JP6736352B2 - Electric actuator - Google Patents

Electric actuator Download PDF

Info

Publication number
JP6736352B2
JP6736352B2 JP2016102565A JP2016102565A JP6736352B2 JP 6736352 B2 JP6736352 B2 JP 6736352B2 JP 2016102565 A JP2016102565 A JP 2016102565A JP 2016102565 A JP2016102565 A JP 2016102565A JP 6736352 B2 JP6736352 B2 JP 6736352B2
Authority
JP
Japan
Prior art keywords
axial direction
electric actuator
output member
motor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016102565A
Other languages
Japanese (ja)
Other versions
JP2017210976A (en
Inventor
卓志 松任
卓志 松任
池田 良則
良則 池田
悠紀 内藤
悠紀 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016102565A priority Critical patent/JP6736352B2/en
Priority to PCT/JP2017/017157 priority patent/WO2017203944A1/en
Publication of JP2017210976A publication Critical patent/JP2017210976A/en
Application granted granted Critical
Publication of JP6736352B2 publication Critical patent/JP6736352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transmission Devices (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、電動アクチュエータに関する。 The present invention relates to an electric actuator.

近年、自動車においては、その省力化や低燃費化のために電動化が進展し、例えば、自動変速機、ブレーキおよびステアリング等の操作を電動機(モータ)の力で行うシステムが開発され、市場に投入されている。このようなシステムに使用される電動アクチュエータとして、モータの回転運動を直線運動に変換して出力する運動変換機構に、モータの回転中心と同軸に配置されたねじ軸と、複数のボールを介してねじ軸の外周に回転可能に嵌合されたナット部材とを備えるボールねじ装置を採用したものがある(例えば、特許文献1)。この場合、モータの回転運動を受けてナット部材がねじ軸の軸線回りに回転すると、電動アクチュエータの出力部材を構成するねじ軸が軸方向に直線運動し、操作対象を軸方向に操作する。 In recent years, in automobiles, electrification is progressing in order to save labor and reduce fuel consumption. For example, a system for operating an automatic transmission, a brake, a steering wheel, etc. by the power of an electric motor (motor) has been developed and put on the market. It has been thrown in. As an electric actuator used in such a system, a motion conversion mechanism that converts the rotational motion of the motor into a linear motion and outputs the linear motion, through a screw shaft arranged coaxially with the rotation center of the motor and a plurality of balls. There is one that employs a ball screw device including a nut member that is rotatably fitted to the outer periphery of a screw shaft (for example, Patent Document 1). In this case, when the nut member rotates around the axis of the screw shaft in response to the rotational movement of the motor, the screw shaft that constitutes the output member of the electric actuator linearly moves in the axial direction and operates the operation target in the axial direction.

特開2005−330942号公報JP, 2005-330942, A

ところで、電動アクチュエータにおいては、ねじ軸(出力部材)の軸方向の変位量を精度良く管理・制御するために、通常、出力部材の原点位置が設定される。特許文献1のように、全体として有底筒状をなす筐体を採用した電動アクチュエータにおいては、出力部材と筐体の底部が軸方向で当接する位置を出力部材の原点に設定することができる。すなわち、有底筒状の筐体を用いる場合、筐体の底部を、出力部材の原点位置を決定付けるための原点位置決め部として活用できる。 By the way, in the electric actuator, the origin position of the output member is usually set in order to accurately manage and control the axial displacement of the screw shaft (output member). In an electric actuator that employs a casing having a tubular shape with a bottom as in Patent Document 1, the position at which the output member and the bottom of the casing contact in the axial direction can be set as the origin of the output member. .. That is, when a bottomed tubular casing is used, the bottom of the casing can be utilized as an origin positioning unit for determining the origin position of the output member.

しかしながら、筐体の底部を出力部材の原点位置決め部として活用した場合、出力部材が動作不能になるという重大欠陥が生じる可能性があることが判明した。その詳細を、図13および図14(a)(b)を参照しながら説明する。 However, it has been found that when the bottom part of the housing is used as the origin positioning part of the output member, a serious defect that the output member becomes inoperable may occur. The details will be described with reference to FIGS. 13 and 14A and 14B.

図13は、電動アクチュエータの要部を抜き出して示す部分拡大断面図である。この電動アクチュエータは、図示外のモータの回転中心と同軸に配置され、外周面に螺旋状溝101aが設けられた中空状のねじ軸101と、ねじ軸101の外周に配置され、内周面に螺旋状溝102aが設けられたナット部材102と、両螺旋状溝101a,102aの間に転動自在に介在する複数のボール103とを備えたボールねじ装置104で運動変換機構を構成すると共に、ねじ軸101およびその内周に固定され、操作対象を軸方向に操作可能な操作部を有する内方部材105で出力部材100を構成している。ボールねじ装置104や図示外のモータは、軸方向一方側(図中右側)の端部に開口部111が設けられ、軸方向他方側(図中左側)の端部に円盤状の底部112が設けられた有底筒状の筐体110に収容されている。 FIG. 13 is a partially enlarged cross-sectional view showing a main part of the electric actuator extracted. This electric actuator is arranged coaxially with the rotation center of a motor (not shown), and has a hollow screw shaft 101 provided with a spiral groove 101a on the outer peripheral surface, and is arranged on the outer periphery of the screw shaft 101 and on the inner peripheral surface. A ball screw device 104 including a nut member 102 provided with a spiral groove 102a and a plurality of balls 103 rotatably interposed between the spiral grooves 101a and 102a constitutes a motion conversion mechanism, and The output member 100 is composed of the screw shaft 101 and an inner member 105 that is fixed to the inner periphery of the screw shaft 101 and that has an operation portion that can operate the operation target in the axial direction. The ball screw device 104 and a motor (not shown) are provided with an opening 111 at one end in the axial direction (right side in the drawing) and a disk-shaped bottom 112 at the other end in the axial direction (left side in the drawing). It is housed in a bottomed cylindrical casing 110 provided.

この電動アクチュエータの出力部材100に撓みがない場合、すなわち、出力部材100の軸線とモータの回転中心Xとが一致している場合には、図14(a)に示すように、ボール103の中心Obは、ねじ軸101の螺旋状溝101aとボール103との接触点101bと、ナット部材102の螺旋状溝102aとボール103との接触点102bとを結ぶ直線Y上に位置する。この場合、モータの出力を受けてナット部材102が回転すると、ボール103は図14(a)中に白抜き矢印で示す方向に滑らかに転動してトルクを伝達するため、ねじ軸101を含む出力部材100は軸方向に滑らかに直線運動する。 When the output member 100 of this electric actuator has no bending, that is, when the axis of the output member 100 and the rotation center X of the motor match, as shown in FIG. Ob is located on a straight line Y connecting a contact point 101b between the spiral groove 101a of the screw shaft 101 and the ball 103 and a contact point 102b between the spiral groove 102a of the nut member 102 and the ball 103. In this case, when the nut member 102 rotates in response to the output of the motor, the ball 103 rolls smoothly in the direction indicated by the white arrow in FIG. The output member 100 smoothly moves linearly in the axial direction.

一方、例えば、電動アクチュエータの電気系等に何らかの不具合が生じることにより、出力部材100の原点復帰に伴って出力部材100がオーバーランし、出力部材100と筐体110の底部112とが強く突き当たった場合、出力部材100には、その軸線X’がモータの回転中心Xに対して位置ズレするような撓みが生じる[図13および図14(b)参照]。この場合、ボール103は、所定の接触点101b以外の接触点101cでもねじ軸101の螺旋状溝101aと接触するため、ねじ軸101およびナット部材102とボール103との接触状態が三点接触となり(ボール103の中心Obが接触点101b,102bを結ぶ直線Yに対して位置ズレし)、ボール103が転動不能ないわゆるロック状態に陥る。そのため、モータの回転運動をねじ軸101に伝達することができず、出力部材100が動作不能となる。 On the other hand, the output member 100 overruns when the output member 100 returns to the original position due to some trouble in the electric system of the electric actuator, and the output member 100 and the bottom portion 112 of the housing 110 strongly hit each other. In this case, the output member 100 is bent such that its axis X′ is displaced from the rotation center X of the motor [see FIGS. 13 and 14(b)]. In this case, the ball 103 also contacts the spiral groove 101a of the screw shaft 101 at contact points 101c other than the predetermined contact point 101b, so that the contact state between the screw shaft 101 and the nut member 102 and the ball 103 is three-point contact. (The center Ob of the ball 103 is displaced with respect to the straight line Y connecting the contact points 101b and 102b), and the ball 103 falls into a so-called locked state in which it cannot roll. Therefore, the rotational movement of the motor cannot be transmitted to the screw shaft 101, and the output member 100 becomes inoperable.

本発明は、上記の問題に鑑みてなされたものであり、その目的とするところは、運動変換機構にボールねじ装置が採用される電動アクチュエータにおいて、出力部材の原点復帰に伴って出力部材が作動不能となるような重大欠陥が発生する可能性を効果的に低減しつつ、出力部材の原点を容易に設定可能とし、もって出力部材の動作精度に優れ、信頼性に富む電動アクチュエータを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an electric actuator in which a ball screw device is adopted as a motion conversion mechanism, in which the output member operates in accordance with the return of the output member to the origin. To provide an electric actuator that is capable of easily setting the origin of an output member while effectively reducing the possibility of causing a serious defect that would be impossible, and thus has excellent output member operating accuracy and high reliability. It is in.

上記の課題を解決するために創案された本発明は、電力の供給を受けて駆動するモータ部と、モータ部の回転運動を直線運動に変換して出力する運動変換機構部と、モータ部および運動変換機構部を収容し、軸方向一方側の端部に開口部を有すると共に軸方向他方側の端部に底部を有する有底筒状の筐体とを備え、運動変換機構部が、モータ部のロータの回転中心と同軸に配置されたねじ軸と、複数のボールを介してねじ軸の外周に回転可能に嵌合され、モータ部のロータとトルク伝達可能に設けられたナット部材とを有し、ナット部材の回転方向に応じて、ねじ軸を含む出力部材が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータにおいて、筐体の開口端面およびこれに対向する出力部材の軸方向他方側の端面との間に、両者と軸方向で係合することにより出力部材の原点位置を決定付ける環状の原点位置決め部材が設けられ、該原点位置決め部材が軸方向の弾性復元力を有することを特徴とする。なお、本発明でいう「出力部材」とは、電動アクチュエータの出力部材である。 The present invention, which was devised to solve the above-mentioned problems, includes a motor unit that is driven by being supplied with electric power, a motion conversion mechanism unit that converts the rotational motion of the motor unit into a linear motion and outputs the linear motion, a motor unit, and A bottomed tubular housing that houses a motion conversion mechanism portion, has an opening at one end in the axial direction, and has a bottom portion at the end on the other axial direction, wherein the motion conversion mechanism portion is a motor. A screw shaft arranged coaxially with the rotation center of the rotor of the motor section, and a nut member that is rotatably fitted to the outer periphery of the screw shaft via a plurality of balls and is provided so as to transmit torque with the rotor of the motor section. In the electric actuator in which the output member including the screw shaft advances in one axial direction or retracts in the other axial direction according to the rotation direction of the nut member, the opening end surface of the housing and the output member facing the opening end surface An annular origin positioning member that determines the origin position of the output member by engaging both of them in the axial direction is provided between the end surface on the other side in the axial direction, and the origin positioning member provides an elastic restoring force in the axial direction. It is characterized by having. The "output member" in the present invention is an output member of the electric actuator.

