WO2018088143A1 - Electrically driven actuator - Google Patents

Electrically driven actuator Download PDF

Info

Publication number
WO2018088143A1
WO2018088143A1 PCT/JP2017/037564 JP2017037564W WO2018088143A1 WO 2018088143 A1 WO2018088143 A1 WO 2018088143A1 JP 2017037564 W JP2017037564 W JP 2017037564W WO 2018088143 A1 WO2018088143 A1 WO 2018088143A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
electric actuator
motor unit
electric motor
nut
Prior art date
Application number
PCT/JP2017/037564
Other languages
French (fr)
Japanese (ja)
Inventor
卓志 松任
公人 牛田
川合 正浩
加藤 晃央
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018088143A1 publication Critical patent/WO2018088143A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/10Arrangements or devices for absorbing overload or preventing damage by overload
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to an electric actuator.
  • an electric actuator used in the above-mentioned system there is one in which a screw mechanism (ball screw mechanism) is adopted as a motion conversion mechanism that converts a rotary motion of an electric motor into a linear motion and outputs it (for example, Patent Document 1). .
  • a screw mechanism ball screw mechanism
  • Patent Document 1 a motion conversion mechanism that converts a rotary motion of an electric motor into a linear motion and outputs it.
  • a nut is provided integrally with the rotor of the electric motor, and the nut (rotor) is rotatably supported with respect to the casing of the electric actuator via a rolling bearing.
  • the above-mentioned reverse input load is a motor made of an aluminum alloy that constitutes a housing (via a screw shaft, a ball, a nut, a rolling bearing, and a retaining ring that positions the rolling bearing in the axial direction. (In particular, paragraph 0057 of Patent Document 1).
  • the thrust load acting on the rolling bearing as the reverse input load is applied is substantially received by the retaining ring.
  • the thrust load acting on the rolling bearing naturally increases, and the retaining ring may be deformed or broken.
  • the positional accuracy in the axial direction of the rolling bearing is distorted, and the rotational accuracy of the nut and the operating accuracy of the screw shaft (including the final output member) are reduced.
  • an object of the present invention is to provide a highly reliable electric actuator that can stably maintain the operation accuracy of a screw shaft.
  • the present invention includes an electric motor unit, a motion conversion mechanism unit that converts the rotational motion of the electric motor unit into a linear motion, and a plurality of casing constituent members coupled in the axial direction. And a housing housing the electric motor unit and the motion conversion mechanism unit, and the motion conversion mechanism unit is fitted on the outer periphery of the screw shaft and the screw shaft arranged coaxially with the rotation center of the rotor of the electric motor unit.
  • at least one is formed of an iron-based metal material
  • this iron-based metal casing component member has a load receiving surface that receives a thrust load acting on the rolling bearing by contacting the rolling bearing in the axial direction.
  • the “casing component” here is a member that constitutes the casing by being coupled with another casing component.
  • the thrust load acting on the rolling bearing can be received by the casing constituent member made of ferrous metal.
  • Iron-based metal casing components have high strength and rigidity, so even if an excessive thrust load is input to the load receiving surface via a rolling bearing, it can deform or break itself. Sex is reduced as much as possible.
  • the iron-based metal casing constituent member is at least one member constituting the casing, the thrust load input to the load receiving surface can be dispersed throughout the casing. Therefore, even when a large thrust load is applied to the rolling bearing, it is difficult for the rolling bearing to have a misalignment in the axial position accuracy, and the rotation accuracy of the nut and, consequently, the operating accuracy of the screw shaft (including the actuator output member). Can be stably maintained.
  • An iron-based metal casing constituent member can be a cast iron product or a forged product. In this way, this housing component can be mass-produced with low cost and high accuracy.
  • the remaining casing constituent members excluding the ferrous metal casing constituent members are preferably formed of an aluminum alloy having a low specific gravity and high thermal conductivity among metals. . Thereby, weight reduction of a housing
  • the electric actuator having the above configuration is further provided with a speed reducer that decelerates the rotation of the rotor of the electric motor unit and transmits it to the nut for the purpose of reducing the size of the electric motor unit and, consequently, the weight and size of the electric actuator.
  • a speed reducer that decelerates the rotation of the rotor of the electric motor unit and transmits it to the nut for the purpose of reducing the size of the electric motor unit and, consequently, the weight and size of the electric actuator.
  • the traction drive type planetary speed reducer has the feature of low backlash and low noise among various speed reducers, which is advantageous in realizing a quiet and excellent electric actuator.
  • torque must be properly transmitted between components unless appropriate traction (radial preload) is applied to the inside (contact portion between the relatively rotating members). I can't.
  • the traction can be applied, for example, by compressing an annular traction applying member in the axial direction to reduce the inner diameter dimension, but in this case, the axial compression allowance of
  • the traction imparting member compressed in the axial direction is brought into contact with the iron-based metal casing constituent member in the axial direction. Since this casing member is formed of an iron-based metal material, it has high rigidity and a small amount of deformation due to temperature change. Accordingly, it is possible to stably maintain the axial compression allowance of the traction applying member, and thus the diameter reduction deformation amount, and it is possible to apply predetermined traction to the inside of the reduction gear.
  • the nut can be arranged at a position shifted outward in the axial direction of the electric motor unit.
  • the electric motor unit can be reduced in the radial direction, so that an electric actuator that is compact in the radial direction is realized. can do.
  • the electric motor unit is arranged on the inner diameter side of the rotor, and is a torque limiter arranged between the motor unit output shaft that outputs the rotation of the rotor, and the inner peripheral surface of the rotor and the outer peripheral surface of the motor unit output shaft facing each other. And can have. If it does in this way, overload to the component of an electric actuator can be prevented, and damage etc. of a component can be prevented. Thereby, the situation where the electric actuator becomes inoperable can be prevented as much as possible, and the reliability of the electric actuator can be further improved.
  • FIG. 7 is a longitudinal sectional view of the electric actuator according to the embodiment of the present invention, and is a sectional view taken along the line HH in FIGS. 3 and 6. It is a longitudinal cross-sectional view of the electric actuator which concerns on one Embodiment of this invention, and is II sectional view taken on the line of FIG. It is a left view of FIG.
  • FIG. 2 is a cross-sectional view taken along line EE in FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line FF in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line GG in FIG. 2.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 2 is a cross-sectional view taken along line EE in FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line FF in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line GG in FIG. 2.
  • FIG. 3 is a partially enlarged view of FIG.
  • FIG. 3 is a partially enlarged view of the vicinity of an outer diameter end portion of the speed reducer in a state before assembly of the electric actuator shown in FIGS. 1 and 2. It is a perspective view of the electric actuator shown in FIG. It is a perspective view of the electric actuator shown in FIG.
  • the terms “one side in the axial direction” and “the other side in the axial direction” are used to indicate the directionality in the axial direction. They are the opening side of the body 8 and the left side of the sheet (the closing side of the housing 8).
  • FIG. 1 and 2 are longitudinal sectional views of an electric actuator according to an embodiment of the present invention. More specifically, FIG. 1 is a sectional view taken along line HH in FIGS. 2 is a cross-sectional view taken along the line II of FIG. 1 and 2 show a state where an output member of the electric actuator 1 (here, a screw shaft 93 of a ball screw 91 described later) is located at the origin.
  • an output member of the electric actuator 1 here, a screw shaft 93 of a ball screw 91 described later
  • the electric actuator 1 includes an electric motor unit A that generates a rotational driving force, a motion conversion mechanism unit B that converts the rotational motion of the electric motor unit A into a linear motion, and outputs the linear motion. And a housing 8 accommodating these.
  • the casing 8 of the present embodiment has four casing constituent members (first casing constituent member 81 to fourth casing constituent member 84) arranged in a row from the other side in the axial direction toward one side in the axial direction. ) And has a bottomed cylindrical shape as a whole.
  • the first casing constituent member 81 is formed in a bottomed cylindrical shape
  • the second to fourth casing constituent members 82 to 84 are formed in a cylindrical shape having both ends opened.
  • the first to fourth housing constituting members 81 to 84 are coupled and integrated using a bolt member 85.
  • the fourth casing component member 84 integrally has a flange portion 84a provided with a bolt insertion hole 84b. When the electric actuator 1 is fixed to a device not shown, the bolt insertion hole 84b is inserted. A bolt member (not shown) is fastened to the device used.
  • the third casing constituent member 83 is formed of a ferrous metal material, and the remaining casing constituent members, that is, the first casing constituent member 81,
  • the second casing constituent member 82 and the fourth casing constituent member 84 are formed of an aluminum alloy having a small specific gravity and a high thermal conductivity.
  • the electric actuator 1 is preferably made lighter and more compact in order to improve the mountability of the electric actuator 1 on the equipment used, and the internal temperature of the housing 8 can be increased as the electric motor unit A is driven. It is for suppressing it. Therefore, as described above, if most of the housing 8 is made of an aluminum alloy, the cooling efficiency can be increased while reducing the weight of the housing 8 (the electric actuator 1).
  • the third casing constituent member 83 made of iron-based metal is a cast iron product or a forged product, and the first casing constituent member 81 and the second casing. Both the constituent member 82 and the fourth casing constituent member 84 are preferably aluminum die cast products.
  • the first casing component member 81 is provided with a terminal portion D having a connector 101, and the connector 101 protrudes outward in the axial direction of the first casing component member 81.
  • the connector 101 terminals for power supply and signal lines are provided, the terminals for power supply are electrically connected to the stator coil 51c, and the terminals for signal lines are connected to a sensor (not shown) (for example, It is electrically connected to a rotation angle detection sensor of the electric motor.
  • the electric motor part A includes an electric motor 29, a motor part output shaft 6, and a torque limiter 7.
  • the electric motor 29 includes a stator 51 fixed to the casing 8 (first and second casing constituent members 81 and 82), and a rotor 52 disposed to face the stator 51 via a radial gap. It is a radial gap type.
  • the stator 51 includes a stator core 51a made of a plurality of electromagnetic steel plates laminated in the axial direction, a bobbin 51b made of an insulating material mounted on the stator core 51a, and a bobbin 51b wound around the bobbin 51b. And a rotated stator coil 51c.
  • the rotor 52 includes an annular rotor core 52a, a plurality of magnets 52b attached to the rotor core 52a, and a cylindrical (hollow) rotor inner 52c fixed to the inner periphery of the rotor core 51a.
  • the rotor core 52a is formed of a plurality of electromagnetic steel plates laminated in the axial direction.
  • the rotor inner 52c is formed to be longer in the axial direction than the rotor core 52a, and end portions on one side and the other side of the rotor inner 52c protrude outward in the axial direction of the rotor core 52a.
  • the rotor inner 52c is rotatably supported with respect to the housing 8 by bearings 53 and 54 fixed to the outer peripheral surfaces of the end portions on one side and the other side in the axial direction.
  • bearings 53 and 54 a rolling bearing capable of supporting both a radial load and an axial load, for example, a deep groove ball bearing is used.
  • the motor part output shaft 6 is formed in a cylindrical shape with both ends in the axial direction being opened, whereby the electric motor part A (the electric motor 29) is formed as a hollow motor. It has the structure of.
  • the motor unit output shaft 6 is fitted to the inner periphery of the rotor inner 52c with a gap fit, and is rotatable relative to the rotor inner 52c.
  • annular recess 521 having an inner diameter dimension larger than that of the other part is formed on the inner peripheral surface of the rotor inner 52 c, and the annular recess 521 is formed, for example, of the rotor inner 52 c as shown in FIG. 1. It is formed at the end on the other side in the axial direction.
  • An annular space is formed between the inner peripheral surface of the annular recess 521 of the rotor inner 52c facing each other and the outer peripheral surface of the motor unit output shaft 6, and the torque limiter 7 is disposed in this annular space.
  • the torque limiter 7 transmits the rotational power output from the electric motor 29 to the motor unit output shaft 6. On the other hand, when an overload is applied, the torque limiter 7 cuts off the torque transmission, and the rotor 52 (rotor inner 52 c) of the electric motor 29 and the motor. The relative rotation of the part output shaft 6 is allowed. As long as it has such a function, the torque limiter 7 having an arbitrary configuration can be adopted. However, in the present embodiment, a multi-plate clutch which is a kind of a friction clutch is used as the torque limiter 7.
  • the multi-plate clutch as the torque limiter 7 includes a pair of first friction plates 71 and 71 that are spaced apart in the axial direction and a second friction plate 72 that is disposed between the pair of first friction plates 71 and 71. And an elastic member 73 such as a wave spring in which the first friction plate 71 and the second friction plate 72 are brought into pressure contact with each other, and a pressing plate 74.
  • the pressing plate 74 is positioned in the axial direction by a retaining ring 75 fitted in an annular groove on the inner peripheral surface of the rotor inner 52 c, and applies a predetermined pressing force (axial load) to the elastic member 73.
  • a female serration 522 extending in the axial direction is formed on the inner peripheral surface of the annular recess 521 provided in the rotor inner 52c, and the first friction plate 71 and the pressing plate 74 are fitted to the female serration 522.
  • a male serration 6a extending in the axial direction is formed on the outer peripheral surface of the motor unit output shaft 6, and a second friction plate 72 is fitted to the male serration 6a. A frictional force is generated between the first friction plate 71 and the second friction plate 72 by the biasing force of the elastic member 73.
  • the motion conversion mechanism B has a screw shaft 93 that is formed with a spiral groove on the outer peripheral surface and is coaxial with the rotation center of the rotor 52 of the electric motor 29, and an inner peripheral surface. And a plurality of balls 94 disposed between the screw shaft 93 and the spiral groove of the nut 92, and the screw shaft 93 and the nut 92. It consists of a ball screw 91 provided with a top (not shown) as a circulating member disposed therebetween.
  • An actuator head 100 as an operation unit C that operates an operation target (not shown) is provided at the end of one side in the axial direction of the screw shaft 93.
  • the actuator head 100 is integrally provided at the end. Accordingly, the screw shaft 93 constitutes an output member of the electric actuator 1.
  • the operation unit C (actuator head 100) can be provided separately from the screw shaft 93, and the one corresponding to the application is selected and used.
  • the nut 92 is connected to the output member (motor unit output shaft 6) of the electric motor unit A and is driven to rotate. Although details will be described later, in the present embodiment, since the rotational motion of the electric motor portion A is transmitted to the nut 92 via the speed reducer 20, the carrier 24 constituting the output member of the speed reducer 20 is provided on the nut 92. It is fixed by appropriate means such as press fitting.
  • the nut 92 is disposed at a position shifted to one side in the axial direction from the electric motor part A, and does not overlap with the rotor inner 52c of the electric motor part A and the motor part output shaft 6 in the radial direction.
  • the inner diameter dimension D1 of the rotor inner 52c and the inner diameter dimension D2 of the motor unit output shaft 6 can be made smaller than the outer diameter dimension D3 of the nut 92, a small electric motor 29 having a small radial dimension is used. be able to.
  • the electric motor part A and by extension the electric actuator 1 can be made compact in the radial direction.
  • a rotation prevention mechanism for the screw shaft 93 is provided on the inner periphery of the hollow motor portion output shaft 6. That is, the anti-rotation mechanism for the screw shaft 93 is provided in the axial range of the electric motor portion A.
  • the electric actuator 1 can be made more compact in the axial direction than in the case where the rotation prevention mechanism for the screw shaft 93 is provided on the outer side in the axial direction of the electric motor portion A (for example, Patent Document 1).
  • the anti-rotation mechanism of the present embodiment is fixed to a first casing constituent member 81 constituting the casing 8 and has a cylindrical guide member 95 disposed on the inner diameter side of the motor unit output shaft 6 and a screw shaft 93.
  • a pin 96 having a radially outer end projecting radially outward of the screw shaft 93, and a guide collar 97 rotatably fitted to the projecting portion of the pin 96.
  • the guide member 95 has a cylindrical portion 95 a disposed between the inner peripheral surface of the motor unit output shaft 6 and the outer peripheral surface of the screw shaft 93.
  • a guide groove 95b extending in the axial direction is formed on the inner diameter surface of the cylindrical portion 95a, and a guide collar 97 is fitted into the guide groove 95b.
  • the nut 92 is rotatably supported with respect to the housing 8 by a rolling bearing 9 having an inner ring fixed to the outer peripheral surface thereof.
  • a rolling bearing 9 As the rolling bearing 9, a double row deep groove ball bearing that can support both a radial load and an axial load, in particular, a high load supporting ability is used. Further, if a double row deep groove ball bearing is used as the rolling bearing 9, the nut 92 can have a double-sided structure, so that the nut 92 is inclined with respect to the axial direction, and the rotational accuracy of the nut 92 is reduced. There is also an advantage that it can be prevented.
  • the outer ring of the rolling bearing 9 has an axial end surface on one side and the other end thereof on the shoulder surface 84c of the fourth casing component member 84 and an end surface 83a on the axial direction one side of the third casing component member 83, respectively. It is in contact. That is, the rolling bearing 9 is positioned in the axial direction by holding the outer ring between the third housing constituent member 83 and the fourth housing constituent member 84 from both axial sides. In this case, the rolling bearing 9 can be positioned and fixed as the casing 8 is assembled (the first to fourth casing constituent members 81 to 84 are combined and integrated using the bolt member 85). Assemblability is good.
  • the inner ring of the rolling bearing 9 is sandwiched between a flange portion provided on the outer periphery of one end of the nut 92 in the axial direction and the carrier 24 of the speed reducer 20.
  • the electric actuator 1 transmits torque between the motor unit output shaft 6 of the electric motor unit A and the nut 92 constituting the motion conversion mechanism unit B (ball screw 91). It has the reduction gear 20 arrange
  • the speed reducer 20 of the present embodiment is a traction drive type planetary speed reducer, and is arranged on the radially outer side of the sun roller 21, the plurality of planetary rollers 23, the carrier 24, and the planetary roller 23. And an annular traction applying member 22.
  • the end of one side in the axial direction of the motor unit output shaft 6 is used as the sun roller 21, and the outer ring of the rolling bearing (for example, deep groove ball bearing) 25 is used as the planetary roller 23.
  • the inner ring of each rolling bearing 25 is press-fitted and fixed to the hollow shaft 26.
  • FIG. 8 schematically shows an enlarged view of the vicinity of the outer diameter end portion of the speed reducer 20 in a state before the electric actuator 1 (housing 8) is assembled.
  • the traction imparting member 22 integrally includes a main body portion 22a having a U-shaped cross section and flange portions 22b provided on both axial sides of the main body portion 22a.
  • an iron-based metal adjusting member 28 having an annular shape is disposed.
  • the adjustment member 28 adjusts the protruding amount of the flange portion 22b on the one axial side of the traction imparting member 22 before the housing 8 is assembled.
  • the traction imparting member 22 is connected to the third casing constituent member 83.
  • the pressure surface 83b is pressurized on the other side in the axial direction and is compressed and deformed in the axial direction.
  • the main body portion 22 is reduced in diameter so that the main body portion 22 of the traction imparting member 22 bulges inward in the radial direction (two-dot chain line in FIG. 8). (However, the degree of deformation is exaggerated in FIG. 8).
  • traction (radial preload) is applied to the inside of the speed reducer 20, more specifically, to the contact portion between the traction applying member 22 and the planetary roller 23, and further to the contact portion between the planetary roller 23 and the sun roller 21. Is done.
  • the electric actuator 1 of the present embodiment operates in the following manner because the torque limiter 7 is disposed between the rotor 52 of the electric motor 29 and the motor unit output shaft 6.
  • the rotational power of the electric motor 29 is transmitted to the nut 92 of the ball screw 91 via the torque limiter 7, the motor unit output shaft 6, and the speed reducer 20, so that the nut 92 is the axis of the screw shaft 93. Rotate around.
  • the screw shaft 93 having the actuator head 100 moves forward in one axial direction or retreats in the other axial direction. Manipulate the target.
  • the third casing component member 83 can receive the thrust load acting on the rolling bearing 9. Since the third casing constituent member 83 is formed of an iron-based metal material and has high strength and rigidity, when a large thrust load is input to the end surface 83a as a load receiving surface via the rolling bearing 9 However, the possibility that the third casing constituting member 83 itself is deformed or damaged is reduced as much as possible. In addition, since the third casing component member 83 is one member that configures the casing 8, the thrust load input to the end surface 83 a can be dispersed throughout the casing 8.
  • the third casing constituent member 83 is in contact with the traction applying member 22 in the axial direction in the axial direction.
  • the traction imparting member 22 imparts traction to the inside of the speed reducer 20 composed of a traction drive type planetary speed reducer by being compressed in the axial direction and deformed in a reduced diameter. Since the third casing component member 83 is formed of an iron-based metal material, the third casing component member 83 is highly rigid and has a small amount of deformation accompanying a temperature change.
  • the electric actuator 1 of this embodiment has the torque limiter 7 in the electric motor part A, the forward movement of the screw shaft 93 (actuator head 100) is restricted by colliding with an obstacle. Even in such a situation, the torque transmission path can be blocked by causing slippage between the rotor inner 52c and the motor unit output shaft 6. For this reason, it is possible to prevent an excessive load from acting on the speed reducer 20 and the ball screw 91 (motion conversion mechanism B), and to prevent them from being damaged.
  • the electric actuator 1 of the present embodiment is excellent in the operation accuracy of the screw shaft 93 and the speed reducer 20, and damage to the speed reducer 20 and the motion conversion mechanism B (ball screw 91) is as much as possible. It is highly reliable that can be prevented. Furthermore, the electric actuator 1 according to the present embodiment is light and compact, has excellent mountability with respect to the equipment used, has good assemblability, and can be manufactured at low cost.
  • a traction drive type planetary speed reducer is adopted as the speed reducer 20, but the configuration of the speed reducer 20 is arbitrary, and other speed reducers (for example, planetary gear speed reducers) are used. It can also be adopted. Further, the reduction gear 20 is not an essential configuration, and the present invention can also be applied to the electric actuator 1 in which the reduction gear 20 is omitted.
  • the third casing constituent member 83 among the first to fourth casing constituent members 81 to 84 configuring the casing 8 is formed of an iron-based metal material.
  • the other housing components may be formed of an iron-based metal material.
  • an axial gap type may be adopted instead of the radial gap type as described above.
  • this invention uses the slide screw from which the ball

