CN110398256B - 一种人体单一姿态的初始校正方法 - Google Patents

一种人体单一姿态的初始校正方法 Download PDF

Info

Publication number
CN110398256B
CN110398256B CN201910533949.0A CN201910533949A CN110398256B CN 110398256 B CN110398256 B CN 110398256B CN 201910533949 A CN201910533949 A CN 201910533949A CN 110398256 B CN110398256 B CN 110398256B
Authority
CN
China
Prior art keywords
quaternion
human body
head
coordinate system
dhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910533949.0A
Other languages
English (en)
Other versions
CN110398256A (zh
Inventor
刘宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Mogao Technology Co ltd
Original Assignee
Beijing Mogao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Mogao Technology Co ltd filed Critical Beijing Mogao Technology Co ltd
Priority to CN201910533949.0A priority Critical patent/CN110398256B/zh
Publication of CN110398256A publication Critical patent/CN110398256A/zh
Application granted granted Critical
Publication of CN110398256B publication Critical patent/CN110398256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供一种人体单一姿态的初始校正方法,所述方法包括:根据人体头部初始时刻的四元数,计算头部航向;根据所述头部航向计算相对旋转量,得到旋转后的人体各个关节在新坐标系下的四元数;计算所述新坐标系下的四元数相对于其初始位置的旋转量,即可得到骨骼的空间姿态。本发明的校正方法通过所有传感器均根据头部传感器提供的航向信息,确定坐标系指向;从方便使用的角度出发,不论MEMS传感器以何种角度、姿态安放于人体后,不需要特定的旋转等动作,即可通过MEMS传感器指示人体真正的骨骼姿态,快速精准。

