019-10-18 2024-02-13 Mclaren Applied Technologies Limited Gyroscope bias estimation
CN112823742A (zh) * 2019-11-20 2021-05-21 纬创资通股份有限公司 关节弯曲状态判断装置及方法
EP3825647A1 (en) * 2019-11-20 2021-05-26 Wistron Corporation Joint bending state determining device and method
US11672443B2 (en) 2019-11-20 2023-06-13 Wistron Corp. Joint bending state determining device and method

Also Published As

Publication number Publication date
KR20190067909A (ko) 2019-06-17
KR102254024B1 (ko) 2021-05-18
US20200054275A1 (en) 2020-02-20
US11317855B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2018092944A1 (ko) 경직 평가 장치, 방법 및 시스템
WO2016024797A1 (ko) 트랙킹 시스템 및 이를 이용한 트랙킹 방법
WO2019112158A1 (ko) 관절센서를 이용한 센서 오차 보정장치, 보정방법
JP6300195B2 (ja) ゴルフスイング解析装置およびゴルフスイング解析方法
KR20140044755A (ko) 골프스윙 해석장치 및 골프스윙 해석방법
JP2013090862A (ja) ゴルフスイング解析装置およびゴルフスイング解析方法
KR20170022158A (ko) 관성 센서를 이용한 경직 및 간대성 경련 평가 보조 장치 및 방법
JP2016179048A (ja) 関節負荷可視化システム
WO2014112782A1 (ko) 트랙킹 시스템 및 이를 이용한 트랙킹 방법
CN113349939B (zh) 被动主手式主从控制手术机器人的性能测试方法及系统
KR20050097181A (ko) 관성센서를 이용한 보행패턴 분석장치 및 그 방법
JP2009186244A (ja) 傾斜角度推定システム、相対角度推定システム及び角速度推定システム
JP2011033489A (ja) モーションキャプチャ用のマーカ
WO2020235982A1 (ko) 운동 정보 제공 방법 및 장치
WO2017217567A1 (ko) 피트니스 모니터링 시스템
KR101745864B1 (ko) 신체운동 측정장치
KR20180071553A (ko) 골프 스윙자세 분석 및 교정을 위한 연습시스템
JP3394979B2 (ja) 関節角の計測方法及びその装置
US20180243627A1 (en) Measuring system and measuring method
CN110720922A (zh) 对象身体尺寸测量方法、装置和系统
KR20150107783A (ko) 피실험자의 움직임의 범위를 평가하기 위한 시스템 및 방법
WO2023113240A1 (ko) 하지 재활 운동 시스템 및 이를 이용한 하지 운동 평가 방법
WO2016078084A1 (zh) 一种呼吸监测设备、方法和装置
JP5424224B2 (ja) 相対角度推定システム
WO2022075545A1 (ko) Vr을 이용한 협응력 및 민첩성 테스트 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015055

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16921839

Country of ref document: EP

Kind code of ref document: A1