上記のような原点位置決め部材を設けておけば、筐体の底部を活用せずに、出力部材の原点位置を容易かつ正確に設定することができる。また、原点位置決め部材は、軸方向の弾性復元力(軸方向の圧縮荷重に対する弾性復元力)を有することから、出力部材の原点復帰に伴って出力部材に対して軸方向の大きな衝撃荷重が作用した場合でも、出力部材を軸方向一方側(筐体の底部から離反する方向)に押し戻すことが、すなわち上記の衝撃荷重を減衰・緩和することができる。そのため、ボールねじ装置を構成するボールが転動不能になるロック状態に陥る可能性を効果的に低減することができる。 If the origin positioning member as described above is provided, the origin position of the output member can be easily and accurately set without utilizing the bottom of the housing. In addition, since the origin positioning member has an elastic restoring force in the axial direction (elastic restoring force against the compressive load in the axial direction), a large impact load in the axial direction acts on the output member as the origin returns to the output member. Even in such a case, the output member can be pushed back to one side in the axial direction (the direction away from the bottom of the housing), that is, the impact load can be attenuated/relaxed. Therefore, it is possible to effectively reduce the possibility that the balls forming the ball screw device fall into a locked state in which the balls cannot roll.

出力部材が原点に位置した状態では、筐体の底部の内端面を、軸方向隙間を介して出力部材の端面と対向させるのが好ましい。このようにすれば、出力部材の原点復帰に伴って、ボールねじ装置がロック状態に陥る可能性を低減する上で有利となる。 In the state where the output member is located at the origin, it is preferable that the inner end surface of the bottom portion of the housing faces the end surface of the output member with an axial gap. This is advantageous in reducing the possibility that the ball screw device will fall into the locked state as the output member returns to the original position.

原点位置決め部材を、ゴム材料、樹脂材料、熱可塑性エラストマー等の弾性材料で形成すれば、所定形状の原点位置決め部材を容易に作製することができるので、原点位置決め部材を設けることによるコスト増を抑制する上で有利となる。 If the origin positioning member is made of an elastic material such as a rubber material, a resin material, or a thermoplastic elastomer, the origin positioning member having a predetermined shape can be easily manufactured. Therefore, the cost increase due to the provision of the origin positioning member is suppressed. It will be advantageous to do.

モータ部のロータは、ナット部材を内周に配置し、軸方向に離間した二箇所に配置された転がり軸受により回転自在に支持された中空回転軸を有するものとすることができ、この場合、中空回転軸には、2つの転がり軸受のうち、一方の転がり軸受の内側軌道面を設けても良い。このようにすれば、中空回転軸、ひいては筐体を軸方向にコンパクト化することができる。これにより、軸方向にコンパクトで、使用機器に対する搭載性に優れた電動アクチュエータを実現することができる。 The rotor of the motor part may be one having a hollow rotary shaft rotatably supported by rolling bearings arranged at two positions axially separated from each other by disposing a nut member on the inner periphery. The hollow rotary shaft may be provided with the inner raceway surface of one of the two rolling bearings. With this configuration, the hollow rotary shaft, and eventually the housing, can be made compact in the axial direction. As a result, it is possible to realize an electric actuator that is compact in the axial direction and has excellent mountability on the device used.

中空回転軸に上記の内側軌道面が設けられている場合に、この内側軌道面をナット部材の軸方向幅の内側に配置すれば、電動アクチュエータを軸方向に一層コンパクト化することができる。 When the hollow rotary shaft is provided with the inner raceway surface described above, if the inner raceway surface is arranged inside the axial width of the nut member, the electric actuator can be made more compact in the axial direction.

運動変換機構部は、ロータの回転を減速してナット部材に伝達する減速機を有するものとすることができる。このようにすれば、小型のモータを採用することができるので、電動アクチュエータの軽量・コンパクト化を図ることができる。減速機としては、遊星歯車減速機を採用することができる。遊星歯車減速機であれば、例えば歯車諸元を変更したり、遊星ギヤの設置段数を変更したりすることで減速比を容易に調整することができ、しかも遊星ギヤを多段に設置しても減速機、ひいては電動アクチュエータの大型化を回避することができる、という利点がある。 The motion conversion mechanism unit may include a speed reducer that decelerates the rotation of the rotor and transmits the decelerated rotation to the nut member. With this configuration, since a small motor can be adopted, the electric actuator can be reduced in weight and size. A planetary gear reducer can be used as the reducer. With a planetary gear reducer, for example, the reduction ratio can be easily adjusted by changing the gear specifications or changing the number of planet gears installed, and even if the planet gears are installed in multiple stages. There is an advantage that it is possible to avoid an increase in the size of the speed reducer and eventually the electric actuator.

筐体は、軸方向に結合された複数部材で構成することができ、この場合、電装部品を保持したターミナル部に、筐体の構成部材により軸方向両側から挟持された筒状部を設けると共に、筒状部に、筐体の内外を連通させる径方向の貫通穴を設けることができる。なお、ここでいう「電装部品」とは、例えば、モータ部に駆動電力を供給するための給電回路や、モータ部の回転制御に用いるための回転角度検出用センサなどを含む概念である。 The casing can be composed of a plurality of members coupled in the axial direction. In this case, the terminal portion holding the electrical component is provided with a tubular portion sandwiched from both sides in the axial direction by the constituent members of the casing. The cylindrical portion may be provided with a radial through hole that communicates the inside and outside of the housing. It should be noted that the “electrical component” here is a concept including, for example, a power supply circuit for supplying drive power to the motor unit, a rotation angle detection sensor used for rotation control of the motor unit, and the like.

上記の構成によれば、筐体を構成する部材同士を軸方向に結合し、筐体を組み立てるだけでモータ部を駆動可能な状態にすることができる。特に、ターミナル部の筒状部に筐体の内外を連通させる径方向の貫通穴を設けておけば、電装部品に接続される電気配線を上記の貫通穴を介して筐体の径方向外側に引き出すことができる。この場合、電気配線の取り回し作業をターミナル部単体の状態で完結することができるので、電動アクチュエータの組立段階で煩雑な電気配線の取り回し作業を実施する必要がなくなる。従って、電動アクチュエータの組立性・生産性を高め、そのコスト低減を図ることができる。 According to the above configuration, the members that form the housing can be coupled in the axial direction and the motor can be driven only by assembling the housing. In particular, if a radial through hole that connects the inside and outside of the housing is provided in the tubular portion of the terminal portion, the electrical wiring connected to the electrical component can be connected to the outside of the housing in the radial direction through the through hole. Can be withdrawn. In this case, since the work of arranging the electric wiring can be completed in the state of the terminal unit alone, it is not necessary to carry out the tedious work of arranging the electric wiring in the assembly stage of the electric actuator. Therefore, it is possible to improve the assemblability and productivity of the electric actuator and reduce the cost thereof.

モータ部のステータの少なくとも一部は、ターミナル部の筒状部に嵌合しても良い。このようにすれば、筐体を組み立てるのと同時にモータ部のステータを筐体の内周に組み付けることができるので、電動アクチュエータの組立性を一層高めることができる。 At least a part of the stator of the motor section may be fitted to the tubular section of the terminal section. With this configuration, since the stator of the motor unit can be assembled to the inner circumference of the casing at the same time as assembling the casing, it is possible to further enhance the assembling property of the electric actuator.

以上より、本発明によれば、運動変換機構にボールねじ装置が採用される電動アクチュエータにおいて、出力部材の原点復帰に伴って出力部材が作動不能となるような重大欠陥が発生する可能性を効果的に低減しつつ、出力部材の原点を容易に設定することが可能となる。これにより、出力部材の動作精度に優れ、信頼性に富む電動アクチュエータを提供することができる。 As described above, according to the present invention, in the electric actuator in which the ball screw device is adopted for the motion conversion mechanism, it is possible to cause a serious defect such that the output member becomes inoperable as the output member returns to the origin. It is possible to easily set the origin of the output member while reducing the number of points. As a result, it is possible to provide an electric actuator having excellent output member operation accuracy and high reliability.

本発明の一実施形態に電動アクチュエータの縦断面図である。It is a longitudinal section of an electric actuator in one embodiment of the present invention. 図1のE−E線矢視断面図である。It is the EE sectional view taken on the line of FIG. モータのロータと運動変換機構部とを取り出して拡大した縦断面図である。FIG. 3 is a vertical cross-sectional view in which a rotor of a motor and a motion conversion mechanism section are taken out and enlarged. 図1のF−F線矢視断面図である。It is the FF sectional view taken on the line of FIG. ケーシングにリングギヤを組み込んだ状態を示す縦断面図である。It is a longitudinal cross-sectional view showing a state in which a ring gear is incorporated in the casing. モータのステータとターミナル部とを取り出して拡大した縦断面図である。FIG. 3 is a vertical cross-sectional view in which a motor stator and a terminal portion are taken out and enlarged. 図1のG−G線矢視断面図である。FIG. 2 is a sectional view taken along the line GG of FIG. 1. 図1のH−H線矢視断面図である。It is the HH sectional view taken on the line of FIG. 図1に示す電動アクチュエータの左側面図である。FIG. 2 is a left side view of the electric actuator shown in FIG. 1. 図9のI−I線矢視断面図である。FIG. 10 is a sectional view taken along the line I-I of FIG. 9. 図1の電動アクチュエータの制御系統を示す概略ブロック図である。It is a schematic block diagram which shows the control system of the electric actuator of FIG. 他の実施形態に係る電動アクチュエータの制御系統を示すブロック図である。It is a block diagram which shows the control system of the electric actuator which concerns on other embodiment. 従来の電動アクチュエータで起こり得る問題を説明するための図であり、従来の電動アクチュエータの部分拡大断面図である。It is a figure for demonstrating the problem which may occur in the conventional electric actuator, and is a partial expanded sectional view of the conventional electric actuator. 図13のZ部拡大図であって、(a)図は、ねじ軸を含むアクチュエータの出力部材に撓みがない場合の状態図、(b)図は、同出力部材に撓みが生じている場合の状態図である。FIG. 14 is an enlarged view of the Z portion of FIG. 13, where (a) is a state diagram when the output member of the actuator including the screw shaft is not bent, and (b) is a diagram where the output member is bent. FIG.

以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の説明において、“軸方向一方側”および“軸方向他方側”とは、それぞれ、図1,2における紙面右側および紙面左側である。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, "one side in the axial direction" and "the other side in the axial direction" are the right side and the left side of the paper in FIGS.

図1に、本発明の一実施形態に係る電動アクチュエータの縦断面図を示し、図2に、図1のE−E線矢視断面図を示し、図3に、モータ部のロータと運動変換機構部とを取り出して拡大した縦断面図を示す。なお、図1および図2は、電動アクチュエータの出力部材3が原点に位置した状態を示している。詳細は後述するが、「原点に位置した状態」とは、環状の原点位置決め部材90の軸方向一方側および他方側の端部90a,90bが、それぞれ、軸方向で対峙するアクチュエータヘッド39の頭部39aの端面およびケーシング20の開口端面20a1と軸方向で係合する位置にある状態のことである。 FIG. 1 shows a vertical sectional view of an electric actuator according to an embodiment of the present invention, FIG. 2 shows a sectional view taken along the line EE of FIG. 1, and FIG. 3 shows a rotor of a motor unit and motion conversion. The mechanical part is taken out and the longitudinal cross-sectional view which was expanded is shown. 1 and 2 show a state in which the output member 3 of the electric actuator is located at the origin. As will be described later in detail, “the state of being located at the origin” means that the ends 90a, 90b of the annular origin positioning member 90 on the one side and the other side in the axial direction face the head of the actuator head 39 facing each other in the axial direction. This is a state in which the end surface of the portion 39a and the opening end surface 20a1 of the casing 20 are in axial engagement with each other.

