WO2018090646A1 - 系留飞行器的助推方法、助推装置及系留飞行器系统 - Google Patents

系留飞行器的助推方法、助推装置及系留飞行器系统 Download PDF

Info

Publication number
WO2018090646A1
WO2018090646A1 PCT/CN2017/092050 CN2017092050W WO2018090646A1 WO 2018090646 A1 WO2018090646 A1 WO 2018090646A1 CN 2017092050 W CN2017092050 W CN 2017092050W WO 2018090646 A1 WO2018090646 A1 WO 2018090646A1
Authority
WO
WIPO (PCT)
Prior art keywords
tethered aircraft
aircraft
flight
tethered
horizontal displacement
Prior art date
Application number
PCT/CN2017/092050
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
田小路
Original Assignee
深圳光启空间技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启空间技术有限公司 filed Critical 深圳光启空间技术有限公司
Publication of WO2018090646A1 publication Critical patent/WO2018090646A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0866Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted to captive aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft

Definitions

  • the present invention relates to the field of mooring aircraft technology, and more particularly to a boosting method, a boosting device and a mooring aircraft system for a tethered aircraft.
  • a tethered aircraft is an aircraft that includes an aircraft main body, a power supply line, and a ground power and control device.
  • One end of the power supply cord is connected to the main body of the aircraft, and the other end is connected to the ground power supply and control device.
  • the ground power supply and control device supplies power to the main body of the aircraft through the power supply line.
  • the present invention is achieved by a boosting method for a tethered aircraft, wherein the tethered aircraft is connected to a ground power supply and control device via a power supply cord, and the boosting method includes the following steps:
  • Another object of the present invention is to provide a boosting device for a tethered aircraft, wherein the tethered aircraft is connected to a ground power supply and control device via a power supply cord, and the boosting device includes:
  • a control module configured to control the tethered aircraft to perform a flight task
  • a determining module configured to determine, according to current location information and flight parameters of the tethered aircraft, whether a horizontal displacement thrust is required to be provided for the tethered aircraft in the flight;
  • a horizontal displacement pushing module configured to generate a control signal according to the current position information and the flight parameter, to generate a horizontal displacement thrust according to the current position information and the flight parameter, and further Overcoming the pulling force of the power cord to the tethered aircraft in a horizontal direction.
  • Another object of the present invention is to provide a tethered aircraft system comprising a tethered aircraft, the tethered aircraft system further comprising a booster device for the tethered aircraft as described above.
  • the present invention provides a boosting method for a tethered aircraft.
  • the tethered aircraft is connected to the ground power supply and control device through a power supply rope, and the current position information of the tethered aircraft is controlled during the process of controlling the tethered aircraft to perform the flight mission. And flight parameters to determine whether it is necessary to provide horizontal displacement thrust for the tethered aircraft in the mission.
  • FIG. 1 is a flow chart of a boosting method of a tethered aircraft provided by a first embodiment of the present invention
  • FIG. 2 is a flow chart of a boosting method of a tethered aircraft according to a second embodiment of the present invention
  • step S240 in the boosting method of the tethered aircraft provided by the second embodiment of the present invention
  • FIG. 4 is a schematic structural view of a boosting device for a tethered aircraft according to a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a relationship between an angle and a trigger angle in a second embodiment of the present invention.
  • FIG. 6 is a schematic structural view of an aircraft according to a preferred embodiment of the present invention. Embodiments of the invention
  • FIG. 1 shows a flow chart of a boosting method of the tethered aircraft provided by the present embodiment, and for convenience of explanation, only parts related to the present embodiment are shown.
  • a boosting method for a tethered aircraft is connected to the ground power supply and control device through a power supply rope
  • the boosting method includes the following steps:
  • S110 controlling the tethered aircraft to perform a flight task
  • S120 determining, according to current location information and flight parameters of the tethered aircraft, whether it is necessary to provide a horizontal displacement thrust for the tethered aircraft in the flight task;
  • S130 if yes, generating a control signal according to the current position information and the flight parameter to control the tethered aircraft to generate a horizontal displacement thrust, thereby overcoming the power supply rope to the tethered aircraft in a horizontal direction Rally.
  • step S110 the ground power supply and control device controls the tethered aircraft to perform the flight mission.
  • flight missions can include: liftoff, descent, hovering, and dwelling.
  • step S120 it is determined whether the horizontal displacement thrust is required for the tethered aircraft in the flight task according to the current position information of the tethered aircraft and the flight parameters.
  • the flight parameters include flight path information of the tethered aircraft after performing the mission.
  • Step S120 is specifically: determining, according to the current location information and the flight path information, whether to provide a horizontal displacement thrust to the tethered aircraft.
  • the horizontal displacement thrust is related to the flight path information, and is used to describe the displacement thrust of the tethered aircraft in the horizontal direction after performing the mission.
  • step S130 the horizontal displacement thrust is less than the connection force between the power supply rope and the ground power supply and control device,
  • the flat displacement thrust is less than the connection force between the power supply rope and the tethered aircraft, and the horizontal displacement thrust is less than the maximum tensile force of the power supply rope, that is, the tethered aircraft does not break under the horizontal displacement thrust, the tethered aircraft and the power supply rope.
  • FIG. 6 is a schematic structural view of an aircraft provided by a preferred embodiment of the present invention. As shown in FIG. 6, the boosting method of a mooring aircraft provided in this embodiment is based on being disposed on the mooring aircraft 1. At least one level booster 2 is implemented.
