WO2018092730A1 - 呼吸センシング装置 - Google Patents

呼吸センシング装置 Download PDF

Info

Publication number
WO2018092730A1
WO2018092730A1 PCT/JP2017/040798 JP2017040798W WO2018092730A1 WO 2018092730 A1 WO2018092730 A1 WO 2018092730A1 JP 2017040798 W JP2017040798 W JP 2017040798W WO 2018092730 A1 WO2018092730 A1 WO 2018092730A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
respiration
sensor
subject
sensing device
Prior art date
Application number
PCT/JP2017/040798
Other languages
English (en)
French (fr)
Inventor
亨 志牟田
剛伸 前田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018551624A priority Critical patent/JP6798563B2/ja
Publication of WO2018092730A1 publication Critical patent/WO2018092730A1/ja
Priority to US16/398,540 priority patent/US11647921B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives

Definitions

  • the present invention relates to a respiration sensing device that detects respiration of a subject.
  • a belt incorporating a piezoelectric film is attached to the chest or abdomen of the subject, and the subject's breathing is detected according to the tensile force on the belt.
  • an influence on breathing such as difficulty in breathing may occur depending on the wearing state of the belt.
  • a sensor is attached to the subject's chest or abdomen, and a change in the curvature of the subject's chest or abdomen is detected to detect the subject's respiration.
  • the detection sensitivity for abdominal breathing is degraded
  • the detection sensitivity for chest breathing is degraded. is there.
  • the curvature change is detected, there is also a problem that the respiratory sensing device becomes large.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a respiration sensing device that can accurately detect both chest respiration and abdominal respiration of a subject. .
  • the present invention provides a respiratory sensing device for detecting respiration of a subject, wherein the subject extends from a portion corresponding to the xiphoid process of the sternum of the subject to a portion corresponding to a groove.
  • a film-like sensor affixed to the examiner's body surface, the sensor detecting a relative change between a portion corresponding to the xiphoid protrusion and a portion corresponding to the groove; It is configured to detect respiration.
  • the film-like sensor is attached to the body surface of the subject from the part corresponding to the xiphoid process to the part corresponding to the groove. Accordingly, the sensor is deformed when the body surface of the subject is moved by breathing, and can detect a relative change between a part corresponding to the xiphoid process and a part corresponding to the groove. At this time, relative displacement occurs between the part corresponding to the xiphoid process and the part corresponding to the groove in both the chest breathing and the abdominal breathing. For this reason, the sensor can detect both chest-type breathing and abdominal-type breathing.
  • the film-like sensor is simply pasted from the part corresponding to the xiphoid process to the part corresponding to the groove, it is possible to reduce the size of the respiratory sensing device compared to the case where a belt or the like is attached to the subject. it can.
  • breathing can be detected without pressing the subject with a belt or the like, it is possible to suppress the influence on the breathing of the subject. Thereby, the discomfort with respect to a subject can be reduced and noninvasiveness can be improved.
  • the said sensor consists of a piezoelectric film sensor, It is set as the structure which detects the said subject's respiration by detecting the signal which generate
  • the senor is composed of a piezoelectric film sensor.
  • the senor has a rectangular shape, and is highly sensitive to elongation in the longitudinal direction extending from the chest to the abdomen of the subject or bending in the front-rear direction perpendicular to the longitudinal direction, and insensitive to torsion. It is configured.
  • the senor has a rectangular shape, and is highly sensitive to elongation in the longitudinal direction extending from the chest to the abdomen of the subject or bending in the front-rear direction perpendicular to the longitudinal direction, and low sensitivity to torsion. Yes.
  • the sensor is deformed in the direction of low sensitivity. Can be detected.
  • the present invention further includes a signal processing unit that separates the deformation signal due to respiration, the sound signal, and the deformation signal due to the heartbeat into frequency signals having different frequency components.
  • the deformed signal due to respiration, the sound signal, and the deformed signal due to the heartbeat are separated as frequency signals having different frequency components using a frequency filter or the like.
  • the deformation signal and the sound signal due to respiration are detected separately, the abnormality of respiration can be detected with high accuracy by comparing both signals. Furthermore, since a heartbeat interval (heart rate) can be calculated using a deformation signal due to the heartbeat, a heart abnormality can be detected from the heart rate.
  • the present invention further includes a signal processing unit that separates a signal due to respiration and a signal due to heartbeat into periodic signals having different periods.
  • the signal due to respiration and the signal due to the heartbeat are separated as periodic signals having different periods using a pattern matching method, an autocorrelation method, or the like.
  • the respiratory rate of the subject can be detected with high accuracy by estimating the respiratory change from the signal from the heart beat and comparing the respiratory change with the signal from the breath.
  • the present invention further includes a battery for supplying a power supply voltage to the signal processing unit, and the signal processing unit is configured to digitally convert an output signal from the sensor and output the signal to an external device.
  • the battery further includes a battery for supplying a power supply voltage to the signal processing unit, and the signal processing unit is configured to digitally convert an output signal from the sensor and output the signal to an external device.
  • an acceleration sensor that detects the posture and activity amount of the subject from the acceleration signal is further provided.
  • This makes it possible to obtain information on the posture and activity of the subject, which is a factor that affects breathing and heart beat, at the same time, so that abnormalities in breathing and heart beat can be detected more accurately.
  • Can do For example, during deep sleep, breathing slowly increases and the heart beat also decreases. In contrast, during walking and exercise, breathing and heart pulsation are accelerated. For this reason, it is possible to improve the accuracy of detecting an abnormality by simultaneously obtaining information on the posture and the amount of activity.
  • FIG. 2 is a cross-sectional view of the respiratory sensing device as seen from the direction of arrows II-II in FIG. It is explanatory drawing which shows the case where it sticks from the site
  • FIGS. 1 to 11 show a first embodiment of the present invention.
  • the respiration sensing device 1 includes a sensor member 2 that detects respiration of the subject Obj and a main body 8 that performs signal processing of the detected respiration.
  • the sensor member 2 has a rectangular shape as a whole, and is provided on one end side (the upper side in FIG. 1) of the respiratory sensing device 1.
  • the sensor member 2 includes a piezoelectric film sensor 3, first and second electrodes 4A and 4B, insulating sheets 5A and 5B, shields 6A and 6B, and the like.
  • the sensor member 2 is attached to the body of the subject Obj using a pasting member 7 to be described later, from the portion K corresponding to the xiphoid process of the sternum of the subject Obj to the portion M corresponding to the groove. It is pasted on the table.
  • the longitudinal dimension (vertical dimension) of the sensor member 2 is set to a dimension of about 4 to 10 cm, for example, and the width direction dimension of the sensor member 2 is set to a dimension of about 0.5 to 4 cm, for example.
  • the dimension in the thickness direction of the sensor member 2 is set to, for example, about 0.1 to 1 mm.
  • the piezoelectric film sensor 3 is provided inside the sensor member 2.
  • the piezoelectric film sensor 3 is formed of a thin film (thin plate) as a film-like sensor, and generates an electrical signal when the film is deformed.
  • the piezoelectric film sensor 3 is, for example, a piezoelectric polymer film sensor such as polyvinylidene fluoride (PVDF) or polylactic acid, or an inorganic thin film such as aluminum nitride (AlN) or lead zirconate titanate (PZT) as a resin film.
  • PVDF polyvinylidene fluoride
  • AlN aluminum nitride
  • PZT lead zirconate titanate
  • the polylactic acid has a piezoelectric property
  • cutting it into a strip shape at an angle of 45 ° with respect to the orientation direction of the molecule increases the sensitivity to bending and stretching of the film, while against the twist. Sensitivity can be lowered. Therefore, it is preferable to use polylactic acid for the piezoelectric film sensor 3 in order to increase the respiration detection accuracy of the subject Obj and reduce the torsion detection accuracy due to the change in the posture of the subject Obj.
  • the subject Obj extends in the longitudinal direction, and the longitudinal direction (the longitudinal direction of the subject Obj, ie, the sensor member 2) perpendicular to the longitudinal direction.
  • the sensitivity is increased with respect to the bending in the direction of the thickness of the subject Obj, while the sensitivity is decreased with respect to the torsion of the subject Obj.
  • the first and second electrodes 4A and 4B are located on the inner side of the sensor member 2 and provided on both sides of the piezoelectric film sensor 3 in the thickness direction.
  • the first and second electrodes 4A and 4B are formed using, for example, a metal material, a conductive thin film made of a conductive material such as indium tin oxide (ITO), or carbon.
  • the first and second electrodes 4 ⁇ / b> A and 4 ⁇ / b> B detect the analog signal Sa corresponding to the deformation of the piezoelectric film sensor 3, and output the detected analog signal Sa to the amplifier 9 of the main body unit 8.
  • the first and second electrodes 4A and 4B are preferably soft and thin.
  • the insulating sheets 5A and 5B are provided on both sides in the thickness direction of the piezoelectric film sensor 3 and the first and second electrodes 4A and 4B, respectively. That is, the insulating sheets 5A and 5B cover the first and second electrodes 4A and 4B from both sides in the thickness direction, respectively.
  • the insulating sheets 5A and 5B are formed into a sheet shape that can be elastically deformed using, for example, an insulating soft resin material.
  • the insulating sheets 5A and 5B cover the entire surfaces of the first and second electrodes 4A and 4B, and insulate the first and second electrodes 4A and 4B from the shields 6A and 6B.
  • the shields 6A and 6B are located on the outer side (outer shell) of the sensor member 2, and are provided on both sides in the thickness direction of the piezoelectric film sensor 3, the first and second electrodes 4A and 4B, and the insulating sheets 5A and 5B, respectively. It has been. That is, the shields 6A and 6B cover the insulating sheets 5A and 5B from both sides in the thickness direction, respectively.
  • the shields 6A and 6B are made of, for example, a conductive film such as a resin film, a conductive polymer film, a conductive nonwoven film using a conductive yarn, or a conductive film such as a metal foil such as silver or copper or a conductive thin film such as metal.
  • the shields 6A and 6B shield the piezoelectric film sensor 3 from external electromagnetic waves or the like.
  • the shields 6A and 6B may be connected to an external ground or the like.
  • the sticking member 7 is provided on one side in the thickness direction of the respiratory sensing device 1.
  • the sticking member 7 is formed in a rectangular shape using, for example, a biocompatible double-sided tape.
  • the affixing member 7 affixes the respiratory sensing device 1 from the region K corresponding to the sword-like projection of the subject Obj to the region M corresponding to the groove.
  • the main body 8 is provided on the other end side (lower side in FIG. 1) of the respiratory sensing device 1.
  • the main body 8 includes an amplifier 9, a signal processing unit 10, a battery 11, a communication unit 12, and the like.
  • the main body 8 is detachably connected to the sensor member 2 using a connector (not shown) or the like, and is attached to the lower end side of the sensor member 2 attached to the subject Obj ( (See FIG. 3). Thereby, when only the sensor member 2 is damaged or dirty, only the sensor member 2 can be removed from the main body portion 8 and replaced.
  • the amplifier 9 is composed of an amplifier circuit including an operational amplifier (operational amplifier), for example.
  • the input side of the amplifier 9 is connected to the first and second electrodes 4A and 4B, respectively, and the output side of the amplifier 9 is connected to the signal processing unit 10.
  • the amplifier 9 amplifies the analog signal Sa corresponding to the deformation of the piezoelectric film sensor 3 detected by the first and second electrodes 4A and 4B, and outputs the amplified signal to the signal processing unit 10.
  • the signal processing unit 10 is provided in the main body unit 8 and is driven by electric power supplied from the battery 11.
  • the input side of the signal processing unit 10 is connected to the amplifier 9.
  • the output side of the signal processing unit 10 is connected to the communication unit 12.
  • the signal processing unit 10 is composed of, for example, a microcomputer (CPU) or the like, and includes an A / D converter (Analog / Digital / Converter) 10A.
  • the signal processing unit 10 processes the analog signal Sa detected from the piezoelectric film sensor 3 to generate a signal Sk due to respiration (a deformation signal Skh due to respiration and a sound signal Sko due to respiration) and a signal Ss due to the heartbeat (the heart signal). By separating the deformation signal Ssh due to the pulsation and the sound signal Sso due to the pulsation of the heart, the respiration of the subject Obj is detected.
  • the “deformation signal Skh due to respiration” refers to a signal that the body (body surface) of the subject Obj is deformed due to respiration
  • the “deformation signal Ssh due to heart beat” refers to the beat of the heart.
