WO2017145827A1 - Electrically driven actuator - Google Patents

Electrically driven actuator Download PDF

Info

Publication number
WO2017145827A1
WO2017145827A1 PCT/JP2017/005023 JP2017005023W WO2017145827A1 WO 2017145827 A1 WO2017145827 A1 WO 2017145827A1 JP 2017005023 W JP2017005023 W JP 2017005023W WO 2017145827 A1 WO2017145827 A1 WO 2017145827A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball screw
electric actuator
screw shaft
axial direction
motor
Prior art date
Application number
PCT/JP2017/005023
Other languages
French (fr)
Japanese (ja)
Inventor
卓志 松任
池田 良則
悠紀 内藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017145827A1 publication Critical patent/WO2017145827A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present invention relates to an electric actuator.
  • Patent Document 1 employs a configuration in which an operation unit is integrally provided on a ball screw shaft
  • Patent Document 2 discloses that a ball screw shaft formed in a hollow shape is connected to a pulling rod having an operation unit in an axial direction. The pull rod is attached to the outer periphery of the base end so that it can be engaged on both sides.
  • Patent Documents 1 and 2 In view of the recent situation where expansion of devices equipped with electric actuators is being studied, there is room for improvement in the configurations of Patent Documents 1 and 2 when considering the reduction in cost and series of electric actuators by sharing parts. There is. That is, in any configuration of Patent Documents 1 and 2, the output member including the operation unit and the ball screw shaft needs to be a dedicated part corresponding to the application, the shape of the operation target, and the like.
  • an object of the present invention is to realize a highly versatile electric actuator that can be applied to various devices, thereby contributing to cost reduction and series production of the electric actuator.
  • the present invention which was created to solve the above problems, includes a motor unit that receives power to drive, a motion conversion mechanism unit that converts the rotational motion of the motor unit into a linear motion, and outputs the linear motion, and a motion conversion mechanism. And a ball screw nut in which the motion converting mechanism is rotatably fitted to the outer periphery of the ball screw shaft via a plurality of balls.
  • the operation part is arranged in the axial direction of the ball screw shaft. It is provided so that it can be attached or detached with respect to the edge part of one side.
  • the operation unit may be replaced, and the ball screw device including the ball screw shaft and, in some cases, components other than the operation unit are shared.
  • the ball screw device including the ball screw shaft and, in some cases, components other than the operation unit are shared.
  • the operation unit can be attached to and detached from the end of one side of the ball screw shaft in the axial direction, it can be disassembled even if it is an electric actuator assembled with a motor unit, a motion conversion mechanism unit, etc.
  • the actuator head can be easily replaced without any change. Therefore, there is an advantage that the maintainability can be improved.
  • the above-described present invention can be preferably applied to an electric actuator in which the ball screw shaft is arranged coaxially with the rotation center of the motor unit.
  • the motion conversion mechanism can be provided with a speed reducer that decelerates the rotation of the motor and transmits it to the ball screw nut.
  • a speed reducer that decelerates the rotation of the motor and transmits it to the ball screw nut.
  • a planetary gear speed reducer can be adopted as the speed reducer. If it is a planetary gear reducer, the reduction ratio can be easily adjusted by changing the gear specifications or changing the number of installation stages of the planetary gear, and even if the planetary gears are installed in multiple stages. There is an advantage that it is possible to avoid an increase in the size of the speed reducer and consequently the electric actuator.
  • the electric actuator having the above configuration can further include a hollow rotary shaft that supports the rotor core of the motor unit, and a rolling bearing that rotatably supports the hollow rotary shaft. Further, it is possible to adopt a configuration in which a torque is transmitted to the hollow rotating shaft and arranged on the inner periphery of the hollow rotating shaft, and the inner surface of the rolling bearing is provided on the hollow rotating shaft. By adopting such a configuration, a hollow rotary shaft that is compact in the axial direction can be used, so that the electric actuator can be made compact in the axial direction.
  • the inner raceway surface When the inner raceway surface is provided on the hollow rotary shaft, the inner raceway surface can be disposed inside the axial width of the ball screw nut. Thereby, the electric actuator can be made more compact in the axial direction.