  • the boosting method of a tethered aircraft provided by the embodiment is implemented based on a plurality of horizontal boosters disposed on the tethered aircraft.
  • determining, according to the control signal, that a horizontal displacement thrust is required for the tethered aircraft in the flight determining current position information and flight path information of the tethered aircraft, according to current position information and flight path of the tethered aircraft
  • the information is selected from one or more horizontal boosters such that the direction of the horizontal displacement thrust provided by the one or more horizontal boosters is directed to the target position, and the horizontal displacement thrust is provided to the tethered aircraft by one or more horizontal boosters
  • the resultant force allows the tethered aircraft to fly to the target location.
  • the horizontal boosters in the four directions are respectively used to provide the tethered aircraft in four directions of east, west, south, and north.
  • the horizontal displacement thrust, the horizontal boosters in the four directions are a first horizontal booster, a second horizontal booster, a third horizontal booster, and a fourth horizontal booster, respectively.
  • determining, according to the control signal, that a horizontal displacement thrust is required for the tethered aircraft in the mission determining a target position of the tethered aircraft on the horizontal plane according to the control signal, for example, reaching the target displacement requires the tethered aircraft to be oriented eastward Advancing 0.5 m, the first horizontal booster is selected according to the target position, and the first horizontal booster is controlled to provide the tethered aircraft with a horizontal displacement thrust of 0.5 m horizontally, so that the tethered aircraft flies to the target position.
  • reaching the target displacement requires the tethered aircraft to advance horizontally by 0.3 meters to the northeast, according to the mesh.
  • the first horizontal booster and the fourth horizontal booster are selected, and the first horizontal booster and the fourth horizontal booster are controlled to provide a horizontal resultant force to the tethered aircraft, the resultant force enabling the tethered aircraft to northeast
  • the direction advances by 0.3 m horizontally, allowing the tethered aircraft to fly to the target position.
  • FIG. 2 is a flow chart showing a boosting method of the tethered aircraft provided by the present embodiment, and for convenience of explanation, only parts related to the present embodiment are shown.
  • a boosting method for a tethered aircraft comprising the following steps:
  • S210 Control the tethered aircraft to perform a flight task
  • S220 setting a trigger angle for providing a horizontal displacement thrust to the tethered aircraft in the flight mission
  • S230 determining, according to the current location information and the flight trajectory information, whether to provide a horizontal displacement thrust to the tethered aircraft;
  • S240 if yes, generating a control signal according to the current position information and the flight parameter to control the tethered aircraft to generate a horizontal displacement thrust, thereby overcoming the power supply rope to the tethered aircraft in a horizontal direction Rally.
  • the trigger angle is a threshold angle that triggers a horizontal displacement thrust to the tethered aircraft during the flight. Specifically, it can be specifically set according to the mission in practical applications.
  • the flight trajectory information includes at least one target position information, which is used to describe that the tethered aircraft during the execution of the flight mission, with the projection point of the tethered aircraft flight starting point on the horizontal plane as the reference origin , the dwell or flight position relative to the origin.
  • FIG. 3 is a specific flowchart of step S240 in the boosting method of the mooring aircraft provided in this embodiment. As shown in FIG. 3, step S240 includes the following steps:
  • S241 Determine a target location according to the target location information
  • S242 acquiring a line connecting the projection point of the starting point position on the horizontal plane and the target position, and an angle between the connecting line and the vertical direction;
  • the target position is relative to the flight origin of the tethered aircraft, and is the dwell or flight position of the tethered aircraft other than the flight origin of the tethered aircraft.
  • step S242 the projection point of the starting point position on the horizontal plane is a point at which the mooring aircraft is perpendicular to the horizontal plane.
  • One line of the included angle is the vertical direction, and the other line is the line connecting the projection point of the starting point on the horizontal plane with the target position.
  • step S243 the angle is greater than or equal to the trigger angle, which is after the target position is shifted from the starting position in the vertical direction, and the target position and the starting position are respectively linearly drawn to the starting point on the horizontal plane.
  • the angle formed is greater than or equal to the trigger angle.
  • the comparison result of the included angle and the trigger angle serves as a judgment condition as to whether or not the horizontal displacement thrust is required to be provided to the moored aircraft in the flight.
  • the angle is greater than or equal to the trigger angle ⁇ , it is determined that it is necessary to provide a horizontal displacement thrust for the tethered aircraft during the mission.
  • FIG. 5 shows the relationship between the included angle and the trigger angle in the present embodiment.
  • Point A the same position is also a point in the vertical direction.
  • Point 0 is the projection point of the starting point on the horizontal plane
  • point C is the target position
  • point B is the trigger position as an example
  • the angle is the angle of the angle.
  • the angle is the angle of the angle.
  • the dotted line segment CO is the line connecting the projection point 0 of the starting point position A on the horizontal plane with the target position C.
  • the angle between the connecting line and the vertical direction is, the angle is larger than the triggering angle, and it is determined that it needs to be in the flight task.
  • the tethered aircraft provides horizontal displacement thrust.
