WO2018092203A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018092203A1
WO2018092203A1 PCT/JP2016/083920 JP2016083920W WO2018092203A1 WO 2018092203 A1 WO2018092203 A1 WO 2018092203A1 JP 2016083920 W JP2016083920 W JP 2016083920W WO 2018092203 A1 WO2018092203 A1 WO 2018092203A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
air volume
air
air conditioner
unit
Prior art date
Application number
PCT/JP2016/083920
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 穴井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/083920 priority Critical patent/WO2018092203A1/en
Priority to JP2018550909A priority patent/JP6664511B2/en
Publication of WO2018092203A1 publication Critical patent/WO2018092203A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention relates to an air conditioner equipped with an evaporator, and more particularly, to an antifreezing process for the evaporator during cooling operation.
  • the air conditioner disclosed in Patent Document 1 includes a variable capacity compressor and an evaporator, and calculates an evaporation temperature from a detection value of a pressure sensor attached in the vicinity of the evaporator. And the air conditioner of patent document 1 is comprised so that the capacity
  • the air conditioner of Patent Document 2 includes a variable capacity compressor and an evaporator to which a temperature sensor is attached, and the evaporation temperature is monitored by the temperature sensor. And the air conditioner of patent document 2 is comprised so that the capacity
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that suppresses freezing of an evaporator without reducing its capacity.
  • An air conditioner includes a refrigerant circuit formed by connecting a compressor that compresses a refrigerant, a condenser that condenses the refrigerant, a decompression device that decompresses the refrigerant, and an evaporator that evaporates the refrigerant through a refrigerant pipe.
  • the evaporator has an air blower that blows air, and includes an air volume adjustment unit that adjusts the air volume that passes through the evaporator, and a control device that controls the operation of the refrigerant circuit and the air volume adjustment unit.
  • the freezing determination unit that determines whether or not the temperature is equal to or lower than the freezing threshold, and if the evaporation temperature is determined to be lower than or equal to the freezing threshold in the freezing determination unit, based on the operating frequency of the compressor, Based on the setting value calculation processing unit that calculates the air volume setting value indicating the amount of air blown to the evaporator and the air volume setting value calculated by the setting value calculation processing unit, the air volume that passes through the evaporator is increased. It has a work control unit.
  • the evaporation temperature when the evaporation temperature is equal to or lower than the freezing threshold, the amount of air passing through the evaporator is increased, so there is no need to reduce the capacity of the compressor and the amount of refrigerant flowing into the evaporator. Freezing of the evaporator can be suppressed without reducing the capacity of the machine.
  • FIG. 2 is a Ph diagram illustrating an operating state of a refrigeration cycle in the air conditioner of FIG. 1. It is a block diagram which shows the functional structure of the control apparatus which the air conditioner of FIG. 1 has. It is explanatory drawing which illustrates the relationship between the evaporation temperature in the air conditioner of FIG. 1, air volume, and the operating frequency of a compressor. It is a flowchart which shows the operation example at the time of the cooling operation of the air conditioner of FIG. It is the schematic which illustrates the structure of the air conditioner which concerns on Embodiment 2 of this invention. It is a block diagram which shows the functional structure of the control apparatus which the air conditioner of FIG. 6 has.
  • FIG. 1 is a schematic view illustrating the configuration of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is a Ph diagram showing the operating state of the refrigeration cycle in the air conditioner of FIG.
  • the air conditioner 10 includes a compressor 21, a condenser 22, a decompression device 23, an evaporator 24, and an air volume adjustment unit 30.
  • the compressor 21, the condenser 22, the decompression device 23, and the evaporator 24 are connected by the refrigerant pipe 20, and the refrigerant circuit 10A is formed.
  • the refrigerant circuit 10A is filled with a refrigerant.
  • the compressor 21 sucks low-pressure gas refrigerant and compresses it into a high-pressure gas refrigerant, and is provided in an outdoor unit (not shown) installed outdoors.
  • the compressor 21 may be capable of arbitrarily changing the operating frequency by inverter control.
  • the compressor 21 may not have a function of changing the operating frequency, and may be a constant speed whose capacity can be adjusted by a bypass valve or the like.
  • the condenser 22 is composed of, for example, a fin-and-tube heat exchanger, and is provided in the outdoor unit.
  • the condenser 22 condenses the high-pressure gaseous refrigerant sent from the compressor 21 into a high-pressure liquid refrigerant by exchanging heat with the external fluid.
  • the external fluid used for heat exchange may be a gas such as air or a liquid such as water.
  • the decompression device 23 is composed of, for example, an electronic expansion valve, and expands and decompresses a high-pressure liquid refrigerant into a low-pressure gas-liquid two-phase refrigerant.
  • the decompression device 23 is not limited to the electronic expansion valve, and may be any device having a function of decompressing the refrigerant, such as a capillary tube.
  • the decompression device 23 may be provided in an outdoor unit, or may be provided in an indoor unit (not shown) installed indoors.
  • the evaporator 24 is composed of a fin-and-tube heat exchanger, for example, and is provided in the indoor unit.
  • the evaporator 24 evaporates the low-pressure gas-liquid two-phase refrigerant flowing in from the decompression device 23 into the low-pressure gas refrigerant by exchanging heat with the air, and returns the refrigerant to the compressor 21. It is.
  • the refrigerant circuit 10A compresses the refrigerant into a high-pressure gas state by the compressor 21 and sends it to the condenser 22.
  • the refrigerant circuit 10 ⁇ / b> A condenses the refrigerant into a high-pressure liquid state by the condenser 22 and sends it to the decompression device 23.
  • the refrigerant circuit 10 ⁇ / b> A expands the refrigerant by the decompression device 23 to form a low-pressure gas-liquid two-phase state, and sends it to the evaporator 24.
  • the refrigerant circuit 10A evaporates the refrigerant by the evaporator 24 to obtain a low-pressure gas state, and sends the refrigerant in the low-pressure gas state to the compressor 21 again.
  • the air conditioner 10 adjusts the indoor temperature using the refrigeration cycle as described above. Since the air conditioner 10 of the first embodiment is configured to perform the cooling operation, the indoor air is cooled by the evaporator 24.
  • the air volume adjusting unit 30 is attached to the evaporator 24 and adjusts the air volume passing through the evaporator 24.
  • the air volume adjustment unit 30 has a blower 31 that blows air to the evaporator 24.
  • the blower 31 includes a fan motor 31 a driven by an inverter, and a fan 31 b that rotates using the fan motor 31 a as a power source and blows air to the evaporator 24. That is, the fan motor 31a is for driving the fan 31b.
  • the blower 31 blows air to the evaporator 24 in order to exchange heat between the air and the low-pressure gas-liquid two-phase refrigerant of the evaporator 24. That is, in the air conditioner 10, the air blown by the blower 31 passes through the evaporator 24, and heat exchange between the refrigerant flowing in the evaporator 24 and the indoor air is promoted.
  • the type of the blower 31 is not particularly limited, and a sirocco fan or a plug fan can be adopted as the blower 31.
  • the blower 31 may be a push-in type or a pull-type type.
  • the air conditioner 10 includes a condenser pressure sensor 41, a condenser outlet temperature sensor 42, an evaporator inlet temperature sensor 43, an evaporator outlet temperature sensor 44, and a control device 50.
  • the condenser pressure sensor 41 measures the condensation pressure Pcm that is the pressure of the condenser 22. In the example of FIG. 2, the refrigerant pressure between point b and point c corresponds to the condensation pressure.
  • the condenser outlet temperature sensor 42 measures the condenser outlet temperature, which is the outlet temperature of the condenser 22. In the example of FIG. 2, the temperature of the refrigerant at the point c corresponds to the condenser outlet temperature.
  • the evaporator inlet temperature sensor 43 measures the evaporation temperature Te which is the temperature on the decompressor 23 side of the evaporator 24.
  • the temperature of the refrigerant between the points d and z corresponds to the evaporation temperature Te.
  • the evaporator outlet temperature sensor 44 measures the evaporator outlet temperature, which is the temperature of the outlet of the evaporator 24.
  • the temperature of the refrigerant at point a corresponds to the evaporator outlet temperature.
  • the control device 50 controls the operation of the refrigerant circuit 10A and the air volume adjustment unit 30.
  • the control device 50 includes an evaporator inlet enthalpy hri and an evaporator outlet enthalpy hro based on a predetermined refrigeration cycle as shown in FIG. 2, pressure data obtained from the condenser pressure sensor 41, a condenser outlet temperature sensor 42, an evaporator.
  • Air conditioning control is executed based on the temperature data obtained from the inlet temperature sensor 43 and the evaporator outlet temperature sensor 44. That is, the control device 50 controls the compressor 21 and the pressure reducing device 23 based on the operating state of the refrigeration cycle in the air conditioner 10, calculates the refrigerant flow rate, calculates the air volume, and the fan motor 31a. Is controlled to drive the fan 31b.
  • FIG. 3 is a block diagram showing a functional configuration of a control device included in the air conditioner of FIG.
  • the control device 50 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, and a set value calculation processing unit. 56 and an operation control unit 57.
  • the storage unit 51 stores information on air physical properties, information on refrigerant physical properties, information on capacity calculation formulas, and the like.
  • the information on the capability calculation formula is information indicating formula (1), formula (2), and the like described later.
  • the storage unit 51 stores a setting value table in which the capacity of the air conditioner 10 is associated with the air volume setting value indicating the air volume blown to the evaporator 24 by the air volume adjustment unit 30.
  • the capability of the air conditioner 10 is also referred to as device capability Qe.
  • a rotation frequency setting value indicating the rotation frequency of the blower 31 is stored as the air volume setting value.
  • the rotational frequency set value is set for preventing the evaporator 24 from freezing. That is, in the set value table, the rotation frequency set value is associated with each of a plurality of capabilities that the air conditioner 10 can exhibit. More specifically, in the setting value table, a rotation frequency setting value is associated with each range of the capability Qe of the device.
  • the set value table is configured such that the rotation frequency set value increases as the device capability Qe decreases. Therefore, when the air conditioner 10 exhibits a certain capability in the set value table, if the rotation frequency of the blower 31 is set to the rotation frequency set value corresponding to the capability, the evaporator 24 can be prevented from freezing. Can do.
  • the condensing temperature calculation unit 52 calculates the condensing temperature based on the condensing pressure Pcm measured by the condenser pressure sensor 41 and information on the physical properties of the refrigerant in the storage unit 51.
  • the temperature of the refrigerant between point x and point y corresponds to the condensation temperature.
  • the supercooling degree calculation unit 53 calculates the supercooling degree SC using the condenser outlet temperature measured by the condenser outlet temperature sensor 42 and the condensation temperature calculated by the condensation temperature calculation unit 52. . More specifically, the supercooling degree calculation unit 53 obtains the supercooling degree SC by subtracting the condenser outlet temperature from the condensation temperature.
  • the superheat degree calculator 54 calculates the superheat degree SH using the evaporation temperature Te measured by the evaporator inlet temperature sensor 43 and the evaporator outlet temperature measured by the evaporator outlet temperature sensor 44. . More specifically, the superheat degree calculation unit 54 obtains the superheat degree SH by subtracting the evaporation temperature Te from the evaporator outlet temperature.
  • the freezing determination unit 55 compares the evaporation temperature Te measured by the evaporator inlet temperature sensor 43 with a preset freezing threshold T and determines whether or not the evaporation temperature Te is equal to or lower than the freezing threshold T. It is. Thereby, the freezing determination part 55 determines whether the evaporator 24 has a possibility of freezing.
  • the freezing threshold T is set to 0 ° C., for example. But the freezing threshold T should just be set to the temperature which can prevent the evaporator 24 from freezing, and may be set to temperature other than 0 degreeC based on the structure content of the air conditioner 10, a refrigerant
  • the freezing determination unit 55 has a function of acquiring the evaporation temperature Te from the evaporator inlet temperature sensor 43 at predetermined time intervals and determining whether the evaporation temperature Te is equal to or lower than the freezing threshold T. is doing.
  • the set value calculation processing unit 56 sets the air volume setting value based on the capacity of the compressor 21, that is, the operating frequency of the compressor 21. Is calculated. In the first embodiment, the set value calculation processing unit 56 calculates a rotation frequency setting value indicating the rotation frequency of the blower 31 as the air volume setting value.
  • the set value calculation processing unit 56 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, and an air volume calculation unit 56d.
  • the evaporation pressure calculation unit 56a calculates the evaporation pressure Pe used to calculate the refrigerant flow rate Gr based on the evaporation temperature Te measured by the evaporator inlet temperature sensor 43 and the refrigerant physical property information in the storage unit 51. To do. In the example of FIG. 2, the refrigerant pressure between point d and point a corresponds to the evaporation pressure Pe.
  • the refrigerant flow rate calculation unit 56b calculates the refrigerant flow rate Gr using the evaporation pressure Pe calculated by the evaporation pressure calculation unit 56a.
  • the refrigerant flow rate Gr is expressed by the following equation (1) by the displacement volume V of the compressor 21 and the density ⁇ of the refrigerant to be compressed.
  • the displacement volume V of the compressor 21 corresponds to the operating frequency of the compressor 21 and is stored in the storage unit 51 in advance.
  • the density ⁇ of the refrigerant to be compressed is calculated by the refrigerant flow rate calculation unit 56b based on the evaporation pressure Pe and information on the physical properties of the refrigerant in the storage unit 51.
  • the refrigerant flow rate calculation unit 56b obtains the density ⁇ of the refrigerant to be compressed based on the evaporation pressure Pe and the information on the refrigerant physical properties. And the refrigerant
  • the capability calculation unit 56c calculates the capability Qe of the equipment using the refrigerant flow rate Gr obtained by the refrigerant flow rate calculation unit 56b.
  • the capability Qe of the device the following equation (2) using the refrigerant flow rate Gr, the evaporator inlet enthalpy hr, and the evaporator outlet enthalpy hr is established.
  • the capacity calculating unit 56c integrates the refrigerant flow rate Gr and the evaporator inlet / outlet enthalpy difference ⁇ hr, which is a difference obtained by subtracting the evaporator inlet enthalpy hr from the evaporator outlet enthalpy hr, based on the equation (2).
  • the device's ability Qe is obtained.
  • the capability Qe of an apparatus is calculated using the displacement volume V of the compressor 21, there exists a relationship between the capability Qe of an apparatus and the operating frequency of the compressor 21.
  • the air volume calculation unit 56d calculates the rotation frequency set value by comparing the capability Qe of the device calculated by the capability calculation unit 56c with the set value table. Further, the air volume calculation unit 56d has a function of outputting information on the calculated rotation frequency set value to the operation control unit 57.
  • the operation control unit 57 has a function of changing the rotation speed of the fan 31b by controlling the driving of the fan motor 31a. That is, the operation control unit 57 can adjust the air volume passing through the evaporator 24 in the air volume adjustment range R that is the range from the initial air volume value Afi to the maximum air volume value Afm by controlling the blower 31.
  • the operation control unit 57 increases the rotation frequency of the blower 31 based on the information of the rotation frequency set value calculated by the set value calculation processing unit 56, and the evaporator The amount of air passing through 24 is increased. That is, the operation control unit 57 controls the drive of the fan motor 31a so that the rotation frequency of the blower 31 becomes the rotation frequency setting value when the evaporation temperature Te decreases to the freezing threshold T, and the rotation speed of the fan 31b is set. It is something to raise.
  • the operation control unit 57 controls the operating frequency of the compressor 21 according to the air conditioning load and the like, and adjusts the flow rate of the refrigerant circulating in the refrigerant circuit 10A. Further, the operation control unit 57 has a function of controlling the opening degree of the decompression device 23 according to the air conditioning load or the like when the decompression device 23 is an electronic expansion valve or the like whose opening degree can be adjusted.
  • FIG. 4 is an explanatory diagram illustrating the relationship between the evaporation temperature, the air volume, and the operating frequency of the compressor in the air conditioner of FIG. FIG. 4 illustrates the freeze prevention control in an environment where the outside air temperature decreases with time.
  • the air conditioner 10 can increase the amount of air passing through the evaporator 24 in the air amount adjustment range R when the evaporation temperature Te decreases to the freezing threshold T. Therefore, the air conditioner 10 can maintain the operating frequency of the compressor 21 even when the evaporation temperature Te decreases to the freezing threshold T. Therefore, according to the air conditioner 10, freezing of the evaporator 24 can be suppressed without reducing the capacity.
  • the air volume corresponds to the rotational frequency of the blower 31.
  • the air volume initial value Afi is an initial value of the rotational frequency of the blower 31 when the cooling operation is started
  • the air volume maximum value Afm is a maximum value of the rotational frequency of the blower 31.
  • the air conditioner 10 is an environment where the outside air temperature rises with time, for example. Below, you may make it raise the rotational frequency of the air blower 31 in steps. Further, the air conditioner 10 may cause the blower 31 to repeatedly increase and decrease the rotational frequency, for example, in an environment where the outside air temperature repeatedly increases and decreases. That is, the air conditioner 10 may perform an increase process or a decrease process of the rotational frequency of the blower 31 according to a change in the outside air temperature, that is, a change in the capability Qe of the device.
  • the control device 50 may be provided in the indoor unit or may be provided in the outdoor unit. Further, the control device 50 may be constituted by two control devices in which the above functions are separated. In this case, one control device is provided in the indoor unit and the other control device is provided in the outdoor unit. May be.
  • the control device 50 can be realized by hardware such as a circuit device that realizes each of the above functions.
  • the control device 50 can be executed on a calculation device such as a microcomputer, a DSP (Digital Signal Processor), or a CPU (Central Processing Unit). It can also be realized as executed software.
  • the storage unit 51 can be configured by a RAM (Random Access Memory) and a ROM (Read Only Memory), a PROM (Programmable ROM) such as a flash memory, or an HDD (Hard Disk Drive).
  • FIG. 5 is a flowchart showing an operation example during the cooling operation of the air conditioner 10 of FIG. With reference to FIG. 5, the freezing suppression control by the air conditioner 10 of this Embodiment 1 is demonstrated.
  • the freezing determination unit 55 acquires the evaporation temperature Te from the evaporator inlet temperature sensor 43 (step S101). And the freezing determination part 55 determines whether there exists a possibility of freezing in the evaporator 24 by determining whether the evaporation temperature Te is below the freezing threshold T (step S102).
  • the set value calculation processing unit 56 calculates the air volume setting value and provides information on the calculated air volume setting value. It outputs to the operation control part 57 (step S103).
  • the set value calculation processing unit 56 returns to step S101.
  • the operation control unit 57 performs air volume adjustment so that the air volume passing through the evaporator 24 becomes the air volume setting value according to the information on the air volume setting value output from the set value calculation processing unit 56. That is, the operation control unit 57 controls the drive of the fan motor 31a to increase the rotational speed of the fan 31b. In this way, the operation control unit 57 increases the rotational frequency of the blower 31 and increases the air volume passing through the evaporator 24 to the air volume setting value (step S104).
  • step S105 After the air volume adjustment by the operation control unit 57, the freezing determination unit 55 stands by until the set time elapses (step S105 / No), and when the set time elapses (step S105 / Yes), the process returns to step S101. That is, the air conditioner 10 repeats a series of operations in steps S101 to S105.
  • step S102 shows an example of returning to step S101 when the freezing determination unit 55 determines that the evaporation temperature Te is higher than the freezing threshold T (step S102 / No), but is not limited thereto. Absent.
