WO2016078084A1 - 一种呼吸监测设备、方法和装置 - Google Patents

一种呼吸监测设备、方法和装置 Download PDF

Info

Publication number
WO2016078084A1
WO2016078084A1 PCT/CN2014/091904 CN2014091904W WO2016078084A1 WO 2016078084 A1 WO2016078084 A1 WO 2016078084A1 CN 2014091904 W CN2014091904 W CN 2014091904W WO 2016078084 A1 WO2016078084 A1 WO 2016078084A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
motion sensor
respiratory
motion
coordinate system
Prior art date
Application number
PCT/CN2014/091904
Other languages
English (en)
French (fr)
Inventor
余文翰
于辉
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2014/091904 priority Critical patent/WO2016078084A1/zh
Priority to CN201480079604.8A priority patent/CN106456051A/zh
Publication of WO2016078084A1 publication Critical patent/WO2016078084A1/zh
Priority to US15/601,885 priority patent/US10881331B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0803Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor

Definitions

  • the present application relates to the field of medical devices, and in particular to a respiratory monitoring device, method and device.
  • the technical solutions for respiratory monitoring of the human body mainly include the following categories:
  • the mask provided with the sensor needs to be worn on the face of the measuring object, and the sensor is used to sense the airflow generated when the measuring object breathes, thereby detecting the respiratory wave.
  • the drawback of the airflow scheme is that it is necessary to place equipment on the face of the measuring object, which causes inconvenience to the daily life of the measuring object.
  • a piezoelectric sensor is attached to the chest of the measuring object, and when the measuring object breathes, the pressure applied to the piezoelectric sensor changes due to the contraction and expansion of the thorax, thereby detecting the respiratory wave.
  • the drawback of the piezoelectric solution is that it is necessary to fix the piezoelectric sensor using the strap on the torso of the measuring object, which brings a certain discomfort to the measuring object.
  • an acceleration sensor is placed on each of the front chest and the back of the measuring object, and when the measuring object breathes, the acceleration of the acceleration sensor is changed due to the contraction and expansion of the thorax, thereby detecting the respiratory wave.
  • the drawback of the acceleration scheme is that the anti-interference performance of the body motion of the measurement object is poor, resulting in poor accuracy of the measurement results.
  • the present application provides a respiratory monitoring apparatus comprising:
  • At least one motion sensor for sensing at least angular motion of a measurement site capable of indicating respiratory motion and outputting an angular velocity vector of the measurement site;
  • a processing device coupled to the motion sensor for extracting a respiratory angular velocity from the angular velocity vector and obtaining a respiratory wave based on the respiratory angular velocity.
  • the present application provides a respiratory monitoring method, including:
  • a respiratory angular velocity is extracted from the angular velocity vector, and a respiratory wave is obtained based on the respiratory angular velocity.
  • the present application provides a respiratory monitoring apparatus comprising:
  • a receiving unit configured to receive an angular velocity vector of the measurement object measurement portion output by the motion sensor, where the angular velocity vector is output after the motion sensor senses an angular motion of the measurement portion capable of indicating the respiratory motion;
  • a calculation unit for extracting a respiratory angular velocity from the angular velocity vector and obtaining a respiratory wave according to the respiratory angular velocity.
  • the present invention provides a respiratory monitoring apparatus, method and apparatus for generating an angular movement of a measurement site capable of indicating a respiratory motion based on a measurement site, by which a motion sensor is sensitive to the angular motion, and outputting an angular velocity vector of the measurement site, and then from the angular velocity The respiratory angular velocity is extracted from the vector, and the respiratory wave is obtained according to the respiratory angular velocity.
  • FIG. 1 is a schematic structural view of a respiratory monitoring device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of installation of two motion sensors in a respiratory monitoring device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a coordinate system of a motion sensor in a respiratory monitoring device according to an embodiment of the present application
  • FIG. 4 is a schematic flow chart of a respiratory monitoring method according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a respiratory monitoring device according to an embodiment of the present application.
  • the inventive concept of the present application is that the chest and the abdomen have different degrees of undulation when the human body breathes due to the different degrees of softness. Therefore, at the junction of the chest and the abdomen, an angular movement of the measuring portion capable of indicating the breathing motion may occur.
  • a motion sensor sensitive to the angular motion can measure respiratory motion.
  • this embodiment provides a respiratory monitoring apparatus including motion sensors 101, 102 and a processing device 103.
  • the motion sensors 101, 102 are at least used to sense angular motion of a measurement site capable of indicating respiratory motion and output an angular velocity vector of the measurement site.
  • the processing device 103 is coupled to the motion sensors 101, 102 for extracting the respiratory angular velocity from the angular velocity vector and obtaining the respiratory wave based on the respiratory angular velocity.
  • the respiratory monitoring device can also include a display 104 coupled to the processing device 103 for displaying the respiratory waves obtained by the processing device 103.
  • the motion sensor selects a six-degree-of-freedom inertial sensor
  • the six-degree-of-freedom inertial sensor integrates a three-axis angular velocity sensor and a three-axis acceleration sensor for respectively outputting an angular velocity vector and a gravity acceleration vector and a motion acceleration vector of the measurement site.
  • acceleration or transmission may not be required if alignment or axial correction is not used. Sensor.
  • the six-degree-of-freedom inertial sensor is integrated with a three-axis angular velocity sensor.
  • a part of the limiting condition is added, such as limiting the mounting orientation of the angular velocity sensor sensitive axis, or restricting the breathing monitoring only when the human body is stationary , you can choose an angular velocity sensor with less axial direction, such as a single-axis angular velocity sensor; in other examples, you can also choose three vertical angular velocity sensors for vertical installation, which is equivalent to a three-axis angular velocity sensor. It is also possible to select three single-axis accelerometers for vertical installation, which is equivalent to a three-axis accelerometer.
  • the number of motion sensors is chosen to be two.
  • a partial restriction such as limiting breathing monitoring only when the human body is stationary, then only one angular velocity sensor may be selected.
  • the motion sensor 101 and the motion sensor 102 are respectively placed at the right rib arch and the left rib arch of the measuring object for measuring the angular motion at the left rib arch and the right rib arch.
  • the rib arch means that the ribs of the 8th to 10th are not directly connected to the sternum, but are formed by the connection of the costal cartilage and the upper rib.
  • the angular movement of the measurement site indicating the respiratory motion will appear at the rib arch, so this is selected as the measurement site.
  • the rib arch is preferably used as a measuring portion for mounting the motion sensor, and is a mounting position applicable to various conditions (such as different body types, different breathing modes, etc.).
  • other parts may be selected as the measurement part for installing the motion sensor on the premise of adding some restriction conditions, for example, when measuring chest breathing, the chest may be selected as the measurement site.
  • selecting two motion sensors for measurement can reduce the motion disturbance of the human body, and the principle of reducing motion interference is as follows.
  • FIG. 3 is a schematic diagram of the sensor coordinate system of the motion sensor 101 .
  • the broken line 301 is the direction of the right rib arch of the human body.
  • the sensor coordinate system includes x, y, Z axis.
  • the sensitive axis (x-axis) of the motion sensor is mounted in the specified direction, the specified direction is such that the angular velocity vector sensed by the motion sensor is parallel and in the same direction as its sensitive axis.
  • an angular movement of the measurement site indicating the respiratory motion will appear at the rib arch.
  • the respiratory angular velocity is substantially parallel and in the same direction as the x-axis of the motion sensor 101, the value of which varies with the breath, and may be positive or negative; the projection of the respiratory angular velocity within the sensor coordinate system of the motion sensor 101 Mainly on the x-axis, there is essentially no projection on the y and z axes; at the left rib arch, the respiratory angular velocity has the same characteristics. However, when the value of the respiratory angular velocity at the right rib arch is positive, the value of the respiratory angular velocity at the left rib arch is negative; when the value of the respiratory angular velocity at the right rib arch is negative, the respiratory angular velocity at the left rib arch is The value is positive.