図1および図2に示すように、電動アクチュエータ1は、電力の供給を受けて駆動されるモータ部Aと、モータ部Aの回転運動を直線運動に変換して出力する運動変換機構部Bと、図示外の操作対象を操作する操作部Cと、ターミナル部Dとを備え、これらは筐体2に収容・保持されている。 As shown in FIGS. 1 and 2, the electric actuator 1 includes a motor unit A that is driven by being supplied with electric power, and a motion conversion mechanism unit B that converts the rotational motion of the motor unit A into a linear motion and outputs the linear motion. An operation unit C for operating an operation target (not shown) and a terminal unit D are provided and housed/held in the housing 2.

筐体2は、同軸配置された状態で軸方向に結合された複数の部材からなり、全体として有底筒状をなす。本実施形態の筐体2は、軸方向の両端が開口した筒状のケーシング20と、ケーシング20の軸方向他方側の端部開口を閉塞する底部としてのカバー29と、ケーシング20とカバー29の間に配置され、ターミナル部Dを構成するターミナル本体50との結合体からなる。カバー29およびターミナル本体50は、図9,10に示す組立用ボルト61によりケーシング20に対して取り付け固定されている。 The housing 2 is composed of a plurality of members that are coaxially arranged and are coupled in the axial direction, and has a bottomed tubular shape as a whole. The casing 2 of the present embodiment includes a tubular casing 20 having both axial ends open, a cover 29 as a bottom that closes the end opening on the other axial side of the casing 20, and the casing 20 and the cover 29. It is arranged between the terminals and is composed of a combined body with the terminal body 50 that constitutes the terminal portion D. The cover 29 and the terminal body 50 are attached and fixed to the casing 20 with the assembling bolts 61 shown in FIGS.

モータ部Aは、ケーシング20およびターミナル本体50(の筒状部50A)の内周面に嵌合固定されたステータ23と、径方向隙間を介してステータ23の内周に対向配置されたロータ24とを備えたラジアルギャップ型のモータ(詳細には、U相、V相およびW相を有する三相ブラシレスモータ)25で構成されている。ステータ23は、ステータコア23aに装着された絶縁用のボビン23bと、ボビン23bに巻き回されたコイル23cとを備える。ロータ24は、ロータコア24aと、ロータコア24aの外周に取り付けられたロータマグネットとしての永久磁石24bと、中空状に形成され、ロータコア24aを外周に装着した中空回転軸としてのロータインナ26とを備える。 The motor portion A is provided with a stator 23 fitted and fixed to the inner peripheral surfaces of the casing 20 and (the tubular portion 50A of) the terminal body 50, and a rotor 24 arranged to face the inner periphery of the stator 23 via a radial gap. And a radial gap type motor (specifically, a three-phase brushless motor having U-phase, V-phase, and W-phase) 25. The stator 23 includes an insulating bobbin 23b mounted on the stator core 23a and a coil 23c wound around the bobbin 23b. The rotor 24 includes a rotor core 24a, a permanent magnet 24b as a rotor magnet attached to the outer periphery of the rotor core 24a, and a rotor inner 26 as a hollow rotating shaft formed in a hollow shape and having the rotor core 24a attached to the outer periphery.

図3に示すように、ロータコア24aは、ロータインナ26の軸方向一方側の肩部26aにサイドプレート65をセットした後、ロータインナ26の外周面26bに嵌合される。永久磁石24b(図2参照)は、ロータコア24aの外周に嵌合された後、ロータインナ26のうち、ロータコア24aの軸方向他方側の端部の軸方向外側に取り付けられたサイドプレート65、およびその軸方向外側に取り付けられたサークリップ66により位置決め固定されている。 As shown in FIG. 3, the rotor core 24 a is fitted to the outer peripheral surface 26 b of the rotor inner 26 after the side plate 65 is set on the shoulder portion 26 a on one axial side of the rotor inner 26. The permanent magnet 24b (see FIG. 2) is fitted to the outer circumference of the rotor core 24a, and then is attached to the outer side of the rotor inner side of the rotor core 24a on the axially outer side of the rotor core 24a. It is positioned and fixed by a circlip 66 attached to the outside in the axial direction.

図1〜図3に示すように、ロータインナ26の軸方向一方側の端部外周には転がり軸受27の内側軌道面27aが形成され、転がり軸受27の外輪27bはケーシング20の内周面に固定された軸受ホルダ28の内周面に装着されている。また、ロータインナ26の軸方向他方側の端部内周面と、カバー29の円筒部29aの外周面との間に転がり軸受30が装着されている。このような構成により、ロータインナ26は、転がり軸受27,30を介して筐体2に対して回転自在に支持されている。 As shown in FIGS. 1 to 3, an inner raceway surface 27 a of a rolling bearing 27 is formed on the outer periphery of one end in the axial direction of the rotor inner 26, and an outer ring 27 b of the rolling bearing 27 is fixed to an inner circumferential surface of the casing 20. The bearing holder 28 is mounted on the inner peripheral surface thereof. Further, the rolling bearing 30 is mounted between the inner peripheral surface of the end portion of the rotor inner 26 on the other axial side and the outer peripheral surface of the cylindrical portion 29 a of the cover 29. With such a configuration, the rotor inner 26 is rotatably supported by the housing 2 via the rolling bearings 27 and 30.

図1〜図3に示すように、本実施形態の運動変換機構部Bは、ボールねじ装置31と、減速機としての遊星歯車減速機10とを備え、遊星歯車減速機10はモータ部Aの軸方向一方側に隣接配置されている。 As shown in FIGS. 1 to 3, the motion conversion mechanism unit B of the present embodiment includes a ball screw device 31 and a planetary gear speed reducer 10 as a speed reducer. It is arranged adjacent to one side in the axial direction.

ボールねじ装置31は、ロータ24の回転中心と同軸に配置されたねじ軸33と、複数のボール34を介してねじ軸33の外周に回転可能に嵌合され、ロータインナ26とトルク伝達可能にロータインナ26の内周に配置されたナット部材32と、循環部材としてのこま35とを備える。ナット部材32の内周面に形成された螺旋状溝32aと、ねじ軸33の外周面に形成された螺旋状溝33aとの間に複数のボール34が装填され、こま35が組み込まれている。これにより、ナット部材32が回転するのに伴ってねじ軸33が軸方向に直線運動する際には、両螺旋状溝32a,33aの間でボール34が循環する。ねじ軸33は、内方部材36や、操作部Cとしてのアクチュエータヘッド39などと共に、電動アクチュエータ1の出力部材3を構成する。 The ball screw device 31 is rotatably fitted to a screw shaft 33 disposed coaxially with the rotation center of the rotor 24 and the outer circumference of the screw shaft 33 via a plurality of balls 34, and is capable of transmitting torque to the rotor inner 26. A nut member 32 arranged on the inner periphery of 26 and a top 35 as a circulation member are provided. A plurality of balls 34 are loaded between the spiral groove 32a formed on the inner peripheral surface of the nut member 32 and the spiral groove 33a formed on the outer peripheral surface of the screw shaft 33, and the top 35 is incorporated. .. As a result, when the screw shaft 33 linearly moves in the axial direction as the nut member 32 rotates, the balls 34 circulate between the spiral grooves 32a and 33a. The screw shaft 33 constitutes the output member 3 of the electric actuator 1 together with the inner member 36, the actuator head 39 as the operation portion C, and the like.

ねじ軸33は、軸方向に延びた孔部(本実施形態では、軸方向両側の端面に開口した貫通穴)33bを有する中空状に形成され、孔部33bに内方部材36が収容されている。内方部材36は、例えばPPS等の樹脂材料で形成され、軸方向一方側の端部に設けられた円形中実部36aと、軸方向他方側の端部に設けられたフランジ部36bと、両部36a,36bを接続する筒部36cとを一体に有する。 The screw shaft 33 is formed in a hollow shape having an axially extending hole portion (in the present embodiment, a through hole opened on both end surfaces in the axial direction) 33b, and the inner member 36 is accommodated in the hole portion 33b. There is. The inner member 36 is made of a resin material such as PPS, and has a circular solid portion 36a provided at one end in the axial direction and a flange portion 36b provided at the other end in the axial direction. It integrally has a tubular portion 36c that connects both portions 36a and 36b.

ねじ軸33の孔部33bに収容された内方部材36は、その円形中実部36aとねじ軸33とを径方向に貫通するようにピン37を嵌め込むことによってねじ軸33と連結固定される。ピン37の両端部は、ねじ軸33の外周面から径方向外側に突出しており、この突出部分にガイドカラー38が回転自在に外嵌されている。ガイドカラー38は、例えばPPS等の樹脂材料で形成され、ケーシング20の小径円筒部20aの内周に設けられた軸方向の案内溝20b(図5も併せて参照)に嵌め込まれている。このような構成により、ロータ24の回転に伴ってナット部材32がねじ軸33の軸線回りに回転すると、ねじ軸33(を含む出力部材3)は回り止めされた状態で軸方向に直線運動する。なお、ねじ軸33が、軸方向他方側から軸方向一方側に向けて直線運動(前進)するか、あるいは軸方向一方側から軸方向他方側に向けて直線運動(後退)するかは、基本的には、ナット部材32の回転方向に応じて決定付けられるが、本実施形態では、圧縮コイルばね48のばね力によってもねじ軸33が後退移動可能となっている(詳細は後述する)。 The inner member 36 accommodated in the hole portion 33b of the screw shaft 33 is fixedly connected to the screw shaft 33 by fitting a pin 37 so as to penetrate the circular solid portion 36a and the screw shaft 33 in the radial direction. It Both ends of the pin 37 project radially outward from the outer peripheral surface of the screw shaft 33, and a guide collar 38 is rotatably fitted on the projecting portion. The guide collar 38 is formed of, for example, a resin material such as PPS, and is fitted into an axial guide groove 20b (see also FIG. 5) provided on the inner circumference of the small-diameter cylindrical portion 20a of the casing 20. With such a configuration, when the nut member 32 rotates around the axis of the screw shaft 33 as the rotor 24 rotates, the screw shaft 33 (including the output member 3) linearly moves in the axial direction while being prevented from rotating. .. Whether the screw shaft 33 moves linearly (forward) from the other side in the axial direction toward the one side in the axial direction or linearly moves (retracts) from the one side in the axial direction toward the other side in the axial direction is basically determined. Specifically, it is determined according to the rotation direction of the nut member 32, but in the present embodiment, the screw shaft 33 can be moved backward by the spring force of the compression coil spring 48 (details will be described later).

図1および図2に示すように、ねじ軸33の軸方向一方側の端部には、操作部Cとしてのアクチュエータヘッド39が着脱可能に装着されている。従って、電動アクチュエータ1の出力部材3は、ねじ軸33、内方部材36、ピン37、ガイドカラー38およびアクチュエータヘッド39などの結合体で構成される。本実施形態のアクチュエータヘッド39は、ねじ軸33が軸方向一方側に直線運動(前進)するのに伴って操作対象を軸方向に加圧するいわゆる押しタイプであり、凸曲面状の先端面を有する頭部39aと、ねじ軸33に固定された基部39bと、頭部39aと基部39bの間に設けられた段付き円筒状の中間部39cとを一体に有する。 As shown in FIGS. 1 and 2, an actuator head 39 as an operating portion C is detachably attached to an end portion of the screw shaft 33 on one axial side. Therefore, the output member 3 of the electric actuator 1 is composed of a combination of the screw shaft 33, the inner member 36, the pin 37, the guide collar 38, and the actuator head 39. The actuator head 39 of the present embodiment is a so-called push type that axially pressurizes the operation target as the screw shaft 33 linearly moves (forwards) in the one axial direction, and has a convex curved end surface. The head 39a, a base 39b fixed to the screw shaft 33, and a stepped cylindrical intermediate portion 39c provided between the head 39a and the base 39b are integrally provided.