  • the “sound signal Sko due to respiration” refers to a signal with respect to a breathing sound
  • the “sound signal Sso due to heartbeat” refers to a signal with respect to a heartbeat sound.
  • the sound signal Sko due to respiration and the sound signal Sso due to heartbeat are included in the sound signal So.
  • the A / D converter 10A converts the analog signal Sa input from the sensor member 2 via the amplifier 9 into a digital signal Sd. At this time, the A / D converter 10A performs analog-digital conversion with a sampling period sufficiently shorter than the signal period of the detected analog signal Sa.
  • the signal processing unit 10 converts the analog signal Sa detected by the piezoelectric film sensor 3 into a digital signal Sd, and then performs filtering to obtain a signal Sk by respiration (a deformation signal Skh by respiration and a sound signal Sko by respiration) and The signal Ss due to the heart beat (the deformation signal Ssh due to the heart beat and the sound signal Sso due to the heart beat) is detected.
  • the signal processing unit 10 uses, for example, a frequency filter, wavelet transform, or the like to use the signal Sk due to respiration and the signal due to heart beat.
  • Ss can be separated as frequency signals having different frequency components.
  • the signal processing unit 10 performs signal processing on the separated signal Sk by breathing and the signal Ss by heartbeat using, for example, a pattern matching method or an autocorrelation method, and sets the peak interval of the correlation coefficient. Obtain a breathing interval and a heartbeat interval.
  • the battery 11 is provided in the main body 8, and is connected to the amplifier 9, the signal processor 10, the communication unit 12, and the like.
  • the battery 11 constitutes a power supply voltage circuit that supplies power supply voltage (power) to the amplifier 9, the signal processing unit 10, the communication unit 12, and the like.
  • the main body 8 may be provided with a harvest antenna that receives radio waves from the outside and charges the battery 11.
  • the communication unit 12 is provided in the main body unit 8 and is connected to the signal processing unit 10.
  • the communication unit 12 includes a modulation circuit that modulates a signal in accordance with various wireless communication standards, a transmission unit that transmits a modulated signal, and the like.
  • the communication unit 12 outputs the respiration and heart beat of the subject Obj detected by the signal processing unit 10 to a PC, a portable terminal, a storage device, a server (none of which are shown), and the like.
  • the respiration sensing device 1 has the above-described configuration, and the operation thereof will be described next. First, as a premise, a case where the subject Obj breathes by chest breathing and abdominal breathing will be described.
  • the intercostal muscle that is a muscle between ribs extends and the lung H is in the horizontal direction (lateral direction of the subject Obj).
  • the air is inhaled into the lung H.
  • the intercostal muscles which are the muscles between the ribs, contract and the lungs H are narrowed in the left-right direction, thereby discharging air to the outside of the body.
  • the diaphragm O rises and pushes the internal organs N, and the lungs are narrowed (contracted) in the vertical direction to discharge air to the outside of the body.
  • the chest or abdomen is deformed, and a relative change occurs between the part K corresponding to the xiphoid process and the part M corresponding to the groove, so that the piezoelectric film sensor 3 is deformed by tension or bending.
  • the analog signal Sa is output in accordance with the speed of.
  • step 1 when the respiratory sensing device 1 is driven, the respiratory sensing device 1 detects a sensor output from the piezoelectric film sensor 3. That is, the piezoelectric film sensor 3 is deformed by the subject Obj's breathing (chest breathing and abdominal breathing) and outputs the analog signal Sa toward the main body 8.
  • the analog signal Sa generated by the piezoelectric film sensor 3 is a signal Sk (reform signal Skh by respiration and a sound signal Sko by respiration) and a heart beat signal.
  • Sk reform signal Skh by respiration and a sound signal Sko by respiration
  • Ss deformation signal Ssh due to heart beat and sound signal Sso due to heart beat
  • step 2 the respiratory sensing device 1 performs waveform digital processing on the analog signal Sa output from the piezoelectric film sensor 3. That is, the analog signal Sa output from the piezoelectric film sensor 3 is amplified by the amplifier 9 and converted into a digital signal Sd by the A / D converter 10A of the signal processing unit 10.
  • step 3 the signal processing unit 10 of the respiration sensing device 1 performs frequency filtering, and uses the detected analog signal Sa (digital signal Sd) as a deformation signal Skh due to respiration, a deformation signal Ssh due to heartbeat, and a sound.
  • the signal So is separated.
  • the deformation signal Skh due to respiration, the deformation signal Ssh due to the heartbeat, and the sound signal So have different frequency components, so that the signals Skh, Ssh, Isolate So.
  • the frequency component of the deformation signal Skh due to respiration is included in the range of 0.05 to 10 Hz, for example.
  • the frequency component of the deformation signal Ssh due to the heartbeat is included in the range of 10 to 50 Hz, for example.
  • the frequency component of the sound signal So is included in the range of 100 to several 1000 Hz, for example.
  • the component (f ⁇ T1) in which the frequency f is lower than the predetermined reference value T1 in the digital signal Sd proceeds to step 4 and is extracted as a deformation signal Skh due to respiration.
  • the reference value T1 is set to 10 Hz, for example.
  • the component (T1 ⁇ f ⁇ T2) of the digital signal Sd whose frequency f is not less than the predetermined reference value T1 and not more than the predetermined reference value T2 proceeds to step 9 as the deformed signal Ssh due to the heartbeat. Extracted.
  • the reference value T2 is set to 100 Hz, for example.
  • a component (T2 ⁇ f) having a frequency f higher than a predetermined reference value T2 in the digital signal Sd proceeds to step 13 and is extracted as a sound signal So.
  • the signal processing unit 10 extracts a deformation signal Skh due to respiration. Specifically, the signal processing unit 10 performs the characteristic lines C3 to C in FIG. 9 to FIG. 11 based on the signal processed in step 3 (the signal obtained by separating only the component whose frequency f is lower than the reference value T1 by filtering). A deformation signal Skh due to respiration as indicated by C5 is extracted.
  • FIG. 10 shows an example of measurement of compound respiration
  • FIG. 11 shows an example of measurement of chest respiration.
  • the compound breath has a period of about 2 seconds.
  • the chest breathing has a period of about 0.5 seconds.
  • the signal due to the heartbeat is removed by the frequency filter.
  • the signal processing unit 10 calculates a breathing interval from the deformation signal Skh by breathing. Specifically, the signal processing unit 10 calculates a breathing interval from the peak interval of the correlation coefficient by applying, for example, a pattern matching method, an autocorrelation method, or the like to the deformation signal Skh due to breathing.
  • step 6 it is determined whether or not the breathing interval calculated in step 5 is within a predetermined range.
  • the signal processing unit 10 determines whether or not the breathing interval is within a predetermined range (for example, 0.2 seconds to 10 seconds).
  • the signal processing unit 10 also determines whether or not the correlation coefficient obtained by the pattern matching method or the autocorrelation method is equal to or less than a predetermined value.
  • “within a predetermined range” can be obtained from an average breathing interval calculated in advance using statistics or the like.
  • Step 6 If “NO” is determined in Step 6, an error occurs because the breathing interval is not within the predetermined range or the correlation coefficient is equal to or smaller than the predetermined value (Step 7). In this case, the signal processing unit 10 may return to Step 1 again to detect the sensor output again, or may stop the calculation process of the breathing interval as it is.
  • Step 6 the respiration interval is within a predetermined range and the correlation coefficient is larger than a predetermined value, so the process proceeds to Step 8 to determine the respiration interval.
  • the respiration interval calculated in step 5 is determined as the respiration of the subject Obj, and the respiration rate of the subject Obj within a predetermined time is calculated.
  • step 9 the signal processing unit 10 extracts a deformation signal Ssh due to the heartbeat. Specifically, the signal processing unit 10 performs the characteristics shown in FIG. 8 based on the signal processed in step 3 (the signal in which the frequency f has separated only the component between the reference value T1 and the reference value T2 by filtering). A deformation signal Ssh due to the beat of the heart as indicated by the line C2 is extracted.
  • the signal processing unit 10 calculates a heartbeat interval from the deformation signal Ssh due to the heartbeat. Specifically, the signal processing unit 10 calculates a heartbeat interval from the peak interval of the correlation coefficient by applying, for example, a pattern matching method, an autocorrelation method, or the like to the deformation signal Ssh due to the heartbeat.
  • step 11 it is determined whether or not the heartbeat interval calculated in step 10 is within a predetermined range. Specifically, the signal processing unit 10 determines whether or not the heartbeat interval is within a predetermined range (for example, not less than 0.25 seconds and not more than 1.5 seconds). In addition to this, the signal processing unit 10 also determines whether or not the correlation coefficient obtained by the pattern matching method or the autocorrelation method is equal to or less than a predetermined value. In this case, “within a predetermined range” can be obtained from an average heartbeat interval calculated in advance using statistics or the like.
  • step 11 If “NO” is determined in step 11, an error occurs because the heartbeat interval is not within the predetermined range or the correlation coefficient is equal to or smaller than the predetermined value (step 7). In this case, the signal processing unit 10 may return to Step 1 again to detect the sensor output again, or may cancel the heartbeat interval calculation process as it is.
  • step 11 since the heartbeat interval is within a predetermined range and the correlation coefficient is larger than a predetermined value, the process proceeds to step 12 to determine the heartbeat interval.
  • the heartbeat interval calculated in step 10 is determined as the heartbeat of the subject Obj, and the heart rate of the subject Obj within a predetermined time is calculated.
  • the signal processing unit 10 uses the sound signal So corresponding to the time of the heartbeat interval as the sound signal Sso (beating sound) due to the heartbeat from the characteristic line C1 shown in FIG. Can be detected.
  • the signal processing unit 10 extracts the sound signal So. Specifically, the signal processing unit 10 extracts the sound signal So based on the signal processed in step 3 (a signal obtained by separating only components whose frequency f is higher than the reference value T2 by filtering).
  • the sound signal So includes a sound signal Sko due to breathing and a sound signal Sso due to heartbeat.
  • the signal processing unit 10 removes background noise from the sound signal So. Specifically, the signal processing unit 10 removes background noise, which is high-frequency noise with a small amplitude, using an epsilon filter or the like.
  • step 15 the signal processing unit 10 removes a pulsating sound from the sound signal So. Specifically, the signal processing unit 10 performs filtering or the like to remove the pulsating sound (sound signal Sso due to the pulsation of the heart) simultaneously detected when the heartbeat interval is determined in step 12 from the sound signal So. Thereby, the sound signal Sko due to respiration and the sound signal Sso due to the heartbeat are separated from the sound signal So.
  • the signal processing unit 10 detects a respiratory abnormality based on the sound signal Sko due to respiration separated in step 15.
  • a normal breathing sound exists in a low sound range (for example, 100 to 1000 Hz), whereas an abnormal breathing sound often exists in a high sound range (1000 to several thousand Hz).
  • the signal processing unit 10 can detect a respiratory abnormality based on, for example, a component ratio between a high sound range and a low sound range, or can detect a respiratory abnormality using a wavelet pattern in a high sound range.
  • step 17 the signal processing unit 10 extracts respiratory abnormal sounds. Specifically, the signal processing unit 10 extracts a sound signal Sko due to respiration within a predetermined time before and after the respiratory abnormality detected in Step 16 as a respiratory abnormal sound.
  • the breathing interval, the heartbeat interval, and the abnormal breathing sound obtained in steps 8, 12, and 17 are output to an external device using the communication unit 12.
  • the piezoelectric film sensor 3 is affixed to the body surface of the subject Obj from the region K corresponding to the xiphoid process to the region M corresponding to the groove. Accordingly, the piezoelectric film sensor 3 is deformed when the body surface of the subject Obj is moved by respiration, and can detect a relative change between the part K corresponding to the xiphoid process and the part M corresponding to the groove. it can. At this time, relative displacement occurs between the part K corresponding to the xiphoid process and the part M corresponding to the groove in both the chest breathing and the abdominal breathing. For this reason, the piezoelectric film sensor 3 can detect both chest-type breathing and abdominal-type breathing.
  • the respiration sensing device 1 is made smaller than a device in which a belt or the like is attached to the subject Obj. Can be
  • breathing can be detected without pressing the subject Obj with a belt or the like, it is possible to suppress the influence on the breathing of the subject Obj. Thereby, it is possible to reduce a sense of incongruity with respect to the subject Obj and enhance noninvasiveness.
  • the sensor portion of the respiratory sensing device 1 is configured by the piezoelectric film sensor 3.