  • the freeze determination unit 55 may acquire the evaporation temperature Te again after a predetermined time elapses by the process of proceeding from No in step S102 to step S105, and perform a series of operations in steps S101 to S105. .
  • the air conditioner 10 increases the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, the capacity of the compressor 21 and the evaporator Since it is not necessary to reduce the refrigerant inflow to 24, freezing of the evaporator 24 can be suppressed without reducing the capacity of the air conditioner 10.
  • the capability Qe of the device changes according to a change in the outside air temperature. For example, when the outside air temperature decreases, the capacity Qe of the device also decreases, and when the outside air temperature increases, the capacity Qe of the device also increases.
  • the outside air temperature changes from time to time. For example, when the daily change is observed, it decreases with time from daytime to nighttime and increases with time from dawn to daytime.
  • the control device 50 determines whether or not there is a risk of freezing every set time, and performs air volume adjustment when there is a risk of freezing. Therefore, the air conditioner 10 can raise the rotational frequency of the air blower 31 in steps in the situation where the outside air temperature decreases with time. Further, the air conditioner 10 can cope with a sudden change in the outside air temperature by setting the setting time short. That is, according to the air conditioner 10, it is possible to realize anti-freezing control that flexibly responds to changes in the outside air temperature.
  • the process of increasing the rotational frequency of the blower 31 when the evaporation temperature Te decreases to the freezing threshold T has been described.
  • a predetermined condition is satisfied.
  • the rotational frequency of the blower 31 may be lowered.
  • the control device 50 may lower the rotational frequency of the blower 31 when the state where there is no risk of freezing (the state of No in step S102) continues for a certain time or longer. That is, the set value calculation processing unit 56 calculates the rotation frequency set value with reference to the set value table or table information configured similarly to the set value table when a state where there is no fear of freezing continues for a certain period of time or longer. You may do it.
  • the operation control unit 57 reduces the air volume passing through the evaporator 24 by lowering the rotation frequency of the blower 31 based on the information of the rotation frequency set value calculated by the set value calculation processing unit 56. It may be. If it does in this way, since the rotation frequency of the air blower 31 can be lowered
  • FIG. FIG. 6 is a schematic view illustrating the configuration of the air conditioner according to Embodiment 2 of the invention.
  • FIG. 7 is a block diagram showing a functional configuration of a control device included in the air conditioner of FIG. Based on FIG. 6 and FIG. 7, the structure and operation
  • Constituent members equivalent to those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the air conditioner 110 includes an air volume adjustment unit 130, and a control device 150 that controls the operation of the refrigerant circuit 10A and the air volume adjustment unit 130.
  • the air volume adjusting unit 130 includes a blower 31 and an air volume adjusting damper 32 attached to the evaporator 24.
  • the air volume adjusting damper 32 is provided on the air path formed by the blower 31 and adjusts the air volume passing through the evaporator 24.
  • the air volume adjusting damper 32 can adjust the air volume that passes through the installed air passage by the rotation of a single plate or the multi-blade damper that can adjust the air volume that passes through the installed air passage by opening and closing a plurality of blades.
  • Butterfly damper is provided to the air volume that passes through the installed air passage by the rotation of a single plate or the multi-blade damper that can adjust the air volume that passes through the installed air passage by opening and closing a plurality of blades.
  • the rotation frequency setting value and the opening setting value indicating the opening of the air volume adjustment damper 32 are stored as the air volume setting value. .
  • the rotational frequency setting value and the opening degree setting value are set in advance for preventing the evaporator 24 from freezing. That is, the set value table in the second embodiment is such that the capability Qe of the device, the rotation frequency set value, and the opening degree set value are associated with each other. More specifically, in the set value table, the rotation frequency set value and the opening set value are associated with each range of the capability Qe of the device.
  • the set value table is configured such that when the device capability Qe decreases, the rotation frequency set value increases and the opening set value increases.
  • the rotational frequency of the blower 31 is set to a set frequency corresponding to the capability, and the opening degree of the air volume adjustment damper 32 is set to the capability. If the opening setting value corresponding to is set, freezing of the evaporator 24 can be prevented.
  • the control device 150 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, and a set value calculation processing unit. 156 and an operation control unit 157.
  • the set value calculation processing unit 156 calculates an air volume set value based on the operating frequency of the compressor 21 when the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T.
  • the set value calculation processing unit 156 calculates the air volume blown to the evaporator 24 via the air volume adjustment damper 32, that is, the opening setting value and the rotation frequency setting value, as the air volume setting value. To do.
  • the set value calculation processing unit 156 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, and an air volume calculation unit 156d.
  • the air volume calculation unit 156d calculates the opening setting value and the rotation frequency setting value by checking the capability Qe of the device calculated by the capability calculation unit 56c against the setting value table. Further, the air volume calculating unit 156d has a function of outputting the calculated opening setting value information and the rotation frequency setting value information to the operation control unit 157.
  • the other configuration of the air volume calculating unit 156d is the same as that of the air volume calculating unit 56d of the first embodiment described above.
  • the operation control unit 157 adjusts the amount of air passing through the evaporator 24 based on the information on the opening set value and the information on the rotation frequency set value calculated by the set value calculation processing unit 56. That is, when the evaporation temperature Te decreases to the freezing threshold T, the operation control unit 157 is configured so that the rotation frequency of the blower 31 becomes the rotation frequency setting value and the opening degree of the air volume adjustment damper 32 becomes the opening setting value. The rotational frequency of the blower 31 and the opening degree of the air volume adjustment damper 32 are adjusted. In the second embodiment, the air volume corresponds to the rotational frequency of the blower 31 and the opening degree of the air volume adjusting damper 32.
  • one of the opening setting value and the rotation frequency setting value calculated by the air volume calculation unit 156d may be the same as the value at the time of determination by the freezing determination unit 55. That is, the operation control unit 157 performs at least one of the process of increasing the rotation frequency of the blower 31 and the process of increasing the opening degree of the air volume adjustment damper 32 when the evaporation temperature Te decreases to the freezing threshold T. As a result, the amount of air passing through the evaporator 24 is increased.
  • Other configurations of the operation control unit 157 are the same as those of the operation control unit 57 of the first embodiment described above.
  • the operation of the air conditioner 110 is the same as the operation of the air conditioner 10 described based on FIG.
  • the air conditioner 110 can adjust both the rotation frequency of the blower 31 and the opening degree of the air volume adjustment damper 32 in steps S103 and S104 by adjusting data in the set value table. That is, according to the air conditioner 110, the anti-freezing control for adjusting any one of the rotational frequency of the blower 31 and the opening degree of the air volume adjustment damper 32, and the rotational frequency of the blower 31 and the opening degree of the air volume adjustment damper 32 are provided. It is possible to combine anti-freezing control that adjusts both of the above.
  • the air conditioner 110 increases the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, the capacity of the compressor 21 or the evaporator Since it is not necessary to reduce the refrigerant inflow to 24, freezing of the evaporator 24 can be suppressed without reducing the capacity of the air conditioner 110.
  • the air conditioner 110 can adjust the rotation frequency of the blower 31 and the opening degree of the air volume adjustment damper 32. For this reason, according to the air conditioner 110, the opening degree of the air volume adjusting damper 32 is narrowed in advance by a predetermined amount, and when the evaporating temperature Te is first lowered to the freezing threshold T, the opening degree of the air volume adjusting damper 32 is increased.
  • the freezing prevention control of increasing the rotation frequency of the blower 31 when the evaporation temperature Te is lowered to the freezing threshold T next time is increased.
  • the air conditioner 110 when the evaporation temperature Te falls to the freezing threshold T, the rotational frequency of the blower 31 or the opening degree of the air volume adjustment damper 32 is adjusted, or the rotational frequency of the blower 31 and the air volume adjustment damper are adjusted. Both of the opening degrees of 32 can be adjusted. That is, according to the air conditioner 110, the opening degree adjustment of the air volume adjustment damper 32 and the adjustment of the rotation frequency of the blower 31 can be combined, so that more flexible freezing prevention control can be realized.
  • control device 150 performs at least one of a process of lowering the rotational frequency of the blower 31 and a process of reducing the opening of the air volume adjustment damper 32 when a state where there is no possibility of freezing continues for a certain time or longer. You may make it perform. About another effect, it is the same as that of the air conditioner 10 of Embodiment 1.
  • FIG. 1 A process of lowering the rotational frequency of the blower 31 and a process of reducing the opening of the air volume adjustment damper 32 when a state where there is no possibility of freezing continues for a certain time or longer. You may make it perform. About another effect, it is the same as that of the air conditioner 10 of Embodiment 1.
  • the fan motor 31a capable of controlling the rotation speed is exemplified, but the present invention is not limited to this.
  • the air conditioner 110 may have a fan motor that rotates at a constant speed instead of the fan motor 31a, and may be configured to adjust the air volume passing through the evaporator 24 only by the air volume adjusting damper 32. .
  • FIG. 8 is a schematic view illustrating the configuration of an air conditioner according to Embodiment 3 of the present invention.
  • FIG. 9 is a block diagram illustrating a functional configuration of a control device included in the air conditioner of FIG.
  • the structural member equivalent to Embodiment 1 and 2 mentioned above description is abbreviate
  • the air conditioner 210 includes a control device 250 that controls the operation of the refrigerant circuit 10A and the air volume adjustment unit 30.
  • the control device 250 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, a set value calculation processing unit 256, and an operation control unit 257. And an air volume determination unit 258.
  • a rotation frequency setting value as an air volume setting value and an operation frequency setting value indicating the operation frequency of the compressor 21 are stored.
  • the rotational frequency set value and the operating frequency set value are set in advance for preventing the evaporator 24 from freezing.
  • a setting value table a rotation setting value table in which the device capability Qe and the rotation frequency setting value are associated, and a device capability Qe and the operation frequency setting value are associated.
  • An operation set value table is stored.
  • an operation frequency setting value is associated with each range of the capability Qe of the device.
  • the operation set value table is configured such that the operation frequency set value decreases as the device capability Qe decreases.
  • the air volume determination unit 258 compares the current air volume with the maximum air volume value Afm, which is the maximum air volume that can be blown by the blower 31, and determines whether or not the current air volume has reached the maximum air volume value Afm. It is.
  • the set value calculation processing unit 256 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, an air volume calculation unit 56d, and an operating frequency calculation unit 256e.
  • the air volume determination unit 258 determines that the current air volume is less than the maximum air volume value Afm
  • the set value calculation processing unit 256 rotates the capacity Qe of the device calculated by the capacity calculation unit 56c.
  • the rotational frequency set value is calculated in light of the set value table.
  • the air volume calculation unit 56d has a function of outputting information on the calculated rotation frequency setting value to the operation control unit 257.
  • the set value calculation processing unit 256 sets the capability Qe of the device calculated by the operation frequency calculation unit 256e in the capability calculation unit 56c.
  • the operating frequency set value is calculated in light of the value table. That is, the operating frequency calculation unit 256e determines that the evaporation temperature Te is equal to or lower than the freezing threshold T in the freezing determination unit 55, and the air volume blown to the evaporator 24 by the blower 31 reaches the maximum airflow value Afm. In this case, the operation frequency set value is calculated.
  • the operation frequency calculation unit 256e has a function of outputting information on the calculated operation frequency set value to the operation control unit 257.
  • the operation control unit 257 has a function of adjusting the operation frequency of the compressor 21 based on the operation frequency set value calculated by the operation frequency calculation unit 256e.
  • the operation control unit 257 performs compression when the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T and the air volume blown to the evaporator 24 by the blower 31 has reached the maximum airflow value Afm. The operating frequency of the machine 21 is lowered.
  • Other configurations of the operation control unit 257 are the same as those of the operation control unit 57 of the first embodiment described above.
  • FIG. 10 is an explanatory diagram illustrating the relationship between the evaporation temperature, the air volume, and the operating frequency of the compressor in the air conditioner of FIG.
  • the air conditioner 210 can increase the amount of air passing through the evaporator 24 in the air amount adjustment range R when the evaporation temperature Te decreases to the freezing threshold T.
  • the air conditioner 210 operates the compressor 21 for the first time when the evaporation temperature Te decreases to the freezing threshold T when the air volume blown to the evaporator 24 by the blower 31 reaches the maximum air volume value Afm. Reduce the frequency. Therefore, according to the air conditioner 210, freezing of the evaporator 24 can be suppressed by suppressing a decrease in capacity as much as possible.
  • FIG. 11 is a flowchart showing an operation example during the cooling operation of the air conditioner 110 of FIG. With reference to FIG. 11, the freezing suppression control by the air conditioner 210 of this Embodiment 3 is demonstrated. The same steps as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted.
  • the air conditioner 210 performs the processing of steps S101 to S102 as in the case of FIG.
  • the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T (Yes in step S102)
  • the air volume determination unit 258 determines whether or not the current air volume has reached the maximum air volume value Afm. Determination is made (step S201).
  • the set value calculation processing unit 256 calculates the air volume setting value and calculates the calculated air volume setting value. The information is output to the operation control unit 257 (step S103), and the process proceeds to step S104.
  • the set value calculation processing unit 256 calculates and calculates the operating frequency set value. Information on the operating frequency set value is output to the operation control unit 257 (step S202).
  • the operation control unit 257 adjusts the operation frequency of the compressor 21 so that the operation frequency of the compressor 21 becomes the operation frequency setting value according to the information of the operation frequency setting value output from the set value calculation processing unit 56 (Ste S203). Next, the process proceeds to step S105, and when the set time has elapsed (step S105 / Yes), the process returns to step S101.
  • the air conditioner 210 preferentially performs the process of increasing the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, since the capacity
  • the air conditioner 210 increases the rotational frequency of the blower 31 and, in the case where there is still a possibility of freezing, reduces the operating frequency of the compressor 21, thereby minimizing the decrease in capacity, Freezing of the evaporator 24 can be prevented with high accuracy.
  • FIG. 12 is an explanatory diagram illustrating another relationship among the evaporation temperature, the air volume, and the operating frequency of the compressor in the air conditioner of FIG.
  • the difference between the current air volume and the maximum air volume value Afm is small as at time M shown in FIG. 12, it is possible to sufficiently prevent freezing even if the rotational frequency of the blower 31 is increased to the maximum air volume value Afm. There is no possibility. Therefore, assuming such a case, when the evaporation temperature Te decreases to the freezing threshold T, the set value calculation processing unit 256 increases the rotational frequency of the blower 31 and decreases the operating frequency of the compressor 21. May be.
  • one setting value table in which the capability Qe of the device, the rotation frequency setting value, and the operation frequency setting value are associated is stored in the storage unit 51, and the control device 250 performs the function of the air volume calculation unit 56 d. It is preferable to have a calculation unit that combines the functions of the operation frequency calculation unit 256e.
  • the set value calculation processing unit 256 calculates both the rotation frequency set value and the operation frequency set value regardless of the determination result by the air volume determination unit 258, and outputs the calculation result to the operation control unit 257. May be.
  • the air conditioner 210 may include an air volume adjustment unit 130 instead of the air volume adjustment unit 30, and may include an air volume calculation unit 156d instead of the air volume calculation unit 56d.
  • the operation control part 257 may have the function to adjust the opening degree of the air volume adjustment damper 32 similarly to the operation control part 157. That is, the air conditioner 210 performs anti-freezing control of the evaporator 24 by combining the adjustment of the rotation frequency of the blower 31, the adjustment of the opening degree of the air volume adjustment damper 32, and the adjustment of the operation frequency of the compressor 21. You may do it. According to the air conditioner 210 adopting such a configuration, finer and more flexible freezing prevention control can be performed, so that the freezing of the evaporator 24 can be prevented with higher accuracy.
  • the air conditioner 210 performs an increase process or a decrease process of the rotational frequency of the blower 31 and an increase process or a decrease process of the operating frequency of the compressor 21 in accordance with a change in the outside air temperature, that is, a change in the capacity Qe of the device. May be performed in combination.
  • FIG. 13 is a schematic view illustrating the configuration of an air conditioner according to Embodiment 4 of the present invention.
  • FIG. 14 is a block diagram illustrating a functional configuration of a control device included in the air conditioner of FIG. Based on FIG. 13 and FIG. 14, the structure and operation
  • Constituent members equivalent to those in the first to third embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the air conditioner 310 includes a refrigerant circuit 310 ⁇ / b> A including a bypass circuit 320 that bypasses the refrigerant flowing into the evaporator 24.
  • Other configurations of the refrigerant circuit 310A are the same as those of the refrigerant circuit 10A.
  • the bypass circuit 320 includes a bypass pipe 320a that connects the inlet side and the outlet side of the evaporator 24, and a flow rate adjustment valve 320b that is provided in the bypass pipe 320a and adjusts the flow rate of the refrigerant flowing into the bypass pipe 320a. is doing.
  • the flow rate adjustment valve 320b is composed of, for example, an electronic expansion valve, and the opening degree can be adjusted.
  • the air conditioner 310 has the control apparatus 350 which controls operation
  • the control device 350 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, a set value calculation processing unit 356, and an operation control unit 357. And an air volume determination unit 258.
  • the storage unit 51 in the fourth embodiment stores a rotation frequency setting value as an air flow setting value and a valve opening setting value indicating the opening of the flow rate adjustment valve 320b.
  • the rotational frequency set value and the valve opening set value are set in advance for preventing the evaporator 24 from freezing. More specifically, in the storage unit 51, as a setting value table, a rotation setting value table in which the device capability Qe and the rotation frequency setting value are associated, and a device capability Qe and the valve opening setting value are associated.
  • a valve opening setting value table is stored. In the valve opening setting value table, the valve opening setting value is associated with each range of the capability Qe of the device.
  • the valve opening setting value table is configured such that the valve opening setting value increases when the capability Qe of the device decreases.
  • the set value calculation processing unit 356 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, an air volume calculation unit 56d, and a valve opening calculation unit 356f.
  • the air volume calculation unit 56d calculates the rotation frequency setting value.
  • the set value calculation processing unit 356 controls the device performance Qe calculated by the capacity calculation unit 56c.
  • the valve opening setting value is calculated in light of the opening setting value table. That is, the valve opening calculation unit 356f determines that the evaporation temperature Te is equal to or lower than the freezing threshold T in the freezing determination unit 55, and the air volume blown to the evaporator 24 by the blower 31 reaches the maximum airflow value Afm. In this case, the valve opening setting value is calculated.
  • the valve opening calculation unit 356f has a function of outputting information of the calculated valve opening setting value to the operation control unit 357.
  • the operation control unit 357 has a function of adjusting the opening of the flow rate adjustment valve 320b based on the valve opening setting value calculated by the valve opening calculating unit 356f. That is, the operation control unit 357 has a function of bypassing a part of the refrigerant flowing into the evaporator 24 to the bypass circuit 320.
  • the operation control unit 357 determines the flow rate when the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T and the amount of air blown to the evaporator 24 by the blower 31 has reached the maximum airflow value Afm.
  • the opening degree of the adjustment valve 320b is increased.
  • Other configurations of the operation control unit 357 are the same as those of the operation control unit 57 of the first embodiment described above.
  • the operation of the air conditioner 310 is the same as the operation of the air conditioner 210 described with reference to FIG. That is, when the air volume determination unit 258 determines that the current air volume has reached the maximum air volume value Afm (step S201 / Yes), the set value calculation processing unit 356 calculates the valve opening set value, Information on the calculated valve opening setting value is output to the operation control unit 357 (corresponding to step S202). The operation control unit 357 opens the opening of the flow rate adjustment valve 320b according to the information on the valve opening setting value output from the set value calculation processing unit 56 so that the opening of the flow rate adjustment valve 320b becomes the valve opening setting value. (Corresponding to step S203).