Description

一种人体单一姿态的初始校正方法
技术领域
本发明属于人机工程领域,特别涉及一种人体单一姿态的初始校正方法。
背景技术
分析人体的姿态是计算机视觉研究的重要问题;分析人体姿态主要用于捕捉人体动作,可应用于人机交互、电影特效以及智能监控系统等诸多领域。
MEMS传感器包括加速度计、陀螺仪和磁强计,结合特定算法,可以用来测量空间姿态;将其安装到人体骨骼处,可以通过MEMS传感器指示的姿态角,获知人体关节姿态。在进行人体姿态获取时,设MEMS传感器自身的坐标系为体坐标系b,人体关节对应坐标系为大地坐标系E,两个坐标系并不统一,因而在MEMS传感器坐标系中指示的姿态角需要一定换算关系来对应到大地坐标系统的姿态。
但MEMS传感器通常为便携式,安装到人体后位置并不固定,可能的安装位置、角度等都可随意放置,因此每次MEMS传感器安放到人体的校准矩阵都不相同,这样,每次使用前都需要经过一个校准过程,不但耗费时间,而且误差大。
发明内容
针对上述问题,本发明一种人体单一姿态的初始校正方法,所述方法包括:
根据人体头部初始时刻的四元数,计算头部航向;
根据所述头部航向计算相对旋转量,得到旋转后的人体各个关节在新坐标系下的四元数;
计算所述新坐标系下的四元数相对于其初始位置的旋转量,即可得到骨骼的空间姿态。
进一步地,所述人体头部初始时刻的四元数通过人体保持静止、人体头部安装的MEMS传感器检测获得。
进一步地,所述计算头部航向的计算式为:
dhead=atan2(2*(p0*p3+p1*p2),1–2*(p2*p2+p3*p3))
其中,式中[p0,p1,p2,p3]为头部初始时刻四元数。
进一步地,所述相对旋转量dq0的计算式为:
dq0=[cos(-dhead/2),0,0,sin(-dhead/2)]
其中,式中dhead为头部航向。
进一步地,所述人体各个关节包括人体的手、肘、肩、腿、脚和髋,且在所述人体各个关节处均安装有MEMS传感器。
进一步地,所述MEMS传感器为9轴传感器,包括3轴加速度计、3轴陀螺仪、3轴磁传感器。
进一步地,所述新坐标系的基准是以头部当前航向为0的坐标系。
进一步地,所述人体各个关节在新坐标系下的四元数qi(t)的计算式为:
qi(t)=dq0*pi(t)
其中,式中dq0代表相对旋转量,pi(t)代表t时刻关节i处的四元数,*表示四元数相乘。
进一步地,所述新坐标系下的四元数相对于其初始位置的旋转量计算式为:
Qi(t)=qi(t)*inv(qi(0))
其中,式中,qi(0)代表i处关节的初始时刻新的四元数,inv表示四元数的逆,qi(t)代表人体i处关节t时刻新的四元数;qi(t)*inv(qi(0))表示的是t时刻相当于初始位置的旋转量。
本发明的校正方法通过所有传感器均根据头部传感器提供的航向信息,确定坐标系指向;从方便使用的角度出发,不论MEMS传感器以何种角度、姿态安放于人体后,不需要特定的旋转等动作,即可通过MEMS传感器指示人体真正的骨骼姿态,快速精准。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明实施例的校正方法操作流程图;
图2示出了根据本发明实施例的人体坐标系示意图;
图3示出了根据本发明实施例的旋转量的坐标系指示示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种人体单一姿态的初始校正方法,应用于动作捕捉的场景中,图1示出了根据本发明实施例的校正方法操作流程图;示例性的,如图1所示,所述初始校正方法包括以下步骤:
步骤一:根据人体头部初始时刻的四元数,计算头部航向;
具体的,进行人体动作捕捉时,首先根据需求,在人体的主要关节处安装MEMS传感器,示例性的,在人体的手、肘、肩、腿、脚、髋、头部等关节处安装MEMS传感器,本发明中各个关节均安装一个传感器;其中的MEMS传感器称为9轴传感器,包括:3轴加速度计、3轴陀螺仪、3轴磁传感器,通过MEMS传感器获取人体实时姿态信息。本发明中利用四元数表示实时获取的姿态信息,即在人体的手、肘、肩、腿、脚、髋、头部等关节处安装MEMS传感器,通过MEMS传感器测得的数值得到相应关节的四元数;其中的四元数为一个四维向量,示例性的,四元数p=[p0,p1,p2,p3],其中的[p1,p2,p3]为空间的一个旋转轴,如空间坐标系的X、Y、Z轴;其中的p0与绕此轴旋转的角度θ有关,即
Figure BDA0002100606970000041
同时本发明中的四元数均定义为单位四元数,即||p||=1。
具体的,本发明中进行的人体动作捕捉时,使用的各个MEMS传感器统一以头部为基准进行示例说明,即根据头部MEMS传感器提供的航向信息,确定坐标系指向。其中头部四元数是利用安装于人体头部的MEMS传感器进行获取。