  • the displacement speed of the relative change between the part K corresponding to the xiphoid process of the subject Obj and the part M corresponding to the groove can be measured, so that the minute movement of the subject Obj due to breathing can be measured. It can be detected with high accuracy. Further, the respiration of the subject Obj can be detected without being affected by disturbance such as sweat.
  • the respiratory sensing device 1 makes the piezoelectric film sensor 3 rectangular and extends in the longitudinal direction extending from the chest to the abdomen of the subject Obj or in the longitudinal direction perpendicular to the longitudinal direction (thickness direction of the piezoelectric film sensor 3). Sensitivity is high for bending and low sensitivity for twisting. Thereby, when the subject Obj changes its posture and torsion or the like occurs in the trunk, the piezoelectric film sensor 3 is deformed in a direction with low sensitivity. It is possible to detect fluctuations due to.
  • the respiratory sensing device 1 is configured to separate the deformation signal Skh due to respiration, the sound signal So, and the deformation signal Ssh due to heartbeat into frequency signals having different frequency components using a frequency filter or the like. Yes. Thereby, since a specific signal can be detected by changing the frequency band to be detected, it is possible to accurately detect a plurality of signals without misrecognizing by a simple process.
  • the abnormality of respiration can be detected with high accuracy by comparing both signals Skh and So. Further, since the heartbeat interval (heart rate) can be calculated using the deformation signal Ssh due to the heartbeat, the abnormality of the heart can be detected from the heart rate.
  • the respiratory sensing device 1 further includes a battery 11 that supplies a power supply voltage to the amplifier 9, the signal processing unit 10, the communication unit 12, and the like.
  • the signal processing unit 10 outputs an output signal (analog signal Sa) from the sensor member 2. Is digitally converted and output to an external device.
  • FIGS. 1 and 12 show a respiratory sensing device according to a second embodiment of the present invention.
  • the feature of the second embodiment resides in that the respiration signal Sk and the heart beat signal Ss are separated as periodic signals having different periods. Note that in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the respiratory sensing device 21 includes a sensor member 2 that detects respiration of the subject Obj, a main body unit 8 that performs signal processing of the detected respiration, have.
  • the main body unit 8 includes an amplifier 9, a signal processing unit 22, a battery 11, a communication unit 12, and the like.
  • the signal processing unit 22 separates the respiration signal Sk and the heart pulsation signal Ss into periodic signals having different periods, respectively. Different from the device 1.
  • the signal processing unit 22 is provided in the main body unit 8, and is configured in the same manner as the signal processing unit 10 of the first embodiment. That is, the signal processing unit 22 processes the analog signal Sa detected from the piezoelectric film sensor 3 to generate a signal Sk due to respiration (a deformation signal Skh due to respiration and a sound signal Sko due to respiration) and a signal Ss due to the heartbeat. By separating the deformation signal Ssh due to the heart beat and the sound signal Sso due to the heart beat, the respiration of the subject Obj is detected.
  • the signal processing unit 22 converts the analog signal Sa detected from the piezoelectric film sensor 3 into a digital signal Sd, and then separates the periodic signal to detect the signal Sk due to respiration and the signal Ss due to the heartbeat. To do.
  • the signal processing unit 10 uses, for example, a pattern matching method, an autocorrelation method, or the like to use the signal Sk due to respiration and the heart beat. Can be separated as periodic signals having different periods.
  • the respiratory sensing device 21 has the above-described configuration. Next, when the subject Obj performs the above-described chest breathing and abdominal breathing with reference to FIG. The signal processing for detecting Obj respiration will be described. This signal processing is repeatedly executed at predetermined intervals while the respiratory sensing device 21 is driven.
  • step 21 when the respiratory sensing device 21 is driven, the respiratory sensing device 21 detects a sensor output from the piezoelectric film sensor 3.
  • step 22 as in step 2 of the first embodiment, the respiratory sensing device 21 performs waveform digital processing on the analog signal Sa output from the piezoelectric film sensor 3.
  • step 23 the signal processing unit 22 of the respiratory sensing device 21 separates the detected analog signal Sa (digital signal Sd) into a signal Sk due to respiration and a signal Ss due to heartbeat.
  • the signal Sk due to respiration and the signal Ss due to the heart beat have different periods, so that the signals Sk and Ss are separated by making the detection period different.
  • the period of the signal Sk due to respiration tends to be relatively longer than the period of the signal Ss due to the heartbeat.
  • the signal Sk by respiration and the signal Ss by heart beat can be separated by changing the length of the cycle to be detected.
  • the respiratory cycle may be substantially the same as the pulsation cycle of the heart, not only the cycle range but also the signal waveform shape by using the pattern matching method or the autocorrelation method and using the signal waveform shape, for example, And the signal Ss due to the heartbeat are separated.
  • the respiratory sensing device 21 does not separate the signals Sk and Ss by filtering the frequency components. Therefore, the separated respiration signal Sk and the heart beat signal Ss include the respiration deformation signal Skh and the respiration sound signal Sko, the heart beat deformation signal Ssh, and the heart beat sound signal Sso. And will be included respectively.
  • the signal Ss based on the heartbeat extracted from the digital signal Sd proceeds to step 24, and the heartbeat interval is calculated.
  • the pulsation period of the heart is set to, for example, not less than 0.25 seconds and not more than 1.5 seconds.
  • the respiration signal Sk extracted from the digital signal Sd proceeds to step 28 and is subjected to frequency filtering.
  • the respiratory cycle is set to, for example, not less than 0.2 seconds and not more than 10 seconds.
  • step 24 as in step 10 of the first embodiment, the signal processing unit 22 calculates a heartbeat interval from the signal Ss based on the heartbeat.
  • step 25 as in step 11 of the first embodiment, it is determined whether or not the heartbeat interval calculated in step 24 is within a predetermined range.
  • the signal processing unit 22 also determines whether or not the correlation coefficient obtained by the pattern matching method or the autocorrelation method is equal to or less than a predetermined value.
  • step 25 If “NO” is determined in step 25, an error occurs because the heartbeat interval is not within the predetermined range or the correlation coefficient is equal to or smaller than the predetermined value (step 26).
  • step 25 determines whether “YES” is determined in step 25 or “YES” is determined in step 25, the heartbeat interval is within a predetermined range and the correlation coefficient is larger than a predetermined value, so the process proceeds to step 27 to determine the heartbeat interval.
  • the heartbeat interval calculated in step 24 is determined as the heartbeat of the subject Obj, and the heart rate of the subject Obj within a predetermined time is calculated.
  • the signal processing unit 22 can detect the sound signal So corresponding to the time of the heartbeat interval as the sound signal Sso (beating sound) due to the heartbeat.
  • step 28 the signal processing unit 22 performs frequency filtering, and separates the respiration signal Sk separated in step 23 into a respiration signal Skh and a sound signal So.
  • the signals Skh and So are separated by changing the frequency band to be filtered.
  • the component (f ⁇ T) having the frequency f equal to or lower than the predetermined reference value T in the respiration signal Sk proceeds to step 29 and is extracted as a reshape signal Skh due to respiration.
  • the reference value T is set to 10 Hz, for example. If the frequency f is higher than the predetermined reference value T in the signal Sk due to respiration (T ⁇ f), the process proceeds to step 34 and is extracted as the sound signal So.
  • step 29 the signal processing unit 22 extracts a reshape signal Skh due to respiration.
  • step 30 as in step 5 of the first embodiment, the signal processing unit 22 calculates a breathing interval from the deformation signal Skh by breathing.
  • step 31 as in step 6 of the first embodiment, it is determined whether or not the breathing interval calculated in step 30 is within a predetermined range.
  • the signal processing unit 22 also determines whether or not the correlation coefficient obtained by the pattern matching method or the autocorrelation method is equal to or less than a predetermined value.
  • step 31 If it is determined as “NO” in step 31, an error occurs because the breathing interval is not within the predetermined range or the correlation coefficient is equal to or smaller than the predetermined value (step 32).
  • step 31 the respiration interval is within a predetermined range and the correlation coefficient is larger than a predetermined value, so the process proceeds to step 33 and the respiration interval is determined.
  • step 34 as in step 13 of the first embodiment, the signal processing unit 22 extracts the sound signal So.
  • step 35 as in step 14 of the first embodiment, the signal processing unit 22 removes background noise from the sound signal So.
  • step 36 as in step 15 of the first embodiment, the signal processing unit 22 removes the pulsating sound (sound signal Sso due to the heartbeat) from the sound signal So.
  • step 37 as in step 16 of the first embodiment, the signal processing unit 22 detects a respiratory abnormality based on the sound signal Sko due to respiration.
  • step 38 as in step 17 of the first embodiment, the signal processing unit 22 extracts abnormal breathing sounds.
  • the communication unit 12 is used to point the breathing interval, the heartbeat interval, and the breathing abnormal sound obtained in the steps 27, 33, and 38 to an external device. Output.
  • the respiration sensing device 21 uses a respiration signal Sk and a heart beat signal Ss as a periodic signal having different periods using a pattern matching method, an autocorrelation method, or the like. It is set as the structure isolate
  • the respiratory change of the subject Obj (the fluctuation of the body surface of the subject Obj due to respiration) is estimated from the signal Ss due to the heart beat, and the respiratory change and the signal Sk due to respiration are compared.
  • the respiration rate of the subject Obj can be detected with high accuracy.
  • FIG. 13 shows a respiratory sensing device according to a third embodiment of the present invention.
  • the respiratory sensing device includes an acceleration sensor. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the respiratory sensing device 31 includes a sensor member 2 that detects respiration of the subject Obj, a main body unit 8 that performs signal processing of the detected respiration, have.
  • the main body 8 includes an amplifier 9, a signal processing unit 10, a battery 11, a communication unit 12, an acceleration sensor 32, and the like.
  • the respiration sensing device 31 is different from the respiration sensing device 1 of the first embodiment in that an acceleration sensor 32 is provided.
  • the acceleration sensor 32 is provided in the main body unit 8 and is connected to the signal processing unit 10.
  • the acceleration sensor 32 incorporates an A / D converter (not shown), for example, and operates by supplying power from the battery 11.
  • the acceleration sensor 32 detects the posture and activity amount of the subject Obj as an acceleration signal and outputs the acceleration signal to the signal processing unit 10.
  • the posture of the subject Obj refers to a posture such as when the subject Obj stands or sleeps (lies down).
  • the amount of activity of the subject Obj refers to the amount of exercise when, for example, the subject Obj rests or exercises.
  • the respiratory sensing device 31 includes the acceleration sensor 32.
  • the respiratory sensing device 1 is configured to perform frequency filtering after converting the analog signal Sa to the digital signal Sd using the A / D converter 10A.
  • the present invention is not limited to this, and the analog signal Sa may be frequency filtered using an analog filter. The same applies to the second and third embodiments.
  • the signal processing unit 10 provided in the main body unit 8 is used for signal processing.
  • the present invention is not limited to this, and signal processing may be performed by an external device. The same applies to the second and third embodiments.
  • the communication unit 12 is provided in the main body unit 8, and the communication unit 12 is used to output the breathing interval, heartbeat interval, and abnormal breathing sound to an external device in real time. It was.
  • the present invention is not limited to this, and the respiratory sensing device and an external device may be connected using a cable and various data may be output by wire.
  • various data may be temporarily stored in a memory (not shown) provided in the main body, and output to an external device after completion of all measurements.
  • the respiratory sensing devices 1 and 21 include the piezoelectric film sensor 3 as a sensor.
  • the respiratory sensing device 31 includes a sensor.
  • the piezoelectric film sensor 3 and the acceleration sensor 32 are provided.
  • the present invention is not limited to this, and sensors such as an electrocardiographic sensor, a pulse wave sensor, and a temperature sensor may be combined. Simultaneous acquisition of heart beats with an electrocardiogram sensor, pulse wave sensor, etc. makes it easy to separate deformation signals and sound signals due to heart beats. The detection accuracy of the exercise state and sleep state to be given can be improved. Furthermore, fever caused by a disease or the like can be detected from a temperature rise and respiratory abnormality.
  • the piezoelectric film sensor 3 is used as the sensor.
  • the present invention is not limited to this.
  • a capacitance sensor, a strain gauge, a microphone, or the like may be used as the sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