  • the flow rate adjustment valve 320b may be an electromagnetic valve or the like that can only be opened and closed.
  • the air conditioner 310 may keep the flow rate adjustment valve 320b closed in a state where the evaporator 24 is not likely to freeze.
  • the air conditioner 310 opens the flow rate adjustment valve 320b when there is a possibility that the evaporator 24 may freeze and the rotation frequency of the blower 31 reaches the maximum airflow value Afm. You may make it do.
  • the air conditioner 310 preferentially performs the process of increasing the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, according to the air conditioner 310, since the reduction
  • the set value calculation processing unit 256 calculates only the rotation frequency set value when it is determined that the current air volume is less than the maximum air volume value Afm is illustrated, but the present invention is not limited thereto. It is not something.
  • the set value calculation processing unit 356 may increase the rotational frequency of the blower 31 and increase the opening of the flow rate adjustment valve 320b when the evaporation temperature Te decreases to the freezing threshold T.
  • the storage unit 51 stores one set value table in which the capability Qe of the device, the rotation frequency set value, and the valve opening set value are associated, and the control device 350 stores the air volume calculation unit 56d.
  • the set value calculation processing unit 356 calculates both the rotation frequency set value and the valve opening set value regardless of the determination result by the air volume determination unit 258, and outputs the calculation result to the operation control unit 357. It may be. In this way, the difference between the rotational frequency of the blower 31 and the maximum airflow value Afm at the time of determination by the air volume determination unit 258 is small, and even when the increase amount of the rotational frequency of the blower 31 is not sufficient, the flow rate adjustment valve 320b By increasing the opening, freezing of the evaporator 24 can be accurately prevented.
  • the air conditioner 310 may include an air volume adjusting unit 130 instead of the air volume adjusting unit 30, and may include an air volume calculating unit 156d instead of the air volume calculating unit 56d.
  • the operation control part 357 may have the function to adjust the opening degree of the air volume adjustment damper 32 similarly to the operation control part 157. That is, the air conditioner 310 performs antifreezing control of the evaporator 24 by combining the adjustment of the rotation frequency of the blower 31, the adjustment of the opening of the air volume adjustment damper 32, and the adjustment of the opening of the flow rate adjustment valve 320b. You may make it perform.
  • the air conditioner 310 further includes an operation frequency calculation unit 256e, which combines the adjustment of the rotation frequency of the blower 31, the adjustment of the operation frequency of the compressor 21, and the adjustment of the opening degree of the flow rate adjustment valve 320b.
  • the air conditioner 310 may include the operation frequency calculation unit 256e and may include the air volume adjustment unit 130 and the air volume calculation unit 156d instead of the air volume adjustment unit 30 and the air volume calculation unit 56d.
  • the air conditioner 310 combines the adjustment of the rotational frequency of the blower 31, the adjustment of the opening of the air volume adjustment damper 32, the adjustment of the operating frequency of the compressor 21, and the adjustment of the opening of the flow rate adjustment valve 320b.
  • the freeze prevention control of the evaporator 24 may be performed. According to the air conditioner 310 adopting each configuration as described above, since the freeze prevention control can be performed more finely and flexibly, the freezing of the evaporator 24 can be prevented with higher accuracy.
  • FIG. 15 is an explanatory diagram showing the relationship among the evaporation temperature, the air volume, and the operating frequency of the compressor in a conventional air conditioner.
  • the freezing threshold T, the frequency lower limit value L, and the airflow initial value Afi are set in order to compare with the air conditioner in each of the above embodiments.
  • the operating frequency of the compressor is lowered, so that the capacity of the air conditioner is lowered and required for cooling operation.
  • the air conditioner in each of the above embodiments increases the amount of air passing through the evaporator 24 when the evaporation temperature Te is lowered to the freezing threshold T, so that the evaporator 24 can be prevented from freezing.
  • the air conditioner in the third and fourth embodiments has a function of adjusting at least one of the operating frequency of the compressor 21 and the opening degree of the flow rate adjusting valve 320b as well as the adjustment of the amount of air passing through the evaporator 24.
  • the evaporator 24 is frozen by adjusting the air volume by at least one of adjusting the operating frequency of the compressor 21 and adjusting the opening of the flow rate adjusting valve 320b. Since the prevention process can be compensated, the accuracy of the freeze prevention can be improved.
  • the above embodiments are preferred specific examples of the air conditioner, and the technical scope of the present invention is not limited to these embodiments.
  • an air conditioner that performs a cooling operation is illustrated, but the present invention is not limited to this.
  • the air conditioner in each embodiment may be configured such that a four-way valve for switching the refrigerant flow path is provided in the refrigerant circuit so that switching between the cooling operation and the heating operation is possible.
  • the condenser 22 functions as an evaporator
  • the evaporator 24 functions as a condenser.
  • the air conditioner in each of the above embodiments is not limited to the configuration using the above-described components. That is, the air conditioner in each embodiment may include an accumulator that separates the liquid refrigerant in order to protect the compressor 21, or an oil separator to recover the refrigeration oil. Also good.
  • the refrigerant used in the air conditioner in each of the above embodiments may be any refrigerant that can use the refrigeration cycle. For example, a single refrigerant such as R22 or a mixed refrigerant such as R410A may be used. Natural refrigerants such as CO2 may also be used.

Abstract

This air conditioner has: a refrigerant circuit formed by connecting a compressor, a condenser, a decompression device, and an evaporator with refrigerant piping; an air volume adjustment unit that has a blower for blowing air into the evaporator and that adjusts the air volume passing through the evaporator; and a control device for controlling the actions of the refrigerant circuit and the air volume adjustment unit. When the evaporation temperature falls below a freezing threshold, the control device computes, on the basis of the operation frequency of the compressor, an air volume setting value which indicates the air volume to be blown to the evaporator by the air volume adjustment unit, and increases the air volume that passes through the evaporator on the basis of the computed air volume setting value.

Description

空気調和機Air conditioner
 本発明は、蒸発器を備えた空気調和機に係り、特に冷房運転時における蒸発器の凍結防止処理に関する。 The present invention relates to an air conditioner equipped with an evaporator, and more particularly, to an antifreezing process for the evaporator during cooling operation.
 空気調和機は、例えば、室外温度が低い環境下で冷房運転を行う場合、低温の外気で冷却された冷媒が蒸発器に流入し、蒸発温度が低下するため、蒸発器に付着した水分が凍結することがある。こうした蒸発器の凍結は、運転能力の低下に繋がるため、従来から、蒸発器の凍結を抑制するための技術が提案されている(例えば、特許文献1及び2参照)。 For example, when an air conditioner performs cooling operation in an environment where the outdoor temperature is low, the refrigerant cooled by the low-temperature outside air flows into the evaporator, and the evaporation temperature is lowered, so that the water adhering to the evaporator is frozen. There are things to do. Since such freezing of the evaporator leads to a decrease in operating capability, techniques for suppressing the freezing of the evaporator have been conventionally proposed (see, for example, Patent Documents 1 and 2).
 特許文献1の空気調和機は、容量可変の圧縮機と蒸発器とを備え、蒸発器の近傍に取り付けられた圧力センサの検出値から蒸発温度を演算するようになっている。そして、特許文献1の空気調和機は、演算した蒸発温度の値が所定値を下回ると、圧縮機の容量を低減させるように構成されている。特許文献2の空気調和機は、容量可変の圧縮機と、温度センサが取り付けられた蒸発器とを備え、温度センサによって蒸発温度をモニタするようになっている。そして、特許文献2の空気調和機は、温度センサによる検出値が所定値を下回ると、圧縮機の容量を低減させるように構成されている。また、空気調和機には、蒸発器へ流入する冷媒を別回路へバイパスさせ、冷媒流量を調整することにより、蒸発器の凍結を抑制しているものもある。 The air conditioner disclosed in Patent Document 1 includes a variable capacity compressor and an evaporator, and calculates an evaporation temperature from a detection value of a pressure sensor attached in the vicinity of the evaporator. And the air conditioner of patent document 1 is comprised so that the capacity | capacitance of a compressor may be reduced, if the value of the calculated evaporation temperature is less than a predetermined value. The air conditioner of Patent Document 2 includes a variable capacity compressor and an evaporator to which a temperature sensor is attached, and the evaporation temperature is monitored by the temperature sensor. And the air conditioner of patent document 2 is comprised so that the capacity | capacitance of a compressor may be reduced, if the detected value by a temperature sensor falls below a predetermined value. In some air conditioners, the refrigerant flowing into the evaporator is bypassed to another circuit, and the refrigerant flow rate is adjusted to prevent the evaporator from freezing.
特許第2541172号公報Japanese Patent No. 2541172 特開平7-103596号公報Japanese Patent Laid-Open No. 7-103596
 しかしながら、特許文献1及び2の空気調和機は、蒸発温度が所定値を下回ったとき、圧縮機の容量を低減させるため、空気調和機の能力が低下し、要求される能力を維持できなくなるという課題がある。また、蒸発器へ流入する冷媒をバイパスさせる手法を採った空気調和機でも、蒸発器へ流入する冷媒量が減少するため、空気調和機の能力が低下する。 However, in the air conditioners of Patent Documents 1 and 2, when the evaporation temperature falls below a predetermined value, the capacity of the compressor is reduced, so that the capacity of the air conditioner decreases and the required capacity cannot be maintained. There are challenges. Further, even in an air conditioner that employs a method of bypassing the refrigerant flowing into the evaporator, the amount of refrigerant flowing into the evaporator is reduced, so that the capacity of the air conditioner is reduced.
 本発明は、上記のような課題を解決するためになされたものであり、能力を低下させることなく蒸発器の凍結を抑制する空気調和機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that suppresses freezing of an evaporator without reducing its capacity.
 本発明に係る空気調和機は、冷媒を圧縮する圧縮機、冷媒を凝縮させる凝縮器、冷媒を減圧する減圧装置、および冷媒を蒸発させる蒸発器が冷媒配管により接続されて形成された冷媒回路と、蒸発器に空気を送風する送風機を有し、蒸発器を通過する風量を調整する風量調整ユニットと、冷媒回路および風量調整ユニットの動作を制御する制御装置と、を備え、制御装置は、蒸発温度が凍結閾値以下であるか否かを判定する凍結判定部と、凍結判定部において蒸発温度が凍結閾値以下であると判定された場合、圧縮機の運転周波数をもとに、風量調整ユニットによって蒸発器に送風される風量を示す風量設定値を演算する設定値演算処理部と、設定値演算処理部において演算された風量設定値をもとに、蒸発器を通過する風量を増加させる動作制御部と、を有している。 An air conditioner according to the present invention includes a refrigerant circuit formed by connecting a compressor that compresses a refrigerant, a condenser that condenses the refrigerant, a decompression device that decompresses the refrigerant, and an evaporator that evaporates the refrigerant through a refrigerant pipe. The evaporator has an air blower that blows air, and includes an air volume adjustment unit that adjusts the air volume that passes through the evaporator, and a control device that controls the operation of the refrigerant circuit and the air volume adjustment unit. The freezing determination unit that determines whether or not the temperature is equal to or lower than the freezing threshold, and if the evaporation temperature is determined to be lower than or equal to the freezing threshold in the freezing determination unit, based on the operating frequency of the compressor, Based on the setting value calculation processing unit that calculates the air volume setting value indicating the amount of air blown to the evaporator and the air volume setting value calculated by the setting value calculation processing unit, the air volume that passes through the evaporator is increased. It has a work control unit.
 本発明によれば、蒸発温度が凍結閾値以下である場合に、蒸発器を通過する風量を上昇させることから、圧縮機の容量および蒸発器への冷媒流入量を減らす必要がないため、空気調和機の能力を低下させることなく、蒸発器の凍結を抑制することができる。 According to the present invention, when the evaporation temperature is equal to or lower than the freezing threshold, the amount of air passing through the evaporator is increased, so there is no need to reduce the capacity of the compressor and the amount of refrigerant flowing into the evaporator. Freezing of the evaporator can be suppressed without reducing the capacity of the machine.
本発明の実施の形態1に係る空気調和機の構成を例示する概略図である。It is the schematic which illustrates the structure of the air conditioner which concerns on Embodiment 1 of this invention. 図1の空気調和機における冷凍サイクルの動作状態を示すP-h線図である。FIG. 2 is a Ph diagram illustrating an operating state of a refrigeration cycle in the air conditioner of FIG. 1. 図1の空気調和機が有する制御装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control apparatus which the air conditioner of FIG. 1 has. 図1の空気調和機における蒸発温度と風量と圧縮機の運転周波数との関係を例示する説明図である。It is explanatory drawing which illustrates the relationship between the evaporation temperature in the air conditioner of FIG. 1, air volume, and the operating frequency of a compressor. 図1の空気調和機の冷房運転時の動作例を示すフローチャートである。It is a flowchart which shows the operation example at the time of the cooling operation of the air conditioner of FIG. 本発明の実施の形態2に係る空気調和機の構成を例示する概略図である。It is the schematic which illustrates the structure of the air conditioner which concerns on Embodiment 2 of this invention. 図6の空気調和機が有する制御装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control apparatus which the air conditioner of FIG. 6 has. 本発明の実施の形態3に係る空気調和機の構成を例示する概略図である。It is the schematic which illustrates the structure of the air conditioner which concerns on Embodiment 3 of this invention. 図8の空気調和機が有する制御装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control apparatus which the air conditioner of FIG. 8 has. 図8の空気調和機における蒸発温度と風量と圧縮機の運転周波数との関係を例示する説明図である。It is explanatory drawing which illustrates the relationship between the evaporating temperature in the air conditioner of FIG. 8, air volume, and the operating frequency of a compressor. 図8の空気調和機の冷房運転時の動作例を示すフローチャートである。It is a flowchart which shows the operation example at the time of the cooling operation of the air conditioner of FIG. 図8の空気調和機における蒸発温度と風量と圧縮機の運転周波数との他の関係を例示する説明図である。It is explanatory drawing which illustrates the other relationship of the evaporating temperature in the air conditioner of FIG. 8, an air volume, and the operating frequency of a compressor. 本発明の実施の形態4に係る空気調和機の構成を例示する概略図である。It is the schematic which illustrates the structure of the air conditioner which concerns on Embodiment 4 of this invention. 図13の空気調和機が有する制御装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control apparatus which the air conditioner of FIG. 13 has. 従来の空気調和機における蒸発温度と風量と圧縮機の運転周波数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the evaporating temperature in the conventional air conditioner, the air volume, and the operating frequency of a compressor.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機の構成を例示する概略図である。図2は、図1の空気調和機における冷凍サイクルの動作状態を示すP-h線図である。図1に示すように、空気調和機10は、圧縮機21と、凝縮器22と、減圧装置23と、蒸発器24と、風量調整ユニット30と、を有している。空気調和機10では、圧縮機21、凝縮器22、減圧装置23、および蒸発器24が冷媒配管20により接続され、冷媒回路10Aが形成されている。冷媒回路10Aには冷媒が充填されている。
Embodiment 1 FIG.
FIG. 1 is a schematic view illustrating the configuration of an air conditioner according to Embodiment 1 of the present invention. FIG. 2 is a Ph diagram showing the operating state of the refrigeration cycle in the air conditioner of FIG. As shown in FIG. 1, the air conditioner 10 includes a compressor 21, a condenser 22, a decompression device 23, an evaporator 24, and an air volume adjustment unit 30. In the air conditioner 10, the compressor 21, the condenser 22, the decompression device 23, and the evaporator 24 are connected by the refrigerant pipe 20, and the refrigerant circuit 10A is formed. The refrigerant circuit 10A is filled with a refrigerant.
 圧縮機21は、低圧のガス状態の冷媒を吸入し、高圧のガス状態の冷媒へと圧縮するものであり、室外に設置される室外機(図示せず)に設けられている。圧縮機21は、インバータ制御により運転周波数を任意に変化させることができるものであってよい。また、圧縮機21は、運転周波数を変化させる機能をもたず、かつ、容量をバイパス弁などで調整することができる一定速のものであってもよい。 The compressor 21 sucks low-pressure gas refrigerant and compresses it into a high-pressure gas refrigerant, and is provided in an outdoor unit (not shown) installed outdoors. The compressor 21 may be capable of arbitrarily changing the operating frequency by inverter control. The compressor 21 may not have a function of changing the operating frequency, and may be a constant speed whose capacity can be adjusted by a bypass valve or the like.
 凝縮器22は、例えばフィンアンドチューブ型熱交換器からなり、室外機に設けられている。凝縮器22は、圧縮機21から送り込まれる高圧のガス状態の冷媒を、外部流体との間で熱交換させることにより、高圧の液状態の冷媒へと凝縮させるものである。熱交換に用いられる外部流体は、空気などの気体でもよいし、水などの液体でもよい。 The condenser 22 is composed of, for example, a fin-and-tube heat exchanger, and is provided in the outdoor unit. The condenser 22 condenses the high-pressure gaseous refrigerant sent from the compressor 21 into a high-pressure liquid refrigerant by exchanging heat with the external fluid. The external fluid used for heat exchange may be a gas such as air or a liquid such as water.
 減圧装置23は、例えば電子膨張弁からなり、高圧の液状態の冷媒を、低圧の気液二相状態の冷媒へと膨張させ減圧させるものである。もっとも、減圧装置23は、電子膨張弁に限らず、例えばキャピラリーチューブなどのように、冷媒を減圧させる機能をもつものであればよい。減圧装置23は、室外機に設けられていてもよく、室内に設置される室内機(図示せず)に設けられていてもよい。 The decompression device 23 is composed of, for example, an electronic expansion valve, and expands and decompresses a high-pressure liquid refrigerant into a low-pressure gas-liquid two-phase refrigerant. However, the decompression device 23 is not limited to the electronic expansion valve, and may be any device having a function of decompressing the refrigerant, such as a capillary tube. The decompression device 23 may be provided in an outdoor unit, or may be provided in an indoor unit (not shown) installed indoors.
 蒸発器24は、例えばフィンアンドチューブ型熱交換器からなり、室内機に設けられている。蒸発器24は、減圧装置23から流入する低圧の気液二相状態の冷媒を、空気との間で熱交換させることにより、低圧のガス状態の冷媒へと蒸発させ、圧縮機21に返すものである。 The evaporator 24 is composed of a fin-and-tube heat exchanger, for example, and is provided in the indoor unit. The evaporator 24 evaporates the low-pressure gas-liquid two-phase refrigerant flowing in from the decompression device 23 into the low-pressure gas refrigerant by exchanging heat with the air, and returns the refrigerant to the compressor 21. It is.