なお、アクチュエータヘッド39としては、操作対象を軸方向両側に操作可能な、いわゆる押し引きタイプを採用することもできる。いかなるタイプ・形状のアクチュエータヘッド39を使用するかは、電動アクチュエータ1が搭載される使用機器(操作対象の形状や動作態様)を考慮して決定付けられる。 As the actuator head 39, a so-called push-pull type in which an operation target can be operated on both sides in the axial direction can be adopted. The type and shape of the actuator head 39 to be used is determined in consideration of the device (shape or operation mode of the operation target) on which the electric actuator 1 is mounted.

アクチュエータヘッド39の頭部39aと筐体2(ケーシング20)との間には、出力部材3の原点位置を決定付けるために、円環状の原点位置決め部材90が配設されている。本実施形態において、原点位置決め部材90は、その軸方向一方側の端部90aを軸方向で対峙する出力部材3の端面(アクチュエータヘッド39の頭部39bの軸方向他方側の端面)と係合させた状態でアクチュエータヘッド39の中間部39cの外周面に固定されている。出力部材3の原点位置は、図1および図2に示すように、原点位置決め部材90の軸方向一方側の端部90aがアクチュエータヘッド39の頭部39bの軸方向他方側の端面と軸方向で係合すると共に、原点位置決め部材90の軸方向他方側の端部90bがケーシング20の開口端面20a1と軸方向で係合する位置に設定されている。 An annular origin positioning member 90 is provided between the head portion 39a of the actuator head 39 and the housing 2 (casing 20) to determine the origin position of the output member 3. In the present embodiment, the origin positioning member 90 is engaged with the end surface of the output member 3 (the end surface on the other axial side of the head portion 39b of the actuator head 39) that faces the end portion 90a on one axial side in the axial direction. In this state, the actuator head 39 is fixed to the outer peripheral surface of the intermediate portion 39c. As shown in FIG. 1 and FIG. 2, the origin position of the output member 3 is such that the end portion 90a on one axial side of the origin positioning member 90 is axially aligned with the end surface on the other axial side of the head portion 39b of the actuator head 39. While being engaged, the end portion 90b of the origin positioning member 90 on the other side in the axial direction is set to a position that engages with the opening end surface 20a1 of the casing 20 in the axial direction.

図1および図2に示すように、出力部材3が原点に位置した状態では、筐体2の底部(カバー29)の内端面が、内方部材36のフランジ部36bの軸方向他方側の端面と軸方向隙間4を介して対向している。 As shown in FIGS. 1 and 2, when the output member 3 is located at the origin, the inner end surface of the bottom portion (cover 29) of the housing 2 is the end surface on the other axial side of the flange portion 36b of the inner member 36. And an axial gap 4 therebetween.

原点位置決め部材90は、軸方向の圧縮荷重に対する弾性復元力を有する。以上の構成を有する原点位置決め部材90は、弾性材料、ここではゴム材料で形成される。原点位置決め部材90は、ゴム材料以外の弾性材料、例えば、樹脂材料や熱可塑性エラストマーで形成しても良い。 The origin positioning member 90 has an elastic restoring force against a compressive load in the axial direction. The origin positioning member 90 having the above configuration is made of an elastic material, here a rubber material. The origin positioning member 90 may be formed of an elastic material other than a rubber material, for example, a resin material or a thermoplastic elastomer.

遊星歯車減速機10は、図1〜図4に示すように、ケーシング20に固定されたリングギヤ40と、ロータインナ26に固定されたサンギヤ41と、リングギヤ40とサンギヤ41の間に配置され、両ギヤ40,41に噛合った複数(本実施形態では4つ)の遊星ギヤ42と、遊星ギヤ42を回転自在に保持した遊星ギヤキャリア43および遊星ギヤホルダ44と、を備え、遊星ギヤキャリア43は、遊星ギヤ42の公転運動を取り出して出力する。 As shown in FIGS. 1 to 4, the planetary gear speed reducer 10 is arranged between the ring gear 40 fixed to the casing 20, the sun gear 41 fixed to the rotor inner 26, and the ring gear 40 and the sun gear 41. The planetary gear carrier 43 includes a plurality of (four in the present embodiment) planetary gears 42 that mesh with 40 and 41, a planetary gear carrier 43 that holds the planetary gear 42 rotatably, and a planetary gear holder 44. The orbital motion of the planetary gear 42 is taken out and output.

サンギヤ41は、ロータインナ26の段部内周面26cに圧入されている。このようにすれば、組立時の連結作業性が良好である。なお、このような連結構造を採用しても、サンギヤ41は減速前のロータインナ26と一体回転できれば良いので、両者間で必要とされるトルク伝達性能は十分に確保できる。また、ロータインナ26とサンギヤ41とは、ロータインナ26を支持する転がり軸受27の直下位置で連結されているので、サンギヤ41の回転精度も良好である。 The sun gear 41 is press-fitted into the stepped inner peripheral surface 26c of the rotor inner 26. By doing so, the connection workability at the time of assembly is good. Even if such a coupling structure is adopted, it is sufficient that the sun gear 41 can rotate integrally with the rotor inner 26 before deceleration, so that the torque transmission performance required between the two can be sufficiently secured. Further, since the rotor inner 26 and the sun gear 41 are connected at a position directly below the rolling bearing 27 that supports the rotor inner 26, the rotation accuracy of the sun gear 41 is also good.

図4に示すように、リングギヤ40の外周には径方向外側に突出したノッチ40aが周方向に離間した複数箇所(図示例では4箇所)に設けられ、各ノッチ40aは、ケーシング20の内周面20cの周方向に離間した複数箇所(図示例では4箇所)に設けられた軸方向溝20e(図5を併せて参照)にそれぞれ嵌合されている。これにより、リングギヤ40は、ケーシング20に対して回り止めされている。 As shown in FIG. 4, notches 40a that project outward in the radial direction are provided on the outer circumference of the ring gear 40 at a plurality of locations (four locations in the illustrated example) that are spaced apart in the circumferential direction, and each notch 40a is an inner circumference of the casing 20. It is fitted into axial grooves 20e (see also FIG. 5) provided at a plurality of locations (four locations in the illustrated example) spaced apart in the circumferential direction of the surface 20c. As a result, the ring gear 40 is prevented from rotating with respect to the casing 20.

遊星ギヤキャリア43は、図1〜図3に示すように、ロータインナ26の内周面とナット部材32の外周面32bとの間に介在する円筒部43aを有する。この遊星ギヤキャリア43は、ロータインナ26に対して相対回転可能である一方、ナット部材32とトルク伝達可能に連結されている。本実施形態では、円筒部43aの外周面がロータインナ26の内周面26d(およびサンギヤ41の内周面)と径方向隙間を介して対向し、円筒部43aの内周面43bがナット部材32の外周面32bに圧入固定されている。このような連結構造を採用すれば、組立時の連結作業性が良好であることに加え、減速後の高トルクに対しても安定したトルク伝達が可能である。 As shown in FIGS. 1 to 3, the planetary gear carrier 43 has a cylindrical portion 43 a interposed between the inner peripheral surface of the rotor inner 26 and the outer peripheral surface 32 b of the nut member 32. The planetary gear carrier 43 is rotatable relative to the rotor inner 26, and is connected to the nut member 32 so that torque can be transmitted. In the present embodiment, the outer peripheral surface of the cylindrical portion 43a faces the inner peripheral surface 26d of the rotor inner 26 (and the inner peripheral surface of the sun gear 41) via a radial gap, and the inner peripheral surface 43b of the cylindrical portion 43a is in contact with the nut member 32. Is press-fitted and fixed to the outer peripheral surface 32b. If such a connecting structure is adopted, not only the connecting workability at the time of assembly is good, but also stable torque transmission is possible even for high torque after deceleration.

以上の構成を有する遊星歯車減速機10により、モータ25のロータ24の回転が減速された上でナット部材32に伝達される。これにより、回転トルクを増加することができるので、小型のモータ25を採用することができる。 The rotation of the rotor 24 of the motor 25 is decelerated and transmitted to the nut member 32 by the planetary gear reducer 10 having the above configuration. As a result, since the rotational torque can be increased, the small motor 25 can be adopted.

図1〜図3に示すように、ナット部材32の軸方向一方側の端面とケーシング20との間にスラストワッシャ45が配設され、カバー29の円筒部29aの先端部外周に取り付けられたスラスト受けリング46とナット部材32の軸方向他方側の端面との間にスラスト軸受としての針状ころ軸受47が配設されている。 As shown in FIGS. 1 to 3, a thrust washer 45 is disposed between the end surface of the nut member 32 on one axial side and the casing 20, and the thrust washer is attached to the outer periphery of the tip portion of the cylindrical portion 29 a of the cover 29. A needle roller bearing 47 as a thrust bearing is arranged between the receiving ring 46 and the end surface of the nut member 32 on the other axial side.

図1および図2に示すように、運動変換機構部Bは、ねじ軸33の径方向外側(カバー29の円筒部29aの内周面29bとねじ軸33の外周面との間)に配設された圧縮コイルばね48を有する。圧縮コイルばね48の軸方向一方側および他方側の端部は、それぞれ、針状ころ軸受47およびねじ軸33に連結された内方部材36のフランジ部36bに当接している。 As shown in FIGS. 1 and 2, the motion conversion mechanism portion B is disposed on the radially outer side of the screw shaft 33 (between the inner peripheral surface 29b of the cylindrical portion 29a of the cover 29 and the outer peripheral surface of the screw shaft 33). The compressed coil spring 48 is provided. The ends on one side and the other side in the axial direction of the compression coil spring 48 are in contact with the flange portions 36b of the inner member 36 connected to the needle roller bearing 47 and the screw shaft 33, respectively.

上記態様で設けられた圧縮コイルばね48のばね力により、ねじ軸33を含む出力部材3が常時軸方向他方側(原点側)に付勢される。このようにすれば、例えば、モータ25に適切に駆動電力が供給されないような場合には、出力部材3を自動的に原点復帰させ、図示しない操作対象の作動に悪影響を及ぼす可能性を可及的に低減することができる。また、上記態様で圧縮コイルばね48を設けておけば、ナット部材32に軸方向の与圧を付与することができる。これにより、ナット部材32とねじ軸33との間に設けられる運転隙間に起因した応答遅れを解消し、ねじ軸33、ひいては出力部材3の作動性を高めることもできる。 The output member 3 including the screw shaft 33 is constantly urged toward the other side (origin side) in the axial direction by the spring force of the compression coil spring 48 provided in the above mode. By doing so, for example, when the drive power is not appropriately supplied to the motor 25, the output member 3 is automatically returned to the home position, which may adversely affect the operation of the operation target (not shown). Can be reduced. Further, if the compression coil spring 48 is provided in the above-described mode, it is possible to apply axial pressure to the nut member 32. As a result, the response delay due to the operating clearance provided between the nut member 32 and the screw shaft 33 can be eliminated, and the operability of the screw shaft 33, and by extension, the output member 3, can be improved.