  • the projections of the respiratory angular velocities respectively sensed by the motion sensors 101, 102 satisfy the following correspondence: the motion sensor 101
  • the projection values of the x-axis and the respiratory angular velocity sensitive to the x-axis of the motion sensor 102 are equal in magnitude and opposite in sign.
  • the motion interference angular velocity is sensitive to both motion sensors.
  • the x, y, and z axes of the motion sensors 101 and 102 are respectively sensitive to the projection of the motion interference angular velocity in the sensor coordinate system thereof, and the motion sensor 101, 102 respectively, the sensitive angular velocity projections satisfy the following correspondence relationship: the three-dimensional vector of the sensitive angular velocity of the motion sensor 102 is equal to the three-dimensional vector of the interference angular velocity sensitive to the motion sensor 101 after the left multiplied by a three-dimensional square matrix, and the three-dimensional square matrix is The attitude transformation matrix of the sensor coordinate system of the motion sensor 102 to the sensor coordinate system of the motion sensor 101.
  • the correspondence between the respiratory angular velocity sensitive to the two motion sensors and the interference angular velocity sensitive to the two motion sensors are not the same.
  • the vector equations can be established and the respiratory angular velocity can be solved.
  • the interference angular velocity is separated, that is, the influence of motion interference is removed.
  • the vector equations are as follows:
  • ⁇ a is an angular velocity vector output by the motion sensor 101
  • ⁇ b is an angular velocity vector output by the motion sensor 102
  • the angular velocity vector output by the motion sensor includes the true respiratory angular velocity and the interference angular velocity.
  • I 3 is a three-dimensional unit square matrix.
  • the motion sensor may use only one, for example, an angular velocity sensor.
  • the processing device 103 further includes an axial correction unit 1032 for performing axial correction on the motion sensors 101, 102.
  • an axial correction unit 1032 for performing axial correction on the motion sensors 101, 102.
  • the motion sensor employed in the embodiment is a six-degree-of-freedom inertial sensor integrated with a three-axis acceleration sensor, the motion sensors 101, 102 are also used to output a gravity acceleration vector of the measurement site.
  • the axial correction unit 1032 When the axial correction unit 1032 performs axial correction on the motion sensors 101 and 102, specifically, the axial correction unit 1032 establishes a virtual coordinate system for the motion sensor, and solves the sensor coordinate system and the virtual coordinate system of the motion sensor according to the gravity acceleration vector. Correspondence between them.
  • the processing device 103 extracts the respiratory angular velocity from the angular velocity vector: the angular velocity vector is projected into the virtual coordinate system according to the correspondence relationship, and the respiratory angular velocity is extracted from the projected value according to the solution formula.
  • the detected angular velocity vector is roughly projected only to the x' axis of the virtual coordinate system, and the z' axis of the virtual coordinate system is parallel or coincident with the z axis of the sensor coordinate system, and the virtual coordinate system is The y' axis is determined by its x', z' axis and right hand rule. In general, the x' axis of the virtual coordinate system runs generally parallel to the rib arch where it is located and points obliquely upward.
  • the axial correction unit 1032 then obtains the gravity acceleration projection value (ie, the gravity acceleration vector) of the measurement site from the acceleration sensor integrated on the motion sensor, and accordingly calculates the attitude transformation between the sensor coordinate system and its corresponding virtual coordinate system. matrix.
  • Attitude transformation matrix between the sensor coordinate system of motion sensor 101 and its corresponding virtual coordinate system Attitude transformation matrix between the sensor coordinate system of motion sensor 102 and its corresponding virtual coordinate system Calculate the attitude transformation matrix between two virtual coordinate systems
  • ⁇ a is an axial correction angle of the angular velocity sensor of the motion sensor 101;
  • ⁇ b is an axial correction angle of the angular velocity sensor of the motion sensor 102;
  • An axial correction matrix of the angular velocity sensor of the motion sensor 101 that is, a pose transformation matrix between the sensor coordinate system of the motion sensor 101 and a virtual coordinate system corresponding thereto;
  • An axial correction matrix of the angular velocity sensor of the motion sensor 102 that is, an attitude transformation matrix between the sensor coordinate system of the motion sensor 102 and a virtual coordinate system corresponding thereto;
  • ⁇ a is an angular velocity projection in the sensor coordinate system of the motion sensor 101;
  • ⁇ b is an angular velocity projection in the sensor coordinate system of the motion sensor 102;
  • ⁇ a′ is an angular velocity projection in a virtual coordinate system corresponding to the sensor coordinate system of the motion sensor 101;
  • ⁇ b′ is an angular velocity projection in a virtual coordinate system corresponding to the sensor coordinate system of the motion sensor 102.
  • Equation (8) is an attitude transformation matrix between the sensor coordinate system 101 and its corresponding virtual coordinate system
  • Equation (9) is an attitude transformation matrix between the sensor coordinate system 102 and its corresponding virtual coordinate system
  • Equation (10) The pose transformation matrix between the two virtual coordinate systems corresponding to the sensor coordinate systems 101 and 102, respectively.
  • the processing device 103 When the processing device 103 obtains the respiratory wave according to the respiratory angular velocity, the processing device 103 respectively projects the angular velocity vector into the virtual coordinate system according to the equations (11) and (12), and extracts the respiratory angular velocity from the projection value according to the equation (2). And then get the respiratory wave according to the respiratory angular velocity; at this time in the formula (2) To be calculated using equation (10) Instead, ⁇ a is replaced by ⁇ a′ calculated in equation (11), and ⁇ b is replaced by ⁇ b′ calculated in equation (12).
  • the processing device 103 further includes an aligning unit 1031 for aligning the motion sensor. Aligning the motion sensor means calculating the attitude transformation matrix based on the actual placement relationship between the motion sensor 101 and the motion sensor 102.
  • the motion sensor used in the embodiment is a six-degree-of-freedom inertial sensor integrated with a three-axis acceleration sensor
  • the motion sensors 101 and 102 are also used to output a gravity acceleration vector and/or a motion acceleration vector of the measurement site, and the aligning unit 1031
  • the attitude transformation matrix of the coordinate system of one of the motion sensors to the coordinate system of the other motion sensor is solved according to the gravity acceleration vector and/or the motion acceleration vector.
  • the gravity acceleration sampling value may be used to calculate the attitude transformation matrix of the coordinate system of one motion sensor to the coordinate system of another motion sensor; when measuring the motion of the object, an acceleration vector may be used. To solve the attitude transformation matrix of the coordinate system of one motion sensor to the coordinate system of another motion sensor.
  • the alignment formula is as follows:
  • f ax (1) is the alignment time period
  • the angular velocity sensor of the motion sensor 101 is output on the x-axis of the first sampling point, and so on;
  • f bx (1) is the alignment time period, the angular velocity sensor of the motion sensor 102 is output on the x-axis of the first sampling point, and so on;
  • F a is a matrix formed by vectors of acceleration sensor outputs of the motion sensor 101 in a time period
  • F b is a matrix formed by vectors of acceleration sensor outputs of the motion sensor 102 during the alignment period;
  • the attitude transformation matrix of the angular velocity sensor coordinate system of the motion sensor 102 to the angular velocity sensor coordinate system of the motion sensor 101 is the attitude transformation matrix of the angular velocity sensor coordinate system of the motion sensor 102 to the angular velocity sensor coordinate system of the motion sensor 101.
  • the motion sensor may not be aligned.
  • the attitude transformation matrix between the two motion sensors It can be replaced with a specified constant matrix.
  • Strict correspondence therefore, will have a certain impact on the accuracy of the measurement results.