 すなわち、冷媒回路10Aは、圧縮機21により、冷媒を圧縮して高圧のガス状態とし、凝縮器22へ送る。また、冷媒回路10Aは、凝縮器22により、冷媒を凝縮して高圧の液状態とし、減圧装置23へ送る。さらに、冷媒回路10Aは、減圧装置23により、冷媒を膨張させて低圧の気液二相状態にし、蒸発器24へ送る。そして、冷媒回路10Aは、蒸発器24により、冷媒を蒸発して低圧のガス状態とし、低圧のガス状態となった冷媒を再び圧縮機21へ送る。空気調和機10は、上記のような冷凍サイクルを利用して、室内の温度を調整する。本実施の形態1の空気調和機10は、冷房運転を行うように構成されているため、室内の空気は、蒸発器24によって冷却される。 That is, the refrigerant circuit 10A compresses the refrigerant into a high-pressure gas state by the compressor 21 and sends it to the condenser 22. In addition, the refrigerant circuit 10 </ b> A condenses the refrigerant into a high-pressure liquid state by the condenser 22 and sends it to the decompression device 23. Further, the refrigerant circuit 10 </ b> A expands the refrigerant by the decompression device 23 to form a low-pressure gas-liquid two-phase state, and sends it to the evaporator 24. Then, the refrigerant circuit 10A evaporates the refrigerant by the evaporator 24 to obtain a low-pressure gas state, and sends the refrigerant in the low-pressure gas state to the compressor 21 again. The air conditioner 10 adjusts the indoor temperature using the refrigeration cycle as described above. Since the air conditioner 10 of the first embodiment is configured to perform the cooling operation, the indoor air is cooled by the evaporator 24.
 風量調整ユニット30は、蒸発器24に付設され、蒸発器24を通過する風量を調整するものである。風量調整ユニット30は、蒸発器24に空気を送風する送風機31を有している。送風機31は、インバータによって駆動されるファンモータ31aと、ファンモータ31aを動力源として回転し、蒸発器24に空気を送風するファン31bと、を有している。つまり、ファンモータ31aは、ファン31bを駆動させるためのものである。 The air volume adjusting unit 30 is attached to the evaporator 24 and adjusts the air volume passing through the evaporator 24. The air volume adjustment unit 30 has a blower 31 that blows air to the evaporator 24. The blower 31 includes a fan motor 31 a driven by an inverter, and a fan 31 b that rotates using the fan motor 31 a as a power source and blows air to the evaporator 24. That is, the fan motor 31a is for driving the fan 31b.
 送風機31は、空気と蒸発器24の低圧の気液二相状態の冷媒とを熱交換させるために、空気を蒸発器24に送風するものである。すなわち、空気調和機10では、送風機31によって送風された空気が蒸発器24を通過し、蒸発器24に流れる冷媒と室内の空気との熱交換が促進される。送風機31の種類は特に限定されるものではなく、送風機31としては、シロッコファン又はプラグファンなどを採用することができる。また、送風機31は、押し込み方式のものでもよいし、引っぱり方式のものでもよい。 The blower 31 blows air to the evaporator 24 in order to exchange heat between the air and the low-pressure gas-liquid two-phase refrigerant of the evaporator 24. That is, in the air conditioner 10, the air blown by the blower 31 passes through the evaporator 24, and heat exchange between the refrigerant flowing in the evaporator 24 and the indoor air is promoted. The type of the blower 31 is not particularly limited, and a sirocco fan or a plug fan can be adopted as the blower 31. The blower 31 may be a push-in type or a pull-type type.
 空気調和機10は、凝縮器圧力センサ41と、凝縮器出口温度センサ42と、蒸発器入口温度センサ43と、蒸発器出口温度センサ44と、制御装置50と、を有している。凝縮器圧力センサ41は、凝縮器22の圧力である凝縮圧力Pcmを測定するものである。図2の例では、点b-点c間における冷媒の圧力が凝縮圧力に相当する。凝縮器出口温度センサ42は、凝縮器22の出口の温度である凝縮器出口温度を測定するものである。図2の例では、点cにおける冷媒の温度が凝縮器出口温度に相当する。 The air conditioner 10 includes a condenser pressure sensor 41, a condenser outlet temperature sensor 42, an evaporator inlet temperature sensor 43, an evaporator outlet temperature sensor 44, and a control device 50. The condenser pressure sensor 41 measures the condensation pressure Pcm that is the pressure of the condenser 22. In the example of FIG. 2, the refrigerant pressure between point b and point c corresponds to the condensation pressure. The condenser outlet temperature sensor 42 measures the condenser outlet temperature, which is the outlet temperature of the condenser 22. In the example of FIG. 2, the temperature of the refrigerant at the point c corresponds to the condenser outlet temperature.
 蒸発器入口温度センサ43は、蒸発器24の減圧装置23側の温度である蒸発温度Teを測定するものである。図2の例では、点d-点z間における冷媒の温度が蒸発温度Teに相当する。蒸発器出口温度センサ44は、蒸発器24の出口の温度である蒸発器出口温度を測定するものである。図2の例では、点aにおける冷媒の温度が蒸発器出口温度に相当する。 The evaporator inlet temperature sensor 43 measures the evaporation temperature Te which is the temperature on the decompressor 23 side of the evaporator 24. In the example of FIG. 2, the temperature of the refrigerant between the points d and z corresponds to the evaporation temperature Te. The evaporator outlet temperature sensor 44 measures the evaporator outlet temperature, which is the temperature of the outlet of the evaporator 24. In the example of FIG. 2, the temperature of the refrigerant at point a corresponds to the evaporator outlet temperature.
 制御装置50は、冷媒回路10Aおよび風量調整ユニット30の動作を制御するものである。制御装置50は、図2に示すような所定の冷凍サイクルに基づく蒸発器入口エンタルピhriおよび蒸発器出口エンタルピhro、凝縮器圧力センサ41から得られた圧力データ、凝縮器出口温度センサ42、蒸発器入口温度センサ43、および蒸発器出口温度センサ44から得られた各温度データをもとに、空調制御を実行する。すなわち、制御装置50は、空気調和機10における冷凍サイクルの動作状態をもとに、圧縮機21および減圧装置23を制御したり、冷媒流量を演算したり、風量を演算したり、ファンモータ31aを制御してファン31bを駆動させたりするものである。 The control device 50 controls the operation of the refrigerant circuit 10A and the air volume adjustment unit 30. The control device 50 includes an evaporator inlet enthalpy hri and an evaporator outlet enthalpy hro based on a predetermined refrigeration cycle as shown in FIG. 2, pressure data obtained from the condenser pressure sensor 41, a condenser outlet temperature sensor 42, an evaporator. Air conditioning control is executed based on the temperature data obtained from the inlet temperature sensor 43 and the evaporator outlet temperature sensor 44. That is, the control device 50 controls the compressor 21 and the pressure reducing device 23 based on the operating state of the refrigeration cycle in the air conditioner 10, calculates the refrigerant flow rate, calculates the air volume, and the fan motor 31a. Is controlled to drive the fan 31b.
 図3は、図1の空気調和機が有する制御装置の機能的構成を示すブロック図である。図3に示すように、制御装置50は、記憶部51と、凝縮温度演算部52と、過冷却度演算部53と、過熱度演算部54と、凍結判定部55と、設定値演算処理部56と、動作制御部57と、を有している。記憶部51には、空気物性の情報、冷媒物性の情報、および能力演算式の情報等が格納されている。能力演算式の情報とは、後述する式(1)および式(2)等を示す情報である。また、記憶部51には、空気調和機10の能力と、風量調整ユニット30により蒸発器24に送風される風量を示す風量設定値とが関連づけられた設定値テーブルが格納されている。以降では、空気調和機10の能力を機器の能力Qeともいう。 FIG. 3 is a block diagram showing a functional configuration of a control device included in the air conditioner of FIG. As illustrated in FIG. 3, the control device 50 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, and a set value calculation processing unit. 56 and an operation control unit 57. The storage unit 51 stores information on air physical properties, information on refrigerant physical properties, information on capacity calculation formulas, and the like. The information on the capability calculation formula is information indicating formula (1), formula (2), and the like described later. Further, the storage unit 51 stores a setting value table in which the capacity of the air conditioner 10 is associated with the air volume setting value indicating the air volume blown to the evaporator 24 by the air volume adjustment unit 30. Hereinafter, the capability of the air conditioner 10 is also referred to as device capability Qe.
 本実施の形態1の設定値テーブルには、風量設定値として、送風機31の回転周波数を示す回転周波数設定値が記憶されている。回転周波数設定値は、蒸発器24の凍結防止用に設定されている。すなわち、設定値テーブルでは、空気調和機10が発揮し得る複数の能力のそれぞれに、回転周波数設定値が対応づけられている。より具体的に、設定値テーブルでは、機器の能力Qeの範囲ごとに回転周波数設定値が関連づけられている。設定値テーブルは、機器の能力Qeが小さくなると、回転周波数設定値が大きくなるように構成されている。よって、空気調和機10が、設定値テーブル内のある能力を発揮しているとき、送風機31の回転周波数を当該能力に対応する回転周波数設定値にすれば、蒸発器24の凍結を防止することができる。 In the setting value table of the first embodiment, a rotation frequency setting value indicating the rotation frequency of the blower 31 is stored as the air volume setting value. The rotational frequency set value is set for preventing the evaporator 24 from freezing. That is, in the set value table, the rotation frequency set value is associated with each of a plurality of capabilities that the air conditioner 10 can exhibit. More specifically, in the setting value table, a rotation frequency setting value is associated with each range of the capability Qe of the device. The set value table is configured such that the rotation frequency set value increases as the device capability Qe decreases. Therefore, when the air conditioner 10 exhibits a certain capability in the set value table, if the rotation frequency of the blower 31 is set to the rotation frequency set value corresponding to the capability, the evaporator 24 can be prevented from freezing. Can do.
 凝縮温度演算部52は、凝縮器圧力センサ41によって測定された凝縮圧力Pcmと、記憶部51内の冷媒物性の情報とをもとに、凝縮温度を演算するものである。図2の例では、点x-点y間における冷媒の温度が凝縮温度に相当する。 The condensing temperature calculation unit 52 calculates the condensing temperature based on the condensing pressure Pcm measured by the condenser pressure sensor 41 and information on the physical properties of the refrigerant in the storage unit 51. In the example of FIG. 2, the temperature of the refrigerant between point x and point y corresponds to the condensation temperature.
 過冷却度演算部53は、凝縮器出口温度センサ42によって測定された凝縮器出口温度と、凝縮温度演算部52において演算された凝縮温度とを用いて、過冷却度SCを演算するものである。より具体的に、過冷却度演算部53は、凝縮温度から凝縮器出口温度を減算することにより過冷却度SCを求めるものである。 The supercooling degree calculation unit 53 calculates the supercooling degree SC using the condenser outlet temperature measured by the condenser outlet temperature sensor 42 and the condensation temperature calculated by the condensation temperature calculation unit 52. . More specifically, the supercooling degree calculation unit 53 obtains the supercooling degree SC by subtracting the condenser outlet temperature from the condensation temperature.
 過熱度演算部54は、蒸発器入口温度センサ43によって測定された蒸発温度Teと、蒸発器出口温度センサ44によって測定された蒸発器出口温度とを用いて、過熱度SHを演算するものである。より具体的に、過熱度演算部54は、蒸発器出口温度から蒸発温度Teを減算することにより過熱度SHを求めるものである。 The superheat degree calculator 54 calculates the superheat degree SH using the evaporation temperature Te measured by the evaporator inlet temperature sensor 43 and the evaporator outlet temperature measured by the evaporator outlet temperature sensor 44. . More specifically, the superheat degree calculation unit 54 obtains the superheat degree SH by subtracting the evaporation temperature Te from the evaporator outlet temperature.
 凍結判定部55は、蒸発器入口温度センサ43によって測定された蒸発温度Teと、予め設定された凍結閾値Tとを比較し、蒸発温度Teが凍結閾値T以下であるか否かを判定するものである。これにより、凍結判定部55は、蒸発器24に凍結のおそれがあるか否かを判定する。凍結閾値Tは、例えば0℃に設定される。もっとも、凍結閾値Tは、蒸発器24の凍結を防止できる温度に設定されていればよく、空気調和機10の構成内容および冷媒物性等に基づき、0℃以外の温度に設定されていてもよい。また、凍結判定部55は、予め決められた設定時間ごとに、蒸発器入口温度センサ43から蒸発温度Teを取得し、蒸発温度Teが凍結閾値T以下であるか否かを判定する機能を有している。 The freezing determination unit 55 compares the evaporation temperature Te measured by the evaporator inlet temperature sensor 43 with a preset freezing threshold T and determines whether or not the evaporation temperature Te is equal to or lower than the freezing threshold T. It is. Thereby, the freezing determination part 55 determines whether the evaporator 24 has a possibility of freezing. The freezing threshold T is set to 0 ° C., for example. But the freezing threshold T should just be set to the temperature which can prevent the evaporator 24 from freezing, and may be set to temperature other than 0 degreeC based on the structure content of the air conditioner 10, a refrigerant | coolant physical property, etc. . In addition, the freezing determination unit 55 has a function of acquiring the evaporation temperature Te from the evaporator inlet temperature sensor 43 at predetermined time intervals and determining whether the evaporation temperature Te is equal to or lower than the freezing threshold T. is doing.
 設定値演算処理部56は、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定された場合、圧縮機21の容量、すなわち圧縮機21の運転周波数をもとに、風量設定値を演算するものである。本実施の形態1において、設定値演算処理部56は、風量設定値として、送風機31の回転周波数を示す回転周波数設定値を演算する。 When the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T, the set value calculation processing unit 56 sets the air volume setting value based on the capacity of the compressor 21, that is, the operating frequency of the compressor 21. Is calculated. In the first embodiment, the set value calculation processing unit 56 calculates a rotation frequency setting value indicating the rotation frequency of the blower 31 as the air volume setting value.
 設定値演算処理部56は、蒸発圧力演算部56aと、冷媒流量演算部56bと、能力演算部56cと、風量演算部56dと、を有している。蒸発圧力演算部56aは、蒸発器入口温度センサ43によって測定された蒸発温度Teと、記憶部51内の冷媒物性の情報とをもとに、冷媒流量Grの算出に用いられる蒸発圧力Peを演算するものである。図2の例では、点d-点a間における冷媒の圧力が蒸発圧力Peに相当する。 The set value calculation processing unit 56 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, and an air volume calculation unit 56d. The evaporation pressure calculation unit 56a calculates the evaporation pressure Pe used to calculate the refrigerant flow rate Gr based on the evaporation temperature Te measured by the evaporator inlet temperature sensor 43 and the refrigerant physical property information in the storage unit 51. To do. In the example of FIG. 2, the refrigerant pressure between point d and point a corresponds to the evaporation pressure Pe.
 冷媒流量演算部56bは、蒸発圧力演算部56aにおいて演算された蒸発圧力Peを用いて、冷媒流量Grを求めるものである。冷媒流量Grは、圧縮機21の押しのけ容積Vと、圧縮される冷媒の密度ρとにより、下記式(1)のように表される。ここで、圧縮機21の押しのけ容積Vは、圧縮機21の運転周波数に対応するものであり、記憶部51に予め格納されている。圧縮される冷媒の密度ρは、冷媒流量演算部56bが、蒸発圧力Peと、記憶部51内の冷媒物性の情報とをもとに演算する。 The refrigerant flow rate calculation unit 56b calculates the refrigerant flow rate Gr using the evaporation pressure Pe calculated by the evaporation pressure calculation unit 56a. The refrigerant flow rate Gr is expressed by the following equation (1) by the displacement volume V of the compressor 21 and the density ρ of the refrigerant to be compressed. Here, the displacement volume V of the compressor 21 corresponds to the operating frequency of the compressor 21 and is stored in the storage unit 51 in advance. The density ρ of the refrigerant to be compressed is calculated by the refrigerant flow rate calculation unit 56b based on the evaporation pressure Pe and information on the physical properties of the refrigerant in the storage unit 51.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、冷媒流量演算部56bは、蒸発圧力Peと冷媒物性の情報とをもとに、圧縮される冷媒の密度ρを求めるものである。そして、冷媒流量演算部56bは、式(1)に基づき、圧縮機21の押しのけ容積Vと、圧縮される冷媒の密度ρとを積算することで、冷媒流量Grを求めるものである。 That is, the refrigerant flow rate calculation unit 56b obtains the density ρ of the refrigerant to be compressed based on the evaporation pressure Pe and the information on the refrigerant physical properties. And the refrigerant | coolant flow volume calculating part 56b calculates | requires the refrigerant | coolant flow volume Gr by integrating | accumulating the displacement volume V of the compressor 21, and the density (rho) of the refrigerant | coolant compressed based on Formula (1).
 能力演算部56cは、冷媒流量演算部56bにおいて求められた冷媒流量Grを用いて、機器の能力Qeを演算するものである。ここで、機器の能力Qeについては、冷媒流量Grと、蒸発器入口エンタルピhriおよび蒸発器出口エンタルピhroとを用いた下記の式(2)が成り立つ。 The capability calculation unit 56c calculates the capability Qe of the equipment using the refrigerant flow rate Gr obtained by the refrigerant flow rate calculation unit 56b. Here, with respect to the capability Qe of the device, the following equation (2) using the refrigerant flow rate Gr, the evaporator inlet enthalpy hr, and the evaporator outlet enthalpy hr is established.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、能力演算部56cは、上記式(2)に基づき、冷媒流量Grと、蒸発器出口エンタルピhroから蒸発器入口エンタルピhriを減じた差分である蒸発器出入口エンタルピ差Δhrとを積算することにより、機器の能力Qeを求めるようになっている。なお、機器の能力Qeは、圧縮機21の押しのけ容積Vを用いて演算されるため、機器の能力Qeと圧縮機21の運転周波数との間には関連性がある。 That is, the capacity calculating unit 56c integrates the refrigerant flow rate Gr and the evaporator inlet / outlet enthalpy difference Δhr, which is a difference obtained by subtracting the evaporator inlet enthalpy hr from the evaporator outlet enthalpy hr, based on the equation (2). The device's ability Qe is obtained. In addition, since the capability Qe of an apparatus is calculated using the displacement volume V of the compressor 21, there exists a relationship between the capability Qe of an apparatus and the operating frequency of the compressor 21. FIG.
 風量演算部56dは、能力演算部56cにおいて演算された機器の能力Qeを設定値テーブルに照らすことにより、回転周波数設定値を演算するものである。また、風量演算部56dは、演算した回転周波数設定値の情報を動作制御部57へ出力する機能を有している。 The air volume calculation unit 56d calculates the rotation frequency set value by comparing the capability Qe of the device calculated by the capability calculation unit 56c with the set value table. Further, the air volume calculation unit 56d has a function of outputting information on the calculated rotation frequency set value to the operation control unit 57.
 動作制御部57は、ファンモータ31aの駆動を制御することにより、ファン31bの回転数を変化させる機能を有している。すなわち、動作制御部57は、送風機31を制御することにより、風量初期値Afiから風量最大値Afmまでの範囲である風量調整範囲Rにおいて、蒸発器24を通過する風量を調整することができる。 The operation control unit 57 has a function of changing the rotation speed of the fan 31b by controlling the driving of the fan motor 31a. That is, the operation control unit 57 can adjust the air volume passing through the evaporator 24 in the air volume adjustment range R that is the range from the initial air volume value Afi to the maximum air volume value Afm by controlling the blower 31.
 動作制御部57は、蒸発器24に凍結のおそれがあるとき、設定値演算処理部56において演算された回転周波数設定値の情報をもとに、送風機31の回転周波数を上昇させて、蒸発器24を通過する風量を増加させるものである。つまり、動作制御部57は、蒸発温度Teが凍結閾値Tまで低下したとき、送風機31の回転周波数が回転周波数設定値となるように、ファンモータ31aの駆動を制御し、ファン31bの回転数を上昇させるものである。 When the evaporator 24 is likely to freeze, the operation control unit 57 increases the rotation frequency of the blower 31 based on the information of the rotation frequency set value calculated by the set value calculation processing unit 56, and the evaporator The amount of air passing through 24 is increased. That is, the operation control unit 57 controls the drive of the fan motor 31a so that the rotation frequency of the blower 31 becomes the rotation frequency setting value when the evaporation temperature Te decreases to the freezing threshold T, and the rotation speed of the fan 31b is set. It is something to raise.