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)
  • Friction Gearing (AREA)

Abstract

Provided is an electrically driven actuator 1 comprising an electric motor section A, a motion conversion mechanism section B, and a housing 8 in which the electric motor section A and the motion conversion mechanism section B are accommodated, the motion conversion mechanism section B having a threaded shaft 93 and a nut 92 which is fitted on the outer periphery of the threaded shaft 93 and which is rotatably supported relative to the housing 8 through a rolling bearing 9, the threaded shaft 93 moving axially forward and backward as the nut 92 rotates, wherein a third housing-forming member 83 of a plurality of housing-forming members which form the housing 8 is formed from an iron-based metallic material and has a load-receiving surface 83a which is in axial contact with the rolling bearing 9 to receive a thrust load acting on the rolling bearing 9.

Description

電動アクチュエータElectric actuator
 本発明は、電動アクチュエータに関する。 The present invention relates to an electric actuator.
 近年、自動車においては、その省力化や低燃費化のために電動化が進展し、例えば、自動変速機、ブレーキおよびステアリング等の操作を電動機(電動モータ)の力で行うシステムが開発され、市場に投入されている。 In recent years, automobiles have been electrified in order to save labor and reduce fuel consumption. For example, a system for operating an automatic transmission, a brake, a steering, and the like with the power of an electric motor (electric motor) has been developed. Has been put on.
 上記のシステムに使用される電動アクチュエータとして、電動モータの回転運動を直線運動に変換して出力する運動変換機構に、ねじ機構(ボールねじ機構)を採用したものがある(例えば、特許文献1)。この場合、モータの回転運動を受けてねじ機構のナットがねじ軸の軸線回りに回転すると、ねじ軸を含むアクチュエータの出力部材(最終出力部材)が軸方向に直線運動する。 As an electric actuator used in the above-mentioned system, there is one in which a screw mechanism (ball screw mechanism) is adopted as a motion conversion mechanism that converts a rotary motion of an electric motor into a linear motion and outputs it (for example, Patent Document 1). . In this case, when the nut of the screw mechanism is rotated about the axis of the screw shaft in response to the rotation of the motor, the output member (final output member) of the actuator including the screw shaft linearly moves in the axial direction.
 特許文献1の電動アクチュエータにおいては、ナットが電動モータのロータと一体的に設けられており、ナット(ロータ)は、転がり軸受を介して電動アクチュエータの筐体に対して回転自在に支持されている。 In the electric actuator of Patent Document 1, a nut is provided integrally with the rotor of the electric motor, and the nut (rotor) is rotatably supported with respect to the casing of the electric actuator via a rolling bearing. .
特開2014-18007号公報JP 2014-18007 A
 ところで、例えば上記の最終出力部材が何らかの障害物と衝突した場合などには、最終出力部材に逆入力荷重が負荷される。特許文献1の電動アクチュエータでは、上記の逆入力荷重が、ねじ軸、ボール、ナット、転がり軸受およびこの転がり軸受を軸方向に位置決めする止め輪を介して筐体(を構成するアルミニウム合金製のモータケース)に伝達されるようになっている(特に、特許文献1の段落0057)。要するに、特許文献1の電動アクチュエータにおいて、逆入力荷重が負荷されるのに伴って転がり軸受に作用するスラスト荷重は、実質的に止め輪で受けることになる。 By the way, for example, when the final output member collides with an obstacle, a reverse input load is applied to the final output member. In the electric actuator of Patent Document 1, the above-mentioned reverse input load is a motor made of an aluminum alloy that constitutes a housing (via a screw shaft, a ball, a nut, a rolling bearing, and a retaining ring that positions the rolling bearing in the axial direction. (In particular, paragraph 0057 of Patent Document 1). In short, in the electric actuator of Patent Document 1, the thrust load acting on the rolling bearing as the reverse input load is applied is substantially received by the retaining ring.
 しかしながら、出力部材に過大な逆入力荷重が負荷された場合、転がり軸受に作用するスラスト荷重も当然に大きくなるため、止め輪が変形・破断等するおそれがある。止め輪が変形・破断等した場合、転がり軸受の軸方向の位置精度等に狂いが生じ、ナットの回転精度、ひいてはねじ軸(を含む最終出力部材)の動作精度が低下する。 However, when an excessive reverse input load is applied to the output member, the thrust load acting on the rolling bearing naturally increases, and the retaining ring may be deformed or broken. When the retaining ring is deformed or broken, the positional accuracy in the axial direction of the rolling bearing is distorted, and the rotational accuracy of the nut and the operating accuracy of the screw shaft (including the final output member) are reduced.
 上記の実情に鑑み、本発明は、ねじ軸の動作精度を安定的に維持可能で、信頼性に富む電動アクチュエータを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a highly reliable electric actuator that can stably maintain the operation accuracy of a screw shaft.
 上記の課題を解決するために創案された本発明は、電動モータ部と、電動モータ部の回転運動を直線運動に変換する運動変換機構部と、軸方向に結合された複数の筐体構成部材からなり、電動モータ部および運動変換機構部を収容した筐体とを備え、運動変換機構部が、電動モータ部のロータの回転中心と同軸に配置されたねじ軸と、ねじ軸の外周に嵌合され、転がり軸受を介して筐体に対して回転自在に支持されたナットとを有し、ナットの回転に伴ってねじ軸が軸方向に進退移動する電動アクチュエータにおいて、複数の筐体構成部材のうち、少なくとも一つが鉄系金属材料で形成されており、この鉄系金属製の筐体構成部材が、転がり軸受と軸方向で当接して転がり軸受に作用するスラスト荷重を受ける荷重受け面を有することを特徴とする。なお、ここでいう「筐体構成部材」とは、他の筐体構成部材と結合されることによって筐体を構成する部材である。 In order to solve the above-mentioned problems, the present invention includes an electric motor unit, a motion conversion mechanism unit that converts the rotational motion of the electric motor unit into a linear motion, and a plurality of casing constituent members coupled in the axial direction. And a housing housing the electric motor unit and the motion conversion mechanism unit, and the motion conversion mechanism unit is fitted on the outer periphery of the screw shaft and the screw shaft arranged coaxially with the rotation center of the rotor of the electric motor unit. A plurality of casing constituent members in an electric actuator having a nut rotatably supported with respect to the casing via a rolling bearing, wherein the screw shaft moves forward and backward in the axial direction as the nut rotates Of these, at least one is formed of an iron-based metal material, and this iron-based metal casing component member has a load receiving surface that receives a thrust load acting on the rolling bearing by contacting the rolling bearing in the axial direction. Special to have To. The “casing component” here is a member that constitutes the casing by being coupled with another casing component.
 上記の構成によれば、転がり軸受に作用するスラスト荷重を、鉄系金属製の筐体構成部材で受けることができる。鉄系金属製の筐体構成部材は、高い強度・剛性を具備することから、転がり軸受を介して荷重受け面に過大なスラスト荷重が入力された場合でも、それ自体が変形・破損等する可能性は可及的に減じられる。また、鉄系金属製の筐体構成部材は、筐体を構成する少なくとも一つの部材であることから、荷重受け面に入力されたスラスト荷重を筐体全体に分散させることもできる。従って、転がり軸受に大きなスラスト荷重が負荷された場合でも、転がり軸受の軸方向の位置精度等に狂いが生じ難くなり、ナットの回転精度、ひいてはねじ軸(を含むアクチュエータの出力部材)の動作精度を安定的に維持することができる。 According to the above configuration, the thrust load acting on the rolling bearing can be received by the casing constituent member made of ferrous metal. Iron-based metal casing components have high strength and rigidity, so even if an excessive thrust load is input to the load receiving surface via a rolling bearing, it can deform or break itself. Sex is reduced as much as possible. Moreover, since the iron-based metal casing constituent member is at least one member constituting the casing, the thrust load input to the load receiving surface can be dispersed throughout the casing. Therefore, even when a large thrust load is applied to the rolling bearing, it is difficult for the rolling bearing to have a misalignment in the axial position accuracy, and the rotation accuracy of the nut and, consequently, the operating accuracy of the screw shaft (including the actuator output member). Can be stably maintained.
 鉄系金属製の筐体構成部材は、鋳鉄品又は鍛造品とすることができる。このようにすれば、この筐体構成部材を安価にかつ精度良く量産することができる。 An iron-based metal casing constituent member can be a cast iron product or a forged product. In this way, this housing component can be mass-produced with low cost and high accuracy.
 複数の筐体構成部材のうち、鉄系金属製の筐体構成部材を除く残余の筐体構成部材は、金属の中でも比重が小さく、かつ高い熱伝導率を有するアルミニウム合金で形成するのが好ましい。これにより、筐体(電動アクチュエータ)の軽量化および冷却効率の向上を図ることができる。 Of the plurality of casing constituent members, the remaining casing constituent members excluding the ferrous metal casing constituent members are preferably formed of an aluminum alloy having a low specific gravity and high thermal conductivity among metals. . Thereby, weight reduction of a housing | casing (electric actuator) and improvement of cooling efficiency can be aimed at.
 以上の構成を有する電動アクチュエータには、電動モータ部の小型化、ひいては電動アクチュエータの軽量・コンパクト化を目的として、電動モータ部のロータの回転を減速してナットに伝達する減速機をさらに設けることができる。特に、トラクションドライブ式の遊星減速機は、種々の減速機の中でもバックラッシュが少なく低騒音であるという特徴を有することから、静粛で動作精度に優れた電動アクチュエータを実現する上で有利となる。但し、トラクションドライブ式の遊星減速機においては、その内部(相対回転する部材同士の接触部)に適当なトラクション(径方向の予圧)を付与しなければ構成部材間で適切にトルクを伝達することができない。上記のトラクションは、例えば、環状のトラクション付与部材を軸方向に圧縮して内径寸法を縮小させることによって付与することができるが、この場合、トラクション付与部材の軸方向の圧縮代を精度良く維持・管理する必要がある。 The electric actuator having the above configuration is further provided with a speed reducer that decelerates the rotation of the rotor of the electric motor unit and transmits it to the nut for the purpose of reducing the size of the electric motor unit and, consequently, the weight and size of the electric actuator. Can do. In particular, the traction drive type planetary speed reducer has the feature of low backlash and low noise among various speed reducers, which is advantageous in realizing a quiet and excellent electric actuator. However, in a traction drive type planetary speed reducer, torque must be properly transmitted between components unless appropriate traction (radial preload) is applied to the inside (contact portion between the relatively rotating members). I can't. The traction can be applied, for example, by compressing an annular traction applying member in the axial direction to reduce the inner diameter dimension, but in this case, the axial compression allowance of the traction applying member is accurately maintained. Need to manage.