示例性的,在进行人体姿态初始校正时,首先在人体的各个关节处安装MEMS传感器,使人体保持静止,图2示出了本发明人体静止时的人体坐标系示意图,如图2所示,根据头部初始时刻的四元数,计算头部航向;具体的,通过头部安装的MEMS传感器获得头部的初始时刻四元数为p0(0),其中p0代表头部四元数,(0)代表初始时刻,而后根据p0(0)计算的头部航向为dhead。
示例性的,所述头部初始时刻四元数为p0(0)=[p0,p1,p2,p3],则头部航向为:dhead=atan2(2*(p0*p3+p1*p2),1–2*(p2*p2+p3*p3))。
步骤二:根据所述头部航向计算相对旋转量,得到旋转后的人体各个关节在新坐标系下的四元数;
具体的,在人体的关节发生旋转时,该部位的四元数即会立即出现变化;本发明以头部航向计算相对旋转量,其中的所述相对旋转量定义为dq0,且dq0的计算式为:
dq0=[cos(-dhead/2),0,0,sin(-dhead/2)] (1)
式(1)中dhead为头部航向,身体各个传感器经此旋转后得到新坐标系下的四元数,新坐标系下的四元数的基准是以头部当前航向为0的新坐标系。通过新的坐标系得到身体各个关节在新坐标下的四元数qi(t),其中qi(t)的计算式为:
qi(t)=dq0*pi(t) (2)
式(2)中dq0表示的是相对旋转量,其他关节(初头部以外)的MEMS传感器测得的四元数用pi代表;pi(t)代表t时刻关节i处的四元数,示例性的,人体手部的关节的MEMS传感器用p1表示,人体肘部的关节的MEMS传感器用p2表示,人体肩部的关节的MEMS传感器用p3表示;t代表的是时间,其中t=0代表的是初始时刻,*表示四元数相乘。
实施案例1,以人体手部关节的姿态捕捉为例,人体手部的四元数利用p1表示,初始时刻(即t=0)手部的四元数通过手部的MEMS传感器即可获得,记录为p1(0),示例性的,将p1(0)得到的数值定义为p1(0)=[θ0,X0,Y0,Z0];则在新的坐标下手部的初始时刻(t=0)四元数定义为q1(0),且q1(0)数值定义为q1(0)=[γ0,x0,y0,z0],其中γ0、x0、y0、z0的计算式为:
γ0=[cos(-dhead/2)*θ0-0*X0-0*Y0-sin(-dhead/2)*Z0];
x0=[cos(-dhead/2)*X0+0*θ0+0*Z0-sin(-dhead/2)*Y0];
y0=[cos(-dhead/2)*Y0+0*θ0+sin(-dhead/2)*X0-0*Z0];
z0=[cos(-dhead/2)*Z0+sin(-dhead/2)*θ0+0*Y0-0*X0];
其中的dhead为头部航向,通过计算γ0、x0、y0、z0的数值,即可得到新的坐标下手部初始时刻(t=0)的四元数的数值q1(0)。
t(其中的t>0)时刻时,手部的四元数可通过t时刻时MEMS传感器获得,并记录为p1(t),示例性的,将p1(t)得到的数值定义为p1(t)=[θ1,X1,Y1,Z1];
将新坐标下手部t时刻的四元数定义为q1(t)=[γ1,x1,y1,z1],其中γ1、x1、y1、z1的计算式为:
γ1=[cos(-dhead/2)*θ1-0*X1-0*Y1-sin(-dhead/2)*Z1];
x1=[cos(-dhead/2)*X1+0*θ1+0*Z1-sin(-dhead/2)*Y1];
y1=[cos(-dhead/2)*Y1+0*θ1+sin(-dhead/2)*X1-0*Z1];
z1=[cos(-dhead/2)*Z1+sin(-dhead/2)*θ1+0*Y1-0*X1];
其中的dhead为头部航向;通过计算γ1、x1、y1、z1的数值,即可得到新的坐标下手部t时刻的四元数的数值q1(t)。
实施案例2,以人体肘部关节的姿态捕捉为例,人体肘部的四元数利用p2表示,初始时刻(即t=0)人体肘部的四元数通过肘部的MEMS传感器即可获得,并记录为p2(0),示例性的,将p2(0)得到的数值定义为p2(0)=[θ2,X2,Y2,Z2];则在新的坐标下人体肘部的初始(t=0)四元数为q2(0),且定于q2(0)=[γ2,x2,y2,z2],其中γ2、x2、y2、z2的计算式为:
γ2=[cos(-dhead/2)*θ2-0*X2-0*Y2-sin(-dhead/2)*Z2];
x2=[cos(-dhead/2)*X2+0*θ2+0*Z2-sin(-dhead/2)*Y2];
y2=[cos(-dhead/2)*Y2+0*θ2+sin(-dhead/2)*X2-0*Z2];
z2=[cos(-dhead/2)*Z2+sin(-dhead/2)*θ2+0*Y2-0*X2];
其中的dhead为头部航向;通过γ2、x2、y2、z2的数值,即可得到新的坐标下人体肘部的初始(t=0)四元数q2(0)。