 また、動作制御部57は、空調負荷等に応じて圧縮機21の運転周波数を制御し、冷媒回路10Aを循環する冷媒の流量を調整するものである。さらに、動作制御部57は、減圧装置23が開度調整可能な電子膨張弁等である場合、空調負荷等に応じて減圧装置23の開度を制御する機能を有する。 The operation control unit 57 controls the operating frequency of the compressor 21 according to the air conditioning load and the like, and adjusts the flow rate of the refrigerant circulating in the refrigerant circuit 10A. Further, the operation control unit 57 has a function of controlling the opening degree of the decompression device 23 according to the air conditioning load or the like when the decompression device 23 is an electronic expansion valve or the like whose opening degree can be adjusted.
 図4は、図1の空気調和機における蒸発温度と風量と圧縮機の運転周波数との関係を例示する説明図である。図4では、外気温度が経時的に低下していく環境下における凍結防止制御を例示している。図4に示すように、空気調和機10は、蒸発温度Teが凍結閾値Tまで低下したとき、風量調整範囲Rにおいて、蒸発器24を通過する風量を増加させることができる。そのため、空気調和機10は、蒸発温度Teが凍結閾値Tまで低下した場合であっても、圧縮機21の運転周波数を維持させることができる。よって、空気調和機10によれば、能力を低下させることなく、蒸発器24の凍結を抑制することができる。本実施の形態1において、風量は、送風機31の回転周波数に対応している。風量初期値Afiは、冷房運転を開始する際の送風機31の回転周波数の初期値であり、風量最大値Afmは、送風機31の回転周波数の最大値である。 FIG. 4 is an explanatory diagram illustrating the relationship between the evaporation temperature, the air volume, and the operating frequency of the compressor in the air conditioner of FIG. FIG. 4 illustrates the freeze prevention control in an environment where the outside air temperature decreases with time. As shown in FIG. 4, the air conditioner 10 can increase the amount of air passing through the evaporator 24 in the air amount adjustment range R when the evaporation temperature Te decreases to the freezing threshold T. Therefore, the air conditioner 10 can maintain the operating frequency of the compressor 21 even when the evaporation temperature Te decreases to the freezing threshold T. Therefore, according to the air conditioner 10, freezing of the evaporator 24 can be suppressed without reducing the capacity. In the first embodiment, the air volume corresponds to the rotational frequency of the blower 31. The air volume initial value Afi is an initial value of the rotational frequency of the blower 31 when the cooling operation is started, and the air volume maximum value Afm is a maximum value of the rotational frequency of the blower 31.
 ところで、図4では、時間の経過に伴って、送風機31の回転周波数を段階的に上昇させる様子を示しているが、空気調和機10は、例えば、外気温度が経時的に上昇していく環境下にあっては、送風機31の回転周波数を段階的に上昇させるようにしてもよい。また、空気調和機10は、例えば、外気温度が上昇と低下とを繰り返す環境下にあっては、送風機31に、回転周波数の上昇と下降とを繰り返させるようにしてもよい。すなわち、空気調和機10は、外気温度の変動、すなわち機器の能力Qeの変動に応じて、送風機31の回転周波数の上昇処理又は下降処理を行うようにしてもよい。 By the way, in FIG. 4, although the mode that the rotational frequency of the air blower 31 is raised in steps is shown as time passes, the air conditioner 10 is an environment where the outside air temperature rises with time, for example. Below, you may make it raise the rotational frequency of the air blower 31 in steps. Further, the air conditioner 10 may cause the blower 31 to repeatedly increase and decrease the rotational frequency, for example, in an environment where the outside air temperature repeatedly increases and decreases. That is, the air conditioner 10 may perform an increase process or a decrease process of the rotational frequency of the blower 31 according to a change in the outside air temperature, that is, a change in the capability Qe of the device.
 制御装置50は、室内機に設けられていてもよく、室外機に設けられていてもよい。また、制御装置50は、上記の各機能を分離させた2つの制御装置により構成してもよく、この場合、一方の制御装置を室内機に設け、他方の制御装置を室外機に設けるようにしてもよい。 The control device 50 may be provided in the indoor unit or may be provided in the outdoor unit. Further, the control device 50 may be constituted by two control devices in which the above functions are separated. In this case, one control device is provided in the indoor unit and the other control device is provided in the outdoor unit. May be.
 制御装置50は、上記の各機能を実現する回路デバイスなどのハードウェアで実現することもできるし、例えば、マイコン、DSP(Digital Signal Processor)、又はCPU(Central Processing Unit)等の演算装置上で実行されるソフトウェアとして実現することもできる。また、記憶部51は、RAM(Random Access Memory)及びROM(Read Only Memory)、フラッシュメモリ等のPROM(Programmable ROM)、又はHDD(Hard Disk Drive)等により構成することができる。 The control device 50 can be realized by hardware such as a circuit device that realizes each of the above functions. For example, the control device 50 can be executed on a calculation device such as a microcomputer, a DSP (Digital Signal Processor), or a CPU (Central Processing Unit). It can also be realized as executed software. In addition, the storage unit 51 can be configured by a RAM (Random Access Memory) and a ROM (Read Only Memory), a PROM (Programmable ROM) such as a flash memory, or an HDD (Hard Disk Drive).
 図5は、図1の空気調和機10の冷房運転時の動作例を示すフローチャートである。図5を参照して、本実施の形態1の空気調和機10による凍結抑制制御について説明する。 FIG. 5 is a flowchart showing an operation example during the cooling operation of the air conditioner 10 of FIG. With reference to FIG. 5, the freezing suppression control by the air conditioner 10 of this Embodiment 1 is demonstrated.
 空気調和機10が冷房運転を開始すると、凍結判定部55は、蒸発器入口温度センサ43から蒸発温度Teを取得する(ステップS101)。そして、凍結判定部55は、蒸発温度Teが凍結閾値T以下であるか否かを判定することで、蒸発器24に凍結のおそれがあるか否かを判定する(ステップS102)。 When the air conditioner 10 starts the cooling operation, the freezing determination unit 55 acquires the evaporation temperature Te from the evaporator inlet temperature sensor 43 (step S101). And the freezing determination part 55 determines whether there exists a possibility of freezing in the evaporator 24 by determining whether the evaporation temperature Te is below the freezing threshold T (step S102).
 設定値演算処理部56は、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定された場合(ステップS102/Yes)、風量設定値を演算し、演算した風量設定値の情報を動作制御部57へ出力する(ステップS103)。一方、設定値演算処理部56は、凍結判定部55において蒸発温度Teが凍結閾値Tより大きいと判定された場合(ステップS102/No)、ステップS101へ戻る。 When the freezing determination unit 55 determines that the evaporating temperature Te is equal to or lower than the freezing threshold T (step S102 / Yes), the set value calculation processing unit 56 calculates the air volume setting value and provides information on the calculated air volume setting value. It outputs to the operation control part 57 (step S103). On the other hand, when the freezing determination unit 55 determines that the evaporation temperature Te is higher than the freezing threshold T (No in step S102), the set value calculation processing unit 56 returns to step S101.
 動作制御部57は、設定値演算処理部56から出力された風量設定値の情報に従い、蒸発器24を通過する風量が風量設定値となるように風量調整を実行する。すなわち、動作制御部57は、ファンモータ31aの駆動を制御してファン31bの回転数を上昇させる。このようにして、動作制御部57は、送風機31の回転周波数を上昇させ、蒸発器24を通過する風量を風量設定値まで増加させる(ステップS104)。 The operation control unit 57 performs air volume adjustment so that the air volume passing through the evaporator 24 becomes the air volume setting value according to the information on the air volume setting value output from the set value calculation processing unit 56. That is, the operation control unit 57 controls the drive of the fan motor 31a to increase the rotational speed of the fan 31b. In this way, the operation control unit 57 increases the rotational frequency of the blower 31 and increases the air volume passing through the evaporator 24 to the air volume setting value (step S104).
 動作制御部57による風量調整後、凍結判定部55は、設定時間が経過するまで待機し(ステップS105/No)、設定時間が経過すると(ステップS105/Yes)、ステップS101へ戻る。すなわち、空気調和機10は、ステップS101~S105の一連の動作を繰り返す。 After the air volume adjustment by the operation control unit 57, the freezing determination unit 55 stands by until the set time elapses (step S105 / No), and when the set time elapses (step S105 / Yes), the process returns to step S101. That is, the air conditioner 10 repeats a series of operations in steps S101 to S105.
 ところで、図5では、凍結判定部55において蒸発温度Teが凍結閾値Tより大きいと判定された場合(ステップS102/No)、ステップS101へ戻る例を示しているが、これに限定されるものではない。例えば、ステップS102のNoからステップS105に進むといった処理により、所定時間が経過した後、改めて凍結判定部55が蒸発温度Teを取得し、ステップS101~S105の一連の動作を行うようにしてもよい。 5 shows an example of returning to step S101 when the freezing determination unit 55 determines that the evaporation temperature Te is higher than the freezing threshold T (step S102 / No), but is not limited thereto. Absent. For example, the freeze determination unit 55 may acquire the evaporation temperature Te again after a predetermined time elapses by the process of proceeding from No in step S102 to step S105, and perform a series of operations in steps S101 to S105. .
 以上のように、本実施の形態1における空気調和機10は、蒸発温度が凍結閾値T以下である場合に、蒸発器24を通過する風量を上昇させることから、圧縮機21の容量および蒸発器24への冷媒流入量を減らす必要がないため、空気調和機10の能力を低下させることなく、蒸発器24の凍結を抑制することができる。 As described above, the air conditioner 10 according to the first embodiment increases the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, the capacity of the compressor 21 and the evaporator Since it is not necessary to reduce the refrigerant inflow to 24, freezing of the evaporator 24 can be suppressed without reducing the capacity of the air conditioner 10.
 ところで、機器の能力Qeは、上記のように演算されるため、外気温度の変化に応じて変化する。例えば、外気温度が低下すると、機器の能力Qeも下がり、外気温度が上昇すると、機器の能力Qeも上がる。そして、外気温度は、時々刻々と変化し、例えば1日の変化をみると、日中から夜間にかけて経時的に低下し、明け方から日中にかけて経時的に上昇する。この点、制御装置50は、設定時間ごとに凍結のおそれがあるか否かを判定し、凍結のおそれがある場合に風量調整を行うようになっている。よって、空気調和機10は、外気温度が経時的に低下していく状況において、段階的に送風機31の回転周波数を上昇させることができる。また、空気調和機10は、設定時間を短く設定すれば、外気温度の急激な変化にも対応することができる。すなわち、空気調和機10によれば、外気温度の変化に柔軟に対応した凍結防止制御を実現することができる。 By the way, since the capability Qe of the device is calculated as described above, it changes according to a change in the outside air temperature. For example, when the outside air temperature decreases, the capacity Qe of the device also decreases, and when the outside air temperature increases, the capacity Qe of the device also increases. The outside air temperature changes from time to time. For example, when the daily change is observed, it decreases with time from daytime to nighttime and increases with time from dawn to daytime. In this regard, the control device 50 determines whether or not there is a risk of freezing every set time, and performs air volume adjustment when there is a risk of freezing. Therefore, the air conditioner 10 can raise the rotational frequency of the air blower 31 in steps in the situation where the outside air temperature decreases with time. Further, the air conditioner 10 can cope with a sudden change in the outside air temperature by setting the setting time short. That is, according to the air conditioner 10, it is possible to realize anti-freezing control that flexibly responds to changes in the outside air temperature.
 本実施の形態1では、蒸発温度Teが凍結閾値Tまで低下したときに、送風機31の回転周波数を上昇させる処理について説明したが、送風機31の回転周波数を上昇させた後、所定の条件を満たした場合に、送風機31の回転周波数を下降させるようにするとよい。例えば、制御装置50は、凍結のおそれがない状態(ステップS102のNoの状態)が一定時間以上継続したときに、送風機31の回転周波数を下降させるようにしてもよい。すなわち、設定値演算処理部56が、凍結のおそれがない状態が一定時間以上継続したときに、設定値テーブル又はこれと同様に構成されたテーブル情報を参照して、回転周波数設定値を演算するようにしてもよい。そして、動作制御部57が、設定値演算処理部56において演算された回転周波数設定値の情報をもとに、送風機31の回転周波数を下降させて、蒸発器24を通過する風量を減少させるようにしてもよい。このようにすれば、外気温度の上昇に応じて、送風機31の回転周波数を下降させることができるため、蒸発器24の凍結を防止すると共に、送風機31の動作に起因したコストを削減することができる。 In the first embodiment, the process of increasing the rotational frequency of the blower 31 when the evaporation temperature Te decreases to the freezing threshold T has been described. However, after the rotational frequency of the blower 31 is increased, a predetermined condition is satisfied. In such a case, the rotational frequency of the blower 31 may be lowered. For example, the control device 50 may lower the rotational frequency of the blower 31 when the state where there is no risk of freezing (the state of No in step S102) continues for a certain time or longer. That is, the set value calculation processing unit 56 calculates the rotation frequency set value with reference to the set value table or table information configured similarly to the set value table when a state where there is no fear of freezing continues for a certain period of time or longer. You may do it. Then, the operation control unit 57 reduces the air volume passing through the evaporator 24 by lowering the rotation frequency of the blower 31 based on the information of the rotation frequency set value calculated by the set value calculation processing unit 56. It may be. If it does in this way, since the rotation frequency of the air blower 31 can be lowered | hung according to the raise of external temperature, while preventing the freezing of the evaporator 24, the cost resulting from operation | movement of the air blower 31 can be reduced. it can.
実施の形態2.
 図6は、本発明の実施の形態2に係る空気調和機の構成を例示する概略図である。図7は、図6の空気調和機が有する制御装置の機能的構成を示すブロック図である。図6および図7に基づき、本実施の形態2に係る空気調和機の構成および動作について説明する。前述した実施の形態1と同等の構成部材については同一の符号を用いて説明は省略する。
Embodiment 2. FIG.
FIG. 6 is a schematic view illustrating the configuration of the air conditioner according to Embodiment 2 of the invention. FIG. 7 is a block diagram showing a functional configuration of a control device included in the air conditioner of FIG. Based on FIG. 6 and FIG. 7, the structure and operation | movement of the air conditioner which concerns on this Embodiment 2 are demonstrated. Constituent members equivalent to those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態2における空気調和機110は、風量調整ユニット130と、冷媒回路10Aおよび風量調整ユニット130の動作を制御する制御装置150と、を有している。風量調整ユニット130は、送風機31と、蒸発器24に付設された風量調整ダンパ32と、を有している。風量調整ダンパ32は、送風機31によって形成される風路上に設けられ、蒸発器24を通過する風量を調整するものである。風量調整ダンパ32は、複数の羽根の開閉により、設置された風路を通過する風量を調整できる多翼式ダンパ、又は一枚の板の回転により設置された風路を通過する風量を調整できるバタフライダンパなどである。 The air conditioner 110 according to the second embodiment includes an air volume adjustment unit 130, and a control device 150 that controls the operation of the refrigerant circuit 10A and the air volume adjustment unit 130. The air volume adjusting unit 130 includes a blower 31 and an air volume adjusting damper 32 attached to the evaporator 24. The air volume adjusting damper 32 is provided on the air path formed by the blower 31 and adjusts the air volume passing through the evaporator 24. The air volume adjusting damper 32 can adjust the air volume that passes through the installed air passage by the rotation of a single plate or the multi-blade damper that can adjust the air volume that passes through the installed air passage by opening and closing a plurality of blades. Butterfly damper.
 本実施の形態2における記憶部51に格納されている設定値テーブルには、風量設定値として、回転周波数設定値と、風量調整ダンパ32の開度を示す開度設定値とが記憶されている。回転周波数設定値と開度設定値とは、蒸発器24の凍結防止用に予め設定されている。すなわち、本実施の形態2における設定値テーブルは、機器の能力Qeと、回転周波数設定値と、開度設定値とが関連づけられたものである。より具体的に、設定値テーブルでは、機器の能力Qeの範囲ごとに、回転周波数設定値および開度設定値が関連づけられている。設定値テーブルは、機器の能力Qeが小さくなると、回転周波数設定値が大きくなり、開度設定値が大きくなるように構成されている。よって、空気調和機110が、設定値テーブル内のある能力を発揮しているとき、送風機31の回転周波数を当該能力に対応する設定周波数に設定すると共に、風量調整ダンパ32の開度を当該能力に対応する開度設定値に設定すれば、蒸発器24の凍結を防止することができる。 In the setting value table stored in the storage unit 51 in the second embodiment, the rotation frequency setting value and the opening setting value indicating the opening of the air volume adjustment damper 32 are stored as the air volume setting value. . The rotational frequency setting value and the opening degree setting value are set in advance for preventing the evaporator 24 from freezing. That is, the set value table in the second embodiment is such that the capability Qe of the device, the rotation frequency set value, and the opening degree set value are associated with each other. More specifically, in the set value table, the rotation frequency set value and the opening set value are associated with each range of the capability Qe of the device. The set value table is configured such that when the device capability Qe decreases, the rotation frequency set value increases and the opening set value increases. Therefore, when the air conditioner 110 exhibits a certain capability in the set value table, the rotational frequency of the blower 31 is set to a set frequency corresponding to the capability, and the opening degree of the air volume adjustment damper 32 is set to the capability. If the opening setting value corresponding to is set, freezing of the evaporator 24 can be prevented.
 制御装置150は、図7に示すように、記憶部51と、凝縮温度演算部52と、過冷却度演算部53と、過熱度演算部54と、凍結判定部55と、設定値演算処理部156と、動作制御部157と、を有している。設定値演算処理部156は、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定された場合、圧縮機21の運転周波数をもとに風量設定値を演算するものである。本実施の形態2において、設定値演算処理部156は、風量設定値として、風量調整ダンパ32を介して蒸発器24に送風される風量、すなわち、開度設定値と回転周波数設定値とを演算するものである。 As shown in FIG. 7, the control device 150 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, and a set value calculation processing unit. 156 and an operation control unit 157. The set value calculation processing unit 156 calculates an air volume set value based on the operating frequency of the compressor 21 when the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T. In the second embodiment, the set value calculation processing unit 156 calculates the air volume blown to the evaporator 24 via the air volume adjustment damper 32, that is, the opening setting value and the rotation frequency setting value, as the air volume setting value. To do.
 設定値演算処理部156は、蒸発圧力演算部56aと、冷媒流量演算部56bと、能力演算部56cと、風量演算部156dと、を有している。風量演算部156dは、能力演算部56cにおいて演算された機器の能力Qeを設定値テーブルに照らして、開度設定値および回転周波数設定値を演算するようになっている。また、風量演算部156dは、演算した開度設定値の情報および回転周波数設定値の情報を動作制御部157へ出力する機能を有している。風量演算部156dの他の構成は、前述した実施の形態1の風量演算部56dと同様である。 The set value calculation processing unit 156 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, and an air volume calculation unit 156d. The air volume calculation unit 156d calculates the opening setting value and the rotation frequency setting value by checking the capability Qe of the device calculated by the capability calculation unit 56c against the setting value table. Further, the air volume calculating unit 156d has a function of outputting the calculated opening setting value information and the rotation frequency setting value information to the operation control unit 157. The other configuration of the air volume calculating unit 156d is the same as that of the air volume calculating unit 56d of the first embodiment described above.