  • the boosting method of the tethered aircraft determines whether the tethered aircraft is required to be in the flight according to the current position information of the tethered aircraft and the flight parameters during the process of controlling the tethered aircraft to perform the flight mission.
  • the ability of the tethered aircraft to perform the mission can be improved by overcoming the tension of the power cord in the horizontal direction and reaching the target position in the mission.
  • FIG. 4 is a schematic structural view of a boosting device of the tethered aircraft provided by the present embodiment, and for convenience of explanation, only parts related to the present embodiment are shown.
  • a booster device 100 for a tethered aircraft, the boost device 100 includes:
  • the control module 110 is configured to control the tethered aircraft to perform a flight task.
  • the ground power supply and control device controls the tethered aircraft to perform the flight mission.
  • the mission can include: liftoff, descent, hovering, and dwelling.
  • the determining module 120 is configured to determine, according to current location information and flight parameters of the tethered aircraft, whether to provide a horizontal displacement thrust for the tethered aircraft in the flight.
  • the flight parameters include flight path information of the tethered aircraft after performing the mission.
  • the determining module 120 is specifically configured to determine, according to the current location information and the flight trajectory information, whether to provide a horizontal displacement thrust to the tethered aircraft.
  • the horizontal displacement pushing module 130 is configured to: when the determination result of the determining module 120 is ⁇ , generate a control signal according to the current position information and the flight parameter, to control the tethered aircraft to generate a horizontal displacement thrust And further, the pulling force of the power supply rope to the tethered aircraft in a horizontal direction is overcome.
  • the horizontal displacement thrust is less than the connection force between the power supply rope and the ground power supply and control device
  • the horizontal displacement thrust is less than the connection force between the power supply rope and the tethered aircraft
  • the horizontal displacement thrust is less than the maximum tensile force of the power supply rope, that is, the tethered aircraft Under this horizontal displacement thrust, the power supply rope is pulled off, the tethered aircraft is disconnected from the power supply rope, or the power supply rope is disconnected from the ground power supply and control device.
  • the boosting device 100 further includes:
  • the trigger angle setting module 140 is configured to set a trigger angle for providing a horizontal displacement thrust to the tethered aircraft in the flight mission.
  • the trigger angle is a threshold angle that triggers the horizontal displacement thrust to the tethered aircraft in the flight mission. Specifically, it can be specifically set according to the mission in practical applications.
  • the flight trajectory information includes at least one target position information, which is used to describe that the tethered aircraft performs a flight mission, and uses a projection point of the tethered aircraft flight starting point on a horizontal plane as a reference origin. , the dwell or flight position relative to the origin.
  • the horizontal displacement pushing module 130 further includes: a target position acquiring unit 131, an angle acquiring unit 132, and Decision unit 133.
  • the target location acquiring unit 131 is configured to determine a target location according to the target location information.
  • the target position is relative to the starting point of flight of the tethered aircraft, and is the dwelling or flight position of the tethered aircraft other than the flight starting point of the tethered aircraft.
  • the angle acquiring unit 132 is configured to acquire a line connecting the projection point of the starting point position on the horizontal plane and the target position, and an angle between the connecting line and the vertical direction.
  • the projection point of the starting point position on the horizontal plane is a point perpendicular to the horizontal plane of the mooring aircraft
  • one line of the angle is a vertical direction
  • the other line is a projection point of the starting point position on the horizontal plane and the target position The connection between.
  • the determining unit 133 is configured to determine that a horizontal displacement thrust is required for the tethered aircraft in the flight mission when the included angle is greater than or equal to the trigger angle ⁇ .
  • the angle of the angle is greater than or equal to the trigger angle, which is a clip formed after the target position is shifted from the starting point position in the vertical direction, and the target position and the starting position are respectively linearly formed to the starting point on the horizontal plane.
  • the angle is greater than or equal to the trigger angle.
  • Embodiments of the present invention also provide a tethered aircraft system that includes a tethered aircraft, and the tethered aircraft system further includes a booster device 100 for the tethered aircraft of the above-described embodiments.
  • the present invention provides a tethered aircraft boosting method, a boosting device, that is, a tethered aircraft system, in the process of controlling a tethered aircraft to perform a flight mission, based on current position information and flight parameters of the tethered aircraft Is it necessary to provide horizontal displacement thrust for the tethered aircraft during the mission, and if necessary, generate control signals based on current position information and flight parameters, thereby controlling the horizontal displacement thrust of the tethered aircraft, overcoming the level of the power supply rope to the tethered aircraft
  • the pulling force in the direction enables the tethered aircraft to improve the ability of the tethered aircraft to perform the mission by overcoming the pulling force of the power cord in the horizontal direction during the execution of the flight mission to the target position in the mission.
  • the steps or partial steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed.
  • the steps of the foregoing method embodiments are performed, and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • a medium that can store program codes such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种系留飞行器的助推方法、助推装置(100)及系留飞行器系统,在控制系留飞行器执行飞行任务的过程中,根据系留飞行器的当前位置信息和飞行参数判断是否需要在飞行任务中为系留飞行器提供水平位移推力,若需要,则根据当前位置信息和飞行参数生成控制信号,进而控制系留飞行器产生水平位移推力,使得系留飞行器在执行飞行任务过程中能够通过克服供电绳在水平方向上的拉力,抵达飞行任务中的目标位置,提高了系留飞行器执行飞行任务的能力。