t(其中的t>0)时刻时,肘部的四元数可通过t时刻时MEMS传感器获得,并记录为p2(t),示例性的,将p2(t)得到的数值定义为p2(t)=[θ3,X3,Y3,Z3];
将新的坐标下肘部t时刻的四元数定义为q2(t)=[γ3,x3,y3,z3],其中γ3、x3、y3、z3的计算式为:
γ3=[cos(-dhead/2)*θ3-0*X3-0*Y3-sin(-dhead/2)*Z3];
x3=[cos(-dhead/2)*X3+0*θ3+0*Z3-sin(-dhead/2)*Y3];
y3=[cos(-dhead/2)*Y3+0*θ3+sin(-dhead/2)*X3-0*Z3];
z3=[cos(-dhead/2)*Z3+sin(-dhead/2)*θ3+0*Y3-0*X3];
其中的dhead为头部航向;通过上式求出γ3、x3、y3、z3的数值,即可得到新的坐标下肘部t时刻的四元数的数值q2(t)。
补充说明的是,本发明以单位四元数为例进行四元数旋转的说明,当单位四元数表示旋转时,单位旋转轴定义为(x,y,z),旋转角度为θ,则四元数为
Figure BDA0002100606970000071
示例性的,如图3所示,定义[0,1,0,0]为指向X轴的向量,[0,0,1,0]为指向Y轴的向量,[0,0,0,1]为指向Z轴的向量,则[0.5,0.5,0.5,0.5]为绕向量OP旋转120deg(120°)后的向量。
当四元数[p0,p1,p2,p3]表示相对旋转时,p1,p2,p3分别对应X、Y、Z轴,p0对应旋转的角度。因此当人体在水平面旋转一个角度时,相当于绕Z轴旋转,因而对应的四元数p1和p2分量为零,p0代表旋转的角度,即此时四元数应为[p0,0,0,p3]。同理,绕X轴旋转时,因而对应的四元数p2和p3分量为零,p0代表旋转的角度,对应的四元数应为[p0,p1,0,0];绕Y轴旋转时,因而对应的四元数p1和p3分量为零,p0代表旋转的角度,对应的四元数为[p0,0,p2,0]。
另外四元数也可以表示刚体的姿态角度;若给定一个欧拉旋转(x,y,z),其中x,y,z分别为横滚、俯仰、航向角度,则其对应的四元数为:
p0=cos(x/2)*cos(y/2)cos(z/2)+sin(x/2)sin(y/2)*sin(z/2);
p1=cos(x/2)*sin(y/2)*sin(z/2)-sin(x/2)*cos(y/2)*cos(z/2);
p2=cos(x/2)*sin(y/2)*cos(z/2)+sin(x/2)*cos(y/2)*sin(z/2);
p3=cos(x/2)*cos(y/2)*sin(z/2)-sin(x/2)*sin*y/2)*cos(z/2)。
给定一个四元数[p0,p1,p2,p3],对应的欧拉旋转(x,y,z)的计算式为:
x=atan2(2*(p0*p1+p2*p3),1-2*(p1*p1+p2*p2)) 横滚
y=arcsin(2*(p0*p2-p3*p1)) 俯仰
z=atan2(2*(p0*p3+p1*p2),1–2*(p2*p2+p3*p3)) 航向
步骤三,计算所述新的坐标系的四元数相对于其初始位置的旋转量,即可得到骨骼的空间姿态。
具体的,所求的骨骼的空间姿态即为新坐标系的四元数相对于其初始位置的旋转;示例性的,所述初始时刻的四元数为qi(0),骨骼的空间姿态定义为Qi(t);其中Qi(t)的计算式为:
Qi(t)=qi(t)*inv(qi(0)) (3)
式(3)中,inv表示四元数的逆,qi(t)*inv(qi(0))表示的是t时刻相当于初始时刻的旋转量。
实施案例3,以人体手部关节的姿态捕捉为例,t时刻(其中的t>0)人体手部骨骼的空间姿态为Q1(t),其中Q1(t)的计算式为Q1(t)=q1(t)*inv(q1(0));定义Q1(t)=[β1,q1,q2,q3];通过已知其中q1(t)和q1(0)即可得到Q1(t)的数值;其中由实施例一可以获得q1(0)和q1(t)的数值,具体的q1(t)=[γ1,x1,y1,z1],q1(0)=[γ0,x0,y0,z0],inv(q1(0))=[γ0,-x0,-y0,-z0];
其中β1、q1、q2、q3的计算式为:β1=γ1γ0+x0x1+y0y1+z0z1
q1=–x0γ1+x1γ0–z0y1+y0z1
q2=–y0γ1+y1γ0–x0z1+x1z0
q3=–z0γ10z1–y0x1–y1γ0
通过上式求出的β1、q1、q2、q3的数值,即可得出人体手部骨骼的空间姿态Q1(t)的数值。
实施案例4,以人体肘部关节的姿态捕捉为例,t时刻(其中的t>0)人体肘部骨骼的空间姿态为Q2(t),其中Q2(t)=q2(t)*inv(q2(0));定义Q2(t)=[β2,q4,q5,q6],通过已知其中q2(t)和q2(0)即可得到Q2(t)的数值;其中由实施例二可以获得q2(0)和q2(t)的数值,具体的,q2(t)=[γ3,x3,y3,z3],q1(0)=[γ2,x2,y2,z2],inv(q1(0))=[γ2,-x2,-y2,-z2]