呼吸センシング装置(1)は、被検者(Obj)の呼吸を検出するセンサ部材(2)と、検出した呼吸の信号処理を行う本体部(8)とを有する。センサ部材(2)は、圧電フィルムセンサ(3)、第1,第2の電極(4A),(4B)、絶縁シート(5A),(5B)、シールド(6A),(6B)等を備え、被検者(Obj)の胸骨の剣状突起に対応する部位(K)からみぞおちに対応する部位(M)にかけて被検者(Obj)の体表に貼り付けられている。呼吸センシング装置(1)は、剣状突起に対応する部位(K)とみぞおちに対応する部位(M)との相対変化を検出することにより被検者(Obj)の呼吸を検出する。

Description

呼吸センシング装置
 本発明は、被検者の呼吸を検出する呼吸センシング装置に関するものである。
 一般に、呼吸センシング装置として、圧電フィルムが組み込まれたベルトを装着するものや、被検者の胸部または腹部の曲率の変化を検出するもの等が知られている(例えば、特許文献1,2参照)。
特表2010-525872号公報 特表2004-536654号公報
 特許文献1による呼吸センシング装置では、圧電フィルムが組み込まれたベルトを被検者の胸部または腹部に装着して、ベルトに対する引張力に応じて被検者の呼吸を検出している。しかしながら、このようなベルトを装着する構成では、被検者にとって違和感が大きく、ベルトの装着状態によっては呼吸しづらくなる等といった呼吸への影響が生じる虞がある。
 また、特許文献2による呼吸センシング装置では、センサを被検者の胸部または腹部に装着して、被検者の胸部または腹部の曲率の変化を検出し被検者の呼吸を検出している。しかしながら、このような構成では、センサを被検者の胸部に装着すると腹式呼吸に対する検出感度が悪くなり、センサを被検者の腹部に装着すると胸式呼吸に対する検出感度が悪くなるという問題がある。また、曲率変化を検出するため、呼吸センシング装置が大きくなってしまうという問題もある。
 本発明は前述の問題に鑑みなされたものであり、本発明の目的は、被検者の胸式呼吸および腹式呼吸の両方を精度良く検出することができる呼吸センシング装置を提供することにある。
(1).上記課題を解決するために、本発明は、被検者の呼吸を検出する呼吸センシング装置であって、前記被検者の胸骨の剣状突起に対応する部位からみぞおちに対応する部位にかけて前記被検者の体表に貼り付けられるフィルム状のセンサを有し、前記センサは、前記剣状突起に対応する部位と前記みぞおちに対応する部位との相対変化を検出することにより前記被検者の呼吸を検出する構成としている。
 本発明によれば、フィルム状のセンサを剣状突起に対応する部位からみぞおちに対応する部位にかけて被検者の体表に貼り付けている。これにより、センサは、呼吸により被検者の体表が動いたときに変形し、剣状突起に対応する部位とみぞおちに対応する部位との相対変化を検出することができる。このとき、胸式呼吸と腹式呼吸とのいずれでも、剣状突起に対応する部位とみぞおちに対応する部位との間で相対変位が生じる。このため、センサは、胸式呼吸と腹式呼吸との両方を検出することができる。
 また、フィルム状のセンサを剣状突起に対応する部位からみぞおちに対応する部位にかけて貼り付けるだけであるので、ベルト等を被検者に装着するものに比べて呼吸センシング装置を小型化することができる。
 また、ベルト等により被検者を圧迫せずに呼吸を検出することができるので、被検者の呼吸に影響を与えることを抑制することができる。これにより、被検者に対する違和感を減少させて非侵襲性を高めることができる。
(2).本発明では、前記センサは、圧電フィルムセンサからなり、前記圧電フィルムセンサの変形によって発生する信号を検出することにより前記被検者の呼吸を検出する構成としている。
 本発明によれば、センサは、圧電フィルムセンサからなる構成としている。これにより、被検者の剣状突起に対応する部位とみぞおちに対応する部位との相対変化の変位速度を測定することができるので、呼吸による被検者の微小な体動を精度良く検出することができる。また、汗等の外乱に影響を受けることなく、被検者の呼吸を検出することができる。
(3).本発明では、前記センサは、長方形状であり、前記被検者の胸部から腹部にかけて延びる長手方向に対する伸びまたは前記長手方向に直交する前後方向に対する曲がりには感度が高く、ねじりには感度が低い構成としている。
 本発明によれば、センサを長方形状にして、被検者の胸部から腹部にかけて延びる長手方向に対する伸びまたは長手方向に直交する前後方向に対する曲がりには感度が高く、ねじりには感度が低い構成としている。これにより、被検者が体勢変化を行い体幹部にねじり等が生じた場合には、センサは感度が低い方向に変形するから、呼吸以外の誤検出を抑制して、精度良く呼吸による変動を検出することができる。
(4).本発明では、呼吸による変形信号と、音信号と、心臓の拍動による変形信号とをそれぞれ異なる周波数成分を持つ周波数信号として分離する信号処理部をさらに備える構成としている。
 本発明によれば、呼吸による変形信号と、音信号と、心臓の拍動による変形信号とを、周波数フィルタ等を用いてそれぞれ異なる周波数成分を持つ周波数信号として分離する構成としている。これにより、検出する周波数帯域を変更することにより特定の信号を検出することができるので、簡単な処理で複数の信号を誤認識することなく、精度良く検出することができる。
 また、呼吸による変形信号と音信号とを分離して検出しているので、両方の信号を比較することにより、呼吸の異常を精度良く検出することができる。さらに、心臓の拍動による変形信号を用いて心拍間隔(心拍数)を算出できるので、心拍数から心臓の異常を検出することができる。
(5).本発明では、呼吸による信号と、心臓の拍動による信号とをそれぞれ異なる周期を持つ周期信号として分離する信号処理部をさらに備える構成としている。
 本発明によれば、呼吸による信号と、心臓の拍動による信号とを、パターンマッチング法や自己相関法等を用いてそれぞれ異なる周期を持つ周期信号として分離する構成としている。これにより、それぞれの信号の周波数成分が重なり周波数フィルタでは分離できない場合でも、検出する周期を変更することにより特定の信号を検出することができる。このため、複数の信号を誤認識することなく、精度良く検出することができる。
 また、心臓の拍動による信号から呼吸性変動を推定して、該呼吸性変動と呼吸による信号とを比較することにより、被検者の呼吸数を精度よく検出することができる。
(6).本発明では、前記信号処理部に電源電圧を供給するバッテリをさらに備え、前記信号処理部は、前記センサからの出力信号をデジタル変換して、外部の機器に向けて出力する構成としている。
 本発明によれば、信号処理部に電源電圧を供給するバッテリをさらに備え、信号処理部は、センサからの出力信号をデジタル変換して、外部の機器に向けて出力する構成としている。これにより、ケーブルレスで呼吸のデータを外部の機器に向けて出力することができるので、被検者を拘束することなく、ストレスや緊張感を与えない非侵襲の呼吸センシング装置を提供できる。また、非侵襲性であるので、長時間における測定や日常生活における測定も可能となる。
(7).本発明では、加速度信号から前記被検者の姿勢と活動量とを検出する加速度センサをさらに備える構成としている。
 本発明によれば、加速度信号から被検者の姿勢と活動量とを検出する加速度センサをさらに備える構成としている。これにより、呼吸や心臓の拍動に影響を与える因子である、被検者の姿勢や活動量の情報を同時に得ることができるため、呼吸や心臓の拍動の異常をより精度よく検出することができる。例えば、深い睡眠中には呼吸はゆっくり大きくなり、心臓の拍動も低下する。これに対し、歩行や運動中は、呼吸も心臓の拍動も早くなる。このため、姿勢と活動量との情報を同時に得ることにより異常の検出精度を向上できる。
本発明の第1の実施の形態による呼吸センシング装置を示す正面図である。 呼吸センシング装置を図1中の矢示II-II方向からみた断面図である。 呼吸センシング装置を被検者の剣状突起に対応する部位からみぞおちに対応する部位にかけて貼付した場合を示す説明図である。 被検者が胸式呼吸を行う場合の体動の変化を示す説明図である。 被検者が腹式呼吸を行う場合の体動の変化を示す説明図である。 第1の実施の形態の呼吸センシング装置による呼吸センシング処理を示す流れ図である。 圧電フィルムセンサから出力されるアナログ信号の時間変化を示す特性線図である。 心臓の拍動による変形信号の時間変化を示す特性線図である。 呼吸による変形信号の時間変化を示す特性線図である。 複式呼吸による変形信号の時間変化を示す特性線図である。 胸式呼吸による変形信号の時間変化を示す特性線図である。 第2の実施の形態の呼吸センシング装置による呼吸センシング処理を示す流れ図である。 第3の実施の形態による呼吸センシング装置を示す正面図である。
 以下、本発明の実施の形態による呼吸センシング装置を用いた呼吸センシング装置について、図面を参照しつつ詳細に説明する。
 まず、図1ないし図11に本発明の第1の実施の形態を示す。第1の実施の形態による呼吸センシング装置1は、被検者Objの呼吸を検出するセンサ部材2と、検出した呼吸の信号処理を行う本体部8と、を有している。
 センサ部材2は、全体として長方形状をなし、呼吸センシング装置1の一端側(図1中の上側)に位置して設けられている。このセンサ部材2は、圧電フィルムセンサ3、第1,第2の電極4A,4B、絶縁シート5A,5B、シールド6A,6B等を備えている。図3に示すように、センサ部材2は、被検者Objの胸骨の剣状突起に対応する部位Kからみぞおちに対応する部位Mにかけて、後述の貼付部材7を用いて被検者Objの体表に貼り付けられている。
 具体的には、センサ部材2の長手方向寸法(上下方向寸法)は、例えば4~10cm程度の寸法に設定され、センサ部材2の幅方向寸法は、例えば0.5~4cm程度の寸法に設定されている。また、センサ部材2の厚さ方向寸法は、例えば、0.1~1mm程度の寸法に設定されている。これにより、センサ部材2の長手方向は、被検者Objの胸部下端から腹部上端にかけて延びている。この結果、センサ部材2は、呼吸により被検者Objの体表が動くことにより変形し、剣状突起に対応する部位Kとみぞおちに対応する部位Mとの相対変化を検出することにより、被検者Objの呼吸を検出することができる。
 圧電フィルムセンサ3は、センサ部材2の内側に位置して設けられている。この圧電フィルムセンサ3は、フィルム状のセンサとして薄膜(薄板)からなり、フィルムが変形することによって電気信号を発生させる。ここで、圧電フィルムセンサ3は、例えば、ポリフッ化ビニリデン(PVDF)やポリ乳酸等の圧電ポリマーフィルムセンサ、窒化アルミニウム(AlN)やチタン酸ジルコン酸鉛(PZT)等の無機物の薄膜を樹脂フィルム等の基材上に形成したフィルムセンサ等がある。