  • the processing device 103 does not perform axial correction on the motion sensor, and uses the equation (2) to extract the respiratory angular velocity from the angular velocity vector, and the angular velocity in the equation (2) is the sensor coordinate.
  • the attitude transformation matrix is the attitude transformation matrix between the two sensor coordinate systems; when the sensitive axis of the motion sensor is not installed in the specified direction, the processing device 103 needs to perform axial correction on the motion sensor, using the formula (2)
  • the angular velocity in equation (2) is the angular velocity in the virtual coordinate system corresponding to the sensor coordinate system, and the attitude transformation matrix is the attitude transformation matrix between the two virtual coordinate systems.
  • the respiratory monitoring device may select to align and/or axially correct the motion sensor during a certain period of time after the power is turned on, for example, for a period of half a second to several seconds.
  • the alignment and axial correction may be once sexual and can be performed simultaneously, but in various embodiments, the alignment and axial correction functions can be selectively used depending on the actual monitoring situation.
  • the motion sensor since the motion sensor is required to acquire the gravity acceleration vector or the motion acceleration vector, after the motion sensor is installed on the measurement part of the measurement object, it is usually required that the measurement object is standing or In the walking state, after the end of the alignment and axial correction, when the respiratory monitoring is performed, the measuring object can be in any posture, such as lying down.
  • the embodiment further provides a respiratory monitoring method, including the following steps:
  • Step 401 At least one motion sensor is used to sense an angular motion of the measurement portion capable of indicating the respiratory motion, and output an angular velocity vector of the measurement portion.
  • the motion sensor is used for measurement in step 401.
  • the motion sensor is a six-degree-of-freedom inertial sensor, and the six-degree-of-freedom inertial sensor is integrated with an angular velocity sensor and an acceleration sensor for respectively obtaining an angular velocity vector and a gravity acceleration vector and a motion acceleration vector of the measurement site.
  • the number of motion sensors used is two, respectively for measuring the left rib arch And angular motion at the right rib arch, in other instances, if some restrictions are added, such as limiting breathing monitoring only when the body is stationary, then only one angular velocity sensor may be selected.
  • Step 402 The aligning step is specifically: solving the attitude transformation matrix of the coordinate system of one of the motion sensors to the coordinate system of the other motion sensor according to the gravity acceleration vector and/or the motion acceleration vector.
  • Step 403 The axial correction step is specifically: establishing a virtual coordinate system for each of the two motion sensors, and respectively calculating a correspondence relationship between the sensor coordinate system and the virtual coordinate system of the motion sensor according to the gravity acceleration vector.
  • Step 404 Extract the respiratory angular velocity from the obtained angular velocity vector.
  • the step of extracting the angular velocity of the breath from the angular velocity vector is specifically: extracting the angular velocity of the breath by using the following formula:
  • ⁇ a is the angular velocity vector of one of the motion sensor outputs
  • ⁇ b is the angular velocity vector of the other motion sensor output.
  • the angular velocity of the breath that is sensitive to one of the motion sensors
  • I 3 is a three-dimensional unit square matrix; the specified direction is such that the angular velocity vector sensed by the motion sensor is parallel and in the same direction as its sensitive axis.
  • step 404 Use a constant matrix.
  • step 404 is specifically: projecting the angular velocity vector into the virtual coordinate system according to the above correspondence, and then according to the above formula The respiratory angular velocity is extracted from the projection value.
  • the step 404 is specifically: calculating the virtual coordinate of one of the motion sensors to another according to the posture transformation matrix of the coordinate system of one of the motion sensors calculated to the coordinate system of the other motion sensor The attitude transformation matrix of the virtual coordinates of the motion sensor, and further extracts the respiratory angular velocity from the respiratory angular velocity vector according to the above solution formula.
  • Step 405 Obtain a respiratory wave according to the respiratory angular velocity.
  • the calculation method for obtaining the respiratory wave according to the respiratory angular velocity is:
  • the breathing monitoring method provided in this embodiment is consistent with the principle of the above breathing monitoring device, and details are not described herein.
  • the embodiment further provides a respiratory monitoring device, including a receiving unit 501, a calculating unit 502, an aligning unit 503, and an axial correcting unit 504.
  • the receiving unit 501 is configured to receive an angular velocity vector of the measurement object measurement portion output by the motion sensor, and the angular velocity vector is output after the motion sensor senses the angular motion of the measurement portion capable of indicating the respiratory motion.
  • the calculation unit 502 is configured to extract a respiratory angular velocity from the angular velocity vector and obtain a respiratory wave according to the respiratory angular velocity.
  • the angular velocity vectors output by the two motion sensors are the angular velocity vectors of the angular motion at the left rib arch and the right rib arch of the measurement object, respectively.
  • the calculation unit extracts the angular velocity of the breath from the angular velocity vector using the following solution formula:
  • ⁇ a is the angular velocity vector of one of the motion sensor outputs
  • ⁇ b is the angular velocity vector of the other motion sensor output.
  • the angular velocity of the breath that is sensitive to one of the motion sensors
  • I 3 is a three-dimensional unit square matrix; the specified direction is such that the angular velocity vector sensed by the motion sensor is parallel and in the same direction as its sensitive axis.
  • the receiving unit 501 is further configured to receive a gravity acceleration vector output by the motion sensor.
  • the respiratory monitoring device further includes an axial correction unit 504 for performing axial correction on the motion sensor.
  • the axial correction unit 504 establishes a virtual coordinate system for the motion sensor, and calculates a sensor coordinate of the motion sensor according to the gravity acceleration vector. The correspondence between the system and the virtual coordinate system.
  • the calculating unit 502 is configured to calculate the virtual state of the corresponding one of the motion sensors according to the posture transformation matrix of the coordinate system of one of the motion sensors calculated to the coordinate system of the other motion sensor.
  • the coordinates are transformed into a pose transformation matrix of the virtual coordinate system of another motion sensor, and the respiratory angular velocity is further extracted from the respiratory angular velocity vector according to the above solution formula.
  • the receiving unit 501 is further configured to receive a gravity acceleration vector and/or a motion acceleration vector output by the motion sensor.
  • the respiratory monitoring device further includes an aligning unit 503 for aligning the motion sensor.
  • the aligning unit 503 solves the coordinate system of one of the motion sensors to another motion according to the gravity acceleration vector and/or the motion acceleration vector.
  • the attitude transformation matrix of the coordinate system of the sensor is further configured to align the coordinate system of the sensor.
  • the calculating unit 502 extracts the respiratory angular velocity from the angular velocity vector: the calculating unit 502 projects the angular velocity vector into the virtual coordinate system according to the above correspondence, and then according to the above formula The respiratory angular velocity is extracted from the projection value.
  • the respiratory monitoring device provided in this embodiment is consistent with the principle of the above-mentioned respiratory monitoring device, and details are not described herein.
  • the respiratory monitoring device, method and device provided by the embodiments of the present application use the angular movement of the measuring part which can indicate the breathing movement at the junction of the chest and the abdomen when the human body breathes, and obtain the angular velocity vector through the motion sensor, thereby obtaining the breathing. wave.
  • two motion sensors placed at the right rib arch and the left rib arch of the measuring object are used to reduce the influence of motion interference.
  • the installation of the motion sensor is more convenient and the measurement result is more accurate.
  • the steps may be completed by a program to instruct related hardware, and the program may be stored in a computer readable storage medium, and the storage medium may include: a read only memory, a random access memory, a magnetic disk or an optical disk, and the like.