 そこで、本発明では、軸方向に圧縮(弾性的に圧縮)された状態のトラクション付与部材を、鉄系金属製の筐体構成部材と軸方向で当接させることにした。この筐体構成部材は、鉄系金属材料で形成されている関係上、高剛性で温度変化に伴う変形量も少ない。従って、トラクション付与部材の軸方向の圧縮代、ひいては縮径変形量を安定的に維持可能とし、所定のトラクションを減速機内部に付与することができる。 Therefore, in the present invention, the traction imparting member compressed in the axial direction (elastically compressed) is brought into contact with the iron-based metal casing constituent member in the axial direction. Since this casing member is formed of an iron-based metal material, it has high rigidity and a small amount of deformation due to temperature change. Accordingly, it is possible to stably maintain the axial compression allowance of the traction applying member, and thus the diameter reduction deformation amount, and it is possible to apply predetermined traction to the inside of the reduction gear.
 以上の構成において、ナットは、電動モータ部の軸方向外側にシフトした位置に配置することができる。この場合、電動モータ部とナットとを径方向で重畳させる場合(例えば、特許文献1)に比べ、電動モータ部を径方向に小型化することができるので、径方向にコンパクトな電動アクチュエータを実現することができる。 In the above configuration, the nut can be arranged at a position shifted outward in the axial direction of the electric motor unit. In this case, compared with the case where the electric motor unit and the nut are overlapped in the radial direction (for example, Patent Document 1), the electric motor unit can be reduced in the radial direction, so that an electric actuator that is compact in the radial direction is realized. can do.
 電動モータ部は、ロータの内径側に配置され、ロータの回転を出力するモータ部出力軸と、互いに対向するロータの内周面とモータ部出力軸の外周面との間に配置されたトルクリミッタと、を有するものとすることができる。このようにすれば、電動アクチュエータの構成部品への過負荷を防止し、構成部品の損傷等を防止することができる。これにより、電動アクチュエータが作動不能となる事態を可及的に防止することができ、電動アクチュエータの信頼性を一層向上することができる。 The electric motor unit is arranged on the inner diameter side of the rotor, and is a torque limiter arranged between the motor unit output shaft that outputs the rotation of the rotor, and the inner peripheral surface of the rotor and the outer peripheral surface of the motor unit output shaft facing each other. And can have. If it does in this way, overload to the component of an electric actuator can be prevented, and damage etc. of a component can be prevented. Thereby, the situation where the electric actuator becomes inoperable can be prevented as much as possible, and the reliability of the electric actuator can be further improved.
 以上より、本発明によれば、ねじ軸(を含むアクチュエータの出力部材)の動作精度に優れ、信頼性に富む電動アクチュエータを提供することができる。 As described above, according to the present invention, it is possible to provide an electric actuator which is excellent in the operation accuracy of the screw shaft (including the output member of the actuator) and has high reliability.
本発明の一実施形態に係る電動アクチュエータの縦断面図であり、図3および図6のH-H線矢視断面図である。FIG. 7 is a longitudinal sectional view of the electric actuator according to the embodiment of the present invention, and is a sectional view taken along the line HH in FIGS. 3 and 6. 本発明の一実施形態に係る電動アクチュエータの縦断面図であり、図6のI-I線矢視断面図である。It is a longitudinal cross-sectional view of the electric actuator which concerns on one Embodiment of this invention, and is II sectional view taken on the line of FIG. 図1の左側面図である。It is a left view of FIG. 図1のE-E線矢視断面図である。FIG. 2 is a cross-sectional view taken along line EE in FIG. 1. 図1のF-F線矢視断面図である。FIG. 5 is a cross-sectional view taken along line FF in FIG. 1. 図2のG-G線矢視断面図である。FIG. 3 is a cross-sectional view taken along line GG in FIG. 2. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図1および図2に示す電動アクチュエータの組立前の状態における、減速機の外径端部付近の部分拡大図である。FIG. 3 is a partially enlarged view of the vicinity of an outer diameter end portion of the speed reducer in a state before assembly of the electric actuator shown in FIGS. 1 and 2. 図1に示す電動アクチュエータの斜視図である。It is a perspective view of the electric actuator shown in FIG. 図1に示す電動アクチュエータの斜視図である。It is a perspective view of the electric actuator shown in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の説明においては軸方向の方向性を示すために「軸方向一方側」および「軸方向他方側」との語句を使用するが、これらはそれぞれ、図1,2における紙面右側(筐体8の開口側)および紙面左側(筐体8の閉塞側)である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the terms “one side in the axial direction” and “the other side in the axial direction” are used to indicate the directionality in the axial direction. They are the opening side of the body 8 and the left side of the sheet (the closing side of the housing 8).
 図1および図2は、本発明の一実施形態に係る電動アクチュエータの縦断面図であり、より詳細には、図1は、図3および図6のH-H線矢視断面図であり、図2は、図6のI-I線矢視断面図である。なお、図1および図2は、電動アクチュエータ1の出力部材(ここでは、後述するボールねじ91のねじ軸93)が原点に位置した状態を示している。 1 and 2 are longitudinal sectional views of an electric actuator according to an embodiment of the present invention. More specifically, FIG. 1 is a sectional view taken along line HH in FIGS. 2 is a cross-sectional view taken along the line II of FIG. 1 and 2 show a state where an output member of the electric actuator 1 (here, a screw shaft 93 of a ball screw 91 described later) is located at the origin.
 図1および図2に示すように、電動アクチュエータ1は、回転駆動力を発生させる電動モータ部Aと、電動モータ部Aの回転運動を直線運動に変換して出力する運動変換機構部Bと、これらを収容した筐体8とを備える。 As shown in FIGS. 1 and 2, the electric actuator 1 includes an electric motor unit A that generates a rotational driving force, a motion conversion mechanism unit B that converts the rotational motion of the electric motor unit A into a linear motion, and outputs the linear motion. And a housing 8 accommodating these.
 本実施形態の筐体8は、軸方向他方側から軸方向一方側に向けて連ねて配置された4つの筐体構成部材(第1の筐体構成部材81~第4の筐体構成部材84)からなり、全体として有底筒状をなす。第1の筐体構成部材81は有底筒状に形成され、第2~第4の筐体構成部材82~84は両端が開口した筒状に形成されている。図9および図10にも示すように、第1~第4の筐体構成部材81~84は、ボルト部材85を用いて結合一体化されている。第4の筐体構成部材84は、ボルト挿通孔84bが設けられたフランジ部84aを一体に有し、電動アクチュエータ1を図示外の使用機器に固定する際には、ボルト挿通孔84bを挿通させた図示外のボルト部材が使用機器に締結される。 The casing 8 of the present embodiment has four casing constituent members (first casing constituent member 81 to fourth casing constituent member 84) arranged in a row from the other side in the axial direction toward one side in the axial direction. ) And has a bottomed cylindrical shape as a whole. The first casing constituent member 81 is formed in a bottomed cylindrical shape, and the second to fourth casing constituent members 82 to 84 are formed in a cylindrical shape having both ends opened. As shown in FIGS. 9 and 10, the first to fourth housing constituting members 81 to 84 are coupled and integrated using a bolt member 85. The fourth casing component member 84 integrally has a flange portion 84a provided with a bolt insertion hole 84b. When the electric actuator 1 is fixed to a device not shown, the bolt insertion hole 84b is inserted. A bolt member (not shown) is fastened to the device used.
 第1~第4の筐体構成部材81~84のうち、第3の筐体構成部材83は鉄系金属材料で形成され、残りの筐体構成部材、すなわち第1の筐体構成部材81、第2の筐体構成部材82および第4の筐体構成部材84は、比重が小さく、かつ熱伝導率が高いアルミニウム合金で形成される。これは、使用機器に対する電動アクチュエータ1の搭載性等を高める上では電動アクチュエータ1を軽量・コンパクト化することが好ましく、また、電動モータ部Aの駆動に伴う筐体8の内部温度上昇を可及的に抑制するためである。従って、上記のように、筐体8の大半をアルミニウム合金製とすれば、筐体8(電動アクチュエータ1)を軽量化しつつ、冷却効率を高めることができる。 Of the first to fourth casing constituent members 81 to 84, the third casing constituent member 83 is formed of a ferrous metal material, and the remaining casing constituent members, that is, the first casing constituent member 81, The second casing constituent member 82 and the fourth casing constituent member 84 are formed of an aluminum alloy having a small specific gravity and a high thermal conductivity. This is because the electric actuator 1 is preferably made lighter and more compact in order to improve the mountability of the electric actuator 1 on the equipment used, and the internal temperature of the housing 8 can be increased as the electric motor unit A is driven. It is for suppressing it. Therefore, as described above, if most of the housing 8 is made of an aluminum alloy, the cooling efficiency can be increased while reducing the weight of the housing 8 (the electric actuator 1).
 なお、製造コスト低減の観点から、鉄系金属製の第3の筐体構成部材83は鋳鉄品又は鍛造品とするのが好ましく、また、第1の筐体構成部材81、第2の筐体構成部材82および第4の筐体構成部材84は、何れもアルミダイキャスト品とするのが好ましい。 From the viewpoint of reducing the manufacturing cost, it is preferable that the third casing constituent member 83 made of iron-based metal is a cast iron product or a forged product, and the first casing constituent member 81 and the second casing. Both the constituent member 82 and the fourth casing constituent member 84 are preferably aluminum die cast products.
 図1および図3に示すように、第1の筐体構成部材81にはコネクタ101を有するターミナル部Dが設けられ、コネクタ101は第1の筐体構成部材81の軸方向外側に突出している。コネクタ101内には、動力電源用や信号線用の端子が設けられており、動力電源用の端子はステータコイル51cと電気的に接続され、信号線用の端子は図示外のセンサ(例えば、電動モータの回転角度検出用センサ)と電気的に接続されている。 As shown in FIGS. 1 and 3, the first casing component member 81 is provided with a terminal portion D having a connector 101, and the connector 101 protrudes outward in the axial direction of the first casing component member 81. . In the connector 101, terminals for power supply and signal lines are provided, the terminals for power supply are electrically connected to the stator coil 51c, and the terminals for signal lines are connected to a sensor (not shown) (for example, It is electrically connected to a rotation angle detection sensor of the electric motor.
 電動モータ部Aは、電動モータ29と、モータ部出力軸6と、トルクリミッタ7とを備える。電動モータ29は、筐体8(第1および第2の筐体構成部材81,82)に固定されたステータ51と、ステータ51と径方向隙間を介して対向配置されたロータ52とを備えたラジアルギャップ型である。 The electric motor part A includes an electric motor 29, a motor part output shaft 6, and a torque limiter 7. The electric motor 29 includes a stator 51 fixed to the casing 8 (first and second casing constituent members 81 and 82), and a rotor 52 disposed to face the stator 51 via a radial gap. It is a radial gap type.