筐体2の底部として機能するカバー29の詳細を図9および図10を参照して説明する。図9は、図1の左側面図であり、図10は、図9中に示すI−I線矢視断面図である。カバー29は、加工性および熱伝導率に優れた金属材料、例えば、アルミニウム合金、亜鉛合金又はマグネシウム合金で形成される。図示は省略しているが、カバー29の外側表面には、電動アクチュエータ1の冷却効率を高めるための冷却フィンを設けても良い。図10に示すように、カバー29の円筒部29aの外周面には、転がり軸受30が装着された軸受装着面63と、スラスト受けリング46が嵌合された嵌合面64とが設けられている。また、図9に示すように、カバー29には、電動アクチュエータ1の組立用ボルト61が挿通された図示外の貫通穴と、電動アクチュエータ1を使用機器に取り付けるための取付用ボルトが挿通される貫通穴62とが設けられている。 Details of the cover 29 that functions as the bottom of the housing 2 will be described with reference to FIGS. 9 and 10. 9 is a left side view of FIG. 1, and FIG. 10 is a sectional view taken along the line I-I shown in FIG. 9. The cover 29 is formed of a metal material excellent in workability and thermal conductivity, for example, an aluminum alloy, a zinc alloy or a magnesium alloy. Although illustration is omitted, a cooling fin for increasing the cooling efficiency of the electric actuator 1 may be provided on the outer surface of the cover 29. As shown in FIG. 10, the outer peripheral surface of the cylindrical portion 29a of the cover 29 is provided with a bearing mounting surface 63 on which the rolling bearing 30 is mounted and a fitting surface 64 on which the thrust receiving ring 46 is fitted. There is. Further, as shown in FIG. 9, a through hole (not shown) in which the assembly bolt 61 of the electric actuator 1 is inserted and a mounting bolt for mounting the electric actuator 1 in a device to be used are inserted in the cover 29. A through hole 62 is provided.

次に、ターミナル部Dを図1および図6〜図8を参照して説明する。図6は、図1に示すモータ25のステータ23とターミナル部Dとを取り出して拡大した縦断面図(ステータ23とターミナル部Dとを組み付けてなるサブアセンブリの縦断面図)、図7は、図1のG−G線矢視断面図、図8は、図1のH−H線矢視断面図である。図1および図6に示すように、ターミナル部Dは、筐体2の一部を構成する筒状部50A、および筒状部50Aの軸方向他方側の端部から径方向内側に延びる円盤状部50Bを一体に有する樹脂製のターミナル本体50と、ターミナル本体50(の円盤状部50B)に対してねじ止めされたバスバー51および穴開き円盤状のプリント基板52とを備える。図7および図8に示すように、ターミナル本体50(の筒状部50A)は、図9,10に示す組立用ボルト61が挿通される貫通穴50Cと、電動アクチュエータ1を使用機器に取り付けるためのボルトが挿通される貫通穴50Dとを有し、上記の組立用ボルト61により、ケーシング20とカバー29の間で挟持される(図1,2参照)。 Next, the terminal portion D will be described with reference to FIGS. 1 and 6 to 8. 6 is a longitudinal sectional view in which the stator 23 and the terminal portion D of the motor 25 shown in FIG. 1 are taken out and enlarged (vertical sectional view of a subassembly in which the stator 23 and the terminal portion D are assembled), and FIG. 1 is a sectional view taken along the line GG of FIG. 1, and FIG. 8 is a sectional view taken along the line HH of FIG. As shown in FIGS. 1 and 6, the terminal portion D includes a tubular portion 50A that forms a part of the housing 2, and a disk-shaped portion that extends radially inward from an end portion of the tubular portion 50A on the other axial side. It is provided with a resin-made terminal main body 50 integrally having a portion 50B, a bus bar 51 screwed to (the disc-shaped portion 50B of) the terminal main body 50, and a perforated disc-shaped printed board 52. As shown in FIGS. 7 and 8, the terminal body 50 (the cylindrical portion 50A thereof) has a through hole 50C into which the assembly bolt 61 shown in FIGS. And a through hole 50D into which the bolt is inserted, and is sandwiched between the casing 20 and the cover 29 by the assembly bolt 61 (see FIGS. 1 and 2).

ターミナル部D(ターミナル本体50)は、モータ25に駆動電力を供給するための給電回路や後述する各種センサ等の電装部品をまとめて保持している。給電回路は、図7および図8に示すように、ステータ23のコイル23cをU相、V相、W相の相別にバスバー51の端子51aに結線し、さらに、図2に示すように、バスバー51の端子51bと、ターミナル本体50の端子台50aとをねじ70で締結することで構成される。端子台50aは、図示外のリード線が接続される端子50bを有し、上記のリード線は、ターミナル本体50の筒状部50Aに設けられた径方向の貫通穴50c(図1参照)を介して筐体2の径方向外側に引き出され、制御装置80のコントローラ81(図11又は図12参照)に接続される。 The terminal portion D (terminal body 50) collectively holds electric components such as a power supply circuit for supplying drive power to the motor 25 and various sensors described later. As shown in FIGS. 7 and 8, the power supply circuit connects the coils 23c of the stator 23 to the terminals 51a of the bus bar 51 for each of the U phase, V phase, and W phase, and further, as shown in FIG. The terminal 51 b of 51 and the terminal block 50 a of the terminal body 50 are fastened with screws 70. The terminal block 50a has a terminal 50b to which a lead wire (not shown) is connected. The lead wire has a radial through hole 50c (see FIG. 1) provided in the tubular portion 50A of the terminal body 50. It is pulled out to the outside of the housing 2 in the radial direction via the controller 2 and is connected to the controller 81 (see FIG. 11 or 12) of the control device 80.

本実施形態の電動アクチュエータ1には2種類のセンサが搭載されており、これら2種類のセンサはターミナル部Dに保持されている。図1等に示すように、2種類のセンサのうちの一方は、モータ25の回転制御に用いる回転角度検出用センサ53であり、他方は、ねじ軸33(出力部材3)の軸方向の変位量検出のために用いるストローク検出用センサ55である。回転角度検出用センサ53およびストローク検出用センサ55としては、何れも、磁気センサの一種であるホールセンサが使用される。 The electric actuator 1 of this embodiment is equipped with two types of sensors, and these two types of sensors are held in the terminal portion D. As shown in FIG. 1 and the like, one of the two types of sensors is a rotation angle detection sensor 53 used for rotation control of the motor 25, and the other is a displacement of the screw shaft 33 (output member 3) in the axial direction. It is a stroke detection sensor 55 used for detecting the amount. As the rotation angle detecting sensor 53 and the stroke detecting sensor 55, Hall sensors, which are a kind of magnetic sensor, are used.

図1および図8に示すように、回転角度検出用センサ53は、プリント基板52に取り付けられており、ロータインナ26の軸方向他方側の端部に取り付けられたパルサリング54と軸方向隙間を介して対向配置されている。この回転角度検出用センサ53は、モータ25のU相、V相、W相のそれぞれに電流を流すタイミングを決める。 As shown in FIGS. 1 and 8, the rotation angle detecting sensor 53 is attached to the printed circuit board 52, and an axial gap is provided between the rotation angle detecting sensor 53 and the pulsar ring 54 attached to the other end of the rotor inner 26 in the axial direction. It is arranged opposite. The rotation angle detecting sensor 53 determines the timings at which electric currents flow in the U phase, V phase, and W phase of the motor 25, respectively.

図2、図7および図8に示すように、ストローク検出用センサ55は、軸方向に延び、軸方向他方側の端部がプリント基板52に接続された帯状のプリント基板56に取り付けられている。プリント基板56およびストローク検出用センサ55は、ねじ軸33の孔部33bの内周、より詳細には、孔部33bに収容された内方部材36の筒部36c内周に配置されている。また、内方部材36の筒部36cの内周には、ストローク検出用センサ55と径方向隙間を介して対向するようにターゲットとしての永久磁石57が取り付けられている。そして、ストローク検出用センサ55は、永久磁石57の周囲に形成される軸方向および径方向の磁界をそれぞれ検出し、これに基づいてねじ軸33の軸方向の変位量を算出する。 As shown in FIGS. 2, 7, and 8, the stroke detection sensor 55 extends in the axial direction and is attached to a strip-shaped printed circuit board 56 whose other end in the axial direction is connected to the printed circuit board 52. .. The printed circuit board 56 and the stroke detection sensor 55 are arranged on the inner circumference of the hole 33b of the screw shaft 33, more specifically, on the inner circumference of the cylindrical portion 36c of the inner member 36 housed in the hole 33b. A permanent magnet 57 as a target is attached to the inner periphery of the cylindrical portion 36c of the inner member 36 so as to face the stroke detection sensor 55 with a radial gap. Then, the stroke detecting sensor 55 detects the axial and radial magnetic fields formed around the permanent magnet 57, respectively, and calculates the axial displacement of the screw shaft 33 based on the detected magnetic fields.

詳細な図示は省略しているが、回転角度検出用センサ53の信号線およびストローク検出用センサ55の信号線は、何れも、ターミナル本体50の筒状部50Aに設けた径方向の貫通穴50c(図1参照)を介して筐体2の外径側に引き出され、制御装置80(図11又は図12参照)に接続される。 Although not shown in detail, the signal line of the rotation angle detecting sensor 53 and the signal line of the stroke detecting sensor 55 are both radial through holes 50c provided in the tubular portion 50A of the terminal body 50. It is pulled out to the outer diameter side of the housing 2 via (see FIG. 1) and is connected to the control device 80 (see FIG. 11 or 12).

以上の構成を有する電動アクチュエータ1の組立手順を簡単に説明する。まず、図5に示すように、リングギヤ40をケーシング20に組み込む。次いで、図3に示すモータ25のロータ24と運動変換機構部Bのサブアセンブリをケーシング20に挿入する。このとき、遊星ギヤ42とリングギヤ40とを噛み合わせ、ガイドカラー38をケーシング20の案内溝20bに嵌合させ、さらに軸受ホルダ28をケーシング20の内周面20cに嵌合させる。その後、図6に示すモータ25のステータ23とターミナル部D(ターミナル本体50)のサブアセンブリのうち、ステータ23をケーシング20の内周に嵌合してから、カバー29およびターミナル本体50をケーシング20に対して組立用ボルト61(図9,10参照)により締結する。これにより、電動アクチュエータ1が完成する。 The procedure for assembling the electric actuator 1 having the above configuration will be briefly described. First, as shown in FIG. 5, the ring gear 40 is incorporated into the casing 20. Next, the rotor 24 of the motor 25 and the subassembly of the motion converting mechanism B shown in FIG. 3 are inserted into the casing 20. At this time, the planetary gear 42 and the ring gear 40 are engaged with each other, the guide collar 38 is fitted in the guide groove 20b of the casing 20, and the bearing holder 28 is fitted in the inner peripheral surface 20c of the casing 20. Then, of the stator 23 of the motor 25 and the subassembly of the terminal portion D (terminal body 50) shown in FIG. 6, the stator 23 is fitted to the inner circumference of the casing 20, and then the cover 29 and the terminal body 50 are attached to the casing 20. Are fastened with the assembly bolts 61 (see FIGS. 9 and 10). As a result, the electric actuator 1 is completed.

以上の構成を有する電動アクチュエータ1の作動態様を図1および図11を参照して簡単に説明する。例えば、図示しない車両上位のECUに操作量が入力されると、この操作量に基づいてECUは要求される位置指令値を演算する。図11に示すように、位置指令値は制御装置80のコントローラ81に送られ、コントローラ81は、位置指令値に必要なモータ回転角の制御信号を演算し、この制御信号をモータ25に送る。 An operation mode of the electric actuator 1 having the above configuration will be briefly described with reference to FIGS. 1 and 11. For example, when an operation amount is input to a vehicle upper ECU (not shown), the ECU calculates a required position command value based on the operation amount. As shown in FIG. 11, the position command value is sent to the controller 81 of the control device 80, and the controller 81 calculates the control signal of the motor rotation angle required for the position command value and sends this control signal to the motor 25.