Abstract

一种呼吸监测设备、方法和装置,呼吸监测设备包括至少一个运动传感器(101,102)和处理装置(103)。运动传感器(101,102)至少用于感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量。处理装置(103)与运动传感器(101,102)连接,用于从角速度矢量中提取呼吸角速度,并根据呼吸角速度得到呼吸波。该呼吸监测设备、方法和装置,基于测量部位会出现能够指示呼吸运动的测量部位角速度,通过运动传感器(101,102)得到该角速度,并输出测量部位的角速度矢量,之后再从该角速度矢量中提取呼吸角速度,并根据呼吸角速度得到呼吸波。

Description

一种呼吸监测设备、方法和装置 技术领域
本申请涉及医疗器械领域,具体涉及一种呼吸监测设备、方法和装置。
背景技术
目前,对人体进行呼吸运动监测的技术方案主要有以下几类:
(1)气流式方案
该方案中,需要将设置有传感器的面罩戴于测量对象的面部,传感器用于感应测量对象呼吸时产生的气流,从而检测得到呼吸波。气流式方案的缺陷在于需在测量对象的面部放置设备,给测量对象的日常生活带来不便。
(2)压电式方案
该方案中,在测量对象胸部绑定一个压电传感器,在测量对象呼吸时,由于胸廓的收缩与扩张,导致施加在压电传感器上的压力发生变化,从而检测得到呼吸波。压电式方案的缺陷在于,需要在测量对象的躯干使用系带将压电传感器进行固定,会给测量对象带来一定的不适感。
(3)加速度方案
该方案中,在测量对象的前胸和后背各放置一个加速度传感器,在测量对象呼吸时,由于胸廓的收缩与扩张,导致加速度传感器敏感到的加速度发生变化,从而检测得到呼吸波。加速度方案的缺陷在于,对于测量对象身体运动的抗干扰性能较差,导致测量结果的准确性较差。
发明内容
根据本申请的第一方面,本申请提供了一种呼吸监测设备,包括:
至少一个运动传感器,所述运动传感器至少用于感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量;
处理装置,其与运动传感器连接,用于从所述角速度矢量中提取呼吸角速度,并根据所述呼吸角速度得到呼吸波。
根据本申请的第二方面,本申请提供了一种呼吸监测方法,包括:
采用至少一个运动传感器感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量;
从所述角速度矢量中提取呼吸角速度,并根据所述呼吸角速度得到呼吸波。
根据本申请的第三方面,本申请提供了一种呼吸监测装置,包括:
接收单元,用于接收运动传感器输出的测量对象测量部位的角速度矢量,所述角速度矢量为运动传感器感应到能够指示呼吸运动的测量部位的角运动后输出的;
计算单元,用于从所述角速度矢量中提取呼吸角速度以及根据所述呼吸角速度得到呼吸波。
本申请提供的一种呼吸监测设备、方法和装置,基于测量部位会出现能够指示呼吸运动的测量部位角运动,通过运动传感器敏感到该角运动,输出测量部位的角速度矢量,之后再从该角速度矢量中提取呼吸角速度,并根据呼吸角速度得到呼吸波。
附图说明
图1为本申请一种实施例中呼吸监测设备的结构示意图;
图2为本申请一种实施例呼吸监测设备中两个运动传感器的安装示意图;
图3为本申请一种实施例呼吸监测设备中运动传感器的坐标系示意图;
图4为本申请一种实施例中呼吸监测方法的流程示意图;
图5为本申请一种实施例中呼吸监测装置的模块示意图。
具体实施方式
本申请的发明构思在于:胸部、腹部由于柔软程度不同,在人体呼吸时,会出现不同程度的起伏,因此,在胸、腹交界处,会出现能够指示呼吸运动的测量部位角运动,使用能够敏感到该角运动的运动传感器就可以测量呼吸运动。
下面通过具体实施方式结合附图对本申请作进一步详细说明。
请参考图1,本实施例提供了一种呼吸监测设备,包括运动传感器101、102和处理装置103。
运动传感器101、102至少用于感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量。
处理装置103与运动传感器101、102连接,用于从角速度矢量中提取呼吸角速度,并根据呼吸角速度得到呼吸波。
在具体实施例中,呼吸监测设备还可以包括显示器104,显示器104与处理装置103连接,用于对处理装置103得到的呼吸波进行显示。
本实施例中,优选的,运动传感器选择六自由度惯性传感器,六自由度惯性传感器集成有三轴角速度传感器和三轴加速度传感器,分别用于输出测量部位的角速度矢量和重力加速度矢量、运动加速度矢量,在其他实施例中,若不使用对准或轴向校正功能,则可以不需要加速度传 感器。
本实施例中,六自由度惯性传感器集成的是三轴角速度传感器,在其他实施例中,如果增加部分限制条件,例如限制角速度传感器敏感轴的安装朝向,或者限制呼吸监测仅在人体静止时进行,则可以选择轴向数更少的角速度传感器,如单轴角速度传感器;在其他实例中,也可以选择三个单轴角速度传感器两两垂直安装,则可等效于一个三轴角速度传感器。也可以选择三个单轴加速度传感器两两垂直安装,则可等效于一个三轴加速度传感器。
优选的,运动传感器的数量选择两个,在其他实例中,如果增加部分限制条件,例如限制呼吸监测仅在人体静止时进行,则可以选择仅使用一个角速度传感器。
如图2所示,运动传感器101和运动传感器102分别放置在测量对象的右侧肋弓和左侧肋弓处,用于测量左侧肋弓和右侧肋弓处的角运动。肋弓是指第8-10对肋骨不直接与胸骨相连,而是借助肋软骨和上位肋骨连接形成的骨骼组织。人体呼吸时,肋弓处将会出现能够指示呼吸运动的测量部位角运动,因此,选择此处作为测量部位。
当然,本实施例中优选肋弓作为测量部位,用于安装运动传感器,是多种条件下(比如不同体型、不同呼吸方式等)均能够适用的安装位置。在其他实施例中,在增加部分限制条件的前提下,也可以选择其他部位作为测量部位,用于安装运动传感器,例如在测量胸式呼吸时,可选择胸部作为测量部位。
本实施例中,选择两个运动传感器进行测量可以起到降低人体运动干扰的作用,其降低运动干扰的原理如下。
请参考图3,为运动传感器101的传感器坐标系示意图,虚线301为人体右侧肋弓的走向,由于运动传感器101内集成的是三轴角速度传感器,因此,其传感器坐标系包括x、y、z轴。运动传感器的敏感轴(x轴)按照指定方向安装时,该指定方向为使得运动传感器感应到的角速度矢量与其敏感轴平行且同向的方向。人体呼吸时,肋弓处将会出现能够指示呼吸运动的测量部位角运动。在右侧肋弓处,呼吸角速度大致与运动传感器101的x轴平行且同向,其数值跟随呼吸而变化,并且可以为正数或负数;呼吸角速度在运动传感器101的传感器坐标系内的投影主要是在x轴上,在y、z轴上基本不存在投影;在左侧肋弓处,呼吸角速度具有相同的特性。然而,当右侧肋弓处呼吸角速度的数值为正时,左侧肋弓处呼吸角速度的数值为负;当右侧肋弓处呼吸角速度的数值为负时,左侧肋弓处呼吸角速度的数值为正。即,运动传感器101、102分别敏感到的呼吸角速度的投影满足以下对应关系:运动传感器101的 x轴与运动传感器102的x轴所敏感到的呼吸角速度的投影数值大小相等、符号相反。
人体运动时,运动干扰角速度会同时被两只运动传感器所敏感到,运动传感器101和102的x、y、z轴分别敏感到运动干扰角速度在其传感器坐标系内的投影,且运动传感器101、102分别敏感到的干扰角速度投影之间满足以下对应关系:运动传感器102敏感的干扰角速度三维矢量在左乘一个三维方阵后,与运动传感器101敏感的干扰角速度三维矢量相等,该三维方阵即为运动传感器102的传感器坐标系至运动传感器101的传感器坐标系的姿态变换矩阵。
两只运动传感器所敏感到的呼吸角速度之间的对应关系和两只运动传感器所敏感到的干扰角速度之间的对应关系并不相同,可以据此建立矢量方程组并求解呼吸角速度,将其与干扰角速度分离开,即去除了运动干扰的影响,该矢量方程组如下:
Figure PCTCN2014091904-appb-000001
其中,
ωa为运动传感器101输出的角速度矢量;
ωb为运动传感器102输出的角速度矢量;
Figure PCTCN2014091904-appb-000002
为运动传感器101所敏感到的呼吸角速度;
Figure PCTCN2014091904-appb-000003
为运动传感器102所敏感到的呼吸角速度;
Figure PCTCN2014091904-appb-000004
为运动传感器101所敏感到的干扰角速度;
Figure PCTCN2014091904-appb-000005
为运动传感器102所敏感到的干扰角速度;