 図1、図2および図5に示すように、ステータ51は、軸方向に積層した複数の電磁鋼板からなるステータコア51aと、ステータコア51aに装着された絶縁材料からなるボビン51bと、ボビン51bに巻き回されたステータコイル51cとを有する。 As shown in FIGS. 1, 2 and 5, the stator 51 includes a stator core 51a made of a plurality of electromagnetic steel plates laminated in the axial direction, a bobbin 51b made of an insulating material mounted on the stator core 51a, and a bobbin 51b wound around the bobbin 51b. And a rotated stator coil 51c.
 ロータ52は、環状のロータコア52aと、ロータコア52aに取り付けられた複数のマグネット52bと、ロータコア51aの内周に固定された筒状(中空状)のロータインナ52cとを備える。ロータコア52aは、軸方向に積層した複数の電磁鋼板で形成される。ロータインナ52cはロータコア52aよりも軸方向で長寸に形成され、ロータインナ52cの軸方向一方側および他方側の端部はロータコア52aの軸方向外側に突出している。ロータインナ52cは、その軸方向一方側および他方側の端部外周面に固定された軸受53,54によって筐体8に対して回転自在に支持されている。軸受53,54としては、ラジアル荷重とアキシャル荷重の双方を支持できる転がり軸受、例えば深溝玉軸受が使用される。 The rotor 52 includes an annular rotor core 52a, a plurality of magnets 52b attached to the rotor core 52a, and a cylindrical (hollow) rotor inner 52c fixed to the inner periphery of the rotor core 51a. The rotor core 52a is formed of a plurality of electromagnetic steel plates laminated in the axial direction. The rotor inner 52c is formed to be longer in the axial direction than the rotor core 52a, and end portions on one side and the other side of the rotor inner 52c protrude outward in the axial direction of the rotor core 52a. The rotor inner 52c is rotatably supported with respect to the housing 8 by bearings 53 and 54 fixed to the outer peripheral surfaces of the end portions on one side and the other side in the axial direction. As the bearings 53 and 54, a rolling bearing capable of supporting both a radial load and an axial load, for example, a deep groove ball bearing is used.
 図1および図2に示すように、モータ部出力軸6は、軸方向の両端を開口させた円筒状に形成されており、これにより、電動モータ部A(の電動モータ29)は中空モータとしての構造を有する。モータ部出力軸6は、ロータインナ52cの内周に隙間嵌めで嵌合されており、ロータインナ52cに対して相対回転可能である。 As shown in FIG. 1 and FIG. 2, the motor part output shaft 6 is formed in a cylindrical shape with both ends in the axial direction being opened, whereby the electric motor part A (the electric motor 29) is formed as a hollow motor. It has the structure of. The motor unit output shaft 6 is fitted to the inner periphery of the rotor inner 52c with a gap fit, and is rotatable relative to the rotor inner 52c.
 図7に拡大して示すように、ロータインナ52cの内周面には、内径寸法が他所よりも大きい環状凹部521が形成され、この環状凹部521は、図1に示すように、例えばロータインナ52cの軸方向他方側の端部に形成される。互いに対向するロータインナ52cの環状凹部521の内周面とモータ部出力軸6の外周面との間に環状空間が形成され、この環状空間にトルクリミッタ7が配置されている。 As shown in an enlarged view in FIG. 7, an annular recess 521 having an inner diameter dimension larger than that of the other part is formed on the inner peripheral surface of the rotor inner 52 c, and the annular recess 521 is formed, for example, of the rotor inner 52 c as shown in FIG. 1. It is formed at the end on the other side in the axial direction. An annular space is formed between the inner peripheral surface of the annular recess 521 of the rotor inner 52c facing each other and the outer peripheral surface of the motor unit output shaft 6, and the torque limiter 7 is disposed in this annular space.
 トルクリミッタ7は、電動モータ29から出力された回転動力をモータ部出力軸6に伝達する一方で、過負荷が作用した時にはトルク伝達を遮断し、電動モータ29のロータ52(ロータインナ52c)とモータ部出力軸6の相対回転を許容する。このような機能を有する限りにおいて、任意の構成のトルクリミッタ7を採用することができるが、本実施形態では、摩擦式クラッチの一種である多板クラッチをトルクリミッタ7として使用している。 The torque limiter 7 transmits the rotational power output from the electric motor 29 to the motor unit output shaft 6. On the other hand, when an overload is applied, the torque limiter 7 cuts off the torque transmission, and the rotor 52 (rotor inner 52 c) of the electric motor 29 and the motor. The relative rotation of the part output shaft 6 is allowed. As long as it has such a function, the torque limiter 7 having an arbitrary configuration can be adopted. However, in the present embodiment, a multi-plate clutch which is a kind of a friction clutch is used as the torque limiter 7.
 図5および図7を参照して、トルクリミッタ7の構成を説明する。トルクリミッタ7としての多板クラッチは、軸方向に離間して配置された一対の第1摩擦板71,71と、一対の第1摩擦板71,71の間に配置された第2摩擦板72と、第1摩擦板71と第2摩擦板72を圧接させた波形ばね等の弾性部材73と、押圧板74とを備える。押圧板74は、ロータインナ52cの内周面の環状溝に嵌合された止め輪75により軸方向で位置決めされ、所定の押圧力(軸方向荷重)を弾性部材73に付与する。 The configuration of the torque limiter 7 will be described with reference to FIGS. The multi-plate clutch as the torque limiter 7 includes a pair of first friction plates 71 and 71 that are spaced apart in the axial direction and a second friction plate 72 that is disposed between the pair of first friction plates 71 and 71. And an elastic member 73 such as a wave spring in which the first friction plate 71 and the second friction plate 72 are brought into pressure contact with each other, and a pressing plate 74. The pressing plate 74 is positioned in the axial direction by a retaining ring 75 fitted in an annular groove on the inner peripheral surface of the rotor inner 52 c, and applies a predetermined pressing force (axial load) to the elastic member 73.
 ロータインナ52cに設けられた環状凹部521の内周面には、軸方向に延びる雌セレーション522が形成されており、この雌セレーション522に第1摩擦板71および押圧板74が嵌合されている。また、モータ部出力軸6の外周面には、軸方向に延びる雄セレーション6aが形成されており、この雄セレーション6aに第2摩擦板72が嵌合されている。そして、弾性部材73の付勢力により、第1摩擦板71と第2摩擦板72間に摩擦力が発生する。 A female serration 522 extending in the axial direction is formed on the inner peripheral surface of the annular recess 521 provided in the rotor inner 52c, and the first friction plate 71 and the pressing plate 74 are fitted to the female serration 522. A male serration 6a extending in the axial direction is formed on the outer peripheral surface of the motor unit output shaft 6, and a second friction plate 72 is fitted to the male serration 6a. A frictional force is generated between the first friction plate 71 and the second friction plate 72 by the biasing force of the elastic member 73.
 電動モータ29とモータ部出力軸6の間に作用するトルクが両摩擦板71,72間に作用する摩擦力以下であるときは、両摩擦板71,72が一体回転するため、電動モータ29の回転動力が両摩擦板71,72を介してモータ部出力軸6に伝達される。これにより、モータ部出力軸6に接続される減速機20(詳細は後述する)、さらにはこの減速機20の出力側に接続される運動変換機構部Bが駆動される。一方、電動モータ29とモータ部出力軸6の間に作用するトルクが両摩擦板71,72間に作用する摩擦力を上回ると、一方の摩擦板が他方の摩擦板に対して滑るため、電動モータ29とモータ部出力軸6との間でのトルク伝達が遮断される。これにより、モータ部出力軸6とロータインナ52cの相対回転が許容される。 When the torque acting between the electric motor 29 and the motor unit output shaft 6 is less than the friction force acting between the friction plates 71 and 72, the friction plates 71 and 72 rotate together. Rotational power is transmitted to the motor unit output shaft 6 via both friction plates 71 and 72. Thereby, the speed reducer 20 (details will be described later) connected to the motor unit output shaft 6 and the motion conversion mechanism B connected to the output side of the speed reducer 20 are driven. On the other hand, when the torque acting between the electric motor 29 and the motor unit output shaft 6 exceeds the friction force acting between the friction plates 71 and 72, one friction plate slides with respect to the other friction plate. Torque transmission between the motor 29 and the motor unit output shaft 6 is interrupted. Thereby, relative rotation of the motor part output shaft 6 and the rotor inner 52c is permitted.
 図1および図2に示すように、運動変換機構部Bは、外周面に螺旋状溝が形成され、電動モータ29のロータ52の回転中心と同軸に配置されたねじ軸93と、内周面に螺旋状溝が形成され、ねじ軸93の外周に嵌合されたナット92と、ねじ軸93とナット92の螺旋状溝間に配置された多数のボール94と、ねじ軸93とナット92の間に配設された循環部材としてのこま(図示省略)とを備えたボールねじ91からなる。ねじ軸93の軸方向一方側の端部には、図示外の操作対象を操作する操作部Cとしてのアクチュエータヘッド100が設けられており、本実施形態では、ねじ軸93の軸方向一方側の端部にアクチュエータヘッド100が一体的に設けられている。従って、ねじ軸93は、電動アクチュエータ1の出力部材を構成する。操作部C(アクチュエータヘッド100)は、ねじ軸93と別体に設けることもでき、用途に応じたものが選択使用される。 As shown in FIGS. 1 and 2, the motion conversion mechanism B has a screw shaft 93 that is formed with a spiral groove on the outer peripheral surface and is coaxial with the rotation center of the rotor 52 of the electric motor 29, and an inner peripheral surface. And a plurality of balls 94 disposed between the screw shaft 93 and the spiral groove of the nut 92, and the screw shaft 93 and the nut 92. It consists of a ball screw 91 provided with a top (not shown) as a circulating member disposed therebetween. An actuator head 100 as an operation unit C that operates an operation target (not shown) is provided at the end of one side in the axial direction of the screw shaft 93. The actuator head 100 is integrally provided at the end. Accordingly, the screw shaft 93 constitutes an output member of the electric actuator 1. The operation unit C (actuator head 100) can be provided separately from the screw shaft 93, and the one corresponding to the application is selected and used.
 ナット92は、電動モータ部Aの出力部材(モータ部出力軸6)と接続されて回転駆動される。詳細は後述するが、本実施形態では、減速機20を介して電動モータ部Aの回転運動がナット92に伝達されるため、ナット92には、減速機20の出力部材を構成するキャリア24が圧入等の適宜の手段で固定されている。 The nut 92 is connected to the output member (motor unit output shaft 6) of the electric motor unit A and is driven to rotate. Although details will be described later, in the present embodiment, since the rotational motion of the electric motor portion A is transmitted to the nut 92 via the speed reducer 20, the carrier 24 constituting the output member of the speed reducer 20 is provided on the nut 92. It is fixed by appropriate means such as press fitting.
 ナット92は、電動モータ部Aよりも軸方向一方側にシフトした位置に配置されており、電動モータ部Aのロータインナ52cおよびモータ部出力軸6と径方向で重畳していない。この場合、ロータインナ52cの内径寸法D1およびモータ部出力軸6の内径寸法D2を、ナット92の外径寸法D3よりも小さくすることができるため、径方向寸法が小さい小型の電動モータ29を使用することができる。これにより、電動モータ部A、ひいては電動アクチュエータ1を径方向にコンパクト化することができる。 The nut 92 is disposed at a position shifted to one side in the axial direction from the electric motor part A, and does not overlap with the rotor inner 52c of the electric motor part A and the motor part output shaft 6 in the radial direction. In this case, since the inner diameter dimension D1 of the rotor inner 52c and the inner diameter dimension D2 of the motor unit output shaft 6 can be made smaller than the outer diameter dimension D3 of the nut 92, a small electric motor 29 having a small radial dimension is used. be able to. Thereby, the electric motor part A and by extension the electric actuator 1 can be made compact in the radial direction.