コントローラ81から送られた制御信号に基づいてロータ24が回転すると、この回転運動が運動変換機構部Bに伝達される。具体的には、ロータ24が回転すると、ロータインナ26に連結された遊星歯車減速機10のサンギヤ41が回転し、これに伴って遊星ギヤ42が公転すると共に遊星ギヤキャリア43が回転する。これにより、ロータ24の回転運動が遊星ギヤキャリア43に連結されたナット部材32に伝達される。このとき、遊星ギヤ42の公転運動により、ロータ24の回転数が減速されるので、ナット部材32に伝達される回転トルクが増加する。 When the rotor 24 rotates based on the control signal sent from the controller 81, this rotational motion is transmitted to the motion conversion mechanism section B. Specifically, when the rotor 24 rotates, the sun gear 41 of the planetary gear reducer 10 connected to the rotor inner 26 rotates, and along with this, the planet gear 42 revolves and the planet gear carrier 43 rotates. As a result, the rotational movement of the rotor 24 is transmitted to the nut member 32 connected to the planetary gear carrier 43. At this time, the revolution speed of the planetary gear 42 reduces the rotational speed of the rotor 24, so that the rotational torque transmitted to the nut member 32 increases.

ロータ24の回転運動を受けてナット部材32が回転すると、ねじ軸33を含む出力部材3は、回り止めされた状態で前進する。この際、ねじ軸33はコントローラ81の制御信号に基づく位置まで前進し、ねじ軸33の軸方向一方側の端部に装着されたアクチュエータヘッド39が図示しない操作対象を操作(加圧)する。 When the nut member 32 rotates in response to the rotational movement of the rotor 24, the output member 3 including the screw shaft 33 advances in the rotation-stopped state. At this time, the screw shaft 33 moves forward to a position based on the control signal of the controller 81, and the actuator head 39 mounted on the end of the screw shaft 33 on one axial side operates (pressurizes) an operation target (not shown).

ねじ軸33の軸方向位置(軸方向の変位量)は、図11にも示すように、ストローク検出用センサ55により検出され、その検出信号は制御装置80の比較部82に送られる。そして、比較部82は、ストローク検出用センサ55により検出された検出値と位置指令値との差分を算出し、コントローラ81はこの算出値および回転角度検出用センサ53から送られた信号に基づいてモータ25に制御信号を送る。このようにして、ねじ軸33(出力部材3)の位置がフィードバック制御される。このため、本実施形態の電動アクチュエータ1を、例えば、シフト・バイ・ワイヤに適用した場合、シフト位置を確実にコントロールすることができる。なお、モータ25やセンサ53,55等を駆動するための電力は、車両側に設けられたバッテリ等の外部電源(図示せず)から、制御装置80およびターミナル部Dに保持された給電回路を介してモータ25等に供給される。 As shown in FIG. 11, the axial position (axial displacement) of the screw shaft 33 is detected by the stroke detection sensor 55, and the detection signal is sent to the comparison unit 82 of the control device 80. Then, the comparison unit 82 calculates the difference between the detection value detected by the stroke detection sensor 55 and the position command value, and the controller 81 based on this calculated value and the signal sent from the rotation angle detection sensor 53. A control signal is sent to the motor 25. In this way, the position of the screw shaft 33 (output member 3) is feedback-controlled. Therefore, when the electric actuator 1 of this embodiment is applied to, for example, shift-by-wire, the shift position can be reliably controlled. The electric power for driving the motor 25, the sensors 53, 55, etc. is supplied from an external power source (not shown) such as a battery provided on the vehicle side to a power supply circuit held in the control device 80 and the terminal section D. It is supplied to the motor 25 or the like via the motor.

以上で説明した電動アクチュエータ1においては、筐体2(ケーシング20)の開口端面20a1およびこれに対向する出力部材3(アクチュエータヘッド39の頭部39a)の軸方向他方側の端面との間に、両端面と軸方向で係合することにより出力部材3の原点位置を決定付ける環状の原点位置決め部材90が設けられている。このような原点位置決め部材90を設けておけば、筐体2の底部(カバー29)を活用せずに、出力部材3の原点位置を容易かつ正確に設定することができる。また、原点位置決め部材90は、軸方向の弾性復元力を有することから、出力部材3の原点復帰に伴って出力部材3に対して軸方向の大きな衝撃荷重が作用した場合でも、出力部材3を軸方向一方側(カバー29から離反する方向)に押し戻すことが、すなわち上記の衝撃荷重を減衰・緩和することができる。そのため、ボールねじ装置31を構成するボール34が転動不能になるロック状態[図14(b)参照]に陥る可能性を効果的に低減することができる。 In the electric actuator 1 described above, between the opening end surface 20a1 of the housing 2 (casing 20) and the end surface on the other axial side of the output member 3 (head portion 39a of the actuator head 39) facing this, An annular origin positioning member 90 that determines the origin position of the output member 3 by axially engaging both end faces is provided. If such an origin positioning member 90 is provided, the origin position of the output member 3 can be easily and accurately set without utilizing the bottom portion (cover 29) of the housing 2. In addition, since the origin positioning member 90 has an elastic restoring force in the axial direction, even if a large impact load in the axial direction acts on the output member 3 as the output member 3 returns to the origin, the origin member 3 will not move. It can be pushed back to one side in the axial direction (the direction away from the cover 29), that is, the impact load can be attenuated/relaxed. Therefore, it is possible to effectively reduce the possibility that the balls 34 constituting the ball screw device 31 fall into a locked state in which they cannot roll (see FIG. 14B).

特に、本実施形態では、図1および図2に示すように、軸方向他方側に突出した断面略三角形状の環状凸部が原点位置決め部材90に一体的に設けられていることにより、軸方向他方側が軸方向一方側よりも優先的に圧縮可能となっている。これは、原点位置決め部材90の軸方向他方側を優先的に圧縮可能とすることによって通常作動時の出力部材3の原点位置決めを容易に行うことを可能としつつ、軸方向の衝撃荷重等、大きな圧縮荷重が出力部材3に作用した際には、原点位置決め部材90の軸方向一方側で上記の衝撃荷重を効率良く緩和するためである。 In particular, in the present embodiment, as shown in FIGS. 1 and 2, an annular protrusion having a substantially triangular cross-section that protrudes to the other side in the axial direction is provided integrally with the origin positioning member 90, so that The other side can be compressed preferentially over the one side in the axial direction. This allows the origin positioning of the output member 3 during normal operation to be easily performed by preferentially compressing the other side of the origin positioning member 90 in the axial direction, and at the same time, the impact load in the axial direction and the like are large. This is because when the compressive load acts on the output member 3, the above impact load is efficiently alleviated on one axial side of the origin positioning member 90.

また、本実施形態では、出力部材3が原点に位置した状態において、カバー29の内端面を、軸方向隙間4を介して出力部材3の端面(内方部材36のフランジ部36bの軸方向他方側の端面)と対向させているので、出力部材3の原点復帰に伴って、出力部材3とカバー29とが軸方向で突き当たる可能性を効果的に低減できる。そのため、ボールねじ装置31がロック状態に陥る可能性を一層効果的に低減できる。従って、本発明によれば、出力部材3の原点復帰に伴って出力部材3が作動不能となるような重大欠陥が発生する可能性を効果的に低減しつつ、出力部材3の原点を容易に設定することが可能となるので、出力部材3の動作精度に優れ、信頼性に富む電動アクチュエータ1を実現することができる。 Further, in the present embodiment, when the output member 3 is located at the origin, the inner end surface of the cover 29 is separated from the end surface of the output member 3 (the other axial direction of the flange portion 36b of the inner member 36) through the axial gap 4. Since the output member 3 is returned to the origin, it is possible to effectively reduce the possibility that the output member 3 and the cover 29 collide with each other in the axial direction. Therefore, the possibility that the ball screw device 31 will fall into a locked state can be reduced more effectively. Therefore, according to the present invention, the origin of the output member 3 can be easily determined while effectively reducing the possibility of causing a serious defect such that the output member 3 becomes inoperable as the output member 3 returns to the origin. Since it is possible to set the electric actuator 1, it is possible to realize a highly reliable electric actuator 1 which is excellent in the operation accuracy of the output member 3.

また、中空回転軸としてのロータインナ26は、ロータコア24aの軸方向一方側の端部に近接配置された転がり軸受27により軸方向一方側の端部が回転自在に支持され、ロータコア24aの軸方向他方側の端部に近接配置された転がり軸受30により軸方向他方側の端部が回転自在に支持されている。このような構造により、ロータインナ26を軸方向にコンパクト化することができる。これに加えて、転がり軸受27がナット部材32の軸方向幅の内側に配置された構造が相俟って、電動アクチュエータ1を軸方向に一層コンパクト化することができる。 Further, the rotor inner 26 as a hollow rotating shaft has one end in the axial direction rotatably supported by a rolling bearing 27 arranged in proximity to one end in the axial direction of the rotor core 24a, and the other end in the axial direction of the rotor core 24a. The end portion on the other side in the axial direction is rotatably supported by the rolling bearing 30 which is arranged in the vicinity of the end portion on the other side. With such a structure, the rotor inner 26 can be made compact in the axial direction. In addition to this, the structure in which the rolling bearing 27 is arranged inside the axial width of the nut member 32 is combined, so that the electric actuator 1 can be made more compact in the axial direction.

また、ロータ24の回転バランスが取られていれば、ロータインナ26を支持する転がり軸受27,30は、ロータ24の自重程度のラジアル荷重を支持できれば良い。この場合、転がり軸受27の内側軌道面27aを一体に有するロータインナ26は、高強度の材料で形成する必要がなく、例えば、焼入れ焼戻し等の熱処理が省略された安価な軟鋼材で形成しても必要強度を確保することができる。特に、本実施形態の電動アクチュエータ1では、モータ25の回転運動が遊星歯車減速機10を介してナット部材32に伝達されるためにラジアル荷重の発生はなく、また、ねじ軸33の直線運動に伴って生じる反力(スラスト荷重)は針状ころ軸受47で直接的に支持される。従って、転がり軸受27は、ラジアル方向の位置決め機能を有していれば足りるため、転がり軸受27の内側軌道面27aを一体に有するロータインナ26は、上記のような材料仕様で足りる。これにより、電動アクチュエータ1を低コスト化することができる。 Further, as long as the rotor 24 is rotationally balanced, the rolling bearings 27 and 30 supporting the rotor inner 26 only have to support a radial load of about the weight of the rotor 24. In this case, the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 does not need to be formed of a high-strength material, and may be formed of an inexpensive mild steel material in which heat treatment such as quenching and tempering is omitted. The required strength can be secured. Particularly, in the electric actuator 1 of the present embodiment, since the rotational movement of the motor 25 is transmitted to the nut member 32 via the planetary gear reducer 10, no radial load is generated, and the linear movement of the screw shaft 33 does not occur. The reaction force (thrust load) generated therewith is directly supported by the needle roller bearing 47. Therefore, the rolling bearing 27 only needs to have a radial positioning function, and thus the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 is sufficient in the above material specifications. Thereby, the cost of the electric actuator 1 can be reduced.

また、上記のように、ナット部材32に作用するスラスト荷重を針状ころ軸受47で直接的に支持するようにしておけば、ナット部材32にスラスト荷重が負荷された状態においてもナット部材32を低トルクで回転させることが可能となるため、モータ25の小型化を促進できる。 Further, as described above, if the thrust load acting on the nut member 32 is directly supported by the needle roller bearing 47, the nut member 32 can be supported even when the thrust load is applied to the nut member 32. Since the motor 25 can be rotated with a low torque, the motor 25 can be downsized.