Figure PCTCN2014091904-appb-000006
为运动传感器102坐标系至运动传感器101坐标系的姿态变换矩阵。
需要说明的是运动传感器输出的角速度矢量中包括真实的呼吸角速度和干扰角速度。
因此,呼吸角速度的解算结果如下:
Figure PCTCN2014091904-appb-000007
其中,I3为三维单位方阵。
通过式(2)可知,在呼吸角速度
Figure PCTCN2014091904-appb-000008
的解算结果中已不存在干扰角速度,即去除了运动干扰的影响。当然,在其他实施例中,也可以解算呼吸角速度
Figure PCTCN2014091904-appb-000009
需要说明的是,在某些实施例中,当测量对象处于静态或小幅度运动时,运动干扰较小,运动传感器可以只使用一个,例如使用一只角速度传感器。
通常,在安装运动传感器时,需要指定其角速度传感器坐标系的x轴大致平行或垂直于肋弓走向,在操作上更加繁琐,且人工操作也很难保证x轴指向的准确性,会给测量结果带来误差。
进一步的,在本实施例中,处理装置103还包括轴向校正单元1032,用于对运动传感器101、102进行轴向校正。通过对运动传感器进行轴向校正,使得运动传感器在安装时,其安装轴向可以是任意指向,以保证操作的简易性。
由于本实施例中采用的运动传感器为集成有三轴加速度传感器的六自由度惯性传感器,因此,运动传感器101、102还用于输出测量部位的重力加速度矢量。
轴向校正单元1032对运动传感器101、102进行轴向校正时,具体为:轴向校正单元1032对运动传感器建立虚拟坐标系,并根据重力加速度矢量解算运动传感器的传感器坐标系与虚拟坐标系之间的对应关系。
处理装置103从角速度矢量中提取呼吸角速度时:根据该对应关系将角速度矢量投影到虚拟坐标系中,再根据该解算公式从其投影值中提取呼吸角速度。
对某个运动传感器建立虚拟坐标系时,使检测到的角速度矢量大致只投影到虚拟坐标系的x’轴,虚拟坐标系的z’轴与传感器坐标系的z轴平行或者重合,虚拟坐标系的y’轴根据其x’、z’轴和右手定则确定。一般来说,虚拟坐标系的x’轴大致平行于所在处的肋弓走向并指向斜上方。轴向校正单元1032再从集成在运动传感器上的加速度传感器获取测量部位的重力加速度投影值(即重力加速度矢量),并据此解算该传感器坐标系与其对应的虚拟坐标系之间的姿态变换矩阵。
在具体实施例中,根据两个传感器坐标系之间姿态变换矩阵
Figure PCTCN2014091904-appb-000010
运动传感器101的传感器坐标系和与其对应的虚拟坐标系之间的姿态变换矩阵
Figure PCTCN2014091904-appb-000011
运动传感器102的传感器坐标系和与其对应的虚拟坐标系之间的姿态变换矩阵
Figure PCTCN2014091904-appb-000012
计算两个虚拟坐标系之间的姿态变换矩阵
Figure PCTCN2014091904-appb-000013
对运动传感器进行轴向校正的算式如下:
Figure PCTCN2014091904-appb-000014
Figure PCTCN2014091904-appb-000015
Figure PCTCN2014091904-appb-000016
Figure PCTCN2014091904-appb-000017
Figure PCTCN2014091904-appb-000018
Figure PCTCN2014091904-appb-000019
Figure PCTCN2014091904-appb-000020
其中,
Figure PCTCN2014091904-appb-000021
为轴向校正时间段内运动传感器101的加速度传感器在x轴输出的矢量均值,依此类推;
θa为运动传感器101的角速度传感器的轴向校正角度;
θb为运动传感器102的角速度传感器的轴向校正角度;
Figure PCTCN2014091904-appb-000022
为运动传感器101的角速度传感器的轴向校正矩阵,即运动传感器101的传感器坐标系和与其对应的虚拟坐标系之间的姿态变换矩阵;
Figure PCTCN2014091904-appb-000023
为运动传感器102的角速度传感器的轴向校正矩阵,即运动传感器102的传感器坐标系和与其对应的虚拟坐标系之间的姿态变换矩阵;
Figure PCTCN2014091904-appb-000024
为两个虚拟坐标系之间的姿态变换矩阵;
ωa为运动传感器101的传感器坐标系内的角速度投影;
ωb为运动传感器102的传感器坐标系内的角速度投影;
ωa′为运动传感器101的传感器坐标系对应的虚拟坐标系内的角速度投影;
ωb′为运动传感器102的传感器坐标系对应的虚拟坐标系内的角速度投影。
式(8)为传感器坐标系101和与其对应的虚拟坐标系之间的姿态变换矩阵,式(9)为传感器坐标系102和与其对应的虚拟坐标系之间的姿态变换矩阵,式(10)为传感器坐标系101、102分别对应的两个虚拟坐标系之间的姿态变换矩阵。
处理装置103在根据呼吸角速度得到呼吸波时,处理装置103分别根据式(11)、式(12)将角速度矢量投影到虚拟坐标系中,再根据式(2)从其投影值中提取呼吸角速度,再根据呼吸角速度得到呼吸波;此时式(2)中的
Figure PCTCN2014091904-appb-000025
要用式(10)计算出的
Figure PCTCN2014091904-appb-000026
代替、ωa要用式(11)中计算出的ωa′代替、ωb要用式(12)中计算出的ωb′代替。
为了计算两个传感器坐标系之间姿态变换矩阵
Figure PCTCN2014091904-appb-000027
本实施例中,处理装置103还包括对准单元1031,用于对运动传感器进行对准。对运动传感器进行对准是指,根据运动传感器101和运动传感器102之间的实 际放置关系,计算姿态变换矩阵
Figure PCTCN2014091904-appb-000028
由于本实施例中采用的运动传感器为集成有三轴加速度传感器的六自由度惯性传感器,因此,运动传感器101、102还用于输出测量部位的重力加速度矢量和/或运动加速度矢量,对准单元1031根据该重力加速度矢量和/或运动加速度矢量解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵。
需要说明的是,在测量对象静止时,可以采用重力加速度采样值来解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵;在测量对象运动时,可以采用加速度矢量来解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵。
在具体实施例中,对准算式如下:
Figure PCTCN2014091904-appb-000029
Figure PCTCN2014091904-appb-000030
Figure PCTCN2014091904-appb-000031
其中,fax(1)为对准时间段内,运动传感器101的角速度传感器在第一个采样点的x轴输出,依此类推;
fbx(1)为对准时间段内,运动传感器102的角速度传感器在第一个采样点的x轴输出,依此类推;
Fa为对准时间段内运动传感器101的加速度传感器输出的矢量所构成的矩阵;
Fb为对准时间段内运动传感器102的加速度传感器输出的矢量所构成的矩阵;
Figure PCTCN2014091904-appb-000032
为运动传感器102的角速度传感器坐标系至运动传感器101的角速度传感器坐标系的姿态变换矩阵。
另外,在运动传感器的敏感轴不按指定方向安装时,也可以不对运动传感器进行对准,这时,两个运动传感器之间的姿态变换矩阵
Figure PCTCN2014091904-appb-000033
可以采用指定的常值矩阵替代。然而,由于在对运动传感器101、102的放置操作中,难以保证两者的位置关系与相应的姿态变换矩阵
Figure PCTCN2014091904-appb-000034
严格对应,因此,会给测量结果的准确性带来一定的影响。
由上可知,当运动传感器的敏感轴按指定方向安装时,处理装置103不对运动传感器进行轴向校正,采用式(2)从角速度矢量中提取呼吸角速度,式(2)中角速度均为传感器坐标系内的角速度,姿态变换矩阵为两个传感器坐标系之间的姿态变换矩阵;当运动传感器的敏感轴不按指定方向安装时,处理装置103需要对运动传感器进行轴向校正,采用式(2)从角速度矢量中提取呼吸角速度时,式(2)中角速度为传感器坐标系分别对应的虚拟坐标系内的角速度,姿态变换矩阵为两个虚拟坐标系之间的姿态变换矩阵。