 図1および図4に示すように、中空状をなすモータ部出力軸6の内周に、ねじ軸93の回り止め機構が設けられる。すなわち、ねじ軸93の回り止め機構は、電動モータ部Aの軸方向範囲内に設けられる。これにより、ねじ軸93の回り止め機構を電動モータ部Aの軸方向外側に設ける場合(例えば、特許文献1)に比べ、電動アクチュエータ1を軸方向にコンパクト化することができる。 As shown in FIGS. 1 and 4, a rotation prevention mechanism for the screw shaft 93 is provided on the inner periphery of the hollow motor portion output shaft 6. That is, the anti-rotation mechanism for the screw shaft 93 is provided in the axial range of the electric motor portion A. As a result, the electric actuator 1 can be made more compact in the axial direction than in the case where the rotation prevention mechanism for the screw shaft 93 is provided on the outer side in the axial direction of the electric motor portion A (for example, Patent Document 1).
 本実施形態の回り止め機構は、筐体8を構成する第1の筐体構成部材81に固定され、モータ部出力軸6の内径側に配置された筒状のガイド部材95と、ねじ軸93を径方向に貫通する貫通孔に挿通され、径方向外側の端部がねじ軸93の径方向外側に突出したピン96と、ピン96の突出部分に回転自在に嵌合されたガイドカラー97の協働で形成される。ガイド部材95は、モータ部出力軸6の内周面とねじ軸93の外周面との間に配置された円筒部95aを有する。この円筒部95aの内径面には、軸方向に延びたガイド溝95bが形成されており、このガイド溝95bにガイドカラー97が嵌め込まれている。以上の構成により、ねじ軸93は筐体8に対する回り止めがなされた状態で軸方向に滑らかに進退移動(直線運動)可能となる。 The anti-rotation mechanism of the present embodiment is fixed to a first casing constituent member 81 constituting the casing 8 and has a cylindrical guide member 95 disposed on the inner diameter side of the motor unit output shaft 6 and a screw shaft 93. A pin 96 having a radially outer end projecting radially outward of the screw shaft 93, and a guide collar 97 rotatably fitted to the projecting portion of the pin 96. Formed in collaboration. The guide member 95 has a cylindrical portion 95 a disposed between the inner peripheral surface of the motor unit output shaft 6 and the outer peripheral surface of the screw shaft 93. A guide groove 95b extending in the axial direction is formed on the inner diameter surface of the cylindrical portion 95a, and a guide collar 97 is fitted into the guide groove 95b. With the above configuration, the screw shaft 93 can smoothly advance and retreat (linear motion) in the axial direction in a state in which the screw shaft 93 is prevented from rotating with respect to the housing 8.
 図1および図2に示すように、ナット92は、その外周面に内輪が固定された転がり軸受9により筐体8に対して回転自在に支持される。転がり軸受9としては、ラジアル荷重とアキシャル荷重の双方を支持することができるもの、特にその中でも高い荷重支持能力を具備する複列の深溝玉軸受が使用される。また、転がり軸受9として複列の深溝玉軸受を使用すれば、ナット92を両持ち構造にすることができるので、ナット92が軸方向に対して傾き、ナット92の回転精度が低下するのを防止することができる、という利点もある。 As shown in FIGS. 1 and 2, the nut 92 is rotatably supported with respect to the housing 8 by a rolling bearing 9 having an inner ring fixed to the outer peripheral surface thereof. As the rolling bearing 9, a double row deep groove ball bearing that can support both a radial load and an axial load, in particular, a high load supporting ability is used. Further, if a double row deep groove ball bearing is used as the rolling bearing 9, the nut 92 can have a double-sided structure, so that the nut 92 is inclined with respect to the axial direction, and the rotational accuracy of the nut 92 is reduced. There is also an advantage that it can be prevented.
 転がり軸受9の外輪は、その軸方向一方側および他方側の端面が、第4の筐体構成部材84の肩面84cおよび第3の筐体構成部材83の軸方向一方側の端面83aとそれぞれ当接している。すなわち、転がり軸受9は、外輪が第3の筐体構成部材83と第4の筐体構成部材84とで軸方向両側から挟持されることにより、軸方向で位置決めされている。この場合、筐体8を組み立てる(ボルト部材85を用いて第1~第4の筐体構成部材81~84を結合一体化する)のに伴って転がり軸受9を位置決め固定することができるので、組立性が良好である。転がり軸受9の内輪は、ナット92の軸方向一方側の端部外周に設けられたフランジ部と、減速機20のキャリア24とで挟持されている。 The outer ring of the rolling bearing 9 has an axial end surface on one side and the other end thereof on the shoulder surface 84c of the fourth casing component member 84 and an end surface 83a on the axial direction one side of the third casing component member 83, respectively. It is in contact. That is, the rolling bearing 9 is positioned in the axial direction by holding the outer ring between the third housing constituent member 83 and the fourth housing constituent member 84 from both axial sides. In this case, the rolling bearing 9 can be positioned and fixed as the casing 8 is assembled (the first to fourth casing constituent members 81 to 84 are combined and integrated using the bolt member 85). Assemblability is good. The inner ring of the rolling bearing 9 is sandwiched between a flange portion provided on the outer periphery of one end of the nut 92 in the axial direction and the carrier 24 of the speed reducer 20.
 図1および図2に示すように、本実施形態の電動アクチュエータ1は、電動モータ部Aのモータ部出力軸6と運動変換機構部B(ボールねじ91)を構成するナット92の間のトルク伝達経路上に配設された減速機20を有する。この場合、ナット92には、減速機20で減速された高トルクの回転力が伝達されるため、電動モータ29を小型化することができ、これを通じて電動アクチュエータ1を軽量・コンパクト化することができる。 As shown in FIGS. 1 and 2, the electric actuator 1 according to the present embodiment transmits torque between the motor unit output shaft 6 of the electric motor unit A and the nut 92 constituting the motion conversion mechanism unit B (ball screw 91). It has the reduction gear 20 arrange | positioned on the path | route. In this case, since the high torque torque reduced by the speed reducer 20 is transmitted to the nut 92, the electric motor 29 can be reduced in size, and the electric actuator 1 can be reduced in weight and size through this. it can.
 図6に示すように、本実施形態の減速機20はトラクションドライブ式の遊星減速機であり、太陽ローラ21と、複数の遊星ローラ23と、キャリア24と、遊星ローラ23の径方向外側に配置された円環状のトラクション付与部材22とを備える。本実施形態では、モータ部出力軸6の軸方向一方側の端部を太陽ローラ21として使用し、転がり軸受(例えば深溝玉軸受)25の外輪を遊星ローラ23として使用している。各転がり軸受25の内輪は中空軸26に圧入固定されている。 As shown in FIG. 6, the speed reducer 20 of the present embodiment is a traction drive type planetary speed reducer, and is arranged on the radially outer side of the sun roller 21, the plurality of planetary rollers 23, the carrier 24, and the planetary roller 23. And an annular traction applying member 22. In the present embodiment, the end of one side in the axial direction of the motor unit output shaft 6 is used as the sun roller 21, and the outer ring of the rolling bearing (for example, deep groove ball bearing) 25 is used as the planetary roller 23. The inner ring of each rolling bearing 25 is press-fitted and fixed to the hollow shaft 26.
 図8に、電動アクチュエータ1(筐体8)の組立前の状態における、減速機20の外径端部付近の拡大図を模式的に示す。図8に示すように、トラクション付与部材22は、断面U字状の本体部22aと、本体部22aの軸方向両側に設けられたフランジ部22bとを一体に有する。筐体8の組立前(第2の筐体構成部材82と第3の筐体構成部材83とを結合一体化する前)の状態では、図8中に実線で示すように、第2の筐体構成部材82の内周に配置されたトラクション付与部材22の軸方向一方側のフランジ部22bが、第2の筐体構成部材82の軸方向一方側の端面よりも寸法tだけ突出している。 FIG. 8 schematically shows an enlarged view of the vicinity of the outer diameter end portion of the speed reducer 20 in a state before the electric actuator 1 (housing 8) is assembled. As shown in FIG. 8, the traction imparting member 22 integrally includes a main body portion 22a having a U-shaped cross section and flange portions 22b provided on both axial sides of the main body portion 22a. In a state before the casing 8 is assembled (before the second casing constituent member 82 and the third casing constituent member 83 are combined and integrated), as shown by a solid line in FIG. A flange portion 22b on one axial side of the traction imparting member 22 arranged on the inner periphery of the body constituting member 82 protrudes from the end surface on the one axial side of the second casing constituting member 82 by a dimension t.
 トラクション付与部材22の軸方向他方側のフランジ部22bと筐体8(第2の筐体構成部材82)との間には、円環状をなした鉄系金属製の調整部材28が配置されており、この調整部材28により、筐体8の組立前の状態におけるトラクション付与部材22の軸方向一方側のフランジ部22bの突出量が調整される。 Between the flange portion 22b on the other side in the axial direction of the traction imparting member 22 and the housing 8 (second housing constituent member 82), an iron-based metal adjusting member 28 having an annular shape is disposed. The adjustment member 28 adjusts the protruding amount of the flange portion 22b on the one axial side of the traction imparting member 22 before the housing 8 is assembled.
 そして、筐体8を組み立てる(ボルト部材85を用いて第1~第4の筐体構成部材81~84を結合一体化する)と、トラクション付与部材22は、第3の筐体構成部材83の加圧面83bによって軸方向他方側に加圧されて軸方向に圧縮変形する。このように、トラクション付与部材22が軸方向に圧縮変形すると、トラクション付与部材22の本体部22が径方向内側に膨出するようにして本体部22が縮径する(図8中の二点鎖線を参照。但し、図8では変形の程度を誇張して描いている)。これにより、減速機20の内部、より詳細には、トラクション付与部材22と遊星ローラ23との接触部、さらには遊星ローラ23と太陽ローラ21との接触部にトラクション(径方向の予圧)が付与される。 Then, when the casing 8 is assembled (the first to fourth casing constituent members 81 to 84 are coupled and integrated using the bolt member 85), the traction imparting member 22 is connected to the third casing constituent member 83. The pressure surface 83b is pressurized on the other side in the axial direction and is compressed and deformed in the axial direction. Thus, when the traction imparting member 22 is compressed and deformed in the axial direction, the main body portion 22 is reduced in diameter so that the main body portion 22 of the traction imparting member 22 bulges inward in the radial direction (two-dot chain line in FIG. 8). (However, the degree of deformation is exaggerated in FIG. 8). Accordingly, traction (radial preload) is applied to the inside of the speed reducer 20, more specifically, to the contact portion between the traction applying member 22 and the planetary roller 23, and further to the contact portion between the planetary roller 23 and the sun roller 21. Is done.