其中Q2(t)的计算式为:β2=γ3γ2+x2x3+y2y3+z2z3
q4=–x2γ3+x3γ2–z2y3+y2z3
q5=–y2γ3+y3γ2–x2z3+x3z2
q6=–z2γ32z3–y2x3–y3γ2
通过上式求出的β2、q4、q5、q6的数值,即可得出人体肘部骨骼的空间姿态Q2(t)的数值。
补充说明的是:若已知两个四元数P、Q,则Q相对于P的旋转可表示为inv(P)*Q。四元数既可以代表一个旋转,同时,由于它与空间的欧拉角(俯仰、横滚、航向)对应,因而也可以代表一个刚体的空间姿态。刚体从一个姿态变到另一个姿态,需要进行某种转动,这个转动就可以用四元数的相对旋转来计算。其中,*代表四元数相乘,其结果同样是一个四元数
如P=[p0,p1,p2,p3],Q=[q0,q1,q2,q3];
则P*Q=[p0q0–p1q1–p2q2–p3q3,
p0q1+p1q0+p2q3–p3q2,
p0q2+p2q0+p3q1–p1q3,
p0q3+q0p3+p1q2–p2q1]。
本发明应用于动作捕捉到场景中,通过所有传感器统一以头部为基准,即根据头部传感器提供的航向信息,确定坐标系指向;从方便使用的角度出发,不论MEMS传感器以何种角度、姿态安放于人体后,不需要特定的旋转等动作,即可通过MEMS传感器指示人体真正的骨骼姿态;有效的解决了由于在MEMS传感器安装时,各个MEMS传感器的安装方向、姿态不尽相同,在使用前必须将MEMS传感器调整到一个统一的坐标框架下,并且进行初始位置修正,这样所有传感器都有一个统一的坐标框架,并且都以初始校准时的姿态为零姿态,以相对于各自传感器的“零姿态”的旋转来定义各个关节的四元数。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种人体单一姿态的初始校正方法,其特征在于,所述方法包括:
通过人体保持静止、人体头部安装的MEMS传感器检测获得人体头部初始时刻的四元数;
根据所述人体头部初始时刻的四元数,计算头部航向;
根据所述头部航向计算相对旋转量,得到旋转后的人体各个关节在新坐标系下的四元数;其中,所述人体各个关节包括人体的手、肘、肩、腿、脚和髋,且在所述人体各个关节处均安装有MEMS传感器;所述新坐标系的基准是以头部当前航向为0的坐标系;所述人体各个关节的四元数通过MEMS传感器获得;所述相对旋转量dq0的计算式为:
dq0=[cos(-dhead/2),0,0,sin(-dhead/2)];其中,式中dhead为头部航向;
计算所述新坐标系下的四元数相对于其初始位置的旋转量,即可得到骨骼的空间姿态。
2.根据权利要求1所述的人体单一姿态的初始校正方法,其特征在于,所述计算头部航向的计算式为:
dhead=atan2(2*(p0*p3+p1*p2),1–2*(p2*p2+p3*p3))
其中,式中[p0,p1,p2,p3]为头部初始时刻四元数。
3.根据权利要求1所述的人体单一姿态的初始校正方法,其特征在于,所述MEMS传感器为9轴传感器,包括3轴加速度计、3轴陀螺仪、3轴磁传感器。
4.根据权利要求1-2任意一项所述的人体单一姿态的初始校正方法,其特征在于,所述人体各个关节在新坐标系下的四元数qi(t)的计算式为:
qi(t)=dq0*pi(t)
其中,式中dq0代表相对旋转量,pi(t)代表t时刻关节i处的四元数,*表示四元数相乘。
5.根据权利要求1-2任意一项所述的人体单一姿态的初始校正方法,其特征在于,所述新坐标系下的四元数相对于其初始位置的旋转量计算式为:
Qi(t)=qi(t)*inv(qi(0))
其中,式中,qi(0)代表i处关节的初始时刻新的四元数,inv表示四元数的逆,qi(t)代表人体i处关节t时刻新的四元数;qi(t)*inv(qi(0))表示的是t时刻相当于初始位置的旋转量。
CN201910533949.0A 2019-06-19 2019-06-19 一种人体单一姿态的初始校正方法 Active CN110398256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910533949.0A CN110398256B (zh) 2019-06-19 2019-06-19 一种人体单一姿态的初始校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910533949.0A CN110398256B (zh) 2019-06-19 2019-06-19 一种人体单一姿态的初始校正方法