Description

发明名称:系留飞行器的助推方法、 助推装置及系留飞行器系统 技术领域
[0001] 本发明涉及系留飞行器技术领域, 尤其涉及一种系留飞行器的助推方法、 助推 装置及系留飞行器系统。
背景技术
[0002] 随着飞行器或无人机的使用趋于平民化和娱乐化, 市场上越来越多的飞行器或 无人机产品备受消费者们追捧。 系留飞行器是一种包括飞行器主体、 供电绳以 及地面供电及控制装置的飞行器。
技术问题
[0003] 通过供电绳的一端与飞行器主体相连, 另一端与地面供电及控制装置相连, 地 面供电及控制装置通过供电绳为飞行器主体提供电能。 虽然现有的系留飞行器 通过地面供电及控制装置拉扯供电绳, 进而控制飞行器主体的飞行高度和飞行 范围, 但是从某个角度来说, 系留飞行器的飞行器主的活动范围也因供电绳的 在水平方向上的拉力而受到限制。
问题的解决方案
技术解决方案
[0004] 本发明的目的在于提供一种系留飞行器的助推方法, 以解决现有的系留飞行器 在执行飞行任务吋因供电绳在水平方向上的拉力而无法抵达目的位置的问题。
[0005] 本发明是这样实现的, 一种系留飞行器的助推方法, 所述系留飞行器通过供电 绳连接地面供电及控制装置, 所述助推方法包括以下步骤:
[0006] 控制所述系留飞行器执行飞行任务;
[0007] 根据所述系留飞行器的当前位置信息和飞行参数判断是否需要在飞行任务中为 系留飞行器提供水平位移推力;
[0008] 若是, 根据所述当前位置信息和所述飞行参数生成控制信号, 以控制所述系留 飞行器产生水平位移推力, 进而克服所述供电绳对所述系留飞行器在水平方向 上的拉力。 [0009] 本发明的另一目的在于提供一种系留飞行器的助推装置, 所述系留飞行器通过 供电绳连接地面供电及控制装置, 所述助推装置包括:
[0010] 控制模块, 用于控制所述系留飞行器执行飞行任务;
[0011] 判断模块, 用于根据所述系留飞行器的当前位置信息和飞行参数判断是否需要 在飞行任务中为系留飞行器提供水平位移推力;
[0012] 水平位移推动模块, 用于在所述判断模块的判定结果为是吋, 根据所述当前位 置信息和所述飞行参数生成控制信号, 以控制所述系留飞行器产生水平位移推 力, 进而克服所述供电绳对所述系留飞行器在水平方向上的拉力。
[0013] 本发明的另一目的在于提供一种系留飞行器系统, 包括系留飞行器, 所述系留 飞行器系统还包括如上所述的系留飞行器的助推装置。
发明的有益效果
有益效果
[0014] 本发明提供的一种系留飞行器的助推方法, 系留飞行器通过供电绳连接地面供 电及控制装置, 在控制系留飞行器执行飞行任务的过程中, 根据系留飞行器的 当前位置信息和飞行参数判断是否需要在飞行任务中为系留飞行器提供水平位 移推力, 若需要, 则根据当前位置信息和飞行参数生成控制信号, 进而控制系 留飞行器产生水平位移推力, 克服了供电绳对系留飞行器在水平方向上的拉力 , 使得系留飞行器在执行飞行任务过程中能够通过克服供电绳在水平方向上的 拉力, 抵达飞行任务中的目标位置, 提高了系留飞行器执行飞行任务的能力。 对附图的简要说明
附图说明
[0015] 图 1是本发明第一实施例提供的系留飞行器的助推方法的流程图;
[0016] 图 2是本发明第二实施例提供的系留飞行器的助推方法的流程图;
[0017] 图 3是本发明第二实施例提供的系留飞行器的助推方法中步骤 S240的具体流程 图;
[0018] 图 4是本发明第三实施例提供的系留飞行器的助推装置的结构示意图;
[0019] 图 5是本发明第二实施例中夹角与触发角度之间的关系示意图;
[0020] 图 6为本发明一则优选实施例所提供的飞行器结构示意图。 本发明的实施方式
[0021] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0022] 本发明的目的在于提供一种系留飞行器的助推方法, 以解决现有的系留飞行器 在执行飞行任务吋因供电绳在水平方向上的拉力而无法抵达目的位置的问题。
[0023] 以下结合具体附图对本发明的实现进行详细的描述:
[0024] 图 1示出了本实施例提供的系留飞行器的助推方法的流程图, 为了便于说明, 仅示出与本实施例相关的部分。
[0025] 一种系留飞行器的助推方法, 系留飞行器通过供电绳连接地面供电及控制装置
, 所述助推方法包括以下步骤:
[0026] S110: 控制所述系留飞行器执行飞行任务;
[0027] S120: 根据所述系留飞行器的当前位置信息和飞行参数判断是否需要在飞行任 务中为系留飞行器提供水平位移推力;
[0028] S130: 若是, 根据所述当前位置信息和所述飞行参数生成控制信号, 以控制所 述系留飞行器产生水平位移推力, 进而克服所述供电绳对所述系留飞行器在水 平方向上的拉力。
[0029] 在步骤 S110中, 地面供电及控制装置控制系留飞行器执行飞行任务。 其中, 飞 行任务可以包括: 升空、 下降、 盘旋以及驻留。
[0030] 在步骤 S120中, 根据所述系留飞行器的当前位置信息和飞行参数判断是否需要 在飞行任务中为系留飞行器提供水平位移推力。
[0031] 需要说明的是, 飞行参数包括所述系留飞行器在执行飞行任务吋的飞行轨迹信 息。 步骤 S120具体为: 根据所述当前位置信息与所述飞行轨迹信息判断是否对 系留飞行器提供水平位移推力。