 以上の構成を有する本実施形態の電動アクチュエータ1は、電動モータ29のロータ52とモータ部出力軸6との間にトルクリミッタ7が配置されていることから、以下の態様で動作する。まず、通常時は、電動モータ29の回転動力がトルクリミッタ7、モータ部出力軸6および減速機20を介してボールねじ91のナット92に伝達されることにより、ナット92がねじ軸93の軸線回りに回転する。そして、ナット92の回転方向(電動モータ29のロータ52の回転方向)に応じて、アクチュエータヘッド100を有するねじ軸93が軸方向一方側に前進又は軸方向他方側に後退し、図示外の操作対象を操作する。 The electric actuator 1 of the present embodiment having the above configuration operates in the following manner because the torque limiter 7 is disposed between the rotor 52 of the electric motor 29 and the motor unit output shaft 6. First, during normal times, the rotational power of the electric motor 29 is transmitted to the nut 92 of the ball screw 91 via the torque limiter 7, the motor unit output shaft 6, and the speed reducer 20, so that the nut 92 is the axis of the screw shaft 93. Rotate around. Then, depending on the rotation direction of the nut 92 (the rotation direction of the rotor 52 of the electric motor 29), the screw shaft 93 having the actuator head 100 moves forward in one axial direction or retreats in the other axial direction. Manipulate the target.
 例えば、ねじ軸93(アクチュエータヘッド100)が操作対象を操作している最中に電動アクチュエータ1に軸方向の衝撃荷重が作用した場合には、ねじ軸93に逆入力荷重が負荷される。この逆入力荷重は、ねじ軸93およびボール94を介してナット92に伝達されるため、ナット92を筐体8に対して回転自在に支持する転がり軸受9には、これを軸方向他方側に加圧するスラスト荷重が負荷される。このスラスト荷重は、軸方向一方側の端面83aが転がり軸受9(の外輪)の軸方向他方側の端面に当接した第3の筐体構成部材83で受けられる。すなわち、本実施形態では、第3の筐体構成部材83の軸方向一方側の端面83aが、本発明でいう「荷重受け面」を構成する。 For example, when an axial impact load is applied to the electric actuator 1 while the screw shaft 93 (actuator head 100) is operating the operation target, a reverse input load is applied to the screw shaft 93. Since this reverse input load is transmitted to the nut 92 through the screw shaft 93 and the ball 94, the rolling bearing 9 that rotatably supports the nut 92 with respect to the housing 8 is provided on the other side in the axial direction. A thrust load to be pressurized is applied. This thrust load is received by the third casing constituent member 83 in which the end surface 83a on one side in the axial direction is in contact with the end surface on the other side in the axial direction of the rolling bearing 9 (outer ring). That is, in the present embodiment, the end surface 83a on the one axial side of the third housing component 83 constitutes the “load receiving surface” in the present invention.
 このように、本実施形態の電動アクチュエータ1においては、転がり軸受9に作用するスラスト荷重を第3の筐体構成部材83で受けることができる。第3の筐体構成部材83は、鉄系金属材料で形成されて高い強度・剛性を具備することから、転がり軸受9を介して荷重受け面としての端面83aに大きなスラスト荷重が入力された場合でも、第3の筐体構成部材83自体が変形・破損等する可能性は可及的に減じられる。また、第3の筐体構成部材83は、筐体8を構成する一つの部材であることから、端面83aに入力されたスラスト荷重を筐体8全体に分散させることもできる。そのため、転がり軸受9に大きなスラスト荷重が負荷された場合でも、転がり軸受9の軸方向の位置精度等に狂いは生じ難く、従って、ナット92の回転精度、ひいてはねじ軸93(を含む電動アクチュエータ1の出力部材)の動作精度は安定的に維持される。 Thus, in the electric actuator 1 of the present embodiment, the third casing component member 83 can receive the thrust load acting on the rolling bearing 9. Since the third casing constituent member 83 is formed of an iron-based metal material and has high strength and rigidity, when a large thrust load is input to the end surface 83a as a load receiving surface via the rolling bearing 9 However, the possibility that the third casing constituting member 83 itself is deformed or damaged is reduced as much as possible. In addition, since the third casing component member 83 is one member that configures the casing 8, the thrust load input to the end surface 83 a can be dispersed throughout the casing 8. Therefore, even when a large thrust load is applied to the rolling bearing 9, the positional accuracy of the rolling bearing 9 in the axial direction or the like is not likely to be distorted. Therefore, the rotational accuracy of the nut 92, and thus the screw shaft 93 (including the electric actuator 1). The operation accuracy of the output member is stably maintained.
 また、第3の筐体構成部材83は、軸方向に圧縮された状態のトラクション付与部材22と軸方向で当接している。トラクション付与部材22は、軸方向に圧縮されて縮径変形することにより、トラクションドライブ式の遊星減速機からなる減速機20の内部にトラクションを付与するものである。第3の筐体構成部材83は鉄系金属材料で形成されている関係上、高剛性で温度変化に伴う変形量も少ない。このため、軸方向に圧縮された状態のトラクション付与部材22が第3の筐体構成部材83と軸方向で当接していれば、トラクション付与部材22に必要とされる軸方向の圧縮代、ひいては縮径変形量を安定的に維持することができる。従って、減速機20の内部に所定のトラクションを安定的に付与することができ、減速機20の動作精度を安定的に維持することができる。 Further, the third casing constituent member 83 is in contact with the traction applying member 22 in the axial direction in the axial direction. The traction imparting member 22 imparts traction to the inside of the speed reducer 20 composed of a traction drive type planetary speed reducer by being compressed in the axial direction and deformed in a reduced diameter. Since the third casing component member 83 is formed of an iron-based metal material, the third casing component member 83 is highly rigid and has a small amount of deformation accompanying a temperature change. For this reason, if the traction imparting member 22 in the axially compressed state is in contact with the third casing component member 83 in the axial direction, the axial compression allowance required for the traction imparting member 22, and thus The amount of reduced diameter deformation can be stably maintained. Therefore, predetermined traction can be stably given to the inside of the speed reducer 20, and the operation accuracy of the speed reducer 20 can be stably maintained.
 また、本実施形態の電動アクチュエータ1は、電動モータ部A内にトルクリミッタ7を有することから、ねじ軸93(アクチュエータヘッド100)が障害物と衝突する等してその前進移動が規制されるような状況になっても、ロータインナ52cとモータ部出力軸6の間で滑りを生じさせてトルク伝達経路を遮断することができる。このため、減速機20やボールねじ91(運動変換機構部B)に過大な負荷が作用することを防止し、これらが破損等するのを防止することができる。 Moreover, since the electric actuator 1 of this embodiment has the torque limiter 7 in the electric motor part A, the forward movement of the screw shaft 93 (actuator head 100) is restricted by colliding with an obstacle. Even in such a situation, the torque transmission path can be blocked by causing slippage between the rotor inner 52c and the motor unit output shaft 6. For this reason, it is possible to prevent an excessive load from acting on the speed reducer 20 and the ball screw 91 (motion conversion mechanism B), and to prevent them from being damaged.
 本実施形態の電動アクチュエータ1は、上述したように、ねじ軸93や減速機20の動作精度に優れ、また、減速機20や運動変換機構部B(ボールねじ91)の破損等を可及的に防止することができる信頼性に富むものである。さらに、本実施形態の電動アクチュエータ1は、軽量・コンパクトで使用機器に対する搭載性に優れ、組立性も良好で低コストに製造可能である。 As described above, the electric actuator 1 of the present embodiment is excellent in the operation accuracy of the screw shaft 93 and the speed reducer 20, and damage to the speed reducer 20 and the motion conversion mechanism B (ball screw 91) is as much as possible. It is highly reliable that can be prevented. Furthermore, the electric actuator 1 according to the present embodiment is light and compact, has excellent mountability with respect to the equipment used, has good assemblability, and can be manufactured at low cost.
 以上、本発明の一実施形態に係る電動アクチュエータ1について説明を行ったが、本発明の実施の形態はこれに限られない。 As mentioned above, although the electric actuator 1 which concerns on one Embodiment of this invention was demonstrated, embodiment of this invention is not restricted to this.
 例えば、以上で説明した電動アクチュエータ1では、減速機20として、トラクションドライブ式の遊星減速機を採用したが、減速機20の構成は任意であり、その他の減速機(例えば遊星歯車減速機)を採用することもできる。また、減速機20は必須の構成ではなく、本発明は、減速機20を省略した電動アクチュエータ1にも適用することができる。 For example, in the electric actuator 1 described above, a traction drive type planetary speed reducer is adopted as the speed reducer 20, but the configuration of the speed reducer 20 is arbitrary, and other speed reducers (for example, planetary gear speed reducers) are used. It can also be adopted. Further, the reduction gear 20 is not an essential configuration, and the present invention can also be applied to the electric actuator 1 in which the reduction gear 20 is omitted.
 また、以上で説明した電動アクチュエータ1では、筐体8を構成する第1~第4の筐体構成部材81~84のうち、第3の筐体構成部材83のみを鉄系金属材料で形成したが、筐体8の重量化や冷却効率の低下が問題とならないのであれば、その他の筐体構成部材を鉄系金属材料で形成しても構わない。 Further, in the electric actuator 1 described above, only the third casing constituent member 83 among the first to fourth casing constituent members 81 to 84 configuring the casing 8 is formed of an iron-based metal material. However, if the weight of the housing 8 and the decrease in cooling efficiency are not a problem, the other housing components may be formed of an iron-based metal material.
 また、電動モータ部Aの電動モータ29としては、以上で説明したようなラジアルギャップ型ではなく、アキシャルギャップ型を採用しても構わない。また、以上で説明した電動アクチュエータ1では、運動変換機構部Bをボールねじ91で構成したが、本発明は、運動変換機構部Bに、ボール94および循環部材が省略された滑りねじを使用する場合にも好ましく適用することができる。 Further, as the electric motor 29 of the electric motor portion A, an axial gap type may be adopted instead of the radial gap type as described above. Moreover, in the electric actuator 1 demonstrated above, although the motion conversion mechanism part B was comprised with the ball screw 91, this invention uses the slide screw from which the ball | bowl 94 and the circulation member were abbreviate | omitted for the motion conversion mechanism part B. It can be preferably applied to cases.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. The equivalent meanings recited in the claims, and all modifications within the scope.
1    電動アクチュエータ
6    モータ部出力軸
7    トルクリミッタ
8    筐体
9    転がり軸受
20   減速機
22   トラクション付与部材
29   電動モータ
52   ロータ
83   第3の筐体構成部材(鉄系金属製の筐体構成部材)
83a  端面(荷重受け面)
91   ボールねじ
92   ナット
93   ねじ軸
100  アクチュエータヘッド
A    電動モータ部
B    運動変換機構部
C    操作部
D    ターミナル部
DESCRIPTION OF SYMBOLS 1 Electric actuator 6 Motor part output shaft 7 Torque limiter 8 Case 9 Rolling bearing 20 Reduction gear 22 Traction provision member 29 Electric motor 52 Rotor 83 3rd housing | casing structural member (casing structural member made from a ferrous metal)
83a End surface (load receiving surface)
91 Ball screw 92 Nut 93 Screw shaft 100 Actuator head A Electric motor part B Motion conversion mechanism part C Operation part D Terminal part