Publications (2)

Publication Number Publication Date
CN110398256A CN110398256A (zh) 2019-11-01
CN110398256B true CN110398256B (zh) 2021-12-03

Family

ID=68323317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910533949.0A Active CN110398256B (zh) 2019-06-19 2019-06-19 一种人体单一姿态的初始校正方法

Country Status (1)

Country Link
CN (1) CN110398256B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110992454B (zh) * 2019-11-29 2020-07-17 南京甄视智能科技有限公司 基于深度学习的实时动作捕捉和三维动画生成方法与装置
CN113627261A (zh) * 2021-07-12 2021-11-09 深圳市瑞立视多媒体科技有限公司 一种恢复头部刚体正确位姿的方法及其装置、设备、存储介质
CN113568439B (zh) * 2021-07-29 2024-07-05 西门子(中国)有限公司 调姿机的控制方法、装置、控制器和计算机存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407709A (zh) * 2014-12-09 2015-03-11 北京银河润泰科技有限公司 可穿戴设备的穿戴状态的处理方法及装置
CN105395252A (zh) * 2015-12-10 2016-03-16 哈尔滨工业大学 具有人机交互的可穿戴式血管介入手术三维立体图像导航装置
CN106153077A (zh) * 2016-09-22 2016-11-23 苏州坦特拉自动化科技有限公司 一种用于m‑imu人体运动捕获系统的初始化校准方法
CN106227368A (zh) * 2016-08-03 2016-12-14 北京工业大学 一种人体关节角度解算方法及装置
CN106996765A (zh) * 2017-03-21 2017-08-01 上海岭先机器人科技股份有限公司 一种基于姿态传感器的机器人关节角度测量方法
CN107016342A (zh) * 2017-03-06 2017-08-04 武汉拓扑图智能科技有限公司 一种动作识别方法及系统
CN107478223A (zh) * 2016-06-08 2017-12-15 南京理工大学 一种基于四元数和卡尔曼滤波的人体姿态解算方法
CN107982898A (zh) * 2017-12-07 2018-05-04 苏州脉吉医疗技术有限公司 康复运动的训练系统及方法
CN108378854A (zh) * 2018-02-07 2018-08-10 北京摩高科技有限公司 计算方法和姿态测量捕捉分析系统
CN108939512A (zh) * 2018-07-23 2018-12-07 大连理工大学 一种基于穿戴式传感器的游泳姿态测量方法
CN109443389A (zh) * 2018-11-28 2019-03-08 电子科技大学 动作捕获系统中基于惯性传感器单步标定的姿态融合方法
CN109509241A (zh) * 2018-08-16 2019-03-22 北京航空航天大学青岛研究院 角色动画中基于四元数的骨骼重定向方法
CN109737941A (zh) * 2019-01-29 2019-05-10 桂林电子科技大学 一种人体动作捕捉方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9706948B2 (en) * 2010-05-06 2017-07-18 Sachin Bhandari Inertial sensor based surgical navigation system for knee replacement surgery
TWI612276B (zh) * 2017-02-13 2018-01-21 國立清華大學 慣性式物件姿態測量系統及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407709A (zh) * 2014-12-09 2015-03-11 北京银河润泰科技有限公司 可穿戴设备的穿戴状态的处理方法及装置
CN105395252A (zh) * 2015-12-10 2016-03-16 哈尔滨工业大学 具有人机交互的可穿戴式血管介入手术三维立体图像导航装置
CN107478223A (zh) * 2016-06-08 2017-12-15 南京理工大学 一种基于四元数和卡尔曼滤波的人体姿态解算方法
CN106227368A (zh) * 2016-08-03 2016-12-14 北京工业大学 一种人体关节角度解算方法及装置
CN106153077A (zh) * 2016-09-22 2016-11-23 苏州坦特拉自动化科技有限公司 一种用于m‑imu人体运动捕获系统的初始化校准方法
CN107016342A (zh) * 2017-03-06 2017-08-04 武汉拓扑图智能科技有限公司 一种动作识别方法及系统
CN106996765A (zh) * 2017-03-21 2017-08-01 上海岭先机器人科技股份有限公司 一种基于姿态传感器的机器人关节角度测量方法
CN107982898A (zh) * 2017-12-07 2018-05-04 苏州脉吉医疗技术有限公司 康复运动的训练系统及方法
CN108378854A (zh) * 2018-02-07 2018-08-10 北京摩高科技有限公司 计算方法和姿态测量捕捉分析系统
CN108939512A (zh) * 2018-07-23 2018-12-07 大连理工大学 一种基于穿戴式传感器的游泳姿态测量方法
CN109509241A (zh) * 2018-08-16 2019-03-22 北京航空航天大学青岛研究院 角色动画中基于四元数的骨骼重定向方法
CN109443389A (zh) * 2018-11-28 2019-03-08 电子科技大学 动作捕获系统中基于惯性传感器单步标定的姿态融合方法
CN109737941A (zh) * 2019-01-29 2019-05-10 桂林电子科技大学 一种人体动作捕捉方法