[0032] 可以理解的是, 水平位移推力与飞行轨迹信息有关, 用于描述系留飞行器在执 行飞行任务吋, 在水平方向上的位移推力。
[0033] 在步骤 S130中, 水平位移推力小于供电绳与地面供电及控制装置的连接力, 水 平位移推力小于供电绳与系留飞行器的连接力, 水平位移推力小于供电绳的最 大承受拉力, 即系留飞行器不会在该水平位移推力下发生供电绳被拉断、 系留 飞行器与供电绳脱离或供电绳与地面供电及控制装置脱离的现象。
[0034] 图 6示出了本发明一则优选实施例所提供的飞行器结构示意图, 如图 6所示, 本 实施例提供的一种系留飞行器的助推方法基于设置在系留飞行器 1上的至少一个 水平助推器 2实现的。
[0035] 具体的, 在根据所述系留飞行器 1的当前位置信息和飞行参数判断是否需要在 飞行任务中为系留飞行器提供水平位移推力吋, 先确定系留飞行器 1的当前位置 信息与飞行轨迹信息, 根据飞行轨迹信息调整系留飞行器在水平面上的飞行朝 向, 以使得水平助推器 2提供的水平位移推力的方向指向目标位置, 再由水平助 推器 2向系留飞行器提供水平位移推力, 使得系留飞行器 1飞行至目标位置。
[0036] 作为本实施例另一种可能实现的方式, 本实施例提供的一种系留飞行器的助推 方法基于设置在系留飞行器上的多个水平助推器实现的。
[0037] 具体的, 在根据控制信号判断需要在飞行任务中为系留飞行器提供水平位移推 力吋, 确定系留飞行器的当前位置信息与飞行轨迹信息, 根据系留飞行器的当 前位置信息与飞行轨迹信息选用一个或多个水平助推器, 以使得一个或多个水 平助推器提供的水平位移推力的方向指向目标位置, 再由一个或多个水平助推 器向系留飞行器提供水平位移推力的合力, 使得系留飞行器飞行至目标位置。
[0038] 以系留飞行器上设置有四个方向上的水平助推器为例, 四个方向上的水平助推 器分别用于为系留飞行器提供东、 西、 南、 北四个方向上的水平位移推力, 四 个方向上的水平助推器分别为第一水平助推器、 第二水平助推器、 第三水平助 推器以及第四水平助推器。
[0039] 在根据控制信号判断需要在飞行任务中为系留飞行器提供水平位移推力吋, 根 据控制信号确定系留飞行器在水平面上的目标位置, 例如抵达该目标位移需要 系留飞行器向东方向水平前进 0.5米, 根据该目标位置选用第一水平助推器, 并 控制第一水平助推器向系留飞行器提供水平前进 0.5米的水平位移推力, 使得系 留飞行器飞行至目标位置。
[0040] 再例如, 抵达该目标位移需要系留飞行器向东北方向水平前进 0.3米, 根据该目 标位置选用第一水平助推器和第四水平助推器, 并控制第一水平助推器与第四 水平助推器向系留飞行器提供一水平合力, 该合力使得系留飞行器能够向东北 方向水平前进 0.3米, 使得系留飞行器飞行至目标位置。
[0041] 在本实施例中, 在控制系留飞行器执行飞行任务的过程中, 根据系留飞行器的 当前位置信息和飞行参数判断是否需要在飞行任务中为系留飞行器提供水平位 移推力, 若需要, 则根据当前位置信息和飞行参数生成控制信号, 进而控制系 留飞行器产生水平位移推力, 克服了供电绳对系留飞行器在水平方向上的拉力 , 使得系留飞行器在执行飞行任务过程中能够通过克服供电绳在水平方向上的 拉力。
[0042] 与上述实施例为基础, 提出第二实施例。
[0043] 图 2示出了本实施例提供的系留飞行器的助推方法的流程图, 为了便于说明, 仅示出与本实施例相关的部分。
[0044] 一种系留飞行器的助推方法, 助推方法包括以下步骤:
[0045] S210: 控制所述系留飞行器执行飞行任务;
[0046] S220: 设定在飞行任务中向系留飞行器提供水平位移推力的触发角度;
[0047] S230: 根据所述当前位置信息与所述飞行轨迹信息判断是否对系留飞行器提供 水平位移推力;
[0048] S240: 若是, 根据所述当前位置信息和所述飞行参数生成控制信号, 以控制所 述系留飞行器产生水平位移推力, 进而克服所述供电绳对所述系留飞行器在水 平方向上的拉力。
[0049] 在步骤 S220中, 触发角度为在飞行任务中触发向系留飞行器提供水平位移推 力的阈值角度。 具体可在实际应用中, 根据飞行任务具体设定。
[0050] 在步骤 S230中, 飞行轨迹信息包括至少一个目标位置信息, 该目标位置信息用 于描述系留飞行器在执行飞行任务过程中, 以系留飞行器飞行起点在水平面上 的投影点为参照原点, 相对于该原点的驻留或飞行位置。
[0051] 图 3示出了本实施例提供的系留飞行器的助推方法中步骤 S240的具体流程图, 如图 3所示, 步骤 S240包括以下步骤:
[0052] S241: 根据所述目标位置信息确定目标位置; [0053] S242: 获取所述起点位置在水平面上的投影点与所述目标位置之间的连线, 以 及该连线与竖直方向的夹角;
[0054] S243: 当所述夹角大于或等于所述触发角度吋, 判定需要在飞行任务中为系 留飞行器提供水平位移推力。
[0055] 在步骤 S241中, 目标位置是相对于系留飞行器的飞行起点而言的, 是除了系留 飞行器的飞行起点以外的其他系留飞行器的驻留或飞行位置。