在具体实施例中,呼吸监测设备可以选择在开机后的某个时间段内,例如持续半秒至数秒,对运动传感器进行对准和/或轴向校正,对准和轴向校正可以是一次性的,且可以同时进行,但是在不同的实施例中,对准和轴向校正功能可以根据实际监测情况有选择的使用。
另需要说明的是,在对准和轴向校正过程中,由于需要运动传感器获取重力加速度矢量或运动加速度矢量,因此,在运动传感器安装在测量对象的测量部位后,通常需要测量对象处于站立或走动状态下,在对准和轴向校正结束后,进行呼吸监测时,测量对象则可以处于任意姿势,例如躺卧。
请参考图4,对应于上述呼吸监测设备,本实施例还提供了一种呼吸监测方法,包括下面步骤:
步骤401:采用至少一个运动传感器感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量。在具体实施例中,由于后续对运动传感器进行对准和轴向校正的步骤需要用到测量部位的重力加速度矢量和/或运动加速度矢量,因此,优选的,步骤401中还采用运动传感器得到测量部位的重力加速度矢量和运动加速度矢量。进一步,运动传感器为六自由度惯性传感器,六自由度惯性传感器集成有角速度传感器和加速度传感器,分别用于得到测量部位的角速度矢量和重力加速度矢量、运动加速度矢量。
优选的,采用的运动传感器的数量为两个,分别用于测量左侧肋弓 和右侧肋弓处的角运动,在其他实例中,如果增加部分限制条件,例如限制呼吸监测仅在人体静止时进行,则可以选择仅使用一个角速度传感器。
步骤402:对准步骤,具体为:根据重力加速度矢量和/或运动加速度矢量解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵。
步骤403:轴向校正步骤,具体为:对两个运动传感器分别建立虚拟坐标系,并根据重力加速度矢量分别解算运动传感器的传感器坐标系与虚拟坐标系之间的对应关系。
步骤404:从得到的角速度矢量中提取呼吸角速度。
由于本实施例中,运动传感器的数量为两个,当运动传感器的敏感轴按指定方向安装时,从角速度矢量中提取呼吸角速度的步骤,具体为:采用下面的解算公式提取呼吸角速度:
Figure PCTCN2014091904-appb-000035
其中,ωa为其中一个运动传感器输出的角速度矢量,ωb为另一个运动传感器输出的角速度矢量,
Figure PCTCN2014091904-appb-000036
为其中一个运动传感器所敏感到的呼吸角速度,
Figure PCTCN2014091904-appb-000037
为其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵,I3为三维单位方阵;指定方向为使得运动传感器感应到的角速度矢量与其敏感轴平行且同向的方向。
具体的,步骤404中,
Figure PCTCN2014091904-appb-000038
采用常值矩阵。
在运动传感器的敏感轴不按指定方向安装时,在执行轴向校正步骤的情况下,步骤404具体为:根据上述对应关系将角速度矢量投影到虚拟坐标系中,再根据上述解算公式从其投影值中提取呼吸角速度。
在执行对准步骤的情况下,步骤404具体为:根据解算出的其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵计算对应的其中一个运动传感器的虚拟坐标至另一个运动传感器的虚拟坐标的姿态变换矩阵,并进一步根据上述解算公式从呼吸角速度矢量中提取呼吸角速度。
步骤405:根据呼吸角速度得到呼吸波。
根据呼吸角速度得到呼吸波的计算方法为:
1、对呼吸角速度进行积分
Figure PCTCN2014091904-appb-000039
式中,
Figure PCTCN2014091904-appb-000040
为运动传感器101所敏感到的呼吸角速度的x轴的输出,Ω为呼吸角位置。
在其他实施例中,若使用一个单轴或一个三轴角速度传感器在限定安装轴向的情况下进行静态呼吸监测,则用该单轴角速度传感器输出或三轴角速度传感器的输出的x轴输出取代式(13)中的
Figure PCTCN2014091904-appb-000041
即可。
在其他实施例中,若使用一个三轴角速度传感器在不限定安装轴向的情况下进行静态呼吸监测,则对其进行轴向校正后,用其虚拟坐标系内的x轴输出取代式(13)中的
Figure PCTCN2014091904-appb-000042
即可。
2、对呼吸角位置进行高、低通滤波,得到滤除干扰后的呼吸角位置,即呼吸波。
本实施例提供的呼吸监测方法与上述呼吸监测设备的原理一致,此处不再进行赘述。
请参考图5,相应的,本实施例还提供了一种呼吸监测装置,包括接收单元501、计算单元502、对准单元503和轴向校正单元504。
接收单元501用于接收运动传感器输出的测量对象测量部位的角速度矢量,该角速度矢量为运动传感器感应到能够指示呼吸运动的测量部位的角运动后输出的。
计算单元502用于从角速度矢量中提取呼吸角速度以及根据该呼吸角速度得到呼吸波。
在具体实施例中,两个运动传感器输出的角速度矢量分别为测量对象的左侧肋弓和右侧肋弓处的角运动的角速度矢量。当运动传感器的敏感轴按指定方向安装时,计算单元采用下面的解算公式从角速度矢量中提取呼吸角速度:
Figure PCTCN2014091904-appb-000043
其中,ωa为其中一个运动传感器输出的角速度矢量,ωb为另一个运动传感器输出的角速度矢量,
Figure PCTCN2014091904-appb-000044
为其中一个运动传感器所敏感到的 呼吸角速度,
Figure PCTCN2014091904-appb-000045
为其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵,I3为三维单位方阵;指定方向为使得运动传感器感应到的角速度矢量与其敏感轴平行且同向的方向。
在具体实施例中,接收单元501还用于接收运动传感器输出的重力加速度矢量。呼吸监测装置还包括轴向校正单元504,用于对运动传感器进行轴向校正,具体为:轴向校正单元504对运动传感器建立虚拟坐标系,并根据该重力加速度矢量解算运动传感器的传感器坐标系与虚拟坐标系之间的对应关系。
在运动传感器的敏感轴不按指定方向安装时,计算单元502用于根据解算出的其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵计算对应的其中一个运动传感器的虚拟坐标系至另一个运动传感器的虚拟坐标系的姿态变换矩阵,并进一步根据上述解算公式从呼吸角速度矢量中提取呼吸角速度。
在具体实施例中,接收单元501还用于接收运动传感器输出的重力加速度矢量和/或运动加速度矢量。呼吸监测装置还包括对准单元503,用于对运动传感器进行对准,具体为:对准单元503根据该重力加速度矢量和/或运动加速度矢量解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵。
在运动传感器的敏感轴不按指定方向安装时,计算单元502从角速度矢量中提取呼吸角速度时:计算单元502根据上述对应关系将角速度矢量投影到虚拟坐标系中,再根据上述解算公式从其投影值中提取呼吸角速度。
具体的,计算单元502在根据上述解算公式从呼吸角速度矢量中提取呼吸角速度时,
Figure PCTCN2014091904-appb-000046
采用常值矩阵。
本实施例提供的呼吸监测装置与上述呼吸监测设备的原理一致,此处不再进行赘述。
本申请实施例提供的呼吸监测设备、方法和装置,一方面,利用在人体呼吸时,胸、腹交界处出现的能够指示呼吸运动的测量部位角运动,通过运动传感器得到角速度矢量,从而得到呼吸波。另一方面,采用两个分别放置在测量对象的右侧肋弓和左侧肋弓处的运动传感器,以降低运动干扰的影响。同时,由于在测量过程中,对运动传感器进行了对准和轴向校正,使得运动传感器的安装更加方便,测量结果更加准确。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分 步骤可以通过程序来指令相关硬件完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存取存储器、磁盘或光盘等。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换。