 この場合、ポリ乳酸はずり圧電特性を有しているので、分子の配向方向に対して45°の角度に短冊状に切り出すと、フィルムの曲がりや伸びに対する感度を高める一方、ねじりに対しての感度を低くすることができる。従って、被検者Objの呼吸の検出精度を高めて、被検者Objの体勢変化等によるねじりの検出精度を低めるには、ポリ乳酸を圧電フィルムセンサ3に用いるのが好ましい。これにより、ポリ乳酸を用いて圧電フィルムセンサ3を形成することにより、被検者Objの長手方向に対する伸び、および該長手方向に直交する前後方向(被検者Objの前後方向、即ちセンサ部材2の厚さ方向)に対する曲がりには感度を高くする一方、被検者Objのねじりには感度を低くしている。
 第1,第2の電極4A,4Bは、センサ部材2の内側に位置して、圧電フィルムセンサ3の厚さ方向の両側にそれぞれ設けられている。この第1,第2の電極4A,4Bは、例えば金属材料、酸化インジウム錫(ITO)等の導電性材料からなる導電性薄膜、またはカーボン等を用いて形成されている。第1,第2の電極4A,4Bは、圧電フィルムセンサ3の変形に応じたアナログ信号Saをそれぞれ検出し、本体部8の増幅器9に検出したアナログ信号Saを出力する。この場合、微小な変形を検出するため、第1,第2の電極4A,4Bは、軟らかく薄いものが好ましい。
 絶縁シート5A,5Bは、圧電フィルムセンサ3および第1,第2の電極4A,4Bの厚さ方向の両側にそれぞれ設けられている。即ち、絶縁シート5A,5Bは、第1,第2の電極4A,4Bを厚さ方向の両側からそれぞれ覆っている。この絶縁シート5A,5Bは、例えば絶縁性の軟質樹脂材料を用いて、弾性変形可能なシート状に形成されている。この絶縁シート5A,5Bは、第1,第2の電極4A,4Bを全面に亘って覆い、第1,第2の電極4A,4Bとシールド6A,6Bとの間を絶縁している。
 シールド6A,6Bは、センサ部材2の外側(外殻)に位置して、圧電フィルムセンサ3、第1,第2の電極4A,4Bおよび絶縁シート5A,5Bの厚さ方向の両側にそれぞれ設けられている。即ち、シールド6A,6Bは、絶縁シート5A,5Bを厚さ方向の両側からそれぞれ覆っている。このシールド6A,6Bは、例えば銀、銅等の金属箔や金属等の導電性薄膜を形成した樹脂フィルム、導電性ポリマーフィルム、導電性糸を用いた導電性不織布、カーボン等の導電性粒子を樹脂材料等のバインダに配合した樹脂フィルム等を用いて、弾性変形可能なシート状に形成されている。このシールド6A,6Bは、圧電フィルムセンサ3を外部の電磁波等からシールドするものである。なお、シールド6A,6Bは、外部のグラウンド等に接続してもよい。
 貼付部材7は、呼吸センシング装置1の厚さ方向の一側に位置して設けられている。この貼付部材7は、例えば生体適合性のある両面テープ等を用いて、長方形状に形成されている。貼付部材7は、呼吸センシング装置1を被検者Objの剣状突起に対応する部位Kからみぞおちに対応する部位Mにかけて貼り付けるものである。
 本体部8は、呼吸センシング装置1の他端側(図1中の下側)に位置して設けられている。この本体部8は、増幅器9、信号処理部10、バッテリ11、通信部12等を備えている。この場合、本体部8は、コネクタ(図示せず)等を用いてセンサ部材2とは取外し可能に接続され、被検者Objに貼付されたセンサ部材2の下端側に貼り付けられている(図3参照)。これにより、センサ部材2のみが破損した場合や汚れた場合に、センサ部材2のみを本体部8から取外して交換することができる。
 増幅器9は、例えばオペアンプ(演算増幅器)等を含んだ増幅回路により構成されている。増幅器9の入力側は第1,第2の電極4A,4Bにそれぞれ接続され、増幅器9の出力側は信号処理部10に接続されている。この増幅器9は、第1,第2の電極4A,4Bで検出した圧電フィルムセンサ3の変形に応じたアナログ信号Saを増幅して、信号処理部10に向けて出力する。
 信号処理部10は、本体部8に設けられ、バッテリ11から供給される電力によって駆動する。信号処理部10の入力側は、増幅器9に接続されている。一方、信号処理部10の出力側は、通信部12に接続されている。信号処理部10は、例えばマイクロコンピュータ(CPU)等により構成され、A/Dコンバータ(Analog Digital Converter)10Aを備えている。この信号処理部10は、圧電フィルムセンサ3から検出したアナログ信号Saを処理して、呼吸による信号Sk(呼吸による変形信号Skhおよび呼吸による音信号Sko)と心臓の拍動による信号Ss(心臓の拍動による変形信号Sshおよび心臓の拍動による音信号Sso)とを分離することにより、被検者Objの呼吸を検出するものである。
 この場合、「呼吸による変形信号Skh」とは、呼吸によって被検者Objの体(体表)が変形することに対する信号をいい、「心臓の拍動による変形信号Ssh」とは、心臓の拍動によって被検者Objの体(体表)が変形することに対する信号をいう。また、「呼吸による音信号Sko」とは、呼吸音に対する信号をいい、「心臓の拍動による音信号Sso」とは、心拍音に対する信号をいう。これらの呼吸による音信号Skoと心臓の拍動による音信号Ssoとは、音信号Soに含まれるものである。
 A/Dコンバータ10Aは、増幅器9を介してセンサ部材2から入力されるアナログ信号Saをデジタル信号Sdに変換する。このとき、A/Dコンバータ10Aは、検出したアナログ信号Saの信号周期に比べて十分に短いサンプリング周期でアナログ-デジタル変換を行う。
 ここで、信号処理部10は、圧電フィルムセンサ3が検出したアナログ信号Saをデジタル信号Sdに変換した後、フィルタリングを行い、呼吸による信号Sk(呼吸による変形信号Skhおよび呼吸による音信号Sko)と心臓の拍動による信号Ss(心臓の拍動による変形信号Sshおよび心臓の拍動による音信号Sso)とを検出する。この場合、呼吸による信号Skと心臓の拍動による信号Ssとでは周波数が異なるため、信号処理部10は、例えば周波数フィルタやウェーブレット変換等を用いて、呼吸による信号Skと心臓の拍動による信号Ssとをそれぞれ異なる周波数成分をもつ周波数信号として分離することができる。
 また、信号処理部10は、分離した呼吸による信号Skと心臓の拍動による信号Ssとに対して、例えばパターンマッチング法や自己相関法を用いて信号処理を行い、相関係数のピーク間隔を求め、呼吸間隔と心拍間隔とを算出する。
 バッテリ11は、本体部8に設けられ、増幅器9、信号処理部10、通信部12等と接続されている。このバッテリ11は、増幅器9、信号処理部10、通信部12等に電源電圧(電力)を供給する電源電圧回路を構成するものである。なお、この場合、外部からの無線電波を受信してバッテリ11を充電するハーベストアンテナを、本体部8に設ける構成としてもよい。
 通信部12は、本体部8に設けられ、信号処理部10と接続されている。この通信部12は、各種の無線通信規格に応じて信号を変調する変調回路と、変調信号を送信する送信部等を備えている。通信部12は、信号処理部10で検出された被検者Objの呼吸および心臓の拍動を、PCや携帯端末、記憶装置、サーバー(いずれも図示せず)等に向けて出力する。
 呼吸センシング装置1は上述の如き構成を有するもので、次にその動作について説明する。まず、前提として、被検者Objが胸式呼吸および腹式呼吸により呼吸を行う場合を説明する。
 図4に示すように、被検者Objが胸式呼吸を行って息を吸う場合は、肋骨の間の筋肉である肋間筋が伸びて肺Hが左右方向(被検者Objの横方向)に広がることによって、肺H内に空気を吸込んでいる。
 一方、被検者Objが胸式呼吸を行って息を吐く場合は、肋骨の間の筋肉である肋間筋が縮んで肺Hが左右方向に狭まることによって、体外に空気を吐出している。
 また、図5に示すように、被検者Objが腹式呼吸を行って息を吸う場合は、横隔膜Oが下がり内臓Nを押し下げて、肺Hが上下方向に広がる(伸びる)ことによって、肺H内に空気を吸込んでいる。
 一方、被検者Objが腹式呼吸を行って息を吐く場合は、横隔膜Oが上がり内臓Nを押し上げて、肺が上下方向に狭まる(縮む)ことによって、体外に空気を吐出している。
 上記の4つの場合のそれぞれについて、胸部もしくは腹部が変形し、剣状突起に対応する部位Kとみぞおちに対応する部位Mとの相対変化が発生するため、圧電フィルムセンサ3の引張りや曲げによる変形の速度に応じてアナログ信号Saが出力される。
 次に、図6を用いて、被検者Objが上述した胸式呼吸および腹式呼吸を行う場合に、呼吸センシング装置1によって被検者Objの呼吸を検出する信号処理を説明する。この信号処理は、呼吸センシング装置1が駆動している間に所定周期毎に繰り返し実行される。
 まず、ステップ1では、呼吸センシング装置1が駆動すると、呼吸センシング装置1は、圧電フィルムセンサ3によるセンサ出力を検出する。即ち、圧電フィルムセンサ3は、被検者Objの呼吸(胸式呼吸および腹式呼吸)によって変形して、アナログ信号Saを本体部8に向けて出力する。この場合、図7の特性線C1で示すように、圧電フィルムセンサ3が発生させるアナログ信号Saは、呼吸による信号Sk(呼吸による変形信号Skhおよび呼吸による音信号Sko)と心臓の拍動による信号Ss(心臓の拍動による変形信号Sshおよび心臓の拍動による音信号Sso)との両方を含んだものとなる。
 ステップ2では、呼吸センシング装置1は、圧電フィルムセンサ3から出力されたアナログ信号Saに対して、波形デジタル処理を行う。即ち、圧電フィルムセンサ3から出力されたアナログ信号Saは、増幅器9によって増幅され、信号処理部10のA/Dコンバータ10Aによってデジタル信号Sdに変換される。
 ステップ3では、呼吸センシング装置1の信号処理部10は、周波数フィルタリングを行い、検出したアナログ信号Sa(デジタル信号Sd)を、呼吸による変形信号Skhと、心臓の拍動による変形信号Sshと、音信号Soとに分離する。この場合、呼吸による変形信号Skhと、心臓の拍動による変形信号Sshと、音信号Soとは周波数成分がそれぞれ異なっているので、フィルタリングする周波数帯域を異ならせることにより、各信号Skh,Ssh,Soを分離する。
 具体的には、呼吸による変形信号Skhの周波数成分は、例えば0.05~10Hzの範囲内に含まれている。また、心臓の拍動による変形信号Sshの周波数成分は、例えば10~50Hzの範囲内に含まれている。さらに、音信号Soの周波数成分は、例えば100~数1000Hzの範囲内に含まれている。
 したがって、デジタル信号Sdのうち周波数fが所定の基準値T1より低い成分(f<T1)は、ステップ4に進んで呼吸による変形信号Skhとして抽出される。この場合、基準値T1は、例えば10Hzに設定する。また、デジタル信号Sdのうち周波数fが所定の基準値T1以上であり所定の基準値T2以下である成分(T1≦f≦T2)は、ステップ9に進んで心臓の拍動による変形信号Sshとして抽出される。この場合、基準値T2は、例えば100Hzに設定する。さらに、デジタル信号Sdのうち周波数fが所定の基準値T2より高い成分(T2<f)は、ステップ13に進んで音信号Soとして抽出される。