[0056] 在步骤 S242中, 起点位置在水平面上的投影点为系留飞行器垂直于水平面上的 一点。 夹角的一个连线为竖直方向, 另一条连线为起点位置在水平面上的投影 点与所述目标位置之间的连线。
[0057] 在步骤 S243中, 夹角大于或等于触发角度, 是指目标位置在竖直方向上偏移 起点位置后, 目标位置与起点位置分别做直线到起始位置在水平面上的投影点 后形成的夹角大于或等于触发角度。
[0058] 在本实施例中, 夹角与触发角度的比较结果作为是否需要在飞行任务中为系 留飞行器提供水平位移推力的判断条件。 当夹角大于或等于触发角度吋, 则判 定为需要在飞行任务中为系留飞行器提供水平位移推力。
[0059] 图 5示出了本实施例中夹角与触发角度之间的关系。 以点 A为起点位置同吋也 是竖直方向上的一点, 点 0为起点位置在水平面上的投影点, 点 C为目标位置, 点 B为触发位置为例, 夹角为的大小为的角度, 夹角为的大小为的角度。 虚线 段 CO为起点位置 A在水平面上的投影点 0与目标位置 C之间的连线, 该连线与竖 直方向的夹角为, 夹角大于触发角度, 判定为需要在飞行任务中为系留飞行器 提供水平位移推力。
[0060] 本实施例提供的系留飞行器的助推方法, 在控制系留飞行器执行飞行任务的过 程中, 根据系留飞行器的当前位置信息和飞行参数判断是否需要在飞行任务中 为系留飞行器提供水平位移推力, 若需要, 则根据当前位置信息和飞行参数生 成控制信号, 进而控制系留飞行器产生水平位移推力, 克服了供电绳对系留飞 行器在水平方向上的拉力, 使得系留飞行器在执行飞行任务过程中能够通过克 服供电绳在水平方向上的拉力, 抵达飞行任务中的目标位置, 提高了系留飞行 器执行飞行任务的能力。 [0061] 与上述实施例相对应的, 提出第三实施例。
[0062] 图 4示出了本实施例提供的系留飞行器的助推装置的结构示意图, 为了便于说 明, 仅示出与本实施例相关的部分。
[0063] 一种系留飞行器的助推装置 100, 助推装置 100包括:
[0064] 控制模块 110, 用于控制所述系留飞行器执行飞行任务。
[0065] 其中, 地面供电及控制装置控制系留飞行器执行飞行任务。 其中, 飞行任务可 以包括: 升空、 下降、 盘旋以及驻留。
[0066] 判断模块 120, 用于根据所述系留飞行器的当前位置信息和飞行参数判断是否 需要在飞行任务中为系留飞行器提供水平位移推力。
[0067] 需要说明的是, 飞行参数包括所述系留飞行器在执行飞行任务吋的飞行轨迹信 息。 判断模块120具体用于, 根据所述当前位置信息与所述飞行轨迹信息判断是 否对系留飞行器提供水平位移推力。
[0068] 水平位移推动模块 130, 用于在所述判断模块 120的判定结果为是吋, 根据所述 当前位置信息和所述飞行参数生成控制信号, 以控制所述系留飞行器产生水平 位移推力, 进而克服所述供电绳对所述系留飞行器在水平方向上的拉力。
[0069] 其中, 水平位移推力小于供电绳与地面供电及控制装置的连接力, 水平位移推 力小于供电绳与系留飞行器的连接力, 水平位移推力小于供电绳的最大承受拉 力, 即系留飞行器不会在该水平位移推力下发生供电绳被拉断、 系留飞行器与 供电绳脱离或供电绳与地面供电及控制装置脱离的现象。
[0070] 在本发明的其他实施例中, 助推装置 100还包括:
[0071] 触发角度设定模块 140, 用于设定在飞行任务中向系留飞行器提供水平位移推 力的触发角度。
[0072] 其中, 触发角度为在飞行任务中触发向系留飞行器提供水平位移推力的阈值角 度。 具体可在实际应用中, 根据飞行任务具体设定。
[0073] 需要说明的是, 飞行轨迹信息包括至少一个目标位置信息, 该目标位置信息用 于描述系留飞行器在执行飞行任务过程中, 以系留飞行器飞行起点在水平面上 的投影点为参照原点, 相对于该原点的驻留或飞行位置。
[0074] 水平位移推动模块 130还包括: 目标位置获取单元 131、 夹角获取单元 132以及 判定单元 133。
[0075] 目标位置获取单元 131, 用于根据所述目标位置信息确定目标位置。
[0076] 其中, 目标位置是相对于系留飞行器的飞行起点而言的, 是除了系留飞行器的 飞行起点以外的其他系留飞行器的驻留或飞行位置。
[0077] 夹角获取单元 132, 用于获取所述起点位置在水平面上的投影点与所述目标位 置之间的连线, 以及该连线与竖直方向的夹角。 其中, 起点位置在水平面上的 投影点为系留飞行器垂直于水平面上的一点, 夹角的一个连线为竖直方向, 另 一条连线为起点位置在水平面上的投影点与所述目标位置之间的连线。
[0078] 判定单元 133, 用于当所述夹角大于或等于所述触发角度吋, 判定需要在飞行 任务中为系留飞行器提供水平位移推力。
[0079] 其中, 夹角大于或等于触发角度, 是指目标位置在竖直方向上偏移起点位置 后, 目标位置与起点位置分别做直线到起始位置在水平面上的投影点后形成的 夹角大于或等于触发角度。
[0080] 本发明的实施例还在于提供一种系留飞行器系统, 系留飞行器系统包括系留飞 行器, 系留飞行器系统还包括上述实施例中的系留飞行器的助推装置 100。