Claims (18)

  1. 一种呼吸监测设备,其特征在于,包括:
    至少一个运动传感器,所述运动传感器至少用于感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量;
    处理装置,其与运动传感器连接,用于从所述角速度矢量中提取呼吸角速度,并根据所述呼吸角速度得到呼吸波。
  2. 如权利要求1所述的呼吸监测设备,其特征在于,所述运动传感器的数量为两个,分别用于测量左侧肋弓和右侧肋弓处的角运动。
  3. 如权利要求2所述的呼吸监测设备,其特征在于,当所述运动传感器的敏感轴按照指定方向安装时,处理装置从所述角速度矢量中提取呼吸角速度时,采用下面的解算公式从所述角速度矢量中提取呼吸角速度:
    Figure PCTCN2014091904-appb-100001
    其中,ωa为其中一个运动传感器输出的角速度矢量,ωb为另一个运动传感器输出的角速度矢量,
    Figure PCTCN2014091904-appb-100002
    为其中一个运动传感器所敏感到的呼吸角速度,
    Figure PCTCN2014091904-appb-100003
    为其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵,I3为三维单位方阵;所述指定方向为使得运动传感器感应到的角速度矢量与其敏感轴平行且同向的方向。
  4. 如权利要求3所述的呼吸监测设备,其特征在于,所述运动传感器还用于输出测量部位的重力加速度矢量;
    所述处理装置还包括轴向校正单元,用于对所述运动传感器进行轴向校正,具体为:轴向校正单元对所述运动传感器建立虚拟坐标系,并根据所述重力加速度矢量解算运动传感器的传感器坐标系与虚拟坐标系之间的对应关系;
    在所述运动传感器的敏感轴不按指定方向安装时,所述处理装置从所述角速度矢量中提取呼吸角速度时:根据所述对应关系将所述角速度矢量投影到虚拟坐标系中,再根据所述解算公式从其投影值中提取呼吸角速度。
  5. 如权利要求3或4所述的呼吸监测设备,其特征在于,所述运动传感器还用于输出测量部位的重力加速度矢量和/或运动加速度矢量;
    所述处理装置包括对准单元,用于对运动传感器进行对准,具体为: 对准单元根据所述重力加速度矢量和/或运动加速度矢量解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵;
    在所述运动传感器的敏感轴不按指定方向安装时,所述处理装置用于根据解算出的其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵计算对应的其中一个运动传感器的虚拟坐标系至另一个运动传感器的虚拟坐标系的姿态变换矩阵,并进一步根据所述解算公式从呼吸角速度矢量中提取呼吸角速度。
  6. 如权利要求1所述的呼吸监测设备,其特征在于,所述运动传感器为惯性传感器。
  7. 如权利要求3或4所述的呼吸监测设备,其特征在于,所述处理装置在根据所述解算公式从呼吸角速度矢量中提取呼吸角速度时,所述
    Figure PCTCN2014091904-appb-100004
    采用常值矩阵。
  8. 一种呼吸监测方法,其特征在于,包括:
    采用至少一个运动传感器感应能够指示呼吸运动的测量部位的角运动,并输出测量部位的角速度矢量;
    从所述角速度矢量中提取呼吸角速度,并根据所述呼吸角速度得到呼吸波。
  9. 如权利要求8所述的呼吸监测方法,其特征在于,采用的运动传感器的数量为两个,分别用于测量左侧肋弓和右侧肋弓处的角运动。
  10. 如权利要求9所述的呼吸监测方法,其特征在于,当所述运动传感器的敏感轴按照指定方向安装时,所述从所述角速度矢量中提取呼吸角速度的步骤,具体为:采用下面的解算公式从所述角速度矢量中提取呼吸角速度:
    Figure PCTCN2014091904-appb-100005
    其中,ωa为其中一个运动传感器输出的角速度矢量,ωb为另一个运动传感器输出的角速度矢量,
    Figure PCTCN2014091904-appb-100006
    为其中一个运动传感器所敏感到的呼吸角速度,
    Figure PCTCN2014091904-appb-100007
    为其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵,I3为三维单位方阵;所述指定方向为使得运动传感器感应到的角速度矢量与其敏感轴平行且同向的方向。
  11. 如权利要求10所述的呼吸监测方法,其特征在于,还包括:
    采用所述运动传感器输出测量部位的重力加速度矢量;
    对所述运动传感器进行轴向校正的步骤,具体为:对所述运动传感 器建立虚拟坐标系,并根据所述重力加速度矢量解算运动传感器的传感器坐标系与虚拟坐标系之间的对应关系;
    在所述运动传感器的敏感轴不按指定方向安装时,从所述角速度矢量中提取呼吸角速度的步骤,具体为:根据所述对应关系将所述角速度矢量投影到虚拟坐标系中,再根据所述解算公式从其投影值中提取呼吸角速度。
  12. 如权利要求10或11所述的呼吸监测方法,其特征在于,还包括:
    采用所述运动传感器输出测量部位的重力加速度矢量和/或运动加速度矢量;
    对运动传感器进行对准的步骤,具体为:根据所述重力加速度矢量和/或运动加速度矢量解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵;
    在所述运动传感器的敏感轴不按指定方向安装时,从呼吸角速度矢量中提取呼吸角速度的步骤,具体为:根据解算出的其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵计算对应的其中一个运动传感器的虚拟坐标至另一个运动传感器的虚拟坐标的姿态变换矩阵,并进一步根据所述解算公式从呼吸角速度矢量中提取呼吸角速度。
  13. 如权利要求8所述的呼吸监测方法,其特征在于,所述运动传感器为惯性传感器。
  14. 一种呼吸监测装置,其特征在于,包括:
    接收单元,用于接收运动传感器输出的测量对象测量部位的角速度矢量,所述角速度矢量为运动传感器感应到能够指示呼吸运动的测量部位的角运动后输出的;
    计算单元,用于从所述角速度矢量中提取呼吸角速度,以及根据所述呼吸角速度得到呼吸波。
  15. 如权利要求14所述的呼吸监测装置,其特征在于,所述计算单元用于从两个运动传感器输出的角速度矢量中提取呼吸角速度,所述两个运动传感器输出的角速度矢量分别为测量对象的左侧肋弓和右侧肋弓处的角运动的角速度矢量。
  16. 如权利要求15所述的呼吸监测装置,其特征在于,当所述运动传感器的敏感轴按照指定方向安装时,计算单元从所述角速度矢量中提取呼吸角速度时,采用下面的解算公式从所述角速度矢量中提取呼吸角速度:
    Figure PCTCN2014091904-appb-100008
    其中,ωa为其中一个运动传感器输出的角速度矢量,ωb为另一个运动传感器输出的角速度矢量,
    Figure PCTCN2014091904-appb-100009
    为其中一个运动传感器所敏感到的呼吸角速度,
    Figure PCTCN2014091904-appb-100010
    为其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵,I3为三维单位方阵;所述指定方向为使得运动传感器感应到的角速度矢量与其敏感轴平行且同向的方向。
  17. 如权利要求16所述的呼吸监测装置,其特征在于,所述接收单元还用于接收运动传感器输出的重力加速度矢量;
    所述呼吸监测装置还包括轴向校正单元,用于对所述运动传感器进行轴向校正,具体为:轴向校正单元对所述运动传感器建立虚拟坐标系,并根据所述重力加速度矢量解算运动传感器的传感器坐标系与虚拟坐标系之间的对应关系;
    在所述运动传感器的敏感轴不按指定方向安装时,计算单元从所述角速度矢量中提取呼吸角速度时:计算单元根据所述对应关系将所述角速度矢量投影到虚拟坐标系中,再根据所述解算公式从其投影值中提取呼吸角速度。
  18. 如权利要求16或17所述的呼吸监测装置,其特征在于,所述接收单元还用于接收运动传感器输出的重力加速度矢量和/或运动加速度矢量;
    所述呼吸监测装置还包括对准单元,用于对运动传感器进行对准,具体为:对准单元根据所述重力加速度矢量和/或运动加速度矢量解算其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵;
    在所述运动传感器的敏感轴不按指定方向安装时,所述计算单元用于根据解算出的其中一个运动传感器的坐标系至另一个运动传感器的坐标系的姿态变换矩阵计算对应的其中一个运动传感器的虚拟坐标系至另一个运动传感器的虚拟坐标系的姿态变换矩阵,并进一步根据所述解算公式从呼吸角速度矢量中提取呼吸角速度。
PCT/CN2014/091904 2014-11-21 2014-11-21 一种呼吸监测设备、方法和装置 WO2016078084A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/091904 WO2016078084A1 (zh) 2014-11-21 2014-11-21 一种呼吸监测设备、方法和装置
CN201480079604.8A CN106456051A (zh) 2014-11-21 2014-11-21 一种呼吸监测设备、方法和装置
US15/601,885 US10881331B2 (en) 2014-11-21 2017-05-22 Respiratory monitoring apparatus, method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091904 WO2016078084A1 (zh) 2014-11-21 2014-11-21 一种呼吸监测设备、方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/601,885 Continuation-In-Part US10881331B2 (en) 2014-11-21 2017-05-22 Respiratory monitoring apparatus, method and device