 動作制御部157は、設定値演算処理部56において演算された開度設定値の情報と回転周波数設定値の情報とをもとに、蒸発器24を通過する風量を調整するものである。すなわち、動作制御部157は、蒸発温度Teが凍結閾値Tまで低下したとき、送風機31の回転周波数が回転周波数設定値となり、かつ風量調整ダンパ32の開度が開度設定値となるように、送風機31の回転周波数および風量調整ダンパ32の開度を調整するものである。本実施の形態2において、風量は、送風機31の回転周波数および風量調整ダンパ32の開度に対応している。 The operation control unit 157 adjusts the amount of air passing through the evaporator 24 based on the information on the opening set value and the information on the rotation frequency set value calculated by the set value calculation processing unit 56. That is, when the evaporation temperature Te decreases to the freezing threshold T, the operation control unit 157 is configured so that the rotation frequency of the blower 31 becomes the rotation frequency setting value and the opening degree of the air volume adjustment damper 32 becomes the opening setting value. The rotational frequency of the blower 31 and the opening degree of the air volume adjustment damper 32 are adjusted. In the second embodiment, the air volume corresponds to the rotational frequency of the blower 31 and the opening degree of the air volume adjusting damper 32.
 ここで、設定値テーブルでは、各機器の能力Qeごとに、開度設定値および回転周波数設定値のうちの少なくとも1つが変化している。したがって、風量演算部156dにより演算された開度設定値および回転周波数設定値のうちの何れか一方は、凍結判定部55による判定時の値と同じである場合もある。つまり、動作制御部157は、蒸発温度Teが凍結閾値Tまで低下したとき、送風機31の回転周波数を上昇させる処理、および風量調整ダンパ32の開度を大きくする処理のうちの少なくとも一方を行うことにより、蒸発器24を通過する風量を増加させるようになっている。動作制御部157の他の構成は、前述した実施の形態1の動作制御部57と同様である。 Here, in the set value table, at least one of the opening set value and the rotation frequency set value changes for each capability Qe of each device. Therefore, one of the opening setting value and the rotation frequency setting value calculated by the air volume calculation unit 156d may be the same as the value at the time of determination by the freezing determination unit 55. That is, the operation control unit 157 performs at least one of the process of increasing the rotation frequency of the blower 31 and the process of increasing the opening degree of the air volume adjustment damper 32 when the evaporation temperature Te decreases to the freezing threshold T. As a result, the amount of air passing through the evaporator 24 is increased. Other configurations of the operation control unit 157 are the same as those of the operation control unit 57 of the first embodiment described above.
 空気調和機110の動作は、図5に基づいて説明した空気調和機10の動作と同様である。例えば、空気調和機110は、設定値テーブル内のデータを調整することにより、ステップS103およびS104において、送風機31の回転周波数および風量調整ダンパ32の開度の双方を調整することができる。すなわち、空気調和機110によれば、送風機31の回転周波数および風量調整ダンパ32の開度のうちの何れか一方を調整する凍結防止制御と、送風機31の回転周波数および風量調整ダンパ32の開度の双方を調整する凍結防止制御とを組み合わせることができる。 The operation of the air conditioner 110 is the same as the operation of the air conditioner 10 described based on FIG. For example, the air conditioner 110 can adjust both the rotation frequency of the blower 31 and the opening degree of the air volume adjustment damper 32 in steps S103 and S104 by adjusting data in the set value table. That is, according to the air conditioner 110, the anti-freezing control for adjusting any one of the rotational frequency of the blower 31 and the opening degree of the air volume adjustment damper 32, and the rotational frequency of the blower 31 and the opening degree of the air volume adjustment damper 32 are provided. It is possible to combine anti-freezing control that adjusts both of the above.
 以上のように、本実施の形態2における空気調和機110は、蒸発温度が凍結閾値T以下である場合に、蒸発器24を通過する風量を上昇させることから、圧縮機21の容量又は蒸発器24への冷媒流入量を減らす必要がないため、空気調和機110の能力を低下させることなく、蒸発器24の凍結を抑制することができる。 As described above, the air conditioner 110 according to the second embodiment increases the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, the capacity of the compressor 21 or the evaporator Since it is not necessary to reduce the refrigerant inflow to 24, freezing of the evaporator 24 can be suppressed without reducing the capacity of the air conditioner 110.
 そして、空気調和機110は、送風機31の回転周波数および風量調整ダンパ32の開度を調整することができる。このため、空気調和機110によれば、風量調整ダンパ32の開度を予め所定量だけ狭めておき、最初に蒸発温度Teが凍結閾値Tまで低下したときに、風量調整ダンパ32の開度を大きくし、次に蒸発温度Teが凍結閾値Tまで低下したときに、送風機31の回転周波数を増加させるといった凍結防止制御を実現することができる。また、空気調和機110によれば、蒸発温度Teが凍結閾値Tまで低下したときに、送風機31の回転周波数又は風量調整ダンパ32の開度を調整したり、送風機31の回転周波数および風量調整ダンパ32の開度の双方を調整したりすることができる。すなわち、空気調和機110によれば、風量調整ダンパ32の開度調整と送風機31の回転周波数の調整とを組み合わせることができるため、より柔軟な凍結防止制御を実現することができる。 And the air conditioner 110 can adjust the rotation frequency of the blower 31 and the opening degree of the air volume adjustment damper 32. For this reason, according to the air conditioner 110, the opening degree of the air volume adjusting damper 32 is narrowed in advance by a predetermined amount, and when the evaporating temperature Te is first lowered to the freezing threshold T, the opening degree of the air volume adjusting damper 32 is increased. The freezing prevention control of increasing the rotation frequency of the blower 31 when the evaporation temperature Te is lowered to the freezing threshold T next time is increased. Moreover, according to the air conditioner 110, when the evaporation temperature Te falls to the freezing threshold T, the rotational frequency of the blower 31 or the opening degree of the air volume adjustment damper 32 is adjusted, or the rotational frequency of the blower 31 and the air volume adjustment damper are adjusted. Both of the opening degrees of 32 can be adjusted. That is, according to the air conditioner 110, the opening degree adjustment of the air volume adjustment damper 32 and the adjustment of the rotation frequency of the blower 31 can be combined, so that more flexible freezing prevention control can be realized.
 ところで、上記の説明では、蒸発温度Teが凍結閾値Tまで低下したときに、送風機31の回転周波数を上昇させる処理、および風量調整ダンパ32の開度を大きくする処理のうちの少なくとも一方を行う場合について説明した。しかし、送風機31を通過する風量を増加させた後、所定の条件を満たした場合に、送風機31の回転周波数を下降させる処理、および風量調整ダンパ32の開度を小さくする処理のうちの少なくとも一方を行うようにするとよい。例えば、制御装置150は、凍結のおそれがない状態が一定時間以上継続したときに、送風機31の回転周波数を下降させる処理、および風量調整ダンパ32の開度を小さくする処理のうちの少なくとも一方を行うようにしてもよい。他の効果については、実施の形態1の空気調和機10と同様である。 By the way, in said description, when evaporation temperature Te falls to the freezing threshold T, when performing at least one of the process which raises the rotational frequency of the air blower 31, and the process which enlarges the opening degree of the air volume adjustment damper 32 is performed. Explained. However, at least one of the process of lowering the rotational frequency of the blower 31 and the process of reducing the opening of the airflow adjustment damper 32 when a predetermined condition is satisfied after increasing the volume of air passing through the blower 31 It is good to do. For example, the control device 150 performs at least one of a process of lowering the rotational frequency of the blower 31 and a process of reducing the opening of the air volume adjustment damper 32 when a state where there is no possibility of freezing continues for a certain time or longer. You may make it perform. About another effect, it is the same as that of the air conditioner 10 of Embodiment 1. FIG.
 本実施の形態2では、回転数制御が可能なファンモータ31aを例示したが、これに限定されるものではない。例えば、空気調和機110は、ファンモータ31aの代わりに、一定速度で回転するファンモータを有するようにし、蒸発器24を通過する風量を風量調整ダンパ32のみによって調整するように構成してもよい。 In the second embodiment, the fan motor 31a capable of controlling the rotation speed is exemplified, but the present invention is not limited to this. For example, the air conditioner 110 may have a fan motor that rotates at a constant speed instead of the fan motor 31a, and may be configured to adjust the air volume passing through the evaporator 24 only by the air volume adjusting damper 32. .
実施の形態3.
 図8は、本発明の実施の形態3に係る空気調和機の構成を例示する概略図である。図9は、図8の空気調和機が有する制御装置の機能的構成を示すブロック図である。上述した実施の形態1および2と同等の構成部材については同一の符号を用いて説明は省略する。
Embodiment 3 FIG.
FIG. 8 is a schematic view illustrating the configuration of an air conditioner according to Embodiment 3 of the present invention. FIG. 9 is a block diagram illustrating a functional configuration of a control device included in the air conditioner of FIG. About the structural member equivalent to Embodiment 1 and 2 mentioned above, description is abbreviate | omitted using the same code | symbol.
 図8および図9に示すように、本実施の形態3における空気調和機210は、冷媒回路10Aおよび風量調整ユニット30の動作を制御する制御装置250を有している。制御装置250は、記憶部51と、凝縮温度演算部52と、過冷却度演算部53と、過熱度演算部54と、凍結判定部55と、設定値演算処理部256と、動作制御部257と、風量判定部258と、を有している。 As shown in FIGS. 8 and 9, the air conditioner 210 according to the third embodiment includes a control device 250 that controls the operation of the refrigerant circuit 10A and the air volume adjustment unit 30. The control device 250 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, a set value calculation processing unit 256, and an operation control unit 257. And an air volume determination unit 258.
 本実施の形態3における記憶部51には、風量設定値としての回転周波数設定値と、圧縮機21の運転周波数を示す運転周波数設定値と、が記憶されている。回転周波数設定値と運転周波数設定値とは、蒸発器24の凍結防止用に予め設定されている。より具体的に、記憶部51には、設定値テーブルとして、機器の能力Qeと回転周波数設定値とが関連づけられた回転設定値テーブルと、機器の能力Qeと運転周波数設定値とが関連づけられた運転設定値テーブルと、が格納されている。運転設定値テーブルでは、機器の能力Qeの範囲ごとに運転周波数設定値が関連づけられている。運転設定値テーブルは、機器の能力Qeが小さくなると、運転周波数設定値が小さくなるように構成されている。 In the storage unit 51 according to the third embodiment, a rotation frequency setting value as an air volume setting value and an operation frequency setting value indicating the operation frequency of the compressor 21 are stored. The rotational frequency set value and the operating frequency set value are set in advance for preventing the evaporator 24 from freezing. More specifically, in the storage unit 51, as a setting value table, a rotation setting value table in which the device capability Qe and the rotation frequency setting value are associated, and a device capability Qe and the operation frequency setting value are associated. An operation set value table is stored. In the operation setting value table, an operation frequency setting value is associated with each range of the capability Qe of the device. The operation set value table is configured such that the operation frequency set value decreases as the device capability Qe decreases.
 風量判定部258は、現在の風量と、送風機31によって送風可能な風量の最大値である風量最大値Afmとを比較し、現在の風量が風量最大値Afmに達しているか否かを判定するものである。 The air volume determination unit 258 compares the current air volume with the maximum air volume value Afm, which is the maximum air volume that can be blown by the blower 31, and determines whether or not the current air volume has reached the maximum air volume value Afm. It is.
 設定値演算処理部256は、蒸発圧力演算部56aと、冷媒流量演算部56bと、能力演算部56cと、風量演算部56dと、運転周波数演算部256eを有している。設定値演算処理部256は、風量判定部258において現在の風量が風量最大値Afm未満であると判定された場合、風量演算部56dが、能力演算部56cにおいて演算された機器の能力Qeを回転設定値テーブルに照らして回転周波数設定値を演算するようになっている。風量演算部56dは、演算した回転周波数設定値の情報を動作制御部257に出力する機能を有している。 The set value calculation processing unit 256 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, an air volume calculation unit 56d, and an operating frequency calculation unit 256e. When the air volume determination unit 258 determines that the current air volume is less than the maximum air volume value Afm, the set value calculation processing unit 256 rotates the capacity Qe of the device calculated by the capacity calculation unit 56c. The rotational frequency set value is calculated in light of the set value table. The air volume calculation unit 56d has a function of outputting information on the calculated rotation frequency setting value to the operation control unit 257.
 また、設定値演算処理部256は、現在の風量が風量最大値Afmに達していると判定された場合、運転周波数演算部256eが、能力演算部56cにおいて演算された機器の能力Qeを運転設定値テーブルに照らして運転周波数設定値を演算するようになっている。つまり、運転周波数演算部256eは、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定され、かつ送風機31によって蒸発器24に送風される風量が風量最大値Afmに到達している場合に、運転周波数設定値を演算するものである。運転周波数演算部256eは、演算した運転周波数設定値の情報を動作制御部257に出力する機能を有している。 Further, when it is determined that the current air volume has reached the maximum air volume value Afm, the set value calculation processing unit 256 sets the capability Qe of the device calculated by the operation frequency calculation unit 256e in the capability calculation unit 56c. The operating frequency set value is calculated in light of the value table. That is, the operating frequency calculation unit 256e determines that the evaporation temperature Te is equal to or lower than the freezing threshold T in the freezing determination unit 55, and the air volume blown to the evaporator 24 by the blower 31 reaches the maximum airflow value Afm. In this case, the operation frequency set value is calculated. The operation frequency calculation unit 256e has a function of outputting information on the calculated operation frequency set value to the operation control unit 257.
 動作制御部257は、運転周波数演算部256eにおいて演算された運転周波数設定値をもとに、圧縮機21の運転周波数を調整する機能を有している。動作制御部257は、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定され、かつ送風機31によって蒸発器24に送風される風量が風量最大値Afmに到達している場合、圧縮機21の運転周波数を低下させるようになっている。動作制御部257の他の構成は、上述した実施の形態1の動作制御部57と同様である。 The operation control unit 257 has a function of adjusting the operation frequency of the compressor 21 based on the operation frequency set value calculated by the operation frequency calculation unit 256e. The operation control unit 257 performs compression when the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T and the air volume blown to the evaporator 24 by the blower 31 has reached the maximum airflow value Afm. The operating frequency of the machine 21 is lowered. Other configurations of the operation control unit 257 are the same as those of the operation control unit 57 of the first embodiment described above.
 図10は、図8の空気調和機における蒸発温度と風量と圧縮機の運転周波数との関係を例示する説明図である。図10に示すように、空気調和機210は、蒸発温度Teが凍結閾値Tまで低下したとき、風量調整範囲Rにおいて、蒸発器24を通過する風量を増加させることができる。また、空気調和機210は、送風機31によって蒸発器24に送風される風量が風量最大値Afmに到達している場合に、蒸発温度Teが凍結閾値Tまで低下したとき、はじめて圧縮機21の運転周波数を低下させる。よって、空気調和機210によれば、能力の低下を極力抑えて蒸発器24の凍結を抑制することができる。 FIG. 10 is an explanatory diagram illustrating the relationship between the evaporation temperature, the air volume, and the operating frequency of the compressor in the air conditioner of FIG. As shown in FIG. 10, the air conditioner 210 can increase the amount of air passing through the evaporator 24 in the air amount adjustment range R when the evaporation temperature Te decreases to the freezing threshold T. In addition, the air conditioner 210 operates the compressor 21 for the first time when the evaporation temperature Te decreases to the freezing threshold T when the air volume blown to the evaporator 24 by the blower 31 reaches the maximum air volume value Afm. Reduce the frequency. Therefore, according to the air conditioner 210, freezing of the evaporator 24 can be suppressed by suppressing a decrease in capacity as much as possible.
 図11は、図8の空気調和機110の冷房運転時の動作例を示すフローチャートである。図11を参照して、本実施の形態3の空気調和機210による凍結抑制制御について説明する。図5に示す各ステップと同一のステップには、同一の符号を付して説明は省略する。 FIG. 11 is a flowchart showing an operation example during the cooling operation of the air conditioner 110 of FIG. With reference to FIG. 11, the freezing suppression control by the air conditioner 210 of this Embodiment 3 is demonstrated. The same steps as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted.
 空気調和機210は、図5の場合と同様に、ステップS101~S102の処理を実行する。そして、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定された場合(ステップS102/Yes)、風量判定部258は、現在の風量が風量最大値Afmに達しているか否かを判定する(ステップS201)。 The air conditioner 210 performs the processing of steps S101 to S102 as in the case of FIG. When the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T (Yes in step S102), the air volume determination unit 258 determines whether or not the current air volume has reached the maximum air volume value Afm. Determination is made (step S201).
 風量判定部258において、現在の風量が風量最大値Afm未満であると判定された場合(ステップS201/No)、設定値演算処理部256は、風量設定値を演算し、演算した風量設定値の情報を動作制御部257へ出力し(ステップS103)、ステップS104へ進む。一方、風量判定部258において、現在の風量が風量最大値Afmに達していると判定された場合(ステップS201/Yes)、設定値演算処理部256は、運転周波数設定値を演算し、演算した運転周波数設定値の情報を動作制御部257へ出力する(ステップS202)。 When the air volume determination unit 258 determines that the current air volume is less than the maximum air volume value Afm (step S201 / No), the set value calculation processing unit 256 calculates the air volume setting value and calculates the calculated air volume setting value. The information is output to the operation control unit 257 (step S103), and the process proceeds to step S104. On the other hand, when it is determined by the air volume determination unit 258 that the current air volume has reached the maximum air volume value Afm (step S201 / Yes), the set value calculation processing unit 256 calculates and calculates the operating frequency set value. Information on the operating frequency set value is output to the operation control unit 257 (step S202).
 動作制御部257は、設定値演算処理部56から出力された運転周波数設定値の情報に従い、圧縮機21の運転周波数が運転周波数設定値となるように、圧縮機21の運転周波数を調整する(ステップS203)。次いで、ステップS105に進み、設定時間が経過すると(ステップS105/Yes)、ステップS101へ戻る。 The operation control unit 257 adjusts the operation frequency of the compressor 21 so that the operation frequency of the compressor 21 becomes the operation frequency setting value according to the information of the operation frequency setting value output from the set value calculation processing unit 56 ( Step S203). Next, the process proceeds to step S105, and when the set time has elapsed (step S105 / Yes), the process returns to step S101.
 以上のように、本実施の形態3における空気調和機210は、蒸発温度が凍結閾値T以下である場合に、蒸発器24を通過する風量を上昇させる処理を優先的に行う。よって、圧縮機21の容量低下を最小限に抑えることができるため、空気調和機210の冷房能力の低下を抑えながら、蒸発器24の凍結を抑制することができる。すなわち、空気調和機210は、送風機31の回転周波数を上昇させた上で、それでも凍結のおそれがある場合に、圧縮機21の運転周波数を低下させるため、能力の低下を最小限に抑えると共に、精度よく蒸発器24の凍結を防ぐことができる。 As described above, the air conditioner 210 according to the third embodiment preferentially performs the process of increasing the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, since the capacity | capacitance reduction of the compressor 21 can be suppressed to the minimum, the freezing of the evaporator 24 can be suppressed, suppressing the fall of the cooling capacity of the air conditioner 210. FIG. That is, the air conditioner 210 increases the rotational frequency of the blower 31 and, in the case where there is still a possibility of freezing, reduces the operating frequency of the compressor 21, thereby minimizing the decrease in capacity, Freezing of the evaporator 24 can be prevented with high accuracy.