[0081] 由于本实施例中的系留飞行器系统与本发明相关的实现方案以及工作原理在上 述实施例中已经详细说明, 故此处不再赘述。
[0082] 本发明提供的一种系留飞行器的助推方法、 助推装置即系留飞行器系统, 在控 制系留飞行器执行飞行任务的过程中, 根据系留飞行器的当前位置信息和飞行 参数判断是否需要在飞行任务中为系留飞行器提供水平位移推力, 若需要, 则 根据当前位置信息和飞行参数生成控制信号, 进而控制系留飞行器产生水平位 移推力, 克服了供电绳对系留飞行器在水平方向上的拉力, 使得系留飞行器在 执行飞行任务过程中能够通过克服供电绳在水平方向上的拉力, 抵达飞行任务 中的目标位置, 提高了系留飞行器执行飞行任务的能力。
[0083] 本领域普通技术人员可以理解: 实现上述方法实施例的步骤或部分步骤可以通 过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取存储介质 中, 该程序在执行吋, 执行包括上述方法实施例的步骤, 而前述的存储介质包 括: ROM、 RAM. 磁碟或者光盘等各种可以存储程序代码的介质。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种系留飞行器的助推方法, 所述系留飞行器通过供电绳连接地面供 电及控制装置, 其特征在于, 所述助推方法包括以下步骤: 控制所述系留飞行器执行飞行任务;
根据所述系留飞行器的当前位置信息和飞行参数判断是否需要在飞行 任务中为系留飞行器提供水平位移推力;
若是, 根据所述当前位置信息和所述飞行参数生成控制信号, 以控制 所述系留飞行器产生水平位移推力, 进而克服所述供电绳对所述系留 飞行器在水平方向上的拉力。
[权利要求 2] 如权利要求 1所述的系留飞行器的助推方法, 其特征在于, 所述飞行 参数包括所述系留飞行器在执行飞行任务吋的飞行轨迹信息, 所述根 据所述系留飞行器的当前位置信息和飞行参数判断是否需要在飞行任 务中为系留飞行器提供水平位移推力的步骤具体包括:
根据所述当前位置信息与所述飞行轨迹信息判断是否对系留飞行器提 供水平位移推力。
[权利要求 3] 如权利要求 2所述的系留飞行器的助推方法, 其特征在于, 在所述根 据所述当前位置信息与所述飞行轨迹信息判断是否对系留飞行器提供 水平位移推力的步骤之前还包括:
设定在飞行任务中向系留飞行器提供水平位移推力的触发角度。
[权利要求 4] 如权利要求 3所述的系留飞行器的助推方法, 其特征在于, 所述飞行 轨迹信息包括至少一个目标位置信息。
[权利要求 5] 如权利要求 4所述的系留飞行器的助推方法, 其特征在于, 所述根据 所述当前位置信息与所述飞行轨迹信息判断是否对系留飞行器提供水 平位移推力的步骤具体包括:
根据所述目标位置信息确定目标位置;
获取所述当前位置信息在水平面上的投影点与所述目标位置之间的连 线, 以及该连线与竖直方向的夹角;
当所述夹角大于或等于所述触发角度吋, 判定为需要在飞行任务中 为系留飞行器提供水平位移推力。
一种系留飞行器的助推装置, 所述系留飞行器通过供电绳连接地面供 电及控制装置, 其特征在于, 所述助推装置包括:
控制模块, 用于控制所述系留飞行器执行飞行任务;
判断模块, 用于根据所述系留飞行器的当前位置信息和飞行参数判断 是否需要在飞行任务中为系留飞行器提供水平位移推力;
水平位移推动模块, 用于在所述判断模块的判定结果为是吋, 根据所 述当前位置信息和所述飞行参数生成控制信号, 以控制所述系留飞行 器产生水平位移推力, 进而克服所述供电绳对所述系留飞行器在水平 方向上的拉力。
如权利要求 6所述的系留飞行器的助推装置, 其特征在于, 所述飞行 参数包括所述系留飞行器在执行飞行任务吋的飞行轨迹信息, 所述判 断模块具体用于, 根据所述当前位置信息与所述飞行轨迹信息判断是 否对系留飞行器提供水平位移推力。
如权利要求 7所述的系留飞行器的助推装置, 其特征在于, 所述助推 装置还包括:
触发角度设定模块, 用于设定在飞行任务中向系留飞行器提供水平位 移推力的触发角度。
如权利要求 8所述的系留飞行器的助推装置, 其特征在于, 所述飞行 轨迹信息包括至少一个目标位置信息, 所述判断单元还包括: 目标位置获取单元, 用于根据所述目标位置信息确定目标位置; 夹角获取单元, 用于获取所述当前位置信息在水平面上的投影点与所 述目标位置之间的连线, 以及该连线与竖直方向的夹角; 判定单元, 用于当所述夹角大于或等于所述触发角度吋, 判定为需 要在飞行任务中为系留飞行器提供水平位移推力。
一种系留飞行器系统, 包括系留飞行器, 其特征在于, 所述系留飞行 器系统还包括如权利要求 6-9任意一项所述的系留飞行器的助推装置
PCT/CN2017/092050 2016-11-17 2017-07-06 系留飞行器的助推方法、助推装置及系留飞行器系统 WO2018090646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611027754.1 2016-11-17
CN201611027754.1A CN108069045B (zh) 2016-11-17 2016-11-17 系留飞行器的助推方法、助推装置及系留飞行器系统