Publications (1)

Publication Number Publication Date
WO2016078084A1 true WO2016078084A1 (zh) 2016-05-26

Family

ID=56013100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091904 WO2016078084A1 (zh) 2014-11-21 2014-11-21 一种呼吸监测设备、方法和装置

Country Status (3)

Country Link
US (1) US10881331B2 (zh)
CN (1) CN106456051A (zh)
WO (1) WO2016078084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700078138A1 (it) * 2017-07-11 2019-01-11 Milano Politecnico Dispositivo indossabile per il monitoraggio continuo della frequenza respiratoria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111657951B (zh) * 2020-06-15 2023-04-21 复旦大学 一种基于传感器阵列式排布的呼吸监测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997882B1 (en) * 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US20090036790A1 (en) * 2006-01-31 2009-02-05 Amir Landesberg Method device and system for monitoring lung ventilation
US20110021928A1 (en) * 2009-07-23 2011-01-27 The Boards Of Trustees Of The Leland Stanford Junior University Methods and system of determining cardio-respiratory parameters
CN102946802A (zh) * 2010-06-04 2013-02-27 爱丁堡大学董事会 用于测量振动的方法、装置、计算机程序和系统
CN103181759A (zh) * 2011-12-30 2013-07-03 吴智良 生物信息感测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522266B1 (en) * 2000-05-17 2003-02-18 Honeywell, Inc. Navigation system, method and software for foot travel
ATE442573T1 (de) * 2001-11-13 2009-09-15 Nokia Corp Verfahren, vorrichtung und system zur kalibrierung von winkelratenmesssensoren
JP2010117260A (ja) * 2008-11-13 2010-05-27 Epson Toyocom Corp 姿勢検出装置の補正パラメーター作成方法、姿勢検出装置の補正パラメーター作成用装置及び姿勢検出装置
EP2263532A1 (en) * 2009-06-05 2010-12-22 Koninklijke Philips Electronics N.V. Motion determination apparatus
US9326705B2 (en) * 2009-09-01 2016-05-03 Adidas Ag Method and system for monitoring physiological and athletic performance characteristics of a subject
EP2533693B1 (en) * 2010-02-12 2018-08-22 Koninklijke Philips N.V. Method and apparatus for processing a cyclic physiological signal
WO2012014110A2 (en) * 2010-07-27 2012-02-02 Koninklijke Philips Electronics N.V. Automatic orientation calibration for a body-mounted device
CN103027684B (zh) * 2011-10-08 2016-07-06 皇家飞利浦电子股份有限公司 用于去除在呼吸运动监测中由身体运动引起的噪声的装置和方法
IN2014CN02553A (zh) * 2011-10-17 2015-08-07 Koninkl Philips Nv

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997882B1 (en) * 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US20090036790A1 (en) * 2006-01-31 2009-02-05 Amir Landesberg Method device and system for monitoring lung ventilation
US20110021928A1 (en) * 2009-07-23 2011-01-27 The Boards Of Trustees Of The Leland Stanford Junior University Methods and system of determining cardio-respiratory parameters
CN102946802A (zh) * 2010-06-04 2013-02-27 爱丁堡大学董事会 用于测量振动的方法、装置、计算机程序和系统
CN103181759A (zh) * 2011-12-30 2013-07-03 吴智良 生物信息感测装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700078138A1 (it) * 2017-07-11 2019-01-11 Milano Politecnico Dispositivo indossabile per il monitoraggio continuo della frequenza respiratoria
WO2019012384A1 (en) * 2017-07-11 2019-01-17 Politecnico Di Milano PORTABLE DEVICE FOR CONTINUOUS MONITORING OF RESPIRATORY RHYTHM
CN111031913A (zh) * 2017-07-11 2020-04-17 米兰综合工科大学 用于连续监测呼吸率的可穿戴设备
US11051714B2 (en) 2017-07-11 2021-07-06 Politecnico Di Milano Wearable device for the continuous monitoring of the respiratory rate

Also Published As

Publication number Publication date
US10881331B2 (en) 2021-01-05
CN106456051A (zh) 2017-02-22
US20170281058A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US6820025B2 (en) Method and apparatus for motion tracking of an articulated rigid body
TWI647595B (zh) 人體姿勢偵測系統、穿戴裝置以及方法
Lin et al. Development of the wireless ultra-miniaturized inertial measurement unit WB-4: Preliminary performance evaluation
KR20140044755A (ko) 골프스윙 해석장치 및 골프스윙 해석방법
JP2004264060A (ja) 姿勢の検出装置における誤差補正方法及びそれを利用した動作計測装置
US20130310711A1 (en) Joint motion measuring apparatus and measuring method thereof
JP2012503194A (ja) 加速度計からの測定値を処理する方法
WO2018132999A1 (zh) 一种用于可穿戴式设备的人体步长测量方法及其测量设备
Lin et al. Development of an ultra-miniaturized inertial measurement unit WB-3 for human body motion tracking
WO2021218731A1 (zh) Imu与刚体的位姿融合方法、装置、设备及存储介质
CN110398256B (zh) 一种人体单一姿态的初始校正方法
CN110101388B (zh) 一种基于mimu的便携脊柱测量仪及方法
WO2016078084A1 (zh) 一种呼吸监测设备、方法和装置
TWI476733B (zh) 運動軌跡重建方法及其裝置
WO2011016302A1 (ja) モーションキャプチャ用のマーカ
KR20050097181A (ko) 관성센서를 이용한 보행패턴 분석장치 및 그 방법
Johnson et al. Estimation of three-dimensional thoracoabdominal displacements during respiration using inertial measurement units
Chen et al. A method to calibrate installation orientation errors of inertial sensors for gait analysis
KR101745864B1 (ko) 신체운동 측정장치
Sikeridis et al. An imu-based wearable system for automatic pointing during presentations
Xu et al. Measuring human joint movement with IMUs: Implementation in custom-made low cost wireless sensors
JP6147446B1 (ja) ソフト制約及びペナルティ機能を使用した慣性センサの初期化
Sessa et al. Ultra-miniaturized WB-3 Inertial Measurement Unit: Performance evaluation of the attitude estimation
CN105575239B (zh) 一种骨折复位训练模型角度检测装置及其方法
JP5424226B2 (ja) 傾斜角度推定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 09.10.17

122 Ep: pct application non-entry in european phase

Ref document number: 14906437

Country of ref document: EP

Kind code of ref document: A1