 ところで、上記においては、現在の風量が風量最大値Afm未満であると判定された場合に、設定値演算処理部256が、回転周波数設定値のみを演算する場合を例示したが、これに限定されるものではない。図12は、図8の空気調和機における蒸発温度と風量と圧縮機の運転周波数との他の関係を例示する説明図である。例えば、図12に示す時間Mのように、現在の風量と風量最大値Afmとの差が小さい場合は、送風機31の回転周波数を風量最大値Afmまで上昇させても、凍結防止を十分に図れない可能性がある。そこで、こうした場合を想定して、蒸発温度Teが凍結閾値Tまで低下したとき、設定値演算処理部256が、送風機31の回転周波数を上昇させると共に、圧縮機21の運転周波数を低下させるようにしてもよい。 By the way, in the above, the case where the set value calculation processing unit 256 calculates only the rotation frequency set value when it is determined that the current air volume is less than the maximum air volume value Afm is illustrated, but the present invention is not limited thereto. It is not something. FIG. 12 is an explanatory diagram illustrating another relationship among the evaporation temperature, the air volume, and the operating frequency of the compressor in the air conditioner of FIG. For example, when the difference between the current air volume and the maximum air volume value Afm is small as at time M shown in FIG. 12, it is possible to sufficiently prevent freezing even if the rotational frequency of the blower 31 is increased to the maximum air volume value Afm. There is no possibility. Therefore, assuming such a case, when the evaporation temperature Te decreases to the freezing threshold T, the set value calculation processing unit 256 increases the rotational frequency of the blower 31 and decreases the operating frequency of the compressor 21. May be.
 この場合、例えば記憶部51に、機器の能力Qeと回転周波数設定値と運転周波数設定値とが関連づけられた1つの設定値テーブルを格納しておき、制御装置250が、風量演算部56dの機能と運転周波数演算部256eの機能とを併せもつ演算部を有するようにするとよい。そして、設定値演算処理部256は、風量判定部258による判定の結果にかかわらず、回転周波数設定値と運転周波数設定値との双方を演算し、演算結果を動作制御部257に出力するようにしてもよい。このようにすれば、風量判定部258の判定時における送風機31の回転周波数と風量最大値Afmとの差が小さく、送風機31の回転周波数の上昇量が十分でない状況下でも、圧縮機21の運転周波数を減少させることにより、蒸発器24の凍結を精度よく防止することができる。 In this case, for example, one setting value table in which the capability Qe of the device, the rotation frequency setting value, and the operation frequency setting value are associated is stored in the storage unit 51, and the control device 250 performs the function of the air volume calculation unit 56 d. It is preferable to have a calculation unit that combines the functions of the operation frequency calculation unit 256e. The set value calculation processing unit 256 calculates both the rotation frequency set value and the operation frequency set value regardless of the determination result by the air volume determination unit 258, and outputs the calculation result to the operation control unit 257. May be. In this way, even when the difference between the rotational frequency of the blower 31 and the maximum airflow value Afm at the time of determination by the air flow determination unit 258 is small and the amount of increase in the rotational frequency of the blower 31 is not sufficient, the operation of the compressor 21 is performed. By reducing the frequency, freezing of the evaporator 24 can be prevented with high accuracy.
 加えて、空気調和機210は、風量調整ユニット30の代わりに風量調整ユニット130を有し、風量演算部56dの代わりに風量演算部156dを有するようにしてもよい。そして、動作制御部257が、動作制御部157と同様に風量調整ダンパ32の開度を調整する機能を有していてもよい。すなわち、空気調和機210は、送風機31の回転周波数の調整と、風量調整ダンパ32の開度の調整と、圧縮機21の運転周波数の調整とを組み合わせて、蒸発器24の凍結防止制御を行うようにしてもよい。かかる構成を採った空気調和機210によれば、より細かく柔軟な凍結防止制御を行うことができるため、蒸発器24の凍結をさらに精度よく防止することができる。 In addition, the air conditioner 210 may include an air volume adjustment unit 130 instead of the air volume adjustment unit 30, and may include an air volume calculation unit 156d instead of the air volume calculation unit 56d. And the operation control part 257 may have the function to adjust the opening degree of the air volume adjustment damper 32 similarly to the operation control part 157. That is, the air conditioner 210 performs anti-freezing control of the evaporator 24 by combining the adjustment of the rotation frequency of the blower 31, the adjustment of the opening degree of the air volume adjustment damper 32, and the adjustment of the operation frequency of the compressor 21. You may do it. According to the air conditioner 210 adopting such a configuration, finer and more flexible freezing prevention control can be performed, so that the freezing of the evaporator 24 can be prevented with higher accuracy.
 ところで、図10および図12では、経時的な外気温度の低下に伴って、送風機31の回転周波数を段階的に上昇させ、次いで圧縮機21の運転周波数を段階的に低下させる様子を示している。しかし、空気調和機210は、外気温度の変動、すなわち機器の能力Qeの変動に応じて、送風機31の回転周波数の上昇処理又は下降処理と、圧縮機21の運転周波数の上昇処理又は低下処理とを組み合わせて行うようにしてもよい。 10 and 12 show a state in which the rotational frequency of the blower 31 is increased in a stepwise manner and then the operating frequency of the compressor 21 is lowered in a stepwise manner as the outside air temperature decreases with time. . However, the air conditioner 210 performs an increase process or a decrease process of the rotational frequency of the blower 31 and an increase process or a decrease process of the operating frequency of the compressor 21 in accordance with a change in the outside air temperature, that is, a change in the capacity Qe of the device. May be performed in combination.
実施の形態4.
 図13は、本発明の実施の形態4に係る空気調和機の構成を例示する概略図である。図14は、図13の空気調和機が有する制御装置の機能的構成を示すブロック図である。図13および図14に基づき、本実施の形態4に係る空気調和機の構成および動作について説明する。上述した実施の形態1~3と同等の構成部材については同一の符号を用いて説明は省略する。
Embodiment 4 FIG.
FIG. 13 is a schematic view illustrating the configuration of an air conditioner according to Embodiment 4 of the present invention. FIG. 14 is a block diagram illustrating a functional configuration of a control device included in the air conditioner of FIG. Based on FIG. 13 and FIG. 14, the structure and operation | movement of the air conditioner which concerns on this Embodiment 4 are demonstrated. Constituent members equivalent to those in the first to third embodiments described above are denoted by the same reference numerals and description thereof is omitted.
 本実施の形態4における空気調和機310は、図13に示すように、蒸発器24に流入する冷媒を迂回させるバイパス回路320を備えた冷媒回路310Aを有している。冷媒回路310Aの他の構成は、冷媒回路10Aと同様に構成されている。 As shown in FIG. 13, the air conditioner 310 according to the fourth embodiment includes a refrigerant circuit 310 </ b> A including a bypass circuit 320 that bypasses the refrigerant flowing into the evaporator 24. Other configurations of the refrigerant circuit 310A are the same as those of the refrigerant circuit 10A.
 バイパス回路320は、蒸発器24の入口側と出口側とを接続するバイパス配管320aと、バイパス配管320aに設けられ、バイパス配管320aに流入する冷媒の流量を調整する流量調整弁320bと、を有している。流量調整弁320bは、例えば電子膨張弁からなり、開度が調整できるようになっている。 The bypass circuit 320 includes a bypass pipe 320a that connects the inlet side and the outlet side of the evaporator 24, and a flow rate adjustment valve 320b that is provided in the bypass pipe 320a and adjusts the flow rate of the refrigerant flowing into the bypass pipe 320a. is doing. The flow rate adjustment valve 320b is composed of, for example, an electronic expansion valve, and the opening degree can be adjusted.
 また、空気調和機310は、図13および図14に示すように、冷媒回路130Aおよび風量調整ユニット30の動作を制御する制御装置350を有している。制御装置350は、記憶部51と、凝縮温度演算部52と、過冷却度演算部53と、過熱度演算部54と、凍結判定部55と、設定値演算処理部356と、動作制御部357と、風量判定部258と、を有している。 Moreover, the air conditioner 310 has the control apparatus 350 which controls operation | movement of 130 A of refrigerant circuits and the air volume adjustment unit 30, as shown to FIG. 13 and FIG. The control device 350 includes a storage unit 51, a condensation temperature calculation unit 52, a supercooling degree calculation unit 53, a superheat degree calculation unit 54, a freezing determination unit 55, a set value calculation processing unit 356, and an operation control unit 357. And an air volume determination unit 258.
 本実施の形態4における記憶部51には、風量設定値としての回転周波数設定値と、流量調整弁320bの開度を示す弁開度設定値と、が記憶されている。回転周波数設定値と弁開度設定値とは、蒸発器24の凍結防止用に予め設定されている。より具体的に、記憶部51には、設定値テーブルとして、機器の能力Qeと回転周波数設定値とが関連づけられた回転設定値テーブルと、機器の能力Qeと弁開度設定値とが関連づけられた弁開度設定値テーブルと、が格納されている。弁開度設定値テーブルでは、機器の能力Qeの範囲ごとに弁開度設定値が関連づけられている。弁開度設定値テーブルは、機器の能力Qeが小さくなると、弁開度設定値が大きくなるように構成されている。 The storage unit 51 in the fourth embodiment stores a rotation frequency setting value as an air flow setting value and a valve opening setting value indicating the opening of the flow rate adjustment valve 320b. The rotational frequency set value and the valve opening set value are set in advance for preventing the evaporator 24 from freezing. More specifically, in the storage unit 51, as a setting value table, a rotation setting value table in which the device capability Qe and the rotation frequency setting value are associated, and a device capability Qe and the valve opening setting value are associated. A valve opening setting value table is stored. In the valve opening setting value table, the valve opening setting value is associated with each range of the capability Qe of the device. The valve opening setting value table is configured such that the valve opening setting value increases when the capability Qe of the device decreases.
 設定値演算処理部356は、蒸発圧力演算部56aと、冷媒流量演算部56bと、能力演算部56cと、風量演算部56dと、弁開度演算部356fを有している。設定値演算処理部356は、風量判定部258において現在の風量が風量最大値Afm未満であると判定された場合に、風量演算部56dが回転周波数設定値を演算するようになっている。 The set value calculation processing unit 356 includes an evaporation pressure calculation unit 56a, a refrigerant flow rate calculation unit 56b, a capacity calculation unit 56c, an air volume calculation unit 56d, and a valve opening calculation unit 356f. In the set value calculation processing unit 356, when the air volume determination unit 258 determines that the current air volume is less than the maximum air volume value Afm, the air volume calculation unit 56d calculates the rotation frequency setting value.
 また、設定値演算処理部356は、現在の風量が風量最大値Afmに達していると判定された場合、弁開度演算部356fが、能力演算部56cにおいて演算された機器の能力Qeを弁開度設定値テーブルに照らして弁開度設定値を演算するようになっている。つまり、弁開度演算部356fは、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定され、かつ送風機31によって蒸発器24に送風される風量が風量最大値Afmに到達している場合に、弁開度設定値を演算するものである。弁開度演算部356fは、演算した弁開度設定値の情報を動作制御部357に出力する機能を有している。 Further, when it is determined that the current air volume has reached the maximum air volume value Afm, the set value calculation processing unit 356 controls the device performance Qe calculated by the capacity calculation unit 56c. The valve opening setting value is calculated in light of the opening setting value table. That is, the valve opening calculation unit 356f determines that the evaporation temperature Te is equal to or lower than the freezing threshold T in the freezing determination unit 55, and the air volume blown to the evaporator 24 by the blower 31 reaches the maximum airflow value Afm. In this case, the valve opening setting value is calculated. The valve opening calculation unit 356f has a function of outputting information of the calculated valve opening setting value to the operation control unit 357.
 動作制御部357は、弁開度演算部356fにおいて演算された弁開度設定値をもとに、流量調整弁320bの開度を調整する機能を有している。つまり、動作制御部357は、蒸発器24へ流入する冷媒の一部をバイパス回路320へ迂回させる機能を有している。動作制御部357は、凍結判定部55において蒸発温度Teが凍結閾値T以下であると判定され、かつ送風機31によって蒸発器24に送風される風量が風量最大値Afmに到達している場合、流量調整弁320bの開度を大きくするようになっている。動作制御部357の他の構成は、上述した実施の形態1の動作制御部57と同様である。 The operation control unit 357 has a function of adjusting the opening of the flow rate adjustment valve 320b based on the valve opening setting value calculated by the valve opening calculating unit 356f. That is, the operation control unit 357 has a function of bypassing a part of the refrigerant flowing into the evaporator 24 to the bypass circuit 320. The operation control unit 357 determines the flow rate when the freezing determination unit 55 determines that the evaporation temperature Te is equal to or lower than the freezing threshold T and the amount of air blown to the evaporator 24 by the blower 31 has reached the maximum airflow value Afm. The opening degree of the adjustment valve 320b is increased. Other configurations of the operation control unit 357 are the same as those of the operation control unit 57 of the first embodiment described above.
 空気調和機310の動作は、図11に基づいて説明した空気調和機210の動作と同様である。すなわち、風量判定部258において、現在の風量が風量最大値Afmに達していると判定された場合に(ステップS201/Yes)、設定値演算処理部356は、弁開度設定値を演算し、演算した弁開度設定値の情報を動作制御部357へ出力する(ステップS202に対応)。動作制御部357は、設定値演算処理部56から出力された弁開度設定値の情報に従い、流量調整弁320bの開度が弁開度設定値となるように、流量調整弁320bの開度を調整する(ステップS203に対応)。 The operation of the air conditioner 310 is the same as the operation of the air conditioner 210 described with reference to FIG. That is, when the air volume determination unit 258 determines that the current air volume has reached the maximum air volume value Afm (step S201 / Yes), the set value calculation processing unit 356 calculates the valve opening set value, Information on the calculated valve opening setting value is output to the operation control unit 357 (corresponding to step S202). The operation control unit 357 opens the opening of the flow rate adjustment valve 320b according to the information on the valve opening setting value output from the set value calculation processing unit 56 so that the opening of the flow rate adjustment valve 320b becomes the valve opening setting value. (Corresponding to step S203).
 ここで、流量調整弁320bは、開閉のみが可能な電磁弁等であってもよい。この場合、空気調和機310は、例えば、蒸発器24の凍結のおそれがない状態において、流量調整弁320bを閉の状態にしておくようにするとよい。そして、空気調和機310は、蒸発器24の凍結のおそれが生じ、かつ送風機31の回転周波数が風量最大値Afmに達するといった特定の条件を具備した場合に、流量調整弁320bを開の状態とするようにしてもよい。 Here, the flow rate adjustment valve 320b may be an electromagnetic valve or the like that can only be opened and closed. In this case, for example, the air conditioner 310 may keep the flow rate adjustment valve 320b closed in a state where the evaporator 24 is not likely to freeze. The air conditioner 310 opens the flow rate adjustment valve 320b when there is a possibility that the evaporator 24 may freeze and the rotation frequency of the blower 31 reaches the maximum airflow value Afm. You may make it do.
 以上のように、本実施の形態4における空気調和機310は、蒸発温度が凍結閾値T以下である場合に、蒸発器24を通過する風量を上昇させる処理を優先的に行う。よって、空気調和機310によれば、蒸発器24への冷媒流入量の減少を最小限に抑えることができるため、空気調和機310の冷房能力の低下を抑えながら、蒸発器24の凍結を抑制することができる。 As described above, the air conditioner 310 according to the fourth embodiment preferentially performs the process of increasing the amount of air passing through the evaporator 24 when the evaporation temperature is equal to or lower than the freezing threshold T. Therefore, according to the air conditioner 310, since the reduction | decrease in the refrigerant | coolant inflow amount to the evaporator 24 can be suppressed to the minimum, the freezing of the evaporator 24 is suppressed, suppressing the fall of the cooling capacity of the air conditioner 310. can do.
 ところで、上記においては、現在の風量が風量最大値Afm未満であると判定された場合に、設定値演算処理部256が、回転周波数設定値のみを演算する場合を例示したが、これに限定されるものではない。例えば、設定値演算処理部356が、蒸発温度Teが凍結閾値Tまで低下したとき、送風機31の回転周波数を上昇させると共に、流量調整弁320bの開度を大きくするようにしてもよい。この場合、例えば記憶部51に、機器の能力Qeと回転周波数設定値と弁開度設定値とが関連づけられた1つの設定値テーブルを格納しておき、制御装置350が、風量演算部56dの機能と、弁開度演算部356fの機能とを併せもつ演算部を有するようにするとよい。そして、設定値演算処理部356は、風量判定部258による判定の結果にかかわらず、回転周波数設定値と弁開度設定値との双方を演算し、演算結果を動作制御部357に出力するようにしてもよい。このようにすれば、風量判定部258の判定時における送風機31の回転周波数と風量最大値Afmとの差が小さく、送風機31の回転周波数の上昇量が十分でない状況下でも、流量調整弁320bの開度を大きくすることにより、蒸発器24の凍結を精度よく防止することができる。 By the way, in the above, the case where the set value calculation processing unit 256 calculates only the rotation frequency set value when it is determined that the current air volume is less than the maximum air volume value Afm is illustrated, but the present invention is not limited thereto. It is not something. For example, the set value calculation processing unit 356 may increase the rotational frequency of the blower 31 and increase the opening of the flow rate adjustment valve 320b when the evaporation temperature Te decreases to the freezing threshold T. In this case, for example, the storage unit 51 stores one set value table in which the capability Qe of the device, the rotation frequency set value, and the valve opening set value are associated, and the control device 350 stores the air volume calculation unit 56d. It is preferable to have a calculation unit that has both the function and the function of the valve opening calculation unit 356f. The set value calculation processing unit 356 calculates both the rotation frequency set value and the valve opening set value regardless of the determination result by the air volume determination unit 258, and outputs the calculation result to the operation control unit 357. It may be. In this way, the difference between the rotational frequency of the blower 31 and the maximum airflow value Afm at the time of determination by the air volume determination unit 258 is small, and even when the increase amount of the rotational frequency of the blower 31 is not sufficient, the flow rate adjustment valve 320b By increasing the opening, freezing of the evaporator 24 can be accurately prevented.