 次に、ステップ4では、信号処理部10は、呼吸による変形信号Skhを抽出する。具体的には、信号処理部10は、ステップ3で処理した信号(フィルタリングにより、周波数fが基準値T1より低い成分のみを分離した信号)に基づいて、図9ないし図11の特性線C3~C5で示すような呼吸による変形信号Skhを抽出する。なお、図10は、複式呼吸の測定例を示し、図11は、胸式呼吸の測定例を示している。図10に示す測定例では、複式呼吸は、約2秒周期となっている。図11に示す測定例では、胸式呼吸は約0.5秒周期になっている。図9ないし図11に示す測定例では、周波数フィルタによって心臓の拍動による信号が除去されている。
 続くステップ5では、信号処理部10は、呼吸による変形信号Skhから呼吸間隔を算出する。具体的には、信号処理部10は、呼吸による変形信号Skhに対して、例えばパターンマッチング法や自己相関法等を適用して、相関係数のピーク間隔から呼吸間隔を算出する。
 ステップ6では、ステップ5で算出した呼吸間隔が所定の範囲内であるか否かを判定する。具体的には、信号処理部10は、呼吸間隔が所定の範囲内(例えば、0.2秒以上10秒以下)か否かを判定する。これに加えて、信号処理部10は、パターンマッチング法または自己相関法で求めた相関係数が所定の値以下か否かも判定する。この場合、「所定の範囲内」は、予め統計等を用いて算出した平均的な呼吸間隔から求めることができる。
 ステップ6で、「NO」と判定した場合は、呼吸間隔が所定の範囲内でない、または相関係数が所定の値以下であるので、エラーとなる(ステップ7)。この場合、信号処理部10は、再度ステップ1に戻りセンサ出力を検出し直してもよいし、そのまま呼吸間隔の算出処理を中止してもよい。
 一方、ステップ6で「YES」と判定した場合は、呼吸間隔が所定の範囲内であり、かつ、相関係数が所定の値よりも大きいので、ステップ8に進み呼吸間隔を決定する。具体的には、ステップ5で算出した呼吸間隔を被検者Objの呼吸として確定し、所定時間内の被検者Objの呼吸数を算出する。
 次に、ステップ9では、信号処理部10は、心臓の拍動による変形信号Sshを抽出する。具体的には、信号処理部10は、ステップ3で処理した信号(フィルタリングにより、周波数fが基準値T1と基準値T2との間の成分のみを分離した信号)に基づいて、図8の特性線C2で示すような心臓の拍動による変形信号Sshを抽出する。
 続くステップ10では、信号処理部10は、心臓の拍動による変形信号Sshから心拍間隔を算出する。具体的には、信号処理部10は、心臓の拍動による変形信号Sshに対して、例えばパターンマッチング法や自己相関法等を適用して、相関係数のピーク間隔から心拍間隔を算出する。
 ステップ11では、ステップ10で算出した心拍間隔が所定の範囲内であるか否かを判定する。具体的には、信号処理部10は、心拍間隔が所定の範囲内(例えば、0.25秒以上1.5秒以下)か否かを判定する。これに加えて、信号処理部10は、パターンマッチング法または自己相関法等で求めた相関係数が所定の値以下か否かも判定する。この場合、「所定の範囲内」は、予め統計等を用いて算出した平均的な心拍間隔から求めることができる。
 ステップ11で、「NO」と判定した場合は、心拍間隔が所定の範囲内でない、または相関係数が所定の値以下であるので、エラーとなる(ステップ7)。この場合、信号処理部10は、再度ステップ1に戻りセンサ出力を検出し直してもよいし、そのまま心拍間隔の算出処理を中止してもよい。
 一方、ステップ11で「YES」と判定した場合は、心拍間隔が所定の範囲内であり、かつ、相関係数が所定の値よりも大きいので、ステップ12に進み心拍間隔を決定する。具体的には、ステップ10で算出した心拍間隔を、被検者Objの心拍として確定し、所定時間内の被検者Objの心拍数を算出する。この場合、信号処理部10は、心拍間隔を決定するに際し、心拍間隔の時刻に対応する音信号Soを心臓の拍動による音信号Sso(拍動音)として、図7に示す特性線C1から検出することができる。
 次に、ステップ13では、信号処理部10は、音信号Soを抽出する。具体的には、信号処理部10は、ステップ3で処理した信号(フィルタリングにより、周波数fが基準値T2より高い成分のみを分離した信号)に基づいて、音信号Soを抽出する。この場合、音信号Soとは、呼吸による音信号Skoと心臓の拍動による音信号Ssoとを含むものである。
 続くステップ14では、信号処理部10は、音信号Soからバックグラウンドノイズを除去する。具体的には、信号処理部10は、イプシロンフィルタ等を用いて小振幅の高周波雑音であるバックグラウンドノイズを除去する。
 ステップ15では、信号処理部10は、音信号Soから拍動音を除去する。具体的には、信号処理部10は、ステップ12で心拍間隔を決定した際に同時に検出した拍動音(心臓の拍動による音信号Sso)を、フィルタリング等を行い音信号Soから除去する。これにより、音信号Soから、呼吸による音信号Skoと心臓の拍動による音信号Ssoとを分離する。
 ステップ16では、信号処理部10は、ステップ15で分離した呼吸による音信号Skoに基づいて呼吸異常を検出する。この場合、通常の呼吸音は低音域(例えば、100~1000Hz)に存在するのに対して、呼吸異常音は高音域(1000~数1000Hz)に存在することが多い。これにより、信号処理部10は、例えば高音域と低音域との成分比に基づいて呼吸異常の検出をしたり、高音域のウェーブレットパターンを用いて呼吸異常の検出をすることができる。
 ステップ17では、信号処理部10は、呼吸異常音を抽出する。具体的には、信号処理部10は、ステップ16で検出した呼吸異常の前後の所定時間内の呼吸による音信号Skoを呼吸異常音として抽出する。
 続くステップ18では、ステップ8,12,17で求めた呼吸間隔と心拍間隔と呼吸異常音とを外部の機器に向けて通信部12を用いて出力する。
 かくして、第1の実施の形態によれば、圧電フィルムセンサ3を剣状突起に対応する部位Kからみぞおちに対応する部位Mにかけて被検者Objの体表に貼り付けている。これにより、圧電フィルムセンサ3は、呼吸により被検者Objの体表が動いたときに変形し、剣状突起に対応する部位Kとみぞおちに対応する部位Mとの相対変化を検出することができる。このとき、胸式呼吸と腹式呼吸とのいずれでも、剣状突起に対応する部位Kとみぞおちに対応する部位Mとの間で相対変位が生じる。このため、圧電フィルムセンサ3は、胸式呼吸と腹式呼吸との両方を検出することができる。
 また、圧電フィルムセンサ3を剣状突起に対応する部位Kからみぞおちに対応する部位Mにかけて貼り付けるだけであるので、ベルト等を被検者Objに装着するものに比べて呼吸センシング装置1を小型化することができる。
 また、ベルト等により被検者Objを圧迫せずに呼吸を検出することができるので、被検者Objの呼吸に影響を与えることを抑制することができる。これにより、被検者Objに対する違和感を減少させて非侵襲性を高めることができる。
 また、呼吸センシング装置1のセンサ部分は、圧電フィルムセンサ3からなる構成としている。これにより、被検者Objの剣状突起に対応する部位Kとみぞおちに対応する部位Mとの相対変化の変位速度を測定することができるので、呼吸による被検者Objの微小な体動を精度良く検出することができる。また、汗等の外乱に影響を受けることなく、被検者Objの呼吸を検出することができる。
 また、呼吸センシング装置1は、圧電フィルムセンサ3を長方形状にして、被検者Objの胸部から腹部にかけて延びる長手方向に対する伸びまたは長手方向に直交する前後方向(圧電フィルムセンサ3の厚さ方向)に対する曲がりには感度が高く、ねじりには感度が低い構成としている。これにより、被検者Objが体勢変化を行い体幹部にねじり等が生じた場合には、圧電フィルムセンサ3は感度が低い方向に変形するから呼吸以外の誤検出を抑制して、精度良く呼吸による変動を検出することができる。
 また、呼吸センシング装置1は、呼吸による変形信号Skhと、音信号Soと、心臓の拍動による変形信号Sshとを、周波数フィルタ等を用いてそれぞれ異なる周波数成分を持つ周波数信号として分離する構成としている。これにより、検出する周波数帯域を変更することにより特定の信号を検出することができるので、簡単な処理で複数の信号を誤認識することなく、精度良く検出することができる。
 また、呼吸による変形信号Skhと音信号Soとを分離して検出しているので、両方の信号Skh,Soを比較することにより、呼吸の異常を精度良く検出することができる。さらに、心臓の拍動による変形信号Sshを用いて心拍間隔(心拍数)を算出できるので、心拍数から心臓の異常を検出することができる。
 また、呼吸センシング装置1は、増幅器9、信号処理部10、通信部12等に電源電圧を供給するバッテリ11をさらに備え、信号処理部10は、センサ部材2からの出力信号(アナログ信号Sa)をデジタル変換して、外部の機器に向けて出力する構成としている。これにより、ケーブルレスで呼吸を検出することができるので、被検者Objを拘束することなく、ストレスや緊張感を与えない非侵襲の呼吸センシング装置1を提供できる。また、非侵襲性であるので、長時間における測定や日常生活における測定も可能となる。
 次に、図1および図12に、本発明の第2の実施の形態による呼吸センシング装置を示す。第2の実施の形態の特徴は、呼吸による信号Skと心臓の拍動による信号Ssとをそれぞれ異なる周期をもつ周期信号として分離することにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。
 第2の実施の形態による呼吸センシング装置21は、第1の実施の形態と同様に、被検者Objの呼吸を検出するセンサ部材2と、検出した呼吸の信号処理を行う本体部8と、を有している。本体部8は、増幅器9、信号処理部22、バッテリ11、通信部12等を備えている。この場合、呼吸センシング装置21は、信号処理部22が呼吸による信号Skと心臓の拍動による信号Ssとをそれぞれ異なる周期をもつ周期信号として分離する点で、第1の実施の形態の呼吸センシング装置1と異なっている。
 信号処理部22は、本体部8に設けられ、第1の実施の形態の信号処理部10と同様に構成されている。即ち、この信号処理部22は、圧電フィルムセンサ3から検出したアナログ信号Saを処理して、呼吸による信号Sk(呼吸による変形信号Skhおよび呼吸による音信号Sko)と心臓の拍動による信号Ss(心臓の拍動による変形信号Sshおよび心臓の拍動による音信号Sso)とを分離することにより、被検者Objの呼吸を検出するものである。
 ここで、信号処理部22は、圧電フィルムセンサ3から検出したアナログ信号Saをデジタル信号Sdに変換した後、周期信号を分離して、呼吸による信号Skと心臓の拍動による信号Ssとを検出する。この場合、呼吸による信号Skと心臓の拍動による信号Ssとでは周期が異なるため、信号処理部10は、例えばパターンマッチング法や自己相関法等を用いて、呼吸による信号Skと心臓の拍動による信号Ssとをそれぞれ異なる周期をもつ周期信号として分離することができる。
 呼吸センシング装置21は上述の如き構成を有するもので、次に、図12を用いて、被検者Objが上述した胸式呼吸および腹式呼吸を行う場合に、呼吸センシング装置21によって被検者Objの呼吸を検出する信号処理を説明する。この信号処理は、呼吸センシング装置21が駆動している間に所定周期毎に繰り返し実行される。