Publications (1)

Publication Number Publication Date
WO2018090646A1 true WO2018090646A1 (zh) 2018-05-24

Family

ID=62146053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092050 WO2018090646A1 (zh) 2016-11-17 2017-07-06 系留飞行器的助推方法、助推装置及系留飞行器系统

Country Status (2)

Country Link
CN (1) CN108069045B (zh)
WO (1) WO2018090646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885545A (zh) * 2021-10-12 2022-01-04 天津大学 考虑缆绳张力变化的系留无人机控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105109704A (zh) * 2015-09-02 2015-12-02 南京国业科技有限公司 一种基于多旋翼飞行平台的系留系统
US20160096623A1 (en) * 2014-10-03 2016-04-07 The Boeing Company Guided Lift System
CN105516691A (zh) * 2016-02-02 2016-04-20 中科融通物联科技无锡有限公司 长滞空无人机基站通信及监控系统
CN105629995A (zh) * 2016-03-17 2016-06-01 北京大工科技有限公司 一种系留跟随系统和方法
WO2016115155A1 (en) * 2015-01-12 2016-07-21 Ryan Mark A Tethered flight control system for small unmanned aircraft
CN106005462A (zh) * 2016-06-29 2016-10-12 任雪峰 用于系留无人机的收放系统及用其收放系留无人机的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2157105A1 (en) * 1995-08-28 1997-03-01 Ian Carwardine Aerial camera platform and signal transmission and reception system
US8544788B1 (en) * 2010-07-07 2013-10-01 Captures, LLC Aerostat assembly
WO2013130526A2 (en) * 2012-02-29 2013-09-06 Gregory Howard Hastings Tethered gyroglider control systems
CN103144779B (zh) * 2012-11-30 2016-01-13 中国电子科技集团公司第七研究所 多旋翼无人飞行器系留系统
US10399676B2 (en) * 2014-03-31 2019-09-03 Working Drones, Inc. Indoor and outdoor aerial vehicles for painting and related applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160096623A1 (en) * 2014-10-03 2016-04-07 The Boeing Company Guided Lift System
WO2016115155A1 (en) * 2015-01-12 2016-07-21 Ryan Mark A Tethered flight control system for small unmanned aircraft
CN105109704A (zh) * 2015-09-02 2015-12-02 南京国业科技有限公司 一种基于多旋翼飞行平台的系留系统
CN105516691A (zh) * 2016-02-02 2016-04-20 中科融通物联科技无锡有限公司 长滞空无人机基站通信及监控系统
CN105629995A (zh) * 2016-03-17 2016-06-01 北京大工科技有限公司 一种系留跟随系统和方法
CN106005462A (zh) * 2016-06-29 2016-10-12 任雪峰 用于系留无人机的收放系统及用其收放系留无人机的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885545A (zh) * 2021-10-12 2022-01-04 天津大学 考虑缆绳张力变化的系留无人机控制方法
CN113885545B (zh) * 2021-10-12 2023-10-31 天津大学 考虑缆绳张力变化的系留无人机控制方法

Also Published As

Publication number Publication date
CN108069045A (zh) 2018-05-25
CN108069045B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
JP6279097B2 (ja) ヘッドレスモードに基づく無人機の制御方法とデバイス
WO2019119829A1 (zh) 一种无人机控制方法、装置、遥控设备和无人机系统
US20170176992A1 (en) Method and device for retrieving and flying unmanned aerial vehicle in handheld manner
CN107450573B (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
CA2904109C (en) System and method for recovering an autonomous underwater vehicle
CN106483980B (zh) 一种无人机跟随飞行的控制方法、装置及系统
CN106970635B (zh) 一种拖曳变轨中利用拖曳飞行器机动的系绳摆动抑制方法
WO2021043325A1 (zh) 飞行方法、终端设备、飞行器和飞行系统
CN110723317B (zh) 一种基于绳系收放装置的拖曳离轨方法
CN106168806A (zh) 用于控制飞行器的紧急下降的方法和系统
US10343788B2 (en) Telescoping refueling boom control systems and methods
CN105679322A (zh) 一种基于机载语音操控的无人机系统及控制方法
CN101807051A (zh) 无人机自动与遥控切换系统
WO2018090646A1 (zh) 系留飞行器的助推方法、助推装置及系留飞行器系统
CN110825115B (zh) 一种飞机迎角和过载的极限限制控制方法
CN209366425U (zh) 一种应用于非动力定位船只的水下机器人自动控制系统
CN110989675A (zh) 无人机的返航控制方法、装置、无人机以及存储介质
CN105094142B (zh) 一种启动飞行器的方法和装置
CN107933966B (zh) 一种升降轨双模式的电动力绳系轨道转移方法及系统
CN110127009B (zh) 一种无缆化通信潜航器
CN109572964A (zh) 一种应用于非动力定位船只的水下机器人自动控制系统
WO2020237531A1 (zh) 无人机返航方法、设备、无人机和存储介质
CN112639653A (zh) 非二元协作恢复系统
Choe et al. Perching maneuver for an MAV augmented with an L1 adaptive controller
EP3040280A1 (en) Method and system for air to air refuelling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17871491

Country of ref document: EP

Kind code of ref document: A1