また、針状ころ軸受47を、転がり軸受27,30の間の軸方向範囲内に配置しておけば、ねじ軸33(出力部材3)が軸方向に直線運動するのに伴ってねじ軸33等に作用するモーメント荷重に対して有利となるため、出力部材3の動作精度および耐久寿命を高めることができることに加え、軸方向にコンパクトな針状ころ軸受47を採用できる。なお、本実施形態では、針状ころ軸受47を、両転がり軸受27,30の間の軸方向中央付近に配置しており、この場合には、モーメント荷重に対して一層有利になる。その結果、針状ころ軸受47およびスラスト受けリング46等として極めて小型のものを採用することができる。そのため、針状ころ軸受47およびスラスト受けリング46を設けることによる電動アクチュエータ1(筐体2)の軸方向寸法L(図1参照)の長寸化を可及的に防止することができる。 Further, if the needle roller bearing 47 is arranged within the axial range between the rolling bearings 27 and 30, the screw shaft 33 (output member 3) moves linearly in the axial direction, and the screw shaft 33 moves. Since it is advantageous for the moment load acting on the output member 3 and the like, it is possible to improve the operation accuracy and the durable life of the output member 3 and to employ the needle roller bearing 47 that is compact in the axial direction. In the present embodiment, the needle roller bearing 47 is arranged near the center in the axial direction between the two rolling bearings 27, 30, which is more advantageous for the moment load. As a result, extremely small needle roller bearings 47, thrust receiving rings 46, etc. can be adopted. Therefore, it is possible to prevent the axial dimension L (see FIG. 1) of the electric actuator 1 (the housing 2) from being lengthened by providing the needle roller bearing 47 and the thrust receiving ring 46.

また、運動変換機構部Bに遊星歯車減速機10や針状ころ軸受47を設けたことにより実現されるモータ部A(モータ25)の小型化と、ロータインナ26、遊星ギヤキャリア43の円筒部43aおよびナット部材32の半径方向での重畳構造とが相俟って、筐体2の径方向寸法M(図1参照)も極力小さくすることができる。これにより、電動アクチュエータ1を一層コンパクト化することができ、使用機器に対する搭載性が向上する。 Further, downsizing of the motor unit A (motor 25) realized by providing the planetary gear reducer 10 and the needle roller bearing 47 in the motion converting mechanism unit B, and the rotor inner 26 and the cylindrical portion 43a of the planetary gear carrier 43 are realized. Also, in combination with the radial overlapping structure of the nut member 32, the radial dimension M (see FIG. 1) of the housing 2 can be made as small as possible. As a result, the electric actuator 1 can be made more compact, and the mountability of the device can be improved.

また、モータ部Aのロータ24(ロータインナ26)とナット部材32とを別体構造としたので、例えば、仕様が異なるボールねじ装置31を採用する場合でも、モータ部Aや運動変換機構部Bの一部(遊星歯車減速機10)を共用化することができる。これにより、汎用性を向上し、部品を共用化した多品種展開による電動アクチュエータ1のシリーズ化を実現することも容易となる。 Further, since the rotor 24 (rotor inner 26) of the motor section A and the nut member 32 are formed as separate structures, for example, even when the ball screw device 31 having different specifications is adopted, the motor section A and the motion conversion mechanism section B are not provided. A part (planetary gear reducer 10) can be shared. As a result, the versatility is improved, and it becomes easy to realize a series of electric actuators 1 by developing a variety of products in which parts are shared.

また、モータ25に駆動電力を供給するための給電回路、回転角度検出用センサ53およびストローク検出用センサ55等の電装部品をターミナル本体50でまとめて保持し、このターミナル本体50(ターミナル部D)をケーシング20とカバー29とで軸方向に挟持するサンドイッチ構造を採用したので、組立性が良好である。特に本実施形態では、図1や図6等に示すように、モータ25のステータ23の一部(軸方向他方側の端部外周)を、ターミナル本体50の筒状部50Aの内周に嵌合している。この場合、筐体2を組み立てるのと同時にステータ23を筐体2の内周に組み付けることができるので、この点からも組立性を向上することができる。 Further, a power supply circuit for supplying drive power to the motor 25, electrical components such as the rotation angle detection sensor 53 and the stroke detection sensor 55 are collectively held by the terminal main body 50, and this terminal main body 50 (terminal portion D). Since a sandwich structure in which the casing 20 and the cover 29 are sandwiched in the axial direction is adopted, the assemblability is good. In particular, in the present embodiment, as shown in FIG. 1 and FIG. 6, a part of the stator 23 of the motor 25 (outer circumference of the other end in the axial direction) is fitted to the inner circumference of the tubular portion 50A of the terminal body 50. It fits. In this case, since the stator 23 can be assembled to the inner circumference of the housing 2 at the same time as the housing 2 is assembled, the assembling property can be improved also from this point.

また、ターミナル本体50の筒状部50Aは、筐体2の内外を連通させる貫通穴50cを有し、給電回路に接続されるリード線や上記のセンサ53,55に接続される信号線(電気配線)は、貫通穴50cを介して筐体2の径方向外側に引き出される。この場合、上記の電気配線の取り回し作業をターミナル本体50単体で完結することが、すなわち、電動アクチュエータ1を適当かつ精度良く動作させるために必要となる電気系統は、筐体2(電動アクチュエータ1)の組み立て前にターミナル本体50で集約して保持することができる。これにより、電動アクチュエータ1の組立段階で面倒な配線作業を別途実施する必要がなくなるため、電動アクチュエータ1の組立性を一層向上することができる。 Further, the tubular portion 50A of the terminal body 50 has a through hole 50c for communicating the inside and outside of the housing 2, and has a lead wire connected to a power supply circuit and a signal wire (electrical wire) connected to the sensors 53 and 55 described above. The wiring) is drawn out to the outside in the radial direction of the housing 2 through the through hole 50c. In this case, it is necessary to complete the above-mentioned work of arranging the electric wiring by the terminal body 50 alone, that is, the electric system required for operating the electric actuator 1 appropriately and accurately is the housing 2 (electric actuator 1). Can be collectively held by the terminal main body 50 before assembly. As a result, it is not necessary to separately perform a troublesome wiring work at the assembly stage of the electric actuator 1, so that the assemblability of the electric actuator 1 can be further improved.

また、電気配線の取り回し作業をターミナル本体50単体で完結することができれば、例えば、モータ25や遊星歯車減速機10等に仕様変更が生じた場合でも、ターミナル本体50の結合相手部材(ここでは、特にケーシング20)の被結合部形状が同じである限りにおいて、ターミナル本体50を共用することができる。これにより、部品・部材の共用化による電動アクチュエータ1の多品種展開(シリーズ化)にも容易に対応することができる。 Further, if the wiring work of the electric wiring can be completed by the terminal main body 50 alone, for example, even if the specifications of the motor 25, the planetary gear reducer 10 or the like are changed, the mating member of the terminal main body 50 (here, In particular, the terminal main body 50 can be shared as long as the shape of the joined portion of the casing 20) is the same. As a result, it is possible to easily deal with a wide variety of electric actuators 1 (serialization) by sharing parts and members.

また、ターミナル本体50をケーシング20とカバー29とで軸方向に挟持するサンドイッチ構造を採用したこと、給電回路のリード線や上記センサの信号線を筐体2の外径側に引き出し可能にしたこと、および中空状のねじ軸33を採用したことにより、2つの電動アクチュエータ1(モータ部A、運動変換機構部Bおよびターミナル部Dをユニット化したもの)を軸方向に連ねて配置してなり、2つの操作対象を個別に操作可能な電動アクチュエータを実現することもできる。なお、このような電動アクチュエータは、例えば、自動変速機の一種であるDCTに好ましく搭載することができ、DCT全体のコンパクト化に貢献することができる。 Further, a sandwich structure in which the terminal main body 50 is sandwiched between the casing 20 and the cover 29 in the axial direction is adopted, and the lead wire of the power feeding circuit and the signal wire of the sensor can be drawn out to the outer diameter side of the housing 2. , And the hollow screw shaft 33, the two electric actuators 1 (the motor unit A, the motion conversion mechanism unit B and the terminal unit D are unitized) are arranged in series in the axial direction, It is also possible to realize an electric actuator that can individually operate two operation targets. It should be noted that such an electric actuator can be preferably mounted in, for example, a DCT, which is a type of automatic transmission, and can contribute to downsizing of the entire DCT.

本実施形態の電動アクチュエータ1は、以上で説明したような特徴的な構成を有することから、出力部材3の動作精度に優れて信頼性に富み、軽量・コンパクトで使用機器に対する搭載性に優れ、組立性も良好で低コストに製造可能であり、さらに部品の共用化による多品種展開(シリーズ化)も容易である。 Since the electric actuator 1 of the present embodiment has the characteristic configuration as described above, the output member 3 has excellent operation accuracy, is highly reliable, is lightweight and compact, and is excellent in mountability on a device used. It is easy to assemble and can be manufactured at low cost, and it is easy to develop multiple products (serialization) by sharing parts.

以上、本発明の一実施形態に係る電動アクチュエータ1について説明を行ったが、本発明の実施の形態はこれに限られない。 Although the electric actuator 1 according to the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to this.

例えば、以上で説明した実施形態においては、ゴム材料等の弾性材料で形成された原点位置決め部材90を使用したが、原点位置決め部材90としては、圧縮コイルばね等の弾性体、あるいは当該弾性体を備えた部材で構成しても良い。但し、弾性材料であれば、所定形状の原点位置決め部材90を容易に作製することができるので、原点位置決め部材90を追加的に設けることによるコスト増を抑制する上で有利である。 For example, in the embodiment described above, the origin positioning member 90 formed of an elastic material such as a rubber material is used. However, as the origin positioning member 90, an elastic body such as a compression coil spring, or the elastic body is used. You may comprise with the member provided. However, if the elastic material is used, the origin positioning member 90 having a predetermined shape can be easily manufactured, which is advantageous in suppressing an increase in cost due to the additional provision of the origin positioning member 90.

また、ナット部材32の軸方向他方側に隣接配置するスラスト軸受としては、針状ころ軸受47以外の転がり軸受、例えば円筒ころ軸受を採用することもできる。但し、荷重支持能力や、軸受の軸方向寸法を考慮すると、針状ころ軸受47が好ましい。 A rolling bearing other than the needle roller bearing 47, for example, a cylindrical roller bearing, may be used as the thrust bearing adjacent to the other side of the nut member 32 in the axial direction. However, the needle roller bearing 47 is preferable in consideration of the load bearing capacity and the axial dimension of the bearing.

また、以上で説明した実施形態においては、運動変換機構部Bに遊星歯車減速機10を設けているが、遊星歯車減速機10以外の減速機を採用することもできる。 Further, in the embodiment described above, the planetary gear reducer 10 is provided in the motion conversion mechanism section B, but a reducer other than the planetary gear reducer 10 may be adopted.

また、遊星歯車減速機10をはじめとする減速機は必ずしも設ける必要はなく、必要でない場合は省略しても構わない。遊星歯車減速機10を省略する場合には、モータ25のロータ24(ロータインナ26)とボールねじ装置31のナット部材32とを直接的にトルク伝達可能に連結しても構わないが、このようにすると、ロータインナ26およびナット部材32の少なくとも一方に異なる形状のものを採用する必要が生じる。そのため、遊星歯車減速機10を省略する場合には、例えば、ロータインナ26の内周面26dとナット部材32の外周面32bとの間に円筒状の中間部材を配置し、この中間部材の外周面および内周面のそれぞれを、ロータインナ26の内周面26dおよびナット部材32の外周面32bとトルク伝達可能に結合させるのが好ましい(図示省略)。これにより、遊星歯車減速機10を省略した場合でも、モータ部A(モータ25)およびボールねじ装置31を共用することが可能となるので、コスト増を抑制することができる。 Further, the speed reducer including the planetary gear speed reducer 10 does not necessarily have to be provided, and may be omitted if not necessary. When the planetary gear reducer 10 is omitted, the rotor 24 (rotor inner 26) of the motor 25 and the nut member 32 of the ball screw device 31 may be directly connected so that torque can be transmitted. Then, it becomes necessary to adopt different shapes for at least one of the rotor inner 26 and the nut member 32. Therefore, when the planetary gear reducer 10 is omitted, for example, a cylindrical intermediate member is arranged between the inner peripheral surface 26d of the rotor inner 26 and the outer peripheral surface 32b of the nut member 32, and the outer peripheral surface of this intermediate member is arranged. It is preferable that each of the inner peripheral surface and the inner peripheral surface be coupled to the inner peripheral surface 26d of the rotor inner 26 and the outer peripheral surface 32b of the nut member 32 so that torque can be transmitted (not shown). As a result, even when the planetary gear reducer 10 is omitted, it is possible to share the motor unit A (motor 25) and the ball screw device 31, so that the cost increase can be suppressed.