 まず、ステップ21では、第1の実施の形態のステップ1と同様に、呼吸センシング装置21が駆動すると、呼吸センシング装置21は、圧電フィルムセンサ3によるセンサ出力を検出する。
 ステップ22では、第1の実施の形態のステップ2と同様に、呼吸センシング装置21は、圧電フィルムセンサ3から出力されたアナログ信号Saに対して、波形デジタル処理を行う。
 ステップ23では、呼吸センシング装置21の信号処理部22は、検出したアナログ信号Sa(デジタル信号Sd)を、呼吸による信号Skと心臓の拍動による信号Ssとに分離する。この場合、呼吸による信号Skと心臓の拍動による信号Ssとは周期がそれぞれ異なっているので、検出する周期を異ならせることにより、各信号Sk,Ssを分離する。
 具体的には、呼吸による信号Skの周期は心臓の拍動による信号Ssの周期に比べて、相対的に長い傾向にある。これにより、検出する周期の長短を変えることにより、呼吸による信号Skと心臓の拍動による信号Ssとを分離することができる。ただし、呼吸周期が心臓の拍動周期とほぼ同じになる場合もあるため、周期範囲だけでなく、例えばパターンマッチング法または自己相関法を適用して信号波形形状も用いることで、呼吸による信号Skと心臓の拍動による信号Ssとを分離する。
 なお、この場合、呼吸センシング装置21は、第1の実施の形態の呼吸センシング装置1と異なり、周波数成分をフィルタリングすることにより各信号Sk,Ssを分離していない。したがって、分離した呼吸による信号Skと心臓の拍動による信号Ssとには、呼吸による変形信号Skhおよび呼吸による音信号Skoと、心臓の拍動による変形信号Sshおよび心臓の拍動による音信号Ssoとがそれぞれ含まれることになる。
 よって、デジタル信号Sdから抽出された心臓の拍動による信号Ssは、ステップ24に進んで心拍間隔が算出される。この場合、心臓の拍動周期は、例えば0.25秒以上1.5秒以下に設定する。また、デジタル信号Sdから抽出された呼吸による信号Skは、ステップ28に進んで周波数フィルタリングが行われる。この場合、呼吸周期は、例えば0.2秒以上10秒以下に設定する。
 次に、ステップ24では、第1の実施の形態のステップ10と同様に、信号処理部22は、心臓の拍動による信号Ssから心拍間隔を算出する。
 ステップ25では、第1の実施の形態のステップ11と同様に、ステップ24で算出した心拍間隔が所定の範囲内か否かを判定する。これに加えて、信号処理部22は、パターンマッチング法または自己相関法で求めた相関係数が所定の値以下か否かも判定する。
 ステップ25で、「NO」と判定した場合は、心拍間隔が所定の範囲内でない、または相関係数が所定の値以下であるので、エラーとなる(ステップ26)。
 一方、ステップ25で「YES」と判定した場合は、心拍間隔が所定の範囲内であり、かつ、相関係数が所定の値よりも大きいので、ステップ27に進み心拍間隔を決定する。具体的には、ステップ24で算出した心拍間隔を、被検者Objの心拍として確定し、所定時間内の被検者Objの心拍数を算出する。この場合、信号処理部22は、心拍間隔を決定するに際し、心拍間隔の時刻に対応する音信号Soを心臓の拍動による音信号Sso(拍動音)として検出することができる。
 次に、ステップ28では、信号処理部22は、周波数フィルタリングを行い、ステップ23で分離した呼吸による信号Skを、呼吸による変形信号Skhと、音信号Soとに分離する。この場合、呼吸による変形信号Skhと、音信号Soとは周波数成分がそれぞれ異なっているので、フィルタリングする周波数帯域を異ならせることにより、各信号Skh,Soを分離する。
 したがって、呼吸による信号Skのうち周波数fが所定の基準値T以下の成分(f≦T)は、ステップ29に進んで呼吸による変形信号Skhとして抽出される。この場合、基準値Tは、例えば10Hzに設定する。また、呼吸による信号Skのうち周波数fが所定の基準値Tより高い場合(T<f)は、ステップ34に進んで音信号Soとして抽出される。
 次に、ステップ29では、第1の実施の形態のステップ4と同様に、信号処理部22は、呼吸による変形信号Skhを抽出する。
 続くステップ30では、第1の実施の形態のステップ5と同様に、信号処理部22は、呼吸による変形信号Skhから呼吸間隔を算出する。
 ステップ31では、第1の実施の形態のステップ6と同様に、ステップ30で算出した呼吸間隔が所定の範囲内か否かを判定する。これに加えて、信号処理部22は、パターンマッチング法または自己相関法で求めた相関係数が所定の値以下か否かも判定する。
 ステップ31で、「NO」と判定した場合は、呼吸間隔が所定の範囲内でない、または相関係数が所定の値以下であるので、エラーとなる(ステップ32)。
 一方、ステップ31で「YES」と判定した場合は、呼吸間隔が所定の範囲内であり、かつ、相関係数が所定の値よりも大きいので、ステップ33に進み呼吸間隔を決定する。
 次に、ステップ34では、第1の実施の形態のステップ13と同様に、信号処理部22は、音信号Soを抽出する。
 続くステップ35では、第1の実施の形態のステップ14と同様に、信号処理部22は、音信号Soからバックグラウンドノイズを除去する。
 ステップ36では、第1の実施の形態のステップ15と同様に、信号処理部22は、音信号Soから拍動音(心臓の拍動による音信号Sso)を除去する。
 ステップ37では、第1の実施の形態のステップ16と同様に、信号処理部22は、呼吸による音信号Skoに基づいて呼吸異常を検出する。
 ステップ38では、第1の実施の形態のステップ17と同様に、信号処理部22は、呼吸異常音を抽出する。
 続くステップ39では、第1の実施の形態のステップ18と同様に、ステップ27,33,38で求めた呼吸間隔と心拍間隔と呼吸異常音とを外部の機器に向けて通信部12を用いて出力する。
 かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様な作用効果を得ることができる。第2の実施の形態によれば、呼吸センシング装置21は、呼吸による信号Skと、心臓の拍動による信号Ssとを、パターンマッチング法や自己相関法等を用いてそれぞれ異なる周期を持つ周期信号として分離する構成としている。これにより、それぞれの信号の周波数成分が重なり周波数フィルタでは分離できない場合でも、検出する周期を変更することにより特定の信号を検出することができる。このため、複数の信号を誤認識することなく、精度良く検出することができる。
 また、心臓の拍動による信号Ssから被検者Objの呼吸性変動(呼吸による被検者Objの体表の変動)を推定して、該呼吸性変動と呼吸による信号Skとを比較することにより、被検者Objの呼吸数を精度よく検出することができる。
 次に、図13に、本発明の第3の実施の形態による呼吸センシング装置を示す。第3の実施の形態の特徴は、呼吸センシング装置が加速度センサを備えたことにある。なお、第3の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。
 第3の実施の形態による呼吸センシング装置31は、第1の実施の形態と同様に、被検者Objの呼吸を検出するセンサ部材2と、検出した呼吸の信号処理を行う本体部8と、を有している。本体部8は、増幅器9、信号処理部10、バッテリ11、通信部12、加速度センサ32等を備えている。この場合、呼吸センシング装置31は、加速度センサ32を備えた点で、第1の実施の形態の呼吸センシング装置1と異なっている。
 加速度センサ32は、本体部8に設けられ、信号処理部10と接続されている。加速度センサ32は、例えばA/Dコンバータ(図示せず)を内蔵し、バッテリ11からの電力供給により作動している。この加速度センサ32は、被検者Objの姿勢や活動量を加速度信号として検出し、信号処理部10に向けて該加速度信号を出力するものである。この場合、被検者Objの姿勢とは、例えば被検者Objが立ったり、寝たり(横たわったり)する場合等の姿勢をいう。また、被検者Objの活動量とは、例えば被検者Objが休息したり、運動したりする場合等の運動量をいう。
 かくして、第3の実施の形態でも、第1の実施の形態とほぼ同様な作用効果を得ることができる。第3の実施の形態によれば、呼吸センシング装置31は、加速度センサ32を備えている。これにより、呼吸や心臓の拍動に影響を与える因子である、被検者Objの姿勢や活動量の情報を同時に得ることができるため、呼吸や心臓の拍動の異常をより精度よく検出することができる。例えば、深い睡眠中には呼吸はゆっくり大きくなり、心臓の拍動も低下する。これに対し、歩行や運動中は、呼吸も心臓の拍動も早くなる。このため、姿勢と活動量との情報を同時に得ることにより異常の検出精度を向上できる。
 なお、前記第1の実施の形態では、呼吸センシング装置1は、A/Dコンバータ10Aを用いてアナログ信号Saからデジタル信号Sdに変換した後に、周波数フィルタリングを行う構成とした。しかし、本発明はこれに限らず、アナログ信号Saをアナログフィルタを用いて周波数フィルタリングする構成としてもよい。このことは、第2,第3の実施の形態でも同様である。
 また、前記第1の実施の形態では、本体部8に設けた信号処理部10を用いて信号処理をする構成とした。しかし、本発明はこれに限らず、信号処理は外部の機器で行う構成としてもよい。このことは、第2,第3の実施の形態でも同様である。
 また、前記第1の実施の形態では、本体部8に通信部12を設けて、該通信部12を用いて呼吸間隔、心拍間隔、呼吸異常音を外部の機器に向けてリアルタイムで出力する構成とした。しかし、本発明はこれに限らず、呼吸センシング装置と外部の機器とをケーブルを用いて接続して、有線により各種のデータを出力する構成としてもよい。この場合、各種のデータを本体部に設けたメモリ(図示せず)に一旦保存し、全ての測定終了後に外部の機器に向けて出力する構成としてもよい。また、ケーブルを用いて電力供給する構成としてもよい。このことは、第2,第3の実施の形態でも同様である。
 また、前記第1,第2の実施の形態では、呼吸センシング装置1,21は、センサとして、圧電フィルムセンサ3を備える構成とし、前記第3の実施の形態では、呼吸センシング装置31は、センサとして、圧電フィルムセンサ3および加速度センサ32を備える構成とした。しかし、本発明はこれに限らず、例えば心電センサや脈波センサ、温度センサ等のセンサを組み合わせてもよい。心電センサ、脈波センサ等で心臓の拍動を同時取得することで心臓の拍動による変形信号、音信号の分離が容易になり、温度センサ等を加速度センサと組み合わせることで呼吸に影響を与える運動状態や睡眠状態の検出精度が向上できる。さらに温度上昇と呼吸の異常から疾患等による発熱の検出が可能になる。
 また、前記第1の実施の形態では、センサとして圧電フィルムセンサ3を用いる構成とした。しかし、本発明はこれに限らず、センサとして、例えば静電容量センサ、ひずみゲージ、マイク等を用いる構成としてもよい。このことは、第2,第3の実施の形態でも同様である。
 1,21,31 呼吸センシング装置
 3 圧電フィルムセンサ
 10,22 信号処理部
 11 バッテリ
 32 加速度センサ

Claims (7)

  1.  被検者の呼吸を検出する呼吸センシング装置であって、
     前記被検者の胸骨の剣状突起に対応する部位からみぞおちに対応する部位にかけて前記被検者の体表に貼り付けられるフィルム状のセンサを有し、
     前記センサは、前記剣状突起に対応する部位と前記みぞおちに対応する部位との相対変化を検出することにより前記被検者の呼吸を検出する呼吸センシング装置。
  2.  前記センサは、圧電フィルムセンサからなり、
     前記圧電フィルムセンサの変形によって発生する信号を検出することにより前記被検者の呼吸を検出する請求項1に記載の呼吸センシング装置。
  3.  前記センサは、長方形状であり、前記被検者の胸部から腹部にかけて延びる長手方向に対する伸びまたは前記長手方向に直交する前後方向に対する曲がりには感度が高く、ねじりには感度が低い請求項1に記載の呼吸センシング装置。
  4.  呼吸による変形信号と、音信号と、心臓の拍動による変形信号とをそれぞれ異なる周波数成分を持つ周波数信号として分離する信号処理部をさらに備えてなる請求項1に記載の呼吸センシング装置。
  5.  呼吸による信号と、心臓の拍動による信号とをそれぞれ異なる周期を持つ周期信号として分離する信号処理部をさらに備えてなる請求項1に記載の呼吸センシング装置。
  6.  前記信号処理部に電源電圧を供給するバッテリをさらに備え、
     前記信号処理部は、前記センサからの出力信号をデジタル変換して、外部の機器に向けて出力する請求項4または5に記載の呼吸センシング装置。
  7.  加速度信号から前記被検者の姿勢と活動量とを検出する加速度センサをさらに備える請求項1に記載の呼吸センシング装置。
PCT/JP2017/040798 2016-11-15 2017-11-13 呼吸センシング装置 WO2018092730A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018551624A JP6798563B2 (ja) 2016-11-15 2017-11-13 呼吸センシング装置
US16/398,540 US11647921B2 (en) 2016-11-15 2019-04-30 Breathing sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-222388 2016-11-15
JP2016222388 2016-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/398,540 Continuation US11647921B2 (en) 2016-11-15 2019-04-30 Breathing sensing device

Publications (1)

Publication Number Publication Date
WO2018092730A1 true WO2018092730A1 (ja) 2018-05-24

Family

ID=62146528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040798 WO2018092730A1 (ja) 2016-11-15 2017-11-13 呼吸センシング装置

Country Status (3)

Country Link
US (1) US11647921B2 (ja)
JP (1) JP6798563B2 (ja)
WO (1) WO2018092730A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109805909A (zh) * 2019-01-31 2019-05-28 浙江圣奥家具制造有限公司 一种坐时人体体征测量系统及方法
WO2021229250A1 (en) * 2020-05-13 2021-11-18 Babymo Szolgáltató Kft. Method for monitoring respiration of a patient during motion, and a respiration monitoring device
JP2022520934A (ja) * 2019-02-19 2022-04-04 コーニンクレッカ フィリップス エヌ ヴェ 睡眠監視システム及び方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500748A (ja) * 1991-11-07 1995-01-26 マギル,アラン レミー 健康モニタリング技術
JP2000350716A (ja) * 1999-06-10 2000-12-19 Hoya Corp 呼吸検出装置
JP2001269322A (ja) * 2000-03-24 2001-10-02 Hiroshi Matsumoto 心電図信号誘導用電極装置及び心電図信号測定装置
JP2013066570A (ja) * 2011-09-21 2013-04-18 Terumo Corp バイタル計測器
JP2013198618A (ja) * 2012-03-26 2013-10-03 Terumo Corp バイタル計測器
US20150257654A1 (en) * 2013-12-13 2015-09-17 Safer Care LLC Methods and apparatus for monitoring patient conditions

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517999A (en) * 1966-01-07 1970-06-30 Itt Optical strain gauge
US4509527A (en) * 1983-04-08 1985-04-09 Timex Medical Products Corporation Cardio-respiration transducer
US4930518A (en) * 1988-09-26 1990-06-05 Hrushesky William J M Sinus arrhythmia monitor
US5448996A (en) * 1990-02-02 1995-09-12 Lifesigns, Inc. Patient monitor sheets
US8280682B2 (en) * 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
SE9604320D0 (sv) * 1996-11-25 1996-11-25 Pacesetter Ab Medical device
US6383143B1 (en) * 1999-10-13 2002-05-07 Gerald A. Rost Respiratory monitor
AUPQ831700A0 (en) * 2000-06-22 2000-07-20 Australian Centre For Advanced Medical Technology Ltd Biophysical sensor
GB2378249B (en) 2001-07-30 2005-08-31 Grove Medical Ltd Device for monitoring respiratory movements
JP4015115B2 (ja) 2002-02-14 2007-11-28 独立行政法人科学技術振興機構 小動物用心拍・呼吸数検出機能付き体温保持装置及びそれを用いた小動物用心拍・呼吸数測定システム
CA2522006C (en) * 2003-04-10 2013-05-28 Vivometrics, Inc. Systems and methods for respiratory event detection
CN1894999B (zh) * 2003-12-25 2012-12-26 株式会社村田制作所 压电电声变换器
US20080275356A1 (en) 2007-05-03 2008-11-06 Peter Stasz Respiratory sensing belt using piezo film
KR101023446B1 (ko) 2007-09-21 2011-03-25 주식회사 바이오에이비씨랩 연신에 의해 전기적 신호를 발생시키는 물질을 포함하는 센서
US8790273B2 (en) * 2008-09-05 2014-07-29 Adidas Noninvasive method and system for measuring pulmonary ventilation
US20100069769A1 (en) * 2008-09-12 2010-03-18 Dymedix Corporation Wireless pyro/piezo sensor base station
JP2012065729A (ja) * 2010-09-21 2012-04-05 Panasonic Corp リラックス装置、乗物
US20120089001A1 (en) * 2010-10-08 2012-04-12 Jon Mikalson Bishay Ambulatory Electrocardiographic Monitor And Method Of Use
CN110251133B (zh) * 2013-02-20 2022-10-14 Pmd设备解决方案有限公司 用于呼吸监测的方法和设备
US20140275887A1 (en) * 2013-03-15 2014-09-18 Nellcor Puritan Bennett Ireland Systems And Methods For Monitoring Respiratory Depression
US9737224B2 (en) * 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US20160324462A1 (en) * 2014-01-31 2016-11-10 Firstbeat Technologies Oy Method and system for providing feedback automatically on physiological measurements to a user
JP6206597B2 (ja) * 2014-08-18 2017-10-04 株式会社村田製作所 圧電フィルムの積層体、及び曲げ検出センサ
JP6683367B2 (ja) * 2015-03-30 2020-04-22 国立大学法人東北大学 生体情報計測装置、生体情報計測方法及び生体情報計測プログラム
PL3231368T3 (pl) * 2016-04-15 2020-01-31 Clebre Sp. Z O.O. Sposób, system do identyfikacji zdarzeń oddechowych

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500748A (ja) * 1991-11-07 1995-01-26 マギル,アラン レミー 健康モニタリング技術
JP2000350716A (ja) * 1999-06-10 2000-12-19 Hoya Corp 呼吸検出装置
JP2001269322A (ja) * 2000-03-24 2001-10-02 Hiroshi Matsumoto 心電図信号誘導用電極装置及び心電図信号測定装置
JP2013066570A (ja) * 2011-09-21 2013-04-18 Terumo Corp バイタル計測器
JP2013198618A (ja) * 2012-03-26 2013-10-03 Terumo Corp バイタル計測器
US20150257654A1 (en) * 2013-12-13 2015-09-17 Safer Care LLC Methods and apparatus for monitoring patient conditions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109805909A (zh) * 2019-01-31 2019-05-28 浙江圣奥家具制造有限公司 一种坐时人体体征测量系统及方法
CN109805909B (zh) * 2019-01-31 2024-04-02 浙江圣奥家具制造有限公司 一种坐时人体体征测量系统及方法
JP2022520934A (ja) * 2019-02-19 2022-04-04 コーニンクレッカ フィリップス エヌ ヴェ 睡眠監視システム及び方法
WO2021229250A1 (en) * 2020-05-13 2021-11-18 Babymo Szolgáltató Kft. Method for monitoring respiration of a patient during motion, and a respiration monitoring device

Also Published As

Publication number Publication date
JP6798563B2 (ja) 2020-12-09
JPWO2018092730A1 (ja) 2019-07-25
US11647921B2 (en) 2023-05-16
US20190254571A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US20240298910A1 (en) Acoustic physiological monitoring system
US7267652B2 (en) Systems and methods for respiratory event detection
US8262582B2 (en) Extraction of heart inter beat interval from multichannel measurements
US10149635B2 (en) Ingestible devices and methods for physiological status monitoring
US20080082018A1 (en) Systems and methods for respiratory event detection
EP4154805B1 (en) Apparatus for monitoring heart rate and respiration
US20120172676A1 (en) Integrated monitoring device arranged for recording and processing body sounds from multiple sensors
WO2018092730A1 (ja) 呼吸センシング装置
US10123724B2 (en) Breath volume monitoring system and method
US10531833B2 (en) Systems, apparatus, and methods for detection and monitoring of chronic sleep disorders
JP6386402B2 (ja) 呼吸に伴う人間の体表面の変位を検出するセンサ装置
JP2016174783A (ja) 呼吸に伴う人間の体表面の変位を検出するセンサ装置
AU2011203044B2 (en) Systems and methods for respiratory event detection
KR20240035380A (ko) 인간 또는 동물 신체에 의해 방출된 주기적 생체 신호를 측정하는 진동 센서 및 디바이스
JP2016174785A (ja) 呼吸に伴う人間の体表面の変位を検出するセンサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018551624

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871951

Country of ref document: EP

Kind code of ref document: A1