 加えて、空気調和機310は、風量調整ユニット30の代わりに風量調整ユニット130を有し、風量演算部56dの代わりに風量演算部156dを有するようにしてもよい。そして、動作制御部357が、動作制御部157と同様に風量調整ダンパ32の開度を調整する機能を有していてもよい。すなわち、空気調和機310は、送風機31の回転周波数の調整と、風量調整ダンパ32の開度の調整と、流量調整弁320bの開度の調整とを組み合わせて、蒸発器24の凍結防止制御を行うようにしてもよい。また、空気調和機310は、運転周波数演算部256eをさらに有するようにし、送風機31の回転周波数の調整と、圧縮機21の運転周波数の調整と、流量調整弁320bの開度の調整とを組み合わせて、蒸発器24の凍結防止制御を行うようにしてもよい。もっとも、空気調和機310は、運転周波数演算部256eを有すると共に、風量調整ユニット30および風量演算部56dの代わりに風量調整ユニット130および風量演算部156dを有するようにしてもよい。そして、空気調和機310は、送風機31の回転周波数の調整と、風量調整ダンパ32の開度の調整と、圧縮機21の運転周波数の調整と、流量調整弁320bの開度の調整とを組み合わせて、蒸発器24の凍結防止制御を行うようにしてもよい。上記のような各構成を採った空気調和機310によれば、より細かく柔軟な凍結防止制御を行うことができるため、蒸発器24の凍結をさらに精度よく防止することができる。 In addition, the air conditioner 310 may include an air volume adjusting unit 130 instead of the air volume adjusting unit 30, and may include an air volume calculating unit 156d instead of the air volume calculating unit 56d. And the operation control part 357 may have the function to adjust the opening degree of the air volume adjustment damper 32 similarly to the operation control part 157. That is, the air conditioner 310 performs antifreezing control of the evaporator 24 by combining the adjustment of the rotation frequency of the blower 31, the adjustment of the opening of the air volume adjustment damper 32, and the adjustment of the opening of the flow rate adjustment valve 320b. You may make it perform. In addition, the air conditioner 310 further includes an operation frequency calculation unit 256e, which combines the adjustment of the rotation frequency of the blower 31, the adjustment of the operation frequency of the compressor 21, and the adjustment of the opening degree of the flow rate adjustment valve 320b. Thus, the freeze prevention control of the evaporator 24 may be performed. However, the air conditioner 310 may include the operation frequency calculation unit 256e and may include the air volume adjustment unit 130 and the air volume calculation unit 156d instead of the air volume adjustment unit 30 and the air volume calculation unit 56d. The air conditioner 310 combines the adjustment of the rotational frequency of the blower 31, the adjustment of the opening of the air volume adjustment damper 32, the adjustment of the operating frequency of the compressor 21, and the adjustment of the opening of the flow rate adjustment valve 320b. Thus, the freeze prevention control of the evaporator 24 may be performed. According to the air conditioner 310 adopting each configuration as described above, since the freeze prevention control can be performed more finely and flexibly, the freezing of the evaporator 24 can be prevented with higher accuracy.
 ここで、上記各実施形態の空気調和機によって得られる効果を更に詳細に説明するための比較例を、図15を参照して説明する。図15は、従来の空気調和機における蒸発温度と風量と圧縮機の運転周波数との関係を示す説明図である。図15では、上記各実施の形態における空気調和機と対比するため、便宜上、凍結閾値T、周波数下限値L、および風量初期値Afiが設定されていることを前提とする。図15に示すように、従来の空気調和機は、蒸発温度が凍結閾値Tまで低下したときに、圧縮機の運転周波数を低下させるため、空気調和機の能力が低下し、冷房運転に要求される能力を維持できなくなるといった課題がある。さらに、図15において、「×」で示すように、圧縮機の運転周波数を周波数下限値Lまで低下させても、蒸発温度が凍結閾値Tを下回ってしまう場合は、蒸発器の凍結を防ぐことができなくなる。 Here, a comparative example for explaining the effect obtained by the air conditioner of each of the above embodiments in more detail will be described with reference to FIG. FIG. 15 is an explanatory diagram showing the relationship among the evaporation temperature, the air volume, and the operating frequency of the compressor in a conventional air conditioner. In FIG. 15, for the sake of convenience, it is assumed that the freezing threshold T, the frequency lower limit value L, and the airflow initial value Afi are set in order to compare with the air conditioner in each of the above embodiments. As shown in FIG. 15, in the conventional air conditioner, when the evaporation temperature is lowered to the freezing threshold T, the operating frequency of the compressor is lowered, so that the capacity of the air conditioner is lowered and required for cooling operation. There is a problem that it becomes impossible to maintain the ability. Furthermore, as shown by “x” in FIG. 15, if the evaporation temperature falls below the freezing threshold T even if the operating frequency of the compressor is reduced to the lower frequency limit L, the evaporator should be prevented from freezing. Can not be.
 この点、上記各実施の形態における空気調和機は、蒸発温度Teが凍結閾値Tまで低下したときに蒸発器24を通過する風量を上昇させるため、蒸発器24の凍結を抑制することができる。さらに、実施の形態3および4における空気調和機は、蒸発器24を通過する風量の調整と共に、圧縮機21の運転周波数および流量調整弁320bの開度のうちの少なくとも1つの調整を行う機能を有している。すなわち、実施の形態3および4における空気調和機によれば、圧縮機21の運転周波数の調整および流量調整弁320bの開度の調整のうちの少なくとも1つにより、風量調整による蒸発器24の凍結防止処理を補填することができるため、凍結防止の精度を高めることができる。 In this respect, the air conditioner in each of the above embodiments increases the amount of air passing through the evaporator 24 when the evaporation temperature Te is lowered to the freezing threshold T, so that the evaporator 24 can be prevented from freezing. Furthermore, the air conditioner in the third and fourth embodiments has a function of adjusting at least one of the operating frequency of the compressor 21 and the opening degree of the flow rate adjusting valve 320b as well as the adjustment of the amount of air passing through the evaporator 24. Have. That is, according to the air conditioner in the third and fourth embodiments, the evaporator 24 is frozen by adjusting the air volume by at least one of adjusting the operating frequency of the compressor 21 and adjusting the opening of the flow rate adjusting valve 320b. Since the prevention process can be compensated, the accuracy of the freeze prevention can be improved.
 上記各実施の形態は、空気調和機における好適な具体例であり、本発明の技術的範囲は、これらの態様に限定されるものではない。例えば、上記各実施の形態では、冷房運転を実行する空気調和機を例示したが、これに限定されるものではない。各実施の形態における空気調和機は、冷媒の流路を切り替える四方弁を冷媒回路に設け、冷房運転と暖房運転との切り替えが可能な構成としてもよい。なお、空気調和機が暖房運転を行う場合、凝縮器22は蒸発器として機能し、蒸発器24は凝縮器として機能する。 The above embodiments are preferred specific examples of the air conditioner, and the technical scope of the present invention is not limited to these embodiments. For example, in each of the above embodiments, an air conditioner that performs a cooling operation is illustrated, but the present invention is not limited to this. The air conditioner in each embodiment may be configured such that a four-way valve for switching the refrigerant flow path is provided in the refrigerant circuit so that switching between the cooling operation and the heating operation is possible. In addition, when an air conditioner performs heating operation, the condenser 22 functions as an evaporator, and the evaporator 24 functions as a condenser.
 また、上記各実施の形態における空気調和機は、上述した各構成部材による構成に限定されるものではない。すなわち、各実施の形態における空気調和機は、圧縮機21を保護するために液冷媒を分離するアキュムレータを具備していてもよいし、冷凍機油を回収するために油分離器を具備していてもよい。なお、上記各実施の形態における空気調和機に用いる冷媒は、冷凍サイクルを利用可能なものであればよく、例えば、R22のような単一冷媒でもよいし、R410Aのような混合冷媒でもよいし、CO2のような自然冷媒でもよい。 In addition, the air conditioner in each of the above embodiments is not limited to the configuration using the above-described components. That is, the air conditioner in each embodiment may include an accumulator that separates the liquid refrigerant in order to protect the compressor 21, or an oil separator to recover the refrigeration oil. Also good. The refrigerant used in the air conditioner in each of the above embodiments may be any refrigerant that can use the refrigeration cycle. For example, a single refrigerant such as R22 or a mixed refrigerant such as R410A may be used. Natural refrigerants such as CO2 may also be used.
 10、110、210、310 空気調和機、10A、310A 冷媒回路、20 冷媒配管、21 圧縮機、22 凝縮器、23 減圧装置、24 蒸発器、30、130 風量調整ユニット、31 送風機、31a ファンモータ、31b ファン、32 風量調整ダンパ、41 凝縮器圧力センサ、42 凝縮器出口温度センサ、43 蒸発器入口温度センサ、44 蒸発器出口温度センサ、50、150、250、350 制御装置、51 記憶部、52 凝縮温度演算部、53 過冷却度演算部、54 過熱度演算部、55 凍結判定部、56、156、256、356 設定値演算処理部、56a 蒸発圧力演算部、56b 冷媒流量演算部、56c 能力演算部、56d、156d 風量演算部、57、157、257、357 動作制御部、256e 運転周波数演算部、258 風量判定部、320 バイパス回路、320a バイパス配管、320b 流量調整弁、356f 弁開度演算部、Afi 風量初期値、Afm 風量最大値、Gr 冷媒流量、Pcm 凝縮圧力、Pe 蒸発圧力、Qe 機器の能力、T 凍結閾値、Te 蒸発温度、hr 蒸発器入口エンタルピ、hro 蒸発器出口エンタルピ、Δhr 蒸発器出入口エンタルピ差、V 圧縮機の押しのけ容積、ρ 圧縮される冷媒の密度。 10, 110, 210, 310 Air conditioner, 10A, 310A refrigerant circuit, 20 refrigerant piping, 21 compressor, 22 condenser, 23 decompressor, 24 evaporator, 30, 130 air volume adjustment unit, 31 blower, 31a fan motor , 31b fan, 32 air volume adjustment damper, 41 condenser pressure sensor, 42 condenser outlet temperature sensor, 43 evaporator inlet temperature sensor, 44 evaporator outlet temperature sensor, 50, 150, 250, 350 control device, 51 storage unit, 52 Condensation temperature calculation unit, 53 Supercooling degree calculation unit, 54 Superheat degree calculation unit, 55 Freezing determination unit, 56, 156, 256, 356 Set value calculation processing unit, 56a Evaporation pressure calculation unit, 56b Refrigerant flow rate calculation unit, 56c Ability calculation unit, 56d, 156d, air volume calculation unit, 57, 157, 257, 3 7 Operation control unit, 256e Operation frequency calculation unit, 258 Air flow determination unit, 320 Bypass circuit, 320a bypass piping, 320b Flow adjustment valve, 356f Valve opening calculation unit, Afi air flow initial value, Afm air flow maximum value, Gr refrigerant flow rate, Pcm condensing pressure, Pe evaporating pressure, Qe equipment capacity, T freezing threshold, Te evaporating temperature, hr evaporator inlet enthalpy, hro evaporator outlet enthalpy, Δhr evaporator inlet / outlet enthalpy difference, V compressor displacement, ρ compressed Density of refrigerant.

Claims (5)

  1.  冷媒を圧縮する圧縮機、冷媒を凝縮させる凝縮器、冷媒を減圧する減圧装置、および冷媒を蒸発させる蒸発器が冷媒配管により接続されて形成された冷媒回路と、
     前記蒸発器に空気を送風する送風機を有し、前記蒸発器を通過する風量を調整する風量調整ユニットと、
     前記冷媒回路および前記風量調整ユニットの動作を制御する制御装置と、
    を備え、
     前記制御装置は、
     蒸発温度が凍結閾値以下であるか否かを判定する凍結判定部と、
     前記凍結判定部において蒸発温度が凍結閾値以下であると判定された場合、前記圧縮機の運転周波数をもとに、前記風量調整ユニットによって前記蒸発器に送風される風量を示す風量設定値を演算する設定値演算処理部と、
     前記設定値演算処理部において演算された前記風量設定値をもとに、前記蒸発器を通過する風量を増加させる動作制御部と、を有する空気調和機。
    A refrigerant circuit formed by connecting a compressor that compresses the refrigerant, a condenser that condenses the refrigerant, a decompression device that decompresses the refrigerant, and an evaporator that evaporates the refrigerant through a refrigerant pipe;
    An air volume adjusting unit that adjusts an air volume that passes through the evaporator, and has a blower that blows air to the evaporator;
    A control device for controlling the operation of the refrigerant circuit and the air volume adjustment unit;
    With
    The control device includes:
    A freezing determination unit for determining whether or not the evaporation temperature is equal to or lower than a freezing threshold;
    When the freezing determination unit determines that the evaporation temperature is equal to or lower than the freezing threshold, the air volume setting value indicating the air volume blown to the evaporator by the air volume adjusting unit is calculated based on the operating frequency of the compressor. A set value calculation processing unit to
    An air conditioner comprising: an operation control unit configured to increase an air volume passing through the evaporator based on the air volume setting value calculated in the set value calculation processing unit.
  2.  前記動作制御部は、
     前記送風機の回転周波数を上昇させて、前記蒸発器を通過する風量を増加させるものである請求項1に記載の空気調和機。
    The operation controller is
    2. The air conditioner according to claim 1, wherein a rotational frequency of the blower is increased to increase an amount of air passing through the evaporator.
  3.  前記風量調整ユニットは、
     前記蒸発器に付設され、前記蒸発器を通過する風量を調整する風量調整ダンパを有し、
     前記動作制御部は、
     前記風量調整ダンパの開度を大きくして、前記蒸発器を通過する風量を増加させるものである請求項1又は2に記載の空気調和機。
    The air volume adjusting unit is
    An air volume adjusting damper attached to the evaporator, for adjusting an air volume passing through the evaporator;
    The operation controller is
    The air conditioner according to claim 1 or 2, wherein the air volume adjusting damper is opened to increase an air volume passing through the evaporator.
  4.  前記設定値演算処理部は、
     前記凍結判定部において蒸発温度が凍結閾値以下であると判定され、かつ前記送風機によって前記蒸発器に送風される風量が最大値に到達している場合に、前記圧縮機の運転周波数を示す運転周波数設定値を演算する運転周波数演算部を有し、
     前記動作制御部は、
     前記運転周波数演算部において演算された前記運転周波数設定値をもとに、前記圧縮機の運転周波数を低下させる機能を有する請求項1~3の何れか一項に記載の空気調和機。
    The set value calculation processing unit
    The operation frequency indicating the operation frequency of the compressor when the evaporating temperature is determined to be equal to or lower than the freezing threshold in the freezing determination unit and the amount of air blown to the evaporator by the blower has reached the maximum value. It has an operation frequency calculation part that calculates the set value,
    The operation controller is
    The air conditioner according to any one of claims 1 to 3, wherein the air conditioner has a function of lowering an operation frequency of the compressor based on the operation frequency set value calculated by the operation frequency calculation unit.
  5.  前記冷媒回路は、
     前記蒸発器の入口側と出口側とを接続するバイパス配管と、
     前記バイパス配管に設けられ、前記バイパス配管に流入する冷媒の流量を調整する流量調整弁と、を有し、
     前記設定値演算処理部は、
     前記凍結判定部において蒸発温度が凍結閾値以下であると判定され、かつ前記送風機によって前記蒸発器に送風される風量が最大値に到達している場合に、前記流量調整弁の開度を示す弁開度設定値を演算する弁開度演算部を有し、
     前記動作制御部は、
     前記弁開度演算部において演算された前記弁開度設定値をもとに、前記流量調整弁の開度を大きくする機能を有する請求項1~4の何れか一項に記載の空気調和機。
    The refrigerant circuit is
    A bypass pipe connecting the inlet side and the outlet side of the evaporator;
    A flow rate adjusting valve that is provided in the bypass pipe and adjusts the flow rate of the refrigerant flowing into the bypass pipe;
    The set value calculation processing unit
    A valve that indicates the opening degree of the flow rate adjustment valve when the freezing determination unit determines that the evaporation temperature is equal to or lower than the freezing threshold and the amount of air blown to the evaporator by the blower reaches a maximum value. It has a valve opening calculation unit that calculates the opening setting value,
    The operation controller is
    The air conditioner according to any one of claims 1 to 4, wherein the air conditioner has a function of increasing an opening of the flow rate adjustment valve based on the valve opening setting value calculated by the valve opening calculation unit. .
PCT/JP2016/083920 2016-11-16 2016-11-16 Air conditioner WO2018092203A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083920 WO2018092203A1 (en) 2016-11-16 2016-11-16 Air conditioner
JP2018550909A JP6664511B2 (en) 2016-11-16 2016-11-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083920 WO2018092203A1 (en) 2016-11-16 2016-11-16 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018092203A1 true WO2018092203A1 (en) 2018-05-24

Family

ID=62145445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083920 WO2018092203A1 (en) 2016-11-16 2016-11-16 Air conditioner

Country Status (2)

Country Link
JP (1) JP6664511B2 (en)
WO (1) WO2018092203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397102A (en) * 2020-03-18 2020-07-10 宁波奥克斯电气股份有限公司 Air conditioner condensation prevention control method and air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873435B (en) * 2018-08-31 2021-12-28 青岛海尔空调电子有限公司 Anti-frosting control method for indoor unit of air conditioner
CN112577155B (en) * 2019-09-27 2022-12-16 广东美的制冷设备有限公司 Control method of air conditioner, air conditioner and computer readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257843A (en) * 1993-03-02 1994-09-16 Matsushita Electric Ind Co Ltd Control device for air conditioner
JPH09210427A (en) * 1996-02-07 1997-08-12 Toshiba Corp Air conditioner
JP2001065953A (en) * 1999-08-31 2001-03-16 Mitsubishi Electric Corp Air conditioner and control method of the same
US20100269521A1 (en) * 2009-04-28 2010-10-28 Steven Clay Moore Air-conditioning with dehumidification
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner
US20150082818A1 (en) * 2013-09-26 2015-03-26 Carrier Corporation System and method of freeze protection of a heat exchanger in an hvac system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018679A (en) * 1998-07-06 2000-01-18 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2003166743A (en) * 2001-11-29 2003-06-13 Mitsubishi Electric Corp Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257843A (en) * 1993-03-02 1994-09-16 Matsushita Electric Ind Co Ltd Control device for air conditioner
JPH09210427A (en) * 1996-02-07 1997-08-12 Toshiba Corp Air conditioner
JP2001065953A (en) * 1999-08-31 2001-03-16 Mitsubishi Electric Corp Air conditioner and control method of the same
US20100269521A1 (en) * 2009-04-28 2010-10-28 Steven Clay Moore Air-conditioning with dehumidification
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner
US20150082818A1 (en) * 2013-09-26 2015-03-26 Carrier Corporation System and method of freeze protection of a heat exchanger in an hvac system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397102A (en) * 2020-03-18 2020-07-10 宁波奥克斯电气股份有限公司 Air conditioner condensation prevention control method and air conditioner
CN111397102B (en) * 2020-03-18 2021-08-24 宁波奥克斯电气股份有限公司 Air conditioner condensation prevention control method and air conditioner

Also Published As

Publication number Publication date
JP6664511B2 (en) 2020-03-13
JPWO2018092203A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6385568B2 (en) Air conditioner
JP6595205B2 (en) Refrigeration cycle equipment
WO2014128830A1 (en) Air conditioning device
JP5744081B2 (en) Air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2006250479A (en) Air conditioner
AU2002332260B2 (en) Air conditioner
JP5418622B2 (en) Refrigeration equipment
JPWO2016185568A1 (en) Refrigeration equipment
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
JPWO2013179334A1 (en) Air conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
WO2018211556A1 (en) Refrigeration cycle device
JP2015148406A (en) Refrigeration device
WO2018092203A1 (en) Air conditioner
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP6588626B2 (en) Refrigeration equipment
JP2010101552A (en) Gas injection refrigeration system
JP2009014208A (en) Refrigerating device
WO2017109906A1 (en) Air conditioner
JP6758506B2 (en) Air conditioner
JPWO2017130319A1 (en) Refrigeration cycle equipment
JP6045400B2 (en) Heat source unit of refrigeration cycle apparatus and control method thereof
JP4887929B2 (en) Refrigeration equipment
JP2006284034A (en) Air conditioner and its expansion valve control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921592

Country of ref document: EP

Kind code of ref document: A1