また、以上で説明した実施形態においては、ストローク検出用センサ55を使用するようにしているが、ストローク検出用センサ55は必要に応じて使用すれば足り、使用機器によっては、ストローク検出用センサ55を省略しても構わない。 Further, in the embodiment described above, the stroke detection sensor 55 is used. However, the stroke detection sensor 55 may be used as needed, and depending on the device used, the stroke detection sensor 55 may be used. May be omitted.

図12に基づき、ストローク検出用センサ55を使用しない場合における電動アクチュエータ1の作動態様の一例を説明する。図12は、圧力制御の例であり、図示外の操作対象に圧力センサ83が設けられている。図示外のECUに操作量が入力されると、ECUは要求される圧力指令値を演算する。この圧力指令値が制御装置80のコントローラ81に送られると、コントローラ81は、圧力指令値に必要なモータ回転角の制御信号を演算し、この制御信号をモータ25に送る。そして、図11を参照して説明した場合と同様に、ねじ軸33がコントローラ81の制御信号に基づく位置まで前進し、ねじ軸33の軸方向一方側の端部に装着されたアクチュエータヘッド39が図示外の操作対象を操作する。 An example of the operation mode of the electric actuator 1 when the stroke detection sensor 55 is not used will be described with reference to FIG. FIG. 12 is an example of pressure control, and a pressure sensor 83 is provided for an operation target not shown. When an operation amount is input to an ECU (not shown), the ECU calculates a required pressure command value. When this pressure command value is sent to the controller 81 of the control device 80, the controller 81 calculates a control signal of the motor rotation angle required for the pressure command value, and sends this control signal to the motor 25. Then, similarly to the case described with reference to FIG. 11, the screw shaft 33 advances to the position based on the control signal of the controller 81, and the actuator head 39 attached to the axial one end of the screw shaft 33 is An operation target (not shown) is operated.

ねじ軸33の操作圧力は、外部に設置された圧力センサ83により検出され、フィードバック制御される。このため、ストローク検出用センサ55を使用しない電動アクチュエータ1を例えばブレーキバイワイヤに適用した場合、ブレーキの液圧を確実にコントロールすることができる。 The operating pressure of the screw shaft 33 is detected by a pressure sensor 83 installed outside and feedback-controlled. Therefore, when the electric actuator 1 that does not use the stroke detection sensor 55 is applied to, for example, a brake-by-wire, it is possible to reliably control the hydraulic pressure of the brake.

上記のように、ストローク検出用センサ55を使用しない場合、ねじ軸33としては、中実のものを採用し、内方部材36を省略しても良い。但し、中実のねじ軸33を使用する場合であって、圧縮コイルばね48を設ける場合には、ねじ軸33として、その軸方向他方側の端部にフランジ部を有するものを採用する。 As described above, when the stroke detecting sensor 55 is not used, the screw shaft 33 may be solid and the inner member 36 may be omitted. However, when the solid screw shaft 33 is used and the compression coil spring 48 is provided, as the screw shaft 33, one having a flange portion at the end portion on the other axial side thereof is adopted.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the embodiments described above, and it goes without saying that the present invention can be implemented in various forms within the scope of the present invention, and the scope of the present invention is It is indicated by the scope of the claims and further includes equivalent meanings to the claims and all modifications within the scope.

1 電動アクチュエータ
2 筐体
3 出力部材
4 軸方向隙間
10 遊星歯車減速機
20 ケーシング
24 ロータ
25 モータ
26 ロータインナ(中空回転軸)
27 転がり軸受
27a 内側軌道面
29 カバー(筐体の底部)
30 転がり軸受
31 ボールねじ装置
32 ナット部材
33 ねじ軸
34 ボール
47 針状ころ軸受(スラスト軸受)
50 ターミナル本体
50A 筒状部
50c 貫通穴
90 原点位置決め部材
A モータ部
B 運動変換機構部
C 操作部
D ターミナル部
DESCRIPTION OF SYMBOLS 1 Electric actuator 2 Housing 3 Output member 4 Axial gap 10 Planetary gear reducer 20 Casing 24 Rotor 25 Motor 26 Rotor inner (hollow rotating shaft)
27 Rolling Bearing 27a Inner Raceway Surface 29 Cover (Bottom of Case)
30 Rolling Bearing 31 Ball Screw Device 32 Nut Member 33 Screw Shaft 34 Ball 47 Needle Roller Bearing (Thrust Bearing)
50 Terminal body 50A Cylindrical part 50c Through hole 90 Origin positioning member A Motor part B Motion conversion mechanism part C Operation part D Terminal part

Claims (8)

電力の供給を受けて駆動するモータ部と、該モータ部の回転運動を直線運動に変換して出力する運動変換機構部と、前記モータ部および前記運動変換機構部を収容し、軸方向一方側の端部に開口部を有すると共に軸方向他方側の端部に底部を有する有底筒状の筐体とを備え、前記運動変換機構部が、前記モータ部のロータの回転中心と同軸に配置されたねじ軸と、複数のボールを介して前記ねじ軸の外周に回転可能に嵌合され、前記モータ部のロータとトルク伝達可能に設けられたナット部材とを有し、前記ナット部材の回転方向に応じて、前記ねじ軸を含む出力部材が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータにおいて、
前記筐体の開口端面およびこれに対向する前記出力部材の軸方向他方側の端面との間に、両者と軸方向で係合することにより前記出力部材の原点位置を決定付ける環状の原点位置決め部材が設けられ、該原点位置決め部材は、軸方向の圧縮荷重に対する弾性復元力を有しており、
前記出力部材が原点に位置した状態では、前記筐体の底部の内端面と前記出力部材の端面とが軸方向隙間を介して互いに対向することを特徴とする電動アクチュエータ。
A motor unit that receives electric power and drives, a motion conversion mechanism unit that converts the rotational motion of the motor unit into a linear motion and outputs the linear motion, the motor unit and the motion conversion mechanism unit, and one side in the axial direction. A bottomed cylindrical casing having an opening at the end of the motor and a bottom at the end on the other side in the axial direction, and the motion converting mechanism is disposed coaxially with the rotation center of the rotor of the motor. And a nut member that is rotatably fitted to the outer periphery of the screw shaft via a plurality of balls and is provided so as to transmit torque with the rotor of the motor unit. In an electric actuator in which the output member including the screw shaft is advanced in one axial direction or retracted in the other axial direction according to the direction,
An annular origin positioning member that determines the origin position of the output member by axially engaging both of the opening end surface of the housing and the end surface of the output member facing the other end in the axial direction. is provided, the raw point positioning member has have a resilient restoring force to axial compressive loads,
An electric actuator , wherein an inner end surface of a bottom portion of the housing and an end surface of the output member face each other with an axial gap therebetween when the output member is located at the origin .
前記原点位置決め部材が弾性材料で形成されている請求項に記載の電動アクチュエータ。 The electric actuator according to claim 1 , wherein the origin positioning member is made of an elastic material. 前記ロータは、前記ナット部材を内周に配置し、軸方向に離間した二箇所に配置された転がり軸受により前記筐体に対して回転自在に支持された中空回転軸を有し、
前記中空回転軸は、2つの前記転がり軸受のうち、一方の転がり軸受の内側軌道面を有する請求項1又は2に記載の電動アクチュエータ。
The rotor has a hollow rotary shaft that is rotatably supported with respect to the housing by rolling bearings that are arranged on the inner periphery of the nut member and that are arranged at two locations that are separated in the axial direction,
The electric actuator according to claim 1 or 2 , wherein the hollow rotary shaft has an inner raceway surface of one of the two rolling bearings.
前記内側軌道面が、前記ナット部材の軸方向幅の内側に配置されている請求項に記載の電動アクチュエータ。 The electric actuator according to claim 3 , wherein the inner raceway surface is arranged inside an axial width of the nut member. 前記ナット部材の軸方向他方側にスラスト軸受が隣接配置され、該スラスト軸受は、2つの前記転がり軸受の間の軸方向範囲内に配置されている請求項3又は4に記載の電動アクチュエータ。 The electric actuator according to claim 3 or 4 , wherein a thrust bearing is arranged adjacent to the other side of the nut member in the axial direction, and the thrust bearing is arranged within an axial range between the two rolling bearings. 前記運動変換機構部が、前記ロータの回転を減速して前記ナット部材に伝達する減速機をさらに有する請求項1〜の何れか一項に記載の電動アクチュエータ。 The motion converting mechanism portion, an electric actuator according to any one of claim 1 to 5, further comprising a reduction gear for transmitting the nut member by decelerating the rotation of the rotor. 前記筐体は、軸方向に結合された複数部材からなり、
電装部品を保持したターミナル部が、前記筐体の構成部材により軸方向両側から挟持された筒状部を有し、該筒状部が、前記筐体の内外を連通させる径方向の貫通孔を有する請求項1〜の何れか一項に記載の電動アクチュエータ。
The housing is composed of a plurality of members that are coupled in the axial direction,
The terminal portion holding the electrical component has a tubular portion sandwiched by the constituent members of the housing from both sides in the axial direction, and the tubular portion has a radial through hole that communicates the inside and outside of the housing. electric actuator according to any one of claim 1 to 6 with.
前記モータ部のステータの少なくとも一部が、前記筒状部に嵌合されている請求項に記載の電動アクチュエータ。 The electric actuator according to claim 7 , wherein at least a part of a stator of the motor section is fitted in the tubular section.
JP2016102565A 2016-05-23 2016-05-23 Electric actuator Active JP6736352B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016102565A JP6736352B2 (en) 2016-05-23 2016-05-23 Electric actuator
PCT/JP2017/017157 WO2017203944A1 (en) 2016-05-23 2017-05-01 Electric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102565A JP6736352B2 (en) 2016-05-23 2016-05-23 Electric actuator

Publications (2)

Publication Number Publication Date
JP2017210976A JP2017210976A (en) 2017-11-30
JP6736352B2 true JP6736352B2 (en) 2020-08-05

Family

ID=60412810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102565A Active JP6736352B2 (en) 2016-05-23 2016-05-23 Electric actuator

Country Status (2)

Country Link
JP (1) JP6736352B2 (en)
WO (1) WO2017203944A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022057147A (en) * 2020-09-30 2022-04-11 株式会社ハイレックスコーポレーション Vehicular brake device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329070A (en) * 2002-05-15 2003-11-19 Nissin Kogyo Co Ltd Electric disc-brake
JP4148121B2 (en) * 2003-12-05 2008-09-10 トヨタ自動車株式会社 Vehicle steering system
JP2009156354A (en) * 2007-12-27 2009-07-16 Jtekt Corp Ball screw device
JP5751155B2 (en) * 2011-12-15 2015-07-22 日本電産サンキョーシーエムアイ株式会社 motor

Also Published As

Publication number Publication date
JP2017210976A (en) 2017-11-30
WO2017203944A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6647900B2 (en) Electric actuator
JP6632909B2 (en) Electric actuator
JP6765193B2 (en) Electric actuator
JP6794121B2 (en) Electric actuator
CN108886297B (en) Electric actuator
JP6682316B2 (en) Electric actuator
EP3439155B1 (en) Electric actuator
WO2017169846A1 (en) Electric actuator
JP6736352B2 (en) Electric actuator
JP6651381B2 (en) Electric actuator
JP6621687B2 (en) Electric actuator
WO2017169935A1 (en) Electric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250