Claims (6)

  1.  電動モータ部と、該電動モータ部の回転運動を直線運動に変換する運動変換機構部と、軸方向に結合された複数の筐体構成部材からなり、前記電動モータ部および前記運動変換機構部を収容した筐体とを備え、前記運動変換機構部が、前記電動モータ部のロータの回転中心と同軸に配置されたねじ軸と、該ねじ軸の外周に嵌合され、転がり軸受を介して前記筐体に対して回転自在に支持されたナットとを有し、該ナットの回転に伴って前記ねじ軸が軸方向に進退移動する電動アクチュエータにおいて、
     複数の筐体構成部材のうち、少なくとも一つが鉄系金属材料で形成されており、この鉄系金属製の筐体構成部材が、前記転がり軸受と軸方向で当接して前記転がり軸受に作用するスラスト荷重を受ける荷重受け面を有することを特徴とする電動アクチュエータ。
    An electric motor unit, a motion conversion mechanism unit that converts the rotational motion of the electric motor unit into a linear motion, and a plurality of casing constituent members coupled in the axial direction, and the electric motor unit and the motion conversion mechanism unit A housing that accommodates the motion conversion mechanism, the screw shaft disposed coaxially with the rotation center of the rotor of the electric motor unit, and the outer periphery of the screw shaft, and through the rolling bearing An electric actuator having a nut rotatably supported with respect to the housing, wherein the screw shaft moves forward and backward in the axial direction as the nut rotates,
    At least one of the plurality of casing constituent members is formed of an iron-based metal material, and the casing constituent member made of iron-based metal abuts on the rolling bearing in the axial direction and acts on the rolling bearing. An electric actuator having a load receiving surface for receiving a thrust load.
  2.  前記鉄系金属製の筐体構成部材が、鋳鉄品又は鍛造品である請求項1に記載の電動アクチュエータ。 The electric actuator according to claim 1, wherein the iron-based metal casing constituent member is a cast iron product or a forged product.
  3.  複数の前記筐体構成部材のうち、前記鉄系金属製の筐体構成部材を除く残余の筐体構成部材が、アルミニウム合金で形成されている請求項1又は2に記載の電動アクチュエータ。 3. The electric actuator according to claim 1 or 2, wherein, among the plurality of casing constituent members, the remaining casing constituent members excluding the ferrous metal casing constituent members are formed of an aluminum alloy.
  4.  前記ロータの回転を減速して前記ナットに伝達するトラクションドライブ式の遊星減速機をさらに備え、
     軸方向に圧縮されて縮径変形することにより前記遊星減速機の内部にトラクションを付与する環状のトラクション付与部材が、軸方向に圧縮された状態で前記鉄系金属製の筐体構成部材と軸方向で当接している請求項1~3の何れか一項に記載の電動アクチュエータ。
    A traction drive planetary speed reducer that decelerates the rotation of the rotor and transmits it to the nut;
    An annular traction imparting member that imparts traction to the inside of the planetary reducer by being compressed in the axial direction and contracting in diameter is compressed with the iron-based metal casing constituent member and the shaft in a compressed state in the axial direction. The electric actuator according to any one of claims 1 to 3, wherein the electric actuator is in contact in a direction.
  5.  前記ナットが、前記電動モータ部の軸方向外側にシフトした位置に配置されている請求項1~4の何れか一項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 4, wherein the nut is disposed at a position shifted outward in the axial direction of the electric motor unit.
  6.  前記電動モータ部が、前記ロータの内径側に配置され、前記ロータの回転を出力するモータ部出力軸と、互いに対向する前記ロータの内周面と前記モータ部出力軸の外周面との間に配置されたトルクリミッタと、を有する請求項1~5の何れか一項に記載の電動アクチュエータ。 The electric motor unit is disposed on the inner diameter side of the rotor, and outputs between a motor unit output shaft that outputs rotation of the rotor, and an inner peripheral surface of the rotor and an outer peripheral surface of the motor unit output shaft facing each other. The electric actuator according to any one of claims 1 to 5, further comprising a torque limiter disposed.
PCT/JP2017/037564 2016-11-10 2017-10-17 Electrically driven actuator WO2018088143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-219571 2016-11-10
JP2016219571A JP2018078742A (en) 2016-11-10 2016-11-10 Electric actuator

Publications (1)

Publication Number Publication Date
WO2018088143A1 true WO2018088143A1 (en) 2018-05-17

Family

ID=62110753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037564 WO2018088143A1 (en) 2016-11-10 2017-10-17 Electrically driven actuator

Country Status (2)

Country Link
JP (1) JP2018078742A (en)
WO (1) WO2018088143A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232034A (en) * 2013-05-29 2014-12-11 アイシン精機株式会社 Displacement detection device of direct-acting mechanism, and rear-wheel steering device of vehicle including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232034A (en) * 2013-05-29 2014-12-11 アイシン精機株式会社 Displacement detection device of direct-acting mechanism, and rear-wheel steering device of vehicle including the same

Also Published As

Publication number Publication date
JP2018078742A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2017141659A1 (en) Electric actuator
JP6815852B2 (en) Rotational drive source for electric actuators and electric actuators
WO2017154836A1 (en) Electrical actuator
EP2447562B1 (en) Electromagnetic clutch
EP3135944B1 (en) Driving force transmission device
JP2020012554A (en) Clutch device
US10731739B2 (en) Electric actuator
US11177718B2 (en) Electric actuator with screw shaft
WO2017169846A1 (en) Electric actuator
WO2018116739A1 (en) Rotational drive source for electrical actuator, and electrical actuator
WO2016195104A1 (en) Electric actuator
WO2018088143A1 (en) Electrically driven actuator
JP2018080776A (en) Electric actuator
JP2010242949A (en) Ball screw device
WO2018096939A1 (en) Electric actuator
WO2017145827A1 (en) Electrically driven actuator
JP2019058032A (en) Electric actuator
WO2018088244A1 (en) Direct drive electric actuator
JP6621687B2 (en) Electric actuator
JP2010236598A (en) Ball screw device
JP6736352B2 (en) Electric actuator
WO2017169935A1 (en) Electric actuator
JP2018074833A (en) Rotary drive source for electric actuator and electric actuator
JP2013137087A (en) Actuator, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869169

Country of ref document: EP

Kind code of ref document: A1