Also Published As

Publication number Publication date
CN110398256A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN110398256B (zh) 一种人体单一姿态的初始校正方法
CN108268129B (zh) 对动作捕捉手套上的多个传感器进行校准的方法和装置及动作捕捉手套
TWI512548B (zh) 移動軌跡產生方法
EP1437645B1 (en) Position/orientation measurement method, and position/orientation measurement apparatus
CN112041785A (zh) 跟踪手姿势的方法及其电子设备
JP6145072B2 (ja) センサーモジュールの位置の取得方法及び装置、及び、動作計測方法及び装置
WO2018106220A1 (en) Systems and methods for tracking motion and gesture of heads and eyes
CN111681281B (zh) 肢体动作捕捉的校准方法、装置、电子设备及存储介质
CN103175502A (zh) 一种基于数据手套低速运动的姿态角检测方法
CN109781104B (zh) 运动姿态确定及定位方法、装置、计算机设备及介质
CN110609621B (zh) 姿态标定方法及基于微传感器的人体运动捕获系统
JP2016006415A (ja) 光学式モーションキャプチャにおける光学式マーカーの位置の推定方法及び装置
CN114663463A (zh) 关节活动度的测量方法、系统、设备、电子设备和存储介质
Palani et al. Real-time joint angle estimation using mediapipe framework and inertial sensors
Basiratzadeh et al. Augmented reality approach for marker-based posture measurement on smartphones
CN112711332B (zh) 一种基于姿态坐标的人体动作捕捉方法
CN108115671A (zh) 基于3d视觉传感器的双臂机器人控制方法及系统
JP2009186244A (ja) 傾斜角度推定システム、相対角度推定システム及び角速度推定システム
JP2004150900A (ja) 姿勢角検出装置および取付け角度補正量取得方法
CN109814714B (zh) 运动传感器的安装姿态确定方法、装置以及存储介质
CN109333527B (zh) 一种与机器人的交互方法、装置、电子设备及存储介质
JP5374422B2 (ja) 磁界検知装置
KR20130032764A (ko) 기준 시점 영상 생성 장치 및 방법
JP6205387B2 (ja) 仮想マーカーの位置情報の取得方法及び装置、動作計測方法
CN114748306A (zh) 一种外骨骼设备穿戴误差校正方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant