WO2018092509A1 - 荷役車両の油圧駆動装置 - Google Patents

荷役車両の油圧駆動装置 Download PDF

Info

Publication number
WO2018092509A1
WO2018092509A1 PCT/JP2017/037982 JP2017037982W WO2018092509A1 WO 2018092509 A1 WO2018092509 A1 WO 2018092509A1 JP 2017037982 W JP2017037982 W JP 2017037982W WO 2018092509 A1 WO2018092509 A1 WO 2018092509A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
control valve
accumulator
flow rate
oil
Prior art date
Application number
PCT/JP2017/037982
Other languages
English (en)
French (fr)
Inventor
上田祐規
佐治恒士郎
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2018092509A1 publication Critical patent/WO2018092509A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means

Definitions

  • the present invention relates to a hydraulic drive device for a cargo handling vehicle.
  • the hydraulic drive device described in Patent Document 1 includes a lifting hydraulic cylinder that lifts and lowers an elevator by supplying and discharging hydraulic oil, a lifting operation unit for operating the lifting hydraulic cylinder, and hydraulic fluid for the lifting hydraulic cylinder. It is arranged between the hydraulic pump that supplies and discharges, the electric motor that drives the hydraulic pump, and the suction port of the hydraulic pump and the bottom chamber of the elevating hydraulic cylinder, and operates based on the operation amount of the elevating operation part. And an operation valve for controlling the flow of oil. Further, this hydraulic drive device supplies hydraulic oil pressurized from an accumulator to the hydraulic pump in order to reuse the potential energy of the lifting hydraulic cylinder.
  • An object of the present invention is to provide a hydraulic drive device for a cargo handling vehicle that can efficiently recover the potential energy of a load and that can lower a lifting hydraulic cylinder at a desired lowering speed.
  • a hydraulic drive device for a cargo handling vehicle includes a hydraulic cylinder for raising and lowering an elevator by supplying and discharging hydraulic oil, an operation unit for operating the hydraulic cylinder, and hydraulic oil for the hydraulic cylinder.
  • a hydraulic pump that supplies and discharges, a downward oil passage that is connected to the hydraulic cylinder and through which hydraulic oil discharged from the hydraulic cylinder flows, and is disposed in the downward oil passage and is discharged from the hydraulic cylinder based on a downward operation of the operation unit
  • An operation valve that controls the flow of the hydraulic oil, a bypass oil passage that branches from the descending oil passage at a branch point, and that connects the branch point and a tank that stores the hydraulic oil, and a bypass oil passage, Provided on the regenerative oil path, a bypass flow rate control valve that controls the bypass flow rate that is the flow rate of hydraulic oil flowing from the branch point to the tank, a regenerative oil path that connects the branch point of the descending oil path and the suction port of the hydraulic pump Oil Comprises an accumulator
  • a hydraulic drive device for a cargo handling vehicle includes an accumulator that is provided on a regenerative oil passage that connects a branch point of a descending oil passage and a suction port of a hydraulic pump, and accumulates hydraulic fluid discharged from a hydraulic cylinder. Yes.
  • a pressure accumulation flow control valve for controlling the flow rate of the hydraulic oil accumulated in the accumulator is provided on the regenerative oil passage.
  • the bypass oil passage is provided with a bypass flow rate control valve that controls a bypass flow rate that is a flow rate of hydraulic oil flowing from the branch point to the tank.
  • the hydraulic drive device includes two flow control valves, that is, a pressure accumulation flow control valve and a bypass flow control valve.
  • hydraulic fluid discharged from the lifting hydraulic cylinder can be accumulated in the accumulator via the pressure accumulation flow control valve.
  • the potential energy of the load is accumulated in the accumulator and can be used at other timings.
  • hydraulic oil discharged from the lifting hydraulic cylinder can be supplied to the tank via the bypass flow control valve. Therefore, fluctuations in the flow rate of the hydraulic oil discharged from the lifting hydraulic cylinder can be suppressed, and the hydraulic cylinder can be lowered at a desired lowering speed.
  • the potential energy of the load can be efficiently collected and the lifting / lowering hydraulic cylinder can be lowered at a desired lowering speed.
  • the bypass flow control valve and the pressure accumulation flow control valve adjust the opening according to a pressure difference generated when hydraulic oil passes through the operation valve.
  • a control flow rate that is a flow rate of hydraulic oil that is a pilot-type flow rate control valve and that can flow through the pressure accumulation flow rate control valve may be larger than the control flow rate of the bypass flow rate control valve.
  • the difference between the control flow rates of the pressure accumulation flow control valve and the bypass flow control valve may be 10% or less.
  • a pressure release control valve that is provided on the hydraulic pump side relative to the accumulator in the regenerative oil passage and releases the hydraulic oil accumulated in the accumulator to the hydraulic pump side. May further be provided. Thereby, the hydraulic fluid accumulated in the accumulator can be supplied to the hydraulic pump side at an appropriate timing.
  • the flow of hydraulic oil from the accumulator side is blocked between the accumulator and the branch point in the regenerative oil passage, and the operation from the branch point side is performed.
  • a check valve that allows oil flow may be further provided. Thereby, it is possible to suppress the backflow of the hydraulic oil accumulated in the accumulator.
  • the potential energy of the lifting / lowering hydraulic cylinder can be recovered under various conditions.
  • FIG. 1 is a hydraulic circuit diagram showing a hydraulic drive device according to an embodiment of the present invention. It is a block diagram which shows the control system of the hydraulic drive unit shown in FIG. It is the block diagram described in detail about the structure of the regeneration oil path vicinity of the hydraulic drive device of a cargo handling vehicle. It is a graph which shows the mode of the difference of the control flow volume of a pressure accumulation flow control valve and a bypass flow control valve. It is a graph which shows an example of the waveform of various parameters of the hydraulic drive device of a cargo handling vehicle. It is a graph which shows an example of the waveform of various parameters of the hydraulic drive device of a cargo handling vehicle. It is a graph which shows an example of the waveform of various parameters of the hydraulic drive device of a cargo handling vehicle. It is a graph which shows an example of the waveform of various parameters of the hydraulic drive device of a cargo handling vehicle.
  • FIG. 1 is a side view showing a cargo handling vehicle equipped with a hydraulic drive device according to an embodiment of the present invention.
  • a cargo handling vehicle 1 according to the present embodiment is an engine-type forklift.
  • the cargo handling vehicle 1 includes a body frame 2 and a mast 3 disposed at a front portion of the body frame 2.
  • the mast 3 includes a pair of left and right outer masts 3a supported to be tiltable on the vehicle body frame 2, and an inner mast 3b which is disposed inside these outer masts 3a and can be moved up and down with respect to the outer mast 3a. Yes.
  • a lift cylinder 4 as a lifting hydraulic cylinder is disposed on the rear side of the mast 3.
  • the tip of the piston rod 4p of the lift cylinder 4 is connected to the upper part of the inner mast 3b.
  • the lift bracket 5 is supported on the inner mast 3b so as to be movable up and down.
  • a fork (lifting object) 6 for loading a load is attached to the lift bracket 5.
  • a chain wheel 7 is provided on the upper portion of the inner mast 3b, and a chain 8 is hooked on the chain wheel 7.
  • One end of the chain 8 is connected to the lift cylinder 4, and the other end of the chain 8 is connected to the lift bracket 5.
  • a tilt cylinder 9 as a tilting hydraulic cylinder is supported on each of the left and right sides of the body frame 2.
  • the tip of the piston rod 9p of the tilt cylinder 9 is rotatably connected to the substantially central portion of the outer mast 3a in the height direction.
  • a driver's cab 10 is provided on the upper part of the body frame 2. At the front of the cab 10 are a lift operation lever (first operation unit) 11 for operating the lift cylinder 4 to raise and lower the fork 6 and a tilt for operating the tilt cylinder 9 to tilt the mast 3. An operation lever 12 is provided.
  • a steering wheel 13 for steering is provided at the front of the cab 10.
  • the steering 13 is a hydraulic power steering, and can assist the driver's steering by a PS cylinder 14 (see FIG. 2) as a hydraulic cylinder for power steering (PS).
  • PS hydraulic cylinder for power steering
  • the cargo handling vehicle 1 includes an attachment cylinder 15 (see FIG. 2) as an attachment hydraulic cylinder for operating an attachment (not shown).
  • an attachment for example, there is one that moves, tilts, and rotates the fork 6 left and right.
  • the cab 10 is provided with an attachment operation lever (not shown) for operating the attachment cylinder 15 to operate the attachment.
  • the cab 10 is provided with a direction switch for switching the traveling direction (forward / reverse / neutral) of the cargo handling vehicle 1.
  • FIG. 2 is a hydraulic circuit diagram showing a first embodiment of a hydraulic drive device according to the present invention.
  • a hydraulic drive device 16 of the present embodiment is a device that drives a lift cylinder 4, a tilt cylinder 9, an attachment cylinder 15, and a PS cylinder 14.
  • the hydraulic drive device 16 includes a single hydraulic pump 17 and an engine 18 that drives the hydraulic pump 17.
  • the hydraulic pump 17 has a suction port 17a for sucking hydraulic fluid and a discharge port 17b for discharging hydraulic fluid.
  • the hydraulic pump 17 is configured to be rotatable in one direction.
  • a tank 19 for storing hydraulic oil is connected to the suction port 17 a of the hydraulic pump 17 via a hydraulic pipe 20.
  • the hydraulic pipe 20 is provided with a check valve 21 for flowing hydraulic oil only in the direction from the tank 19 to the hydraulic pump 17.
  • the hydraulic pump 17 supplies hydraulic oil to the lift cylinder 4 when the lift operation lever 11 is raised.
  • the discharge port 17 b of the hydraulic pump 17 and the bottom chamber 4 b of the lift cylinder 4 are connected via a hydraulic pipe 22.
  • the hydraulic piping 22 is provided with an electromagnetic proportional valve 23 for lifting the lift.
  • the electromagnetic proportional valve 23 interrupts the flow of hydraulic fluid from the hydraulic pump 17 to the bottom chamber 4b of the lift cylinder 4 from the open position 23a that allows the hydraulic fluid to flow from the hydraulic pump 17 to the bottom chamber 4b of the lift cylinder 4. Is switched to the closed position 23b.
  • the electromagnetic proportional valve 23 is normally in a closed position 23b (illustrated), and an operation signal (a lift raising solenoid current command value corresponding to an operation amount of the lifting operation of the lift operation lever 11) is input to the solenoid operating portion 23c. Then, it switches to the open position 23a. Then, hydraulic oil is supplied from the hydraulic pump 17 to the bottom chamber 4b of the lift cylinder 4, the lift cylinder 4 extends, and the fork 6 rises accordingly.
  • the electromagnetic proportional valve 23 is in the open position 23a, the electromagnetic proportional valve 23 is opened at an opening corresponding to the operation signal.
  • a check valve 24 is provided between the electromagnetic proportional valve 23 and the lift cylinder 4 in the hydraulic pipe 22 so that hydraulic fluid flows only in the direction from the electromagnetic proportional valve 23 to the lift cylinder 4.
  • a tilting electromagnetic proportional valve 26 is connected to a branch point between the hydraulic pump 17 and the electromagnetic proportional valve 23 in the hydraulic piping 22 via a hydraulic piping 25.
  • the hydraulic pipe 25 is provided with a check valve 27 for flowing hydraulic oil only in the direction from the hydraulic pump 17 to the electromagnetic proportional valve 26.
  • the electromagnetic proportional valve 26 and the rod chamber 9a and the bottom chamber 9b of the tilt cylinder 9 are connected via hydraulic pipes 28 and 29, respectively.
  • the electromagnetic proportional valve 26 allows the flow of hydraulic fluid from the hydraulic pump 17 to the rod chamber 9a of the tilt cylinder 9 and allows the hydraulic fluid to flow from the hydraulic pump 17 to the bottom chamber 9b of the tilt cylinder 9.
  • the position is switched between an open position 26b that is closed and a closed position 26c that blocks the flow of hydraulic oil from the hydraulic pump 17 to the tilt cylinder 9.
  • the electromagnetic proportional valve 26 is normally in a closed position 26c (illustrated), and an operation signal (a tilt solenoid current command value corresponding to an operation amount of a tilting operation of the tilt operation lever 12) is sent to a solenoid operation unit 26d on the open position 26a side. ) Is switched to the open position 26a, and an operation signal (tilt solenoid current command value corresponding to the amount of forward tilt operation of the tilt operation lever 12) is input to the solenoid operation portion 26e on the open position 26b side. If it does, it will switch to the open position 26b.
  • An electromagnetic proportional valve 31 for attachment is connected to the upstream side of the check valve 27 in the hydraulic pipe 25 via a hydraulic pipe 30.
  • the hydraulic pipe 30 is provided with a check valve 32 for flowing hydraulic oil only in the direction from the hydraulic pump 17 to the electromagnetic proportional valve 31.
  • the electromagnetic proportional valve 31 and the rod chamber 15a and the bottom chamber 15b of the attachment cylinder 15 are connected via hydraulic pipes 33 and 34, respectively.
  • the electromagnetic proportional valve 31 allows the working oil to flow from the hydraulic pump 17 to the rod chamber 15a of the attachment cylinder 15, and allows the working oil to flow from the hydraulic pump 17 to the bottom chamber 15b of the attachment cylinder 15.
  • the position is switched between an open position 31b to be closed and a closed position 31c to block the flow of hydraulic oil from the hydraulic pump 17 to the attachment cylinder 15.
  • the electromagnetic proportional valve 31 is normally in a closed position 31c (illustrated), and an operation signal (attachment solenoid current command value corresponding to an operation amount of one side operation of the attachment operation lever) is sent to a solenoid operation unit 31d on the open position 31a side. Is switched to the open position 31a, and an operation signal (attachment solenoid current command value corresponding to the operation amount of the other operation of the attachment operation lever) is input to the solenoid operation portion 31e on the open position 31b side. And switch to the open position 31b. The operation of the attachment cylinder 15 is omitted. Further, when the electromagnetic proportional valve 31 is in the open positions 31a and 31b, the electromagnetic proportional valve 31 is opened at an opening corresponding to the operation signal.
  • An electromagnetic proportional valve 36 for PS is connected to the upstream side of the check valve 32 in the hydraulic pipe 30 via a hydraulic pipe 35.
  • the hydraulic pipe 35 is provided with a check valve 37 that allows hydraulic oil to flow only in the direction from the hydraulic pump 17 to the electromagnetic proportional valve 36.
  • the electromagnetic proportional valve 36 and the first rod chamber 14a and the second rod chamber 14b of the PS cylinder 14 are connected via hydraulic pipes 38 and 39, respectively.
  • the electromagnetic proportional valve 36 has an open position 36a that allows the hydraulic oil to flow from the hydraulic pump 17 to the first rod chamber 14a of the PS cylinder 14, and the hydraulic oil from the hydraulic pump 17 to the second rod chamber 14b of the PS cylinder 14. Is switched between an open position 36 b that allows the flow of oil and a closed position 36 c that blocks the flow of hydraulic oil from the hydraulic pump 17 to the PS cylinder 14.
  • the electromagnetic proportional valve 36 is normally in a closed position 36c (illustrated), and an operation signal (PS solenoid current command value corresponding to the operation speed of the left and right one side operation of the steering wheel 13) is sent to the solenoid operation unit 36d on the open position 36a side. Is switched to the open position 36a, and an operation signal (PS solenoid current command value corresponding to the operation speed of the left and right other side operation of the steering wheel 13) is input to the solenoid operating portion 36e on the open position 36b side. Then, it switches to the open position 36b. Note that the operation of the PS cylinder 14 is omitted.
  • the electromagnetic proportional valve 36 is in the open positions 36a and 36b, the electromagnetic proportional valve 36 is opened at an opening corresponding to the operation signal.
  • the branch point of the hydraulic pump 17 and the electromagnetic proportional valve 23 in the hydraulic pipe 22 is connected to the tank 19 via the hydraulic pipe 40.
  • the hydraulic pipe 40 is provided with an unload valve 41 and a filter 42.
  • the hydraulic piping 40 and the electromagnetic proportional valves 26, 31, 36 are connected via hydraulic piping 43-45. Further, the electromagnetic proportional valves 23, 26, 31, 36 are connected to the hydraulic pipe 40 via the hydraulic pipe 46.
  • the suction port 17 a of the hydraulic pump 17 and the bottom chamber 4 b of the lift cylinder 4 are connected via a hydraulic pipe (lowering oil path) 47.
  • the hydraulic piping 47 is provided with an operation valve 48 for lifting the lift.
  • the operation valve 48 is switched between an open position 48a allowing the flow of hydraulic oil from the bottom chamber 4b of the lift cylinder 4 and a closed position 48b blocking the flow of hydraulic oil from the bottom chamber 4b of the lift cylinder 4. It is done.
  • the operation valve 48 is normally in a closed position 48b (shown), and when an operation signal (a lift lowering solenoid current command value corresponding to the operation amount of the lowering operation of the lift operation lever 11) is input to the solenoid operation portion 48c. To the open position 48a. Then, the fork 6 descends due to the weight of the fork 6, and the lift cylinder 4 contracts accordingly, and hydraulic oil flows out from the bottom chamber 4 b of the lift cylinder 4. When the operation valve 48 is in the open position 48a, the operation valve 48 is opened at an opening corresponding to the operation signal.
  • an operation signal a lift lowering solenoid current command value corresponding to the operation amount of the lowering operation of the lift operation lever 11
  • a branch point between the hydraulic pump 17 and the operation valve 48 in the hydraulic pipe 47 is connected to the tank 19 via a hydraulic pipe (bypass oil passage) 49.
  • a bypass flow control valve 50 is disposed in the hydraulic pipe 49.
  • the bypass flow control valve 50 is a flow control valve with a pressure compensation function.
  • the hydraulic pipe 49 is provided with a filter 54.
  • the bypass flow rate control valve 50 is switched between an open position 50a that allows the flow of hydraulic fluid, a closed position 50b that blocks the flow of hydraulic fluid, and a throttle position 50c that adjusts the flow rate of hydraulic fluid.
  • the pilot operating part on the closed position 50 b side of the bypass flow control valve 50 and the upstream side (front side) of the operating valve 48 are connected via a pilot flow path 51.
  • the pilot operation part on the open position 50 a side of the bypass flow control valve 50 and the downstream side (rear side) of the operation valve 48 are connected via a bypass flow path 52.
  • the bypass flow control valve 50 opens at an opening degree corresponding to the pressure difference before and after the operation valve 48. Specifically, as the pressure difference before and after the operation valve 48 increases, the opening degree of the bypass flow control valve 50 decreases.
  • An accumulator 80, a pressure accumulation flow control valve 81, a pressure release control valve 82, and a check valve 83 are provided on the regenerative oil passage 47 a that is an oil passage closer to the hydraulic pump 17 than the branch point in the hydraulic pipe 47. ing. A detailed description of these components will be described later with reference to FIG.
  • second hydraulic cylinder 70 the tilt operation lever 12, the steering wheel 13, and the attachment operation lever, which are levers for operating the second hydraulic cylinder 70, may be collectively referred to as a “second operation unit 73”.
  • FIG. 3 is a configuration diagram showing a control system of the hydraulic drive device 16.
  • a hydraulic drive device 16 includes a lift operation lever operation amount sensor (operation amount detection unit) 55 that detects an operation amount of the lift operation lever 11 and a tilt operation lever operation amount that detects an operation amount of the tilt operation lever 12.
  • a sensor 56, an attachment operation lever operation amount sensor 57 for detecting an operation amount of an attachment operation lever (not shown), a steering operation speed sensor 58 for detecting the operation speed of the steering wheel 13, and a controller 60 are provided. .
  • the controller 60 inputs detection values of the operation lever operation amount sensors 55 to 57 and the steering operation speed sensor 58, performs predetermined processing, and controls the electromagnetic proportional valves 23, 26, 31, 36 and the operation valve 48.
  • the sensors 56, 57, and 58 that detect the operation amount of the second operation unit 73 may be referred to as “second operation amount detection unit 71”.
  • electromagnetic proportional valves 26, 31, 36 that are disposed between the discharge port 17 b of the hydraulic pump 17 and the second hydraulic cylinder and control the flow of the hydraulic oil based on the operation of the second operation unit 73 are “ It may be referred to as “second operation valve 72”.
  • FIG. 4 is a configuration diagram illustrating in detail the configuration in the vicinity of the regenerative oil passage 47a of the hydraulic drive device 16 of the cargo handling vehicle 1.
  • the operation valve 48 is provided in the hydraulic cylinder 47 closer to the lift cylinder 4 than the branch point.
  • a bypass flow rate control valve 50 is provided in the hydraulic piping 49 that communicates the branch point with the tank 19.
  • An accumulator 80 is provided on the regenerative oil passage 47a, a pressure accumulation flow control valve 81 is provided between the branch point and the accumulator 80, and a pressure release control valve 82 is provided on the hydraulic pump 17 side of the accumulator 80.
  • a check valve 83 is provided between the accumulator 80 and the branch point.
  • the pressure before and after the operation valve 48 is used as the pilot pressure of the bypass flow control valve 50 and the pressure accumulation flow control valve 81.
  • the operation valve 48 has an opening corresponding to the operation amount of the lift operation lever 11 by the operator. Therefore, the differential pressure generated at the operation valve 48 per flow rate of the hydraulic oil becomes a value corresponding to the operation amount of the lift operation lever 11 and decreases as the lever operation amount increases.
  • the bypass flow control valve 50 is a pilot-type flow control valve that adjusts the opening according to the differential pressure generated when hydraulic oil passes through the operation valve 48 as described above. That is, the bypass flow rate control valve 50 inputs the pressure before and after the operation valve 48 as a pilot pressure, and adjusts the flow rate of the bypass circuit so that the differential pressure generated before and after the operation valve 48 is constant. Such a differential pressure is referred to as a “control differential pressure”.
  • control differential pressure When the opening degree of the operation valve 48 is small, the control differential pressure is reached with a small flow rate. Therefore, the bypass flow rate control valve 50 controls the bypass flow rate so that the flow rate does not increase any further.
  • the opening degree of the operation valve 48 is large, the control differential pressure is not reached unless a sufficiently large amount of hydraulic fluid flows.
  • bypass flow rate control valve 50 a sufficiently large flow rate of hydraulic oil flows through the bypass flow rate control valve 50. That is, the flow rate that the bypass flow rate control valve 50 can flow increases according to the lever operation amount. In this way, the flow rate of the hydraulic oil that can be flowed by the flow control valve is referred to as “control flow rate”.
  • the main function of the bypass flow rate control valve 50 is to bypass to the tank 19 side when hydraulic oil does not flow through the accumulator 80, such as when the load is light or when the accumulator 80 is full. Thereby, a desired lowering speed of the lift cylinder 4 can be obtained.
  • the pressure accumulation flow control valve 81 is a pilot-type flow control valve that adjusts the opening according to the differential pressure generated when the hydraulic oil passes through the operation valve 48, similar to the bypass flow control valve 50. That is, the pressure accumulation flow control valve 81 inputs the pressure before and after the operation valve 48 as a pilot pressure, and adjusts the flow rate of the regenerative oil passage 47a so that the differential pressure generated before and after the operation valve 48 becomes constant.
  • the control flow rate of the pressure accumulation flow control valve 81 increases in accordance with the lever operation amount. Here, the control flow rate can be adjusted by a spring or the like.
  • the control flow rate of the pressure accumulation flow control valve 81 is set to be larger than the control flow rate of the bypass flow control valve 50. As shown in FIG.
  • the control flow rate of the pressure accumulation flow control valve 81 is set slightly larger than the control flow rate of the bypass flow control valve 50.
  • the difference between the control flow rates of the pressure accumulation flow control valve 81 and the bypass flow control valve 50 may be 10% or less, and more preferably 5% or less.
  • the difference between the control flow rates of the pressure accumulation flow control valve 81 and the bypass flow control valve 50 becomes larger than 10%, the accumulator 80 becomes full, and the timing at which the flow of hydraulic oil moves to the tank 19 via the bypass flow control valve 50 (for example, In FIG. 6, the fluctuation of the cylinder flow rate increases in the vicinity of “4 seconds”.
  • the difference between the control flow rates of the pressure accumulation flow control valve 81 and the bypass flow control valve 50 may be 2% or more.
  • the main function of the pressure accumulation flow control valve 81 is to obtain a desired lowering speed of the lift cylinder 4 when the load is heavy and an excessive flow rate flows through the accumulator 80 to reduce the opening degree.
  • the pressure accumulation flow control valve 81 is between an open position 81a that allows the flow of hydraulic oil, a closed position 81b that blocks the flow of hydraulic oil, and a throttle position 81c that adjusts the flow of hydraulic oil. Can be switched.
  • the pilot operation part on the closed position 81 b side of the pressure accumulation flow control valve 81 and the upstream side (front side) of the operation valve 48 are connected via a pilot flow path 84.
  • the pilot operation part on the open position 81 a side of the pressure accumulation flow control valve 81 and the downstream side (rear side) of the operation valve 48 are connected via a bypass flow path 86.
  • the pressure accumulation flow control valve 81 opens at an opening degree corresponding to the pressure difference before and after the operation valve 48.
  • the pressure accumulation flow control valve 81 is normally in the open position (shown). And the opening degree of the pressure accumulation flow control valve 81 becomes small, so that the pressure difference before and behind the operation valve 48 becomes large.
  • the accumulator 80 is a device that accumulates hydraulic fluid. Further, the accumulator 80 accumulates the hydraulic oil flowing from the lift cylinder 4 side and releases it to the hydraulic pump 17 side.
  • the accumulator 80 is filled with gas, and as the hydraulic oil is stored, the gas is compressed and the internal pressure increases.
  • the gas pressure when regeneration is performed even in a light load state, it is necessary to set the gas pressure to be low so that low pressure hydraulic oil can be received.
  • the opening degree of the pressure accumulation flow control valve 81 is throttled, the pressure loss is increased, and the efficiency is lowered.
  • the gas pressure it is preferable to adjust the gas pressure to be filled so as to improve the efficiency in accordance with the amount of product load handled by the operator. It is preferable that the volume of the accumulator 80 is sufficiently large so that all the hydraulic oil discharged from the lift cylinder 4 can be received. However, even if the accumulator 80 cannot be enlarged due to physique restrictions, the unacceptable hydraulic oil can be discharged to the tank 19 via the bypass flow rate control valve 50. There is no problem.
  • the check valve 83 is a device that blocks the flow of hydraulic oil from the accumulator 80 side and allows the flow of hydraulic oil from the branch point side. Accordingly, the flow of hydraulic oil from the lift cylinder 4 toward the accumulator 80 is allowed. On the other hand, the flow of hydraulic oil from the accumulator 80 toward the lift cylinder 4 is blocked.
  • the pressure release control valve 82 releases the hydraulic oil accumulated in the accumulator 80 to the hydraulic pump 17 side.
  • the pressure release control valve 82 shuts off the circuit when the lift cylinder 4 is lowered.
  • the pressure release control valve 82 conducts the circuit and guides the pressurized fluid of the accumulator 80 to the hydraulic pump 17. Since the hydraulic pump 17 can be rotated by the pressurized fluid, the torque of the engine 18 as a power source can be reduced, and the fuel consumption rate can be reduced. Further, since the timing for using the energy accumulated in the accumulator 80 can be used not only when the second hydraulic cylinder 70 is operating but also during traveling, the switching timing of the pressure release control valve 82 is particularly limited. It is not a thing.
  • the pressure release control valve 82 is switched between an open position 82a that allows the hydraulic oil to flow from the accumulator 80 to the suction port 17a of the hydraulic pump 17, and a closed position 82b that blocks the flow.
  • the pressure release control valve 82 is normally in a closed position 82b (illustrated), and when an operation signal (for example, a solenoid current command value corresponding to the operation amount of the second operation unit 73) is input to the solenoid operation unit 82c.
  • an operation signal for example, a solenoid current command value corresponding to the operation amount of the second operation unit 73
  • the difference between the inlet pressure of the accumulator and the pressure at the branch point is the pressure that is reduced by the pressure accumulation flow control valve 81 and converted into heat for flow rate adjustment.
  • the bypass flow rate control valve 50 is opened. The hydraulic oil flows to the tank 19 side. As shown in FIG. 6B, the change in the cylinder flow rate is small and kept substantially constant even at the switching timing (around 4 seconds). From this point, stable operation of the lift cylinder 4 can be confirmed.
  • the integrated value of the cylinder flow rate increases monotonically, while the integrated value of the flow rate to the accumulator 80 increases monotonously until it is full and increases after it is full. Stops.
  • the pressure accumulation efficiency to the accumulator 80 increases as the pressure accumulation amount increases, and becomes substantially zero after the pressure is full.
  • the electric power calculated by multiplying the flow rate by pressure becomes substantially constant on the cylinder bottom side, and increases on the inlet side of the accumulator 80 as the pressure accumulation amount increases and becomes full. After that, it becomes almost zero.
  • the amount of electric power on the cylinder bottom side monotonously increases, and on the inlet side of the accumulator 80, the increase stops monotonically after it monotonously increases and becomes full.
  • the hydraulic drive device 16 of the cargo handling vehicle 1 is provided on a regenerative oil passage 47 a that connects a branch point of the hydraulic piping 47 and the suction port 17 a of the hydraulic pump 17, and is an operation that is discharged from the lift cylinder 4.
  • An accumulator 80 for accumulating oil is provided.
  • a pressure accumulation flow control valve 81 for controlling the flow rate of the hydraulic oil accumulated in the accumulator 80 is provided on the regenerative oil passage 47a.
  • the hydraulic pipe 49 is provided with a bypass flow rate control valve 50 that controls a bypass flow rate that is a flow rate of hydraulic oil flowing from the branch point to the tank 19.
  • the hydraulic drive device 16 includes two flow rate control valves, that is, the pressure accumulation flow rate control valve 81 and the bypass flow rate control valve 50. Therefore, when the pressure accumulation in the accumulator 80 is possible, the hydraulic oil discharged from the lifting lift cylinder 4 can be accumulated in the accumulator 80 via the pressure accumulation flow control valve 81. In this manner, the potential energy of the load is accumulated in the accumulator 80 and can be used at other timings. On the other hand, when pressure accumulation in the accumulator 80 cannot be performed, hydraulic oil discharged from the lift cylinder 4 for raising and lowering can be supplied to the tank 19 via the bypass flow rate control valve 50.
  • the bypass flow control valve 50 and the pressure accumulation flow control valve 81 are of a pilot type that adjusts the opening according to the pressure difference generated when the hydraulic oil passes through the operation valve 48. This is a flow control valve.
  • the control flow rate that is the flow rate of the hydraulic oil that can flow through the pressure accumulation flow control valve 81 is larger than the control flow rate of the bypass flow control valve 50.
  • the load energy can be automatically recovered at a timing at which pressure accumulation in the accumulator 80 is possible.
  • the two flow control valves automatically adjust the flow rate of the hydraulic oil according to the load, the oil temperature, and the lever operation amount, the lift cylinder 4 can be moved at a desired lowering speed under all conditions. Can be lowered.
  • the hydraulic drive device 16 can obtain the above-mentioned effects at a low cost with a simple configuration without providing a load sensor, an oil temperature sensor, a regenerative hydraulic motor / pump, or the like.
  • the difference between the control flow rates of the pressure accumulation flow control valve 81 and the bypass flow control valve 50 is 10% or less. In this way, the flow of hydraulic fluid is switched from the pressure accumulation flow control valve 81 side to the bypass flow control valve 50 side by making the difference between the control flow rates of the pressure accumulation flow control valve 81 and the bypass flow control valve 50 slight. Even in this case, fluctuations in the flow rate of the hydraulic oil from the lift cylinder 4 can be suppressed.
  • a pressure release control valve 82 is provided on the hydraulic pump 17 side of the accumulator 80 in the regenerative oil passage 47a and releases the hydraulic oil accumulated in the accumulator 80 to the hydraulic pump 17 side. Is further provided. Thereby, the hydraulic oil accumulated in the accumulator 80 can be supplied to the hydraulic pump 17 side at an appropriate timing.
  • the flow of hydraulic oil from the accumulator 80 side is blocked between the accumulator 80 and the branch point in the regenerative oil passage 47a, and the flow of hydraulic oil from the branch point side.
  • a check valve 83 is further provided. Thereby, it is possible to prevent the hydraulic oil accumulated in the accumulator 80 from flowing backward.
  • a tilt cylinder, a PS cylinder, and an attachment cylinder are provided as the second hydraulic cylinder.
  • at least one second hydraulic cylinder may be provided, and a part thereof may be omitted.
  • the attachment and the power steering are mounted, but the hydraulic drive device of the present invention can be applied to a forklift that is not mounted with the attachment and the power steering.
  • the hydraulic drive device of the present invention is applicable not only to battery-type forklifts but also to engine-type and battery-type cargo handling vehicles other than forklifts.
  • the electromagnetic proportional valve is exemplified as the control valve that controls the flow of hydraulic oil based on the lowering operation of the lift operation lever and the control valve that controls the flow of hydraulic oil based on the operation of the second operation unit. Either hydraulic or mechanical may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

アキュムレータへの蓄圧が可能な場合には、昇降用のリフトシリンダから吐出される作動油は、蓄圧流量制御弁を介してアキュムレータへ蓄圧可能である。このように、積荷の位置エネルギーをアキュムレータに蓄圧し、他のタイミングで利用することが可能となる。一方、アキュムレータへの蓄圧が出来ない場合には、昇降用のリフトシリンダから吐出される作動油をバイパス流量制御弁を介してタンクへ供給できる。従って、昇降用のリフトシリンダから吐出される作動油の流量の変動を抑制し、当該リフトシリンダを所望の下降速度で下降させることができる。

Description

荷役車両の油圧駆動装置
 本発明は、荷役車両の油圧駆動装置に関するものである。
 荷役車両の油圧駆動装置として、例えば特許文献1に記載されているものが知られている。特許文献1に記載の油圧駆動装置は、作動油の給排により昇降物を昇降させる昇降用油圧シリンダと、昇降用油圧シリンダを作動させるための昇降操作部と、昇降用油圧シリンダに対する作動油の給排を行う油圧ポンプと、油圧ポンプを駆動する電動機と、油圧ポンプの吸込口と昇降用油圧シリンダのボトム室との間に配設され、昇降操作部の下降操作の操作量に基づいて作動油の流れを制御する操作弁と、を備えている。また、この油圧駆動装置は、昇降用油圧シリンダの位置エネルギーを再利用するため、油圧ポンプにアキュムレータから加圧された作動油を供給する。
特表2009-510358号公報
 ここで、上述のような従来の油圧駆動装置においては、以下の問題点が存在する。すなわち、昇降用油圧シリンダ側の圧力が低いためにアキュムレータに作動油が流れない場合や、アキュムレータ側の圧力が高いことによって当該アキュムレータに作動油が流れない場合がある。これによって、昇降用の油圧シリンダからの作動油の流量が変動し、当該油圧シリンダを所望の下降速度で下降させることができないという問題がある。従って、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることが求められていた。
 本発明の目的は、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることができる荷役車両の油圧駆動装置を提供することである。
 本発明の一側面に係る荷役車両の油圧駆動装置は、作動油の給排により昇降物を昇降させる昇降用の油圧シリンダと、油圧シリンダを作動させるための操作部と、油圧シリンダに対する作動油の給排を行う油圧ポンプと、油圧シリンダに接続され、該油圧シリンダから排出される作動油が流れる下降油路と、下降油路に配設され、操作部の下降操作に基づいて油圧シリンダから排出された作動油の流れを制御する操作弁と、下降油路から分岐点にて分岐し、分岐点と作動油を貯留するタンクとを導通するバイパス油路と、バイパス油路に配設され、分岐点からタンクへ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁と、下降油路の分岐点と油圧ポンプの吸込口とを接続する回生油路と、該回生油路上に設けられ、油圧シリンダから排出される作動油を蓄圧するアキュムレータと、回生油路における分岐点とアキュムレータとの間に設けられ、アキュムレータへ蓄圧される作動油の流量を制御する蓄圧流量制御弁と、を備える。
 本発明に係る荷役車両の油圧駆動装置は、下降油路の分岐点と油圧ポンプの吸込口とを接続する回生油路上に設けられ、油圧シリンダから排出される作動油を蓄圧するアキュムレータを備えている。このようなアキュムレータに対して、アキュムレータへ蓄圧される作動油の流量を制御する蓄圧流量制御弁が回生油路上に設けられる。また、バイパス油路には、分岐点からタンクへ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁が設けられている。このように、油圧駆動装置は、蓄圧流量制御弁及びバイパス流量制御弁という二つの流量制御弁を備えている。従って、アキュムレータへの蓄圧が可能な場合には、昇降用の油圧シリンダから吐出される作動油は、蓄圧流量制御弁を介してアキュムレータへ蓄圧可能である。このように、積荷の位置エネルギーをアキュムレータに蓄圧し、他のタイミングで利用することが可能となる。一方、アキュムレータへの蓄圧が出来ない場合には、昇降用の油圧シリンダから吐出される作動油をバイパス流量制御弁を介してタンクへ供給できる。従って、昇降用の油圧シリンダから吐出される作動油の流量の変動を抑制し、当該油圧シリンダを所望の下降速度で下降させることができる。以上より、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用の油圧シリンダを所望の下降速度で下降させることができる。
 また、本発明の他の側面に係る荷役車両の油圧駆動装置において、バイパス流量制御弁及び蓄圧流量制御弁は、操作弁を作動油が通過する際に生じる圧力差に応じて開度を調整するパイロット式の流量制御弁であり、蓄圧流量制御弁が流し得る作動油の流量である制御流量は、バイパス流量制御弁の制御流量よりも大きくてよい。これにより、昇降用の油圧シリンダからの作動油を蓄圧流量制御弁側へ向かわせて、アキュムレータに蓄圧することができる。また、アキュムレータが満杯(あるいは満杯近く)になった後は、作動油をバイパス流量制御弁を介してタンクへ向かわせることができる。このように、アキュムレータへの蓄圧か可能なタイミングで、自動的に積荷エネルギーの回収を行うことができる。
 また、本発明の他の側面に係る荷役車両の油圧駆動装置において、蓄圧流量制御弁とバイパス流量制御弁の制御流量の差は10%以下であってよい。このように、蓄圧流量制御弁とバイパス流量制御弁の制御流量の差を僅かな値にすることによって、作動油の流れが蓄圧流量制御弁側からバイパス流量制御弁側へ切り替わったとしても、昇降用の油圧シリンダからの作動油の流量の変動を抑制することができる。
 また、本発明の他の側面に係る荷役車両の油圧駆動装置において、回生油路におけるアキュムレータよりも油圧ポンプ側に設けられ、アキュムレータに蓄圧された作動油を油圧ポンプ側へ放圧する放圧制御弁を更に備えてよい。これにより、アキュムレータに蓄圧された作動油を適切なタイミングで、油圧ポンプ側へ供給することができる。
 また、本発明の他の側面に係る荷役車両の油圧駆動装置において、回生油路におけるアキュムレータと分岐点との間には、アキュムレータ側からの作動油の流れを遮断し、分岐点側からの作動油の流れを許容する逆止弁を更に備えてよい。これにより、アキュムレータに蓄圧された作動油が逆流することを抑制することができる。
 本発明によれば、様々な条件下において、昇降用の油圧シリンダの位置エネルギーを回収することができる。
本発明の実施形態に係る油圧駆動装置を備えた荷役車両を示す側面図である。 本発明の実施形態に係る油圧駆動装置を示す油圧回路図である。 図2に示した油圧駆動装置の制御系を示す構成図である。 荷役車両の油圧駆動装置の回生油路付近の構成について詳細に記載した構成図である。 蓄圧流量制御弁とバイパス流量制御弁の制御流量の差の様子を示すグラフである。 荷役車両の油圧駆動装置の各種パラメータの波形の一例を示すグラフである。 荷役車両の油圧駆動装置の各種パラメータの波形の一例を示すグラフである。 荷役車両の油圧駆動装置の各種パラメータの波形の一例を示すグラフである。
 以下、本発明に係る荷役車両の油圧駆動装置の好適な実施形態について、図面を参照して詳細に説明する。なお、図面において、同一または同等の要素には同じ符号を付し、重複する説明を省略する。
 図1は、本発明の実施形態に係る油圧駆動装置を備えた荷役車両を示す側面図である。同図において、本実施形態に係る荷役車両1は、エンジン式のフォークリフトである。荷役車両1は、車体フレーム2と、この車体フレーム2の前部に配置されたマスト3とを備えている。マスト3は、車体フレーム2に傾動可能に支持された左右1対のアウターマスト3aと、これらのアウターマスト3aの内側に配置され、アウターマスト3aに対して昇降可能なインナーマスト3bとからなっている。
 マスト3の後側には、昇降用油圧シリンダとしてのリフトシリンダ4が配置されている。リフトシリンダ4のピストンロッド4pの先端部は、インナーマスト3bの上部に連結されている。
 インナーマスト3bには、リフトブラケット5が昇降可能に支持されている。リフトブラケット5には、荷物を積載するフォーク(昇降物)6が取り付けられている。インナーマスト3bの上部にはチェーンホイール7が設けられ、チェーンホイール7にはチェーン8が掛装されている。チェーン8の一端部はリフトシリンダ4に連結され、チェーン8の他端部はリフトブラケット5に連結されている。リフトシリンダ4を伸縮させると、チェーン8を介してフォーク6がリフトブラケット5と共に昇降する。
 車体フレーム2の左右両側には、傾動用油圧シリンダとしてのティルトシリンダ9がそれぞれ支持されている。ティルトシリンダ9のピストンロッド9pの先端部は、アウターマスト3aの高さ方向ほぼ中央部に回動可能に連結されている。ティルトシリンダ9を伸縮させると、マスト3が傾動する。
 車体フレーム2の上部には、運転室10が設けられている。運転室10の前部には、リフトシリンダ4を作動させてフォーク6を昇降させるためのリフト操作レバー(第1操作部)11と、ティルトシリンダ9を作動させてマスト3を傾動させるためのティルト操作レバー12とが設けられている。
 また、運転室10の前部には、操舵を行うためのステアリング13が設けられている。ステアリング13は、油圧式のパワーステアリングであり、パワーステアリング(PS)用油圧シリンダとしてのPSシリンダ14(図2参照)により運転者の操舵をアシストすることが可能である。
 また、荷役車両1は、アタッチメント(図示せず)を動作させるアタッチメント用油圧シリンダとしてのアタッチメントシリンダ15(図2参照)を備えている。アタッチメントとしては、例えばフォーク6を左右移動、傾動、回転させるもの等がある。また、運転室10には、アタッチメントシリンダ15を作動させてアタッチメントを動作させるためのアタッチメント操作レバー(図示せず)が設けられている。
 さらに、運転室10には、特に図示はしないが、荷役車両1の走行方向(前進/後進/ニュートラル)を切り換えるためのディレクションスイッチが設けられている。
 図2は、本発明に係る油圧駆動装置の第1実施形態を示す油圧回路図である。同図において、本実施形態の油圧駆動装置16は、リフトシリンダ4、ティルトシリンダ9、アタッチメントシリンダ15及びPSシリンダ14を駆動する装置である。
 油圧駆動装置16は、単一の油圧ポンプ17と、この油圧ポンプ17を駆動するエンジン18を備えている。油圧ポンプ17は、作動油を吸い込むための吸込口17aと、作動油を吐出するための吐出口17bとを有している。油圧ポンプ17は、一方向に回転可能な構成とされている。
 油圧ポンプ17の吸込口17aには、作動油を貯留するタンク19が油圧配管20を介して接続されている。油圧配管20には、タンク19から油圧ポンプ17への方向にのみ作動油を流通させる逆止弁21が設けられている。油圧ポンプ17は、リフト操作レバー11による上昇操作時にはリフトシリンダ4に作動油を供給する。
 油圧ポンプ17の吐出口17bとリフトシリンダ4のボトム室4bとは、油圧配管22を介して接続されている。油圧配管22には、リフト上昇用の電磁比例弁23が配設されている。電磁比例弁23は、油圧ポンプ17からリフトシリンダ4のボトム室4bへの作動油の流通を許容する開位置23aと、油圧ポンプ17からリフトシリンダ4のボトム室4bへの作動油の流通を遮断する閉位置23bとの間で切り換えられる。
 電磁比例弁23は、通常は閉位置23b(図示)にあり、ソレノイド操作部23cに操作信号(リフト操作レバー11の上昇操作の操作量に応じたリフト上昇用ソレノイド電流指令値)が入力されると、開位置23aに切り換わる。すると、油圧ポンプ17からリフトシリンダ4のボトム室4bに作動油が供給され、リフトシリンダ4が伸長し、これに伴ってフォーク6が上昇する。なお、電磁比例弁23は、開位置23aにあるときは、操作信号に応じた開度で開く。油圧配管22における電磁比例弁23とリフトシリンダ4との間には、電磁比例弁23からリフトシリンダ4への方向にのみ作動油を流通させる逆止弁24が設けられている。
 油圧配管22における油圧ポンプ17と電磁比例弁23との分岐点には、油圧配管25を介してティルト用の電磁比例弁26が接続されている。油圧配管25には、油圧ポンプ17から電磁比例弁26への方向にのみ作動油を流通させる逆止弁27が設けられている。
 電磁比例弁26とティルトシリンダ9のロッド室9a及びボトム室9bとは、油圧配管28,29を介してそれぞれ接続されている。電磁比例弁26は、油圧ポンプ17からティルトシリンダ9のロッド室9aへの作動油の流通を許容する開位置26aと、油圧ポンプ17からティルトシリンダ9のボトム室9bへの作動油の流通を許容する開位置26bと、油圧ポンプ17からティルトシリンダ9への作動油の流通を遮断する閉位置26cの間で切り換えられる。
 電磁比例弁26は、通常は閉位置26c(図示)にあり、開位置26a側のソレノイド操作部26dに操作信号(ティルト操作レバー12の後傾操作の操作量に応じたティルト用ソレノイド電流指令値)が入力されると、開位置26aに切り換わり、開位置26b側のソレノイド操作部26eに操作信号(ティルト操作レバー12の前傾操作の操作量に応じたティルト用ソレノイド電流指令値)が入力されると、開位置26bに切り換わる。電磁比例弁26が開位置26aに切り換わると、油圧ポンプ17からティルトシリンダ9のロッド室9aに作動油が供給され、ティルトシリンダ9が収縮し、これに伴ってマスト3が後傾する。電磁比例弁26が開位置26bに切り換わると、油圧ポンプ17からティルトシリンダ9のボトム室9bに作動油が供給され、ティルトシリンダ9が伸長し、これに伴ってマスト3が前傾する。なお、電磁比例弁26は、開位置26a,26bにあるときは、操作信号に応じた開度で開く。
 油圧配管25における逆止弁27の上流側には、油圧配管30を介してアタッチメント用の電磁比例弁31が接続されている。油圧配管30には、油圧ポンプ17から電磁比例弁31への方向にのみ作動油を流通させる逆止弁32が設けられている。
 電磁比例弁31とアタッチメントシリンダ15のロッド室15a及びボトム室15bとは、油圧配管33,34を介してそれぞれ接続されている。電磁比例弁31は、油圧ポンプ17からアタッチメントシリンダ15のロッド室15aへの作動油の流通を許容する開位置31aと、油圧ポンプ17からアタッチメントシリンダ15のボトム室15bへの作動油の流通を許容する開位置31bと、油圧ポンプ17からアタッチメントシリンダ15への作動油の流通を遮断する閉位置31cの間で切り換えられる。
 電磁比例弁31は、通常は閉位置31c(図示)にあり、開位置31a側のソレノイド操作部31dに操作信号(アタッチメント操作レバーの一方側操作の操作量に応じたアタッチメント用ソレノイド電流指令値)が入力されると、開位置31aに切り換わり、開位置31b側のソレノイド操作部31eに操作信号(アタッチメント操作レバーの他方側操作の操作量に応じたアタッチメント用ソレノイド電流指令値)が入力されると、開位置31bに切り換わる。なお、アタッチメントシリンダ15の動作については省略する。また、電磁比例弁31は、開位置31a,31bにあるときは、操作信号に応じた開度で開く。
 油圧配管30における逆止弁32の上流側には、油圧配管35を介してPS用の電磁比例弁36が接続されている。油圧配管35には、油圧ポンプ17から電磁比例弁36への方向にのみ作動油を流通させる逆止弁37が設けられている。
 電磁比例弁36とPSシリンダ14の第1ロッド室14a及び第2ロッド室14bとは、油圧配管38,39を介してそれぞれ接続されている。電磁比例弁36は、油圧ポンプ17からPSシリンダ14の第1ロッド室14aへの作動油の流通を許容する開位置36aと、油圧ポンプ17からPSシリンダ14の第2ロッド室14bへの作動油の流通を許容する開位置36bと、油圧ポンプ17からPSシリンダ14への作動油の流通を遮断する閉位置36cの間で切り換えられる。
 電磁比例弁36は、通常は閉位置36c(図示)にあり、開位置36a側のソレノイド操作部36dに操作信号(ステアリング13の左右一方側操作の操作速度に応じたPS用ソレノイド電流指令値)が入力されると、開位置36aに切り換わり、開位置36b側のソレノイド操作部36eに操作信号(ステアリング13の左右他方側操作の操作速度に応じたPS用ソレノイド電流指令値)が入力されると、開位置36bに切り換わる。なお、PSシリンダ14の動作については省略する。また、電磁比例弁36は、開位置36a,36bにあるときは、操作信号に応じた開度で開く。
 油圧配管22における油圧ポンプ17と電磁比例弁23との分岐点は、油圧配管40を介してタンク19と接続されている。油圧配管40には、アンロード弁41及びフィルタ42が設けられている。また、油圧配管40と電磁比例弁26,31,36とは、油圧配管43~45を介して接続されている。さらに、電磁比例弁23,26,31,36は、油圧配管46を介して油圧配管40と接続されている。
 油圧ポンプ17の吸込口17aとリフトシリンダ4のボトム室4bとは、油圧配管(下降油路)47を介して接続されている。油圧配管47には、リフト下降用の操作弁48が配設されている。操作弁48は、リフトシリンダ4のボトム室4bからの作動油の流通を許容する開位置48aと、リフトシリンダ4のボトム室4bからの作動油の流通を遮断する閉位置48bとの間で切り換えられる。
 操作弁48は、通常は閉位置48b(図示)にあり、ソレノイド操作部48cに操作信号(リフト操作レバー11の下降操作の操作量に応じたリフト下降用ソレノイド電流指令値)が入力されると、開位置48aに切り換わる。すると、フォーク6の自重によりフォーク6が下降し、これに伴ってリフトシリンダ4が収縮し、リフトシリンダ4のボトム室4bから作動油が流れ出る。なお、操作弁48は、開位置48aにあるときは、操作信号に応じた開度で開く。
 油圧配管47における油圧ポンプ17と操作弁48との分岐点は、油圧配管(バイパス油路)49を介してタンク19と接続されている。油圧配管49には、バイパス流量制御弁50が配設されている。バイパス流量制御弁50は、圧力補償機能付きの流量制御弁である。なお、油圧配管49には、フィルタ54が設けられている。
 バイパス流量制御弁50は、作動油の流通を許容する開位置50aと、作動油の流通を遮断する閉位置50bと、作動油の流通量を調整する絞り位置50cとの間で切り換えられる。バイパス流量制御弁50の閉位置50b側のパイロット操作部と操作弁48の上流側(前側)とは、パイロット流路51を介して接続されている。バイパス流量制御弁50の開位置50a側のパイロット操作部と操作弁48の下流側(後側)とは、バイパス流路52を介して接続されている。バイパス流量制御弁50は、操作弁48の前後の圧力差に応じた開度で開く。具体的には、操作弁48の前後の圧力差が大きくなるほど、バイパス流量制御弁50の開度が小さくなる。
 油圧配管47のうち、分岐点よりも油圧ポンプ17側の油路である回生油路47a上には、アキュムレータ80、蓄圧流量制御弁81、放圧制御弁82、及び逆止弁83が設けられている。これらの構成要素に関する詳細な説明については図4を参照して後述する。
 上述で説明したシリンダのうち、作動油の給排によりリフトシリンダ(第1油圧シリンダ)4と異なる動作を行うティルトシリンダ9、アタッチメントシリンダ15、及びPSシリンダ14を総称して「第2油圧シリンダ70」と称することがある。また、第2油圧シリンダ70を操作するためのレバーである、ティルト操作レバー12、ステアリング13、アタッチメント操作レバーを総称して「第2操作部73」と称することがある。
 図3は、油圧駆動装置16の制御系を示す構成図である。同図において、油圧駆動装置16は、リフト操作レバー11の操作量を検出するリフト操作レバー操作量センサ(操作量検出部)55と、ティルト操作レバー12の操作量を検出するティルト操作レバー操作量センサ56と、アタッチメント操作レバー(図示せず)の操作量を検出するアタッチメント操作レバー操作量センサ57と、ステアリング13の操作速度を検出するステアリング操作速度センサ58と、コントローラ60と、を備えている。
 コントローラ60は、操作レバー操作量センサ55~57、ステアリング操作速度センサ58の検出値を入力し、所定の処理を行い、電磁比例弁23,26,31,36,操作弁48を制御する。なお、第2操作部73の操作量を検出するセンサ56,57,58を「第2操作量検出部71」と称することがある。また、油圧ポンプ17の吐出口17bと第2油圧シリンダとの間に配設され、第2操作部73の操作に基づいて前記作動油の流れを制御する電磁比例弁26,31,36を「第2操作弁72」と称することがある。
 図4に、荷役車両1の油圧駆動装置16の回生油路47a付近の構成について詳細に記載した構成図を示す。上述のように、油圧配管47のうち、分岐点よりもリフトシリンダ4側には操作弁48が設けられる。分岐点とタンク19を連通する油圧配管49には、バイパス流量制御弁50が設けられる。回生油路47a上には、アキュムレータ80が設けられ、分岐点とアキュムレータ80との間には蓄圧流量制御弁81が設けられ、アキュムレータ80よりも油圧ポンプ17側には放圧制御弁82が設けられ、アキュムレータ80と分岐点との間には逆止弁83が設けられる。
 本実施形態において、操作弁48前後の圧力が、バイパス流量制御弁50及び蓄圧流量制御弁81のパイロット圧力として用いられる。操作弁48は、前述のように操作者によるリフト操作レバー11の操作量に応じた開度となる。よって、作動油の流量あたりに操作弁48で発生する差圧は、リフト操作レバー11の操作量に応じた値となり、レバー操作量が大きいほど小さくなる。
 バイパス流量制御弁50は、前述のように、操作弁48を作動油が通過する際に生じる差圧に応じて開度を調整するパイロット式の流量制御弁である。すなわち、バイパス流量制御弁50は、操作弁48前後の圧力をパイロット圧力として入力しており、操作弁48前後で発生する差圧が一定となるようにバイパス回路の流量を調節する。このような差圧を「制御差圧」と称する。操作弁48の開度が小さいときは、少ない流量で制御差圧に達するため、それ以上流量が増えないように、バイパス流量制御弁50は、バイパス流量を制御する。操作弁48の開度が大きいときは、十分大きな流量の作動油が流れなければ制御差圧には達しない。従って、バイパス流量制御弁50には十分に大きな流量の作動油が流れる。すなわち、レバー操作量に応じて、バイパス流量制御弁50が流し得る流量が大きくなる。このように、流量制御弁が流し得る作動油の流量を「制御流量」と称する。バイパス流量制御弁50の主たる機能は、積荷が軽い場合やアキュムレータ80が満杯になった場合など、アキュムレータ80に作動油が流れない場合にタンク19側へバイパスさせることである。これによって、所望のリフトシリンダ4の下降速度を得ることができる。
 蓄圧流量制御弁81は、バイパス流量制御弁50と同様、操作弁48を作動油が通過する際に生じる差圧に応じて開度を調整するパイロット式の流量制御弁である。すなわち、蓄圧流量制御弁81は、操作弁48前後の圧力をパイロット圧力として入力しており、操作弁48前後で発生する差圧が一定となるように回生油路47aの流量を調節する。蓄圧流量制御弁81の制御流量は、レバー操作量に応じて大きくなる。ここで、制御流量は、バネなどによって調整が可能である。蓄圧流量制御弁81の制御流量は、バイパス流量制御弁50の制御流量よりも大きくなるように設定されている。図5に示すように、蓄圧流量制御弁81の制御流量が、バイパス流量制御弁50の制御流量に比して僅かに大きく設定されている。特に限定されないが、蓄圧流量制御弁81とバイパス流量制御弁50の制御流量の差は10%以下であってよく、更に好ましくは5%以下であってよい。蓄圧流量制御弁81とバイパス流量制御弁50の制御流量の差が10%より大きくなると、アキュムレータ80が満杯となり、作動油の流れがバイパス流量制御弁50を介してタンク19へ移行するタイミング(例えば、図6において「4秒」付近)において、シリンダ流量の変動が大きくなる。なお、蓄圧流量制御弁81とバイパス流量制御弁50の制御流量の差は2%以上であってよい。制御流量の差が2%を下回ると、蓄圧可能な条件下においてもバイパス流量が生じ、蓄圧効率が低下する可能性がある。蓄圧流量制御弁81の主たる機能は、積荷が重くアキュムレータ80に過剰な流量が流れる場合に、その開度を絞り、所望のリフトシリンダ4の下降速度を得ることである。
 具体的に、蓄圧流量制御弁81は、作動油の流通を許容する開位置81aと、作動油の流通を遮断する閉位置81bと、作動油の流通量を調整する絞り位置81cとの間で切り換えられる。蓄圧流量制御弁81の閉位置81b側のパイロット操作部と操作弁48の上流側(前側)とは、パイロット流路84を介して接続されている。蓄圧流量制御弁81の開位置81a側のパイロット操作部と操作弁48の下流側(後側)とは、バイパス流路86を介して接続されている。蓄圧流量制御弁81は、操作弁48の前後の圧力差に応じた開度で開く。具体的には、蓄圧流量制御弁81は、通常は開位置(図示)にある。そして、操作弁48の前後の圧力差が大きくなるほど、蓄圧流量制御弁81の開度が小さくなる。
 アキュムレータ80は、作動油を蓄圧する機器である。また、アキュムレータ80は、リフトシリンダ4側から流れてくる作動油を蓄圧し、油圧ポンプ17側へ放圧する。アキュムレータ80には内部にガスが充填されており、作動油が貯蔵されるに従ってガスが圧縮され、内部圧力が高まる。ここで、積荷が軽い状態でも回生を行う場合には、低い圧力の作動油を受け入れ可能であるように、低いガス圧に設定しておく必要がある。しかし、そのような設定を行った場合、積荷が十分に重い場合に、過剰な流量の作動油がアキュムレータ80に流れる事となる。従って、リフトシリンダ4の下降速度が過剰となることを抑制するために、蓄圧流量制御弁81の開度が絞られることとなり、圧力損失が大きくなり、効率が低下してしまう。従って、作業者の扱う積荷重量に合わせて、最も効率が良くなるように充填するガス圧を調整することが好ましい。なお、アキュムレータ80の容積はリフトシリンダ4から吐出される作動油の全てを受け入れられるように、十分に大きくすることが好適である。しかし、体格の制約上、アキュムレータ80を大きくすることが出来ない場合であっても、受け入れられなくなった作動油は、バイパス流量制御弁50を介してタンク19へ排出可能であるため、動作上の問題は生じない。
 逆止弁83は、アキュムレータ80側からの作動油の流れを遮断し、分岐点側からの作動油の流れを許容する機器である。従って、リフトシリンダ4からアキュムレータ80へ向かう作動油の流れは許容される。一方、アキュムレータ80からリフトシリンダ4へ向かう作動油の流れは遮断される。
 放圧制御弁82は、アキュムレータ80に蓄圧された作動油を油圧ポンプ17側へ放圧する。放圧制御弁82は、リフトシリンダ4の下降時にはその回路を遮断しておく。一方、放圧制御弁82は、リフトシリンダ4の上昇、あるいは第2油圧シリンダ70の動作が行われた場合にその回路を導通させ、アキュムレータ80の加圧流体を油圧ポンプ17へと誘導する。油圧ポンプ17は、当該加圧流体により回転することができるため、動力源としてのエンジン18のトルクを軽減することができ、燃料消費率を低減することができる。また、アキュムレータ80に蓄積されたエネルギーを利用するタイミングは第2油圧シリンダ70の動作時のみならず、走行中に利用することも考えられるため、放圧制御弁82の切換タイミングは特に限定されるものではない。
 具体的に、放圧制御弁82は、アキュムレータ80から油圧ポンプ17の吸込口17aへの作動油の流通を許容する開位置82aと、当該流通を遮断する閉位置82bとの間で切り換えられる。放圧制御弁82は、通常は閉位置82b(図示)にあり、ソレノイド操作部82cに操作信号(例えば、第2操作部73の操作量に応じたソレノイド電流指令値など)が入力されると、開位置82aに切り換わる。すると、アキュムレータ80から作動油が流れ出る。なお、放圧制御弁82は、開位置48aにあるときは、操作信号に応じた開度で開く。
 次に、図6~図8を参照して、油圧駆動装置16の各パラメータの波形の例を示す。ここでは、蓄圧流量制御弁81とバイパス流量制御弁50の制御流量の差は5%に設定されているものとする。図6(a)に示すように、アキュムレータ(Acc)の入口圧力は作動油が蓄圧されるに従って上昇し、満杯になって以降は一定となる。一方、リフトシリンダ4のボトム室4bの圧力(シリンダボトム圧)、及び油圧配管47の分岐点は作動開始と共に急激に上昇し、所定の圧力にて一定となる。アキュムレータの入口圧力と分岐点の圧力の差分は、流量調整のために蓄圧流量制御弁81で絞られて熱に変換した分の圧力である。分岐点の圧力とアキュムレータ80の入口圧力が等しくなると蓄圧側へ作動油が流れなくなるので、所望の下降速度に対応するシリンダ流量に対して不足する分を補うため、バイパス流量制御弁50が開き、タンク19側へ作動油が流れる。図6(b)に示すように、当該切替のタイミング(4秒付近)においても、シリンダ流量の変動は小さく、略一定に保たれている。この点より、リフトシリンダ4の安定した動作が確認できる。
 なお、図7(a)に示すように、シリンダ流量の積算値は単調に増加する一方、アキュムレータ80への流量の積算値は、満杯になるまで単調に増加し、満杯になった後は増加が停止する。図7(b)に示すように、アキュムレータ80への蓄圧効率は(初期段階で急激に立ち上がる部分以外では)、蓄圧量が増えるに従って増加し、満杯になった以降は略0となる。図8(a)に示すように、流量に圧力を掛け合わせることで算出される電力は、シリンダボトム側では略一定となり、アキュムレータ80の入口側では、蓄圧量が増えるに従って増加し、満杯になった後は略0となる。シリンダボトム側の電力量は単調に増加し、アキュムレータ80の入口側では、単調に増加して満杯になった後は増加が停止する。
 次に、本実施形態に係る荷役車両1の油圧駆動装置16の作用・効果について説明する。
 本実施形態に係る荷役車両1の油圧駆動装置16は、油圧配管47の分岐点と油圧ポンプ17の吸込口17aとを接続する回生油路47a上に設けられ、リフトシリンダ4から排出される作動油を蓄圧するアキュムレータ80を備えている。このようなアキュムレータ80に対して、アキュムレータ80へ蓄圧される作動油の流量を制御する蓄圧流量制御弁81が回生油路47a上に設けられる。また、油圧配管49には、分岐点からタンク19へ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁50が設けられている。このように、油圧駆動装置16は、蓄圧流量制御弁81及びバイパス流量制御弁50という二つの流量制御弁を備えている。従って、アキュムレータ80への蓄圧が可能な場合には、昇降用のリフトシリンダ4から吐出される作動油は、蓄圧流量制御弁81を介してアキュムレータ80へ蓄圧可能である。このように、積荷の位置エネルギーをアキュムレータ80に蓄圧し、他のタイミングで利用することが可能となる。一方、アキュムレータ80への蓄圧が出来ない場合には、昇降用のリフトシリンダ4から吐出される作動油をバイパス流量制御弁50を介してタンク19へ供給できる。従って、昇降用のリフトシリンダ4から吐出される作動油の流量の変動を抑制し、当該リフトシリンダ4を所望の下降速度で下降させることができる。以上より、積荷の位置エネルギーを効率よく回収可能であると共に、昇降用のリフトシリンダ4を所望の下降速度で下降させることができる。
 また、荷役車両1の油圧駆動装置16において、バイパス流量制御弁50及び蓄圧流量制御弁81は、操作弁48を作動油が通過する際に生じる圧力差に応じて開度を調整するパイロット式の流量制御弁である。また、蓄圧流量制御弁81が流し得る作動油の流量である制御流量は、バイパス流量制御弁50の制御流量よりも大きい。これにより、リフトシリンダ4からの作動油を蓄圧流量制御弁81側へ向かわせて、アキュムレータ80に蓄圧することができる。また、アキュムレータ80が満杯になった後は、作動油をバイパス流量制御弁50を介してタンク19へ向かわせることができる。このように、アキュムレータ80への蓄圧が可能なタイミングで、自動的に積荷エネルギーの回収を行うことができる。また、2つの流量制御弁が、荷重、油温、レバー操作量に応じて自動的に作動油の流量を調整するため、あらゆる条件下であっても、リフトシリンダ4を所望の下降速度にて下降させることができる。また、油圧駆動装置16は、荷重センサ、油温センサ、回生専用の油圧モータ・ポンプ等を設けることなく、簡素な構成で、低いコストにて、上述の効果を得ることができる。
 また、荷役車両1の油圧駆動装置16において、蓄圧流量制御弁81とバイパス流量制御弁50の制御流量の差は10%以下である。このように、蓄圧流量制御弁81とバイパス流量制御弁50の制御流量の差を僅かな値にすることによって、作動油の流れが蓄圧流量制御弁81側からバイパス流量制御弁50側へ切り替わったとしても、リフトシリンダ4からの作動油の流量の変動を抑制することができる。
 また、荷役車両1の油圧駆動装置16において、回生油路47aにおけるアキュムレータ80よりも油圧ポンプ17側に設けられ、アキュムレータ80に蓄圧された作動油を油圧ポンプ17側へ放圧する放圧制御弁82を更に備える。これにより、アキュムレータ80に蓄圧された作動油を適切なタイミングで、油圧ポンプ17側へ供給することができる。
 また、荷役車両1の油圧駆動装置16において、回生油路47aにおけるアキュムレータ80と分岐点との間には、アキュムレータ80側からの作動油の流れを遮断し、分岐点側からの作動油の流れを許容する逆止弁83を更に備える。これにより、アキュムレータ80に蓄圧された作動油が逆流することを抑制することができる。
 以上、本発明に係る荷役車両の油圧駆動装置の好適な実施形態について幾つか説明してきたが、本発明は、上記実施形態に限定されるものではない。
 上述の実施形態では、第2油圧シリンダとして、ティルトシリンダ、PSシリンダ、及びアタッチメントシリンダが設けられている。しかし、第2油圧シリンダは少なくとも一本あればよく、一部は省略されてよい。例えば、上記実施形態では、アタッチメント及びパワーステアリングが搭載されているが、本発明の油圧駆動装置は、アタッチメント及びパワーステアリングが搭載されていないフォークリフトにも適用可能である。また、本発明の油圧駆動装置は、バッテリ式のフォークリフトはもとより、フォークリフト以外のエンジン式、バッテリ式の荷役車両にも適用可能である。
 リフト操作レバーの下降操作に基づいて作動油の流れを制御する制御弁、及び第2操作部の操作に基づいて作動油の流れを制御する制御弁として、電磁式の比例弁を例示したが、油圧式、機械式のいずれでもよい。
 1  荷役車両
 4  リフトシリンダ(油圧シリンダ)
 4b  ボトム室
 6  フォーク(昇降物)
 11  リフト操作レバー(操作部)
 16  油圧駆動装置
 17  油圧ポンプ
 17a  吸込口
 17b  吐出口
 18  エンジン
 47  油圧配管(下降油路)
 47a  回生油路
 48  操作弁
 49  油圧配管(バイパス油路)
 50  バイパス流量制御弁
 80  アキュムレータ
 81  蓄圧流量制御弁
 82  放圧制御弁
 83  逆止弁

Claims (5)

  1.  作動油の給排により昇降物を昇降させる昇降用の油圧シリンダと、
     前記油圧シリンダを作動させるための操作部と、
     前記油圧シリンダに対する前記作動油の給排を行う油圧ポンプと、
     前記油圧シリンダに接続され、該油圧シリンダから排出される作動油が流れる下降油路と、
     前記下降油路に配設され、前記操作部の下降操作に基づいて前記油圧シリンダから排出された作動油の流れを制御する操作弁と、
     前記下降油路から分岐点にて分岐し、前記分岐点と前記作動油を貯留するタンクとを導通するバイパス油路と、
     前記バイパス油路に配設され、前記分岐点から前記タンクへ流れる作動油の流量であるバイパス流量を制御するバイパス流量制御弁と、
     前記下降油路の前記分岐点と前記油圧ポンプの吸込口とを接続する回生油路と、
     該回生油路上に設けられ、前記油圧シリンダから排出される作動油を蓄圧するアキュムレータと、
     前記回生油路における前記分岐点と前記アキュムレータとの間に設けられ、前記アキュムレータへ蓄圧される前記作動油の流量を制御する蓄圧流量制御弁と、を備える、荷役車両の油圧駆動装置。
  2.  前記バイパス流量制御弁及び前記蓄圧流量制御弁は、前記操作弁を前記作動油が通過する際に生じる圧力差に応じて開度を調整するパイロット式の流量制御弁であり、
     蓄圧流量制御弁が流し得る前記作動油の流量である制御流量は、前記バイパス流量制御弁の制御流量よりも大きい、請求項1に記載の荷役車両の油圧駆動装置。
  3.  前記蓄圧流量制御弁と前記バイパス流量制御弁の制御流量の差は10%以下である、請求項2に記載の荷役車両の油圧駆動装置。
  4.  前記回生油路における前記アキュムレータよりも前記油圧ポンプ側に設けられ、前記アキュムレータに蓄圧された前記作動油を前記油圧ポンプ側へ放圧する放圧制御弁を更に備える、請求項1~3の何れか一項に記載の荷役車両の油圧駆動装置。
  5.  前記回生油路における前記アキュムレータと前記分岐点との間には、前記アキュムレータ側からの作動油の流れを遮断し、前記分岐点側からの前記作動油の流れを許容する逆止弁を更に備える、請求項1~4の何れか一項に記載の荷役車両の油圧駆動装置。
PCT/JP2017/037982 2016-11-16 2017-10-20 荷役車両の油圧駆動装置 WO2018092509A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016223441A JP6424879B2 (ja) 2016-11-16 2016-11-16 荷役車両の油圧駆動装置
JP2016-223441 2016-11-16

Publications (1)

Publication Number Publication Date
WO2018092509A1 true WO2018092509A1 (ja) 2018-05-24

Family

ID=62145417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037982 WO2018092509A1 (ja) 2016-11-16 2017-10-20 荷役車両の油圧駆動装置

Country Status (2)

Country Link
JP (1) JP6424879B2 (ja)
WO (1) WO2018092509A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101365A (ja) * 2008-10-22 2010-05-06 Caterpillar Japan Ltd 作業機械における油圧制御システム
JP2013133196A (ja) * 2011-12-26 2013-07-08 Toyota Industries Corp フォークリフトの油圧制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101365A (ja) * 2008-10-22 2010-05-06 Caterpillar Japan Ltd 作業機械における油圧制御システム
JP2013133196A (ja) * 2011-12-26 2013-07-08 Toyota Industries Corp フォークリフトの油圧制御装置

Also Published As

Publication number Publication date
JP2018080027A (ja) 2018-05-24
JP6424879B2 (ja) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6269170B2 (ja) 荷役車両の油圧駆動装置
JP5388787B2 (ja) 作業機械の油圧システム
AU2016208338B2 (en) Industrial vehicle
WO2018092510A1 (ja) 荷役車両の油圧駆動装置、及び流量制御弁
WO2018092505A1 (ja) 荷役車両の油圧駆動装置
JP6455405B2 (ja) 荷役車両の油圧駆動装置
WO2018092509A1 (ja) 荷役車両の油圧駆動装置
JP6179568B2 (ja) 荷役車両の油圧駆動装置
EP3078624B1 (en) Hydraulic control device of forklift truck
JP6318891B2 (ja) 荷役車両の油圧駆動装置
EP3543544B1 (en) Hydraulic drive device for cargo vehicle
JP2018132126A (ja) 油圧駆動装置
JP6488990B2 (ja) 荷役車両の油圧駆動装置
JP6879250B2 (ja) 油圧駆動装置
JP6477354B2 (ja) 荷役車両の油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872652

Country of ref document: EP

Kind code of ref document: A1