  • the electric actuator having the above-described configuration includes a plurality of members coupled in the axial direction, and includes a housing that houses the motor unit and the motion conversion mechanism unit, and a terminal unit that holds a power feeding circuit for supplying power to the motor unit. Further, it can be provided. In this case, the terminal portion can be held from both sides in the axial direction by the constituent members of the casing. Thereby, the assembly property of the electric actuator can be improved.
  • the terminal portion may have an opening for pulling out a lead wire connected to the power feeding circuit to the outer diameter side of the casing on the outer peripheral portion thereof.
  • an electric actuator in which a plurality of electric actuators each having a ball screw shaft are connected in series and each ball screw shaft can be individually linearly moved.
  • Such an electric actuator can be mounted on a device that has two or more operation targets, for example, a DCT (Dual Clutch Transmission), which is a type of automatic transmission, and the entire device including the electric actuator is light and compact. Can contribute.
  • a DCT Direct Clutch Transmission
  • an electric actuator that can be applied to various devices and has high versatility. Thereby, it can contribute to the cost reduction and series production
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line EE in FIG. 1. It is the longitudinal cross-sectional view which took out the rotor and motion conversion mechanism part of the motor, and was expanded.
  • FIG. 5 is a cross-sectional view taken along line FF in FIG. 1. It is a longitudinal cross-sectional view which shows the state which integrated the ring gear in the casing. It is the longitudinal cross-sectional view which took out the stator and terminal part of the motor, and was expanded.
  • FIG. 2 is a cross-sectional view taken along line GG in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along line HH in FIG. 1.
  • FIG. 10 It is a left view of the electric actuator shown in FIG. FIG. 10 is a cross-sectional view taken along the line II in FIG. 9. It is a schematic perspective view of the operation part which concerns on other embodiment. It is a schematic perspective view of the operation part which concerns on other embodiment. It is a schematic perspective view of the operation part which concerns on other embodiment. It is a schematic block diagram which shows the control system of the electric actuator of FIG. It is a block diagram which shows the control system of the electric actuator which concerns on other embodiment.
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line EE of FIG. 1
  • FIG. 3 is a motor rotor and motion conversion mechanism.
  • the longitudinal cross-sectional view which took out and expanded the part is shown.
  • 1 and 2 show a state where the output member of the electric actuator (the ball screw shaft of the ball screw device constituting the electric actuator) is located at the origin.
  • the “state located at the origin” refers to the end face of the ball screw shaft 33 (the spring mounting collar 36 connected to the ball screw shaft 33) by the spring force (elastic restoring force) of a compression coil spring 48 as an urging member described later.
  • the electric actuator 1 includes a motor unit A that is driven by the supply of electric power, and a motion conversion mechanism unit B that converts the rotational motion of the motor unit A into a linear motion and outputs the linear motion.
  • the housing 2 is composed of a plurality of members coupled in the axial direction.
  • the casing 2 of the present embodiment has an end on one side in the axial direction (the right side in FIG. 1 and FIG. 2), and the other side in the axial direction (the left side in FIG. 1 and FIG. 2). )
  • a cover 29 that closes the end opening on the other axial side of the casing 20, and a terminal that is disposed between the casing 20 and the cover 29 and constitutes the terminal portion D It consists of a combination with the main body 50.
  • the cover 29 and the terminal main body 50 are fixedly attached to the casing 20 by assembly bolts 61 shown in FIGS.
  • the motor part A includes a radial gap type motor (in detail, a U-phase, a stator having a stator 23 fixed to the casing 20 and a rotor 24 disposed to face the inner periphery of the stator 23 via a radial gap. 3 phase brushless motor having a V phase and a W phase) 25.
  • the stator 23 includes an insulating bobbin 23b attached to the stator core 23a, and a coil 23c wound around the bobbin 23b.
  • the rotor 24 includes a rotor core 24a, a permanent magnet 24b attached to the outer periphery of the rotor core 24a, and a rotor inner 26 formed as a hollow shaft and supporting the rotor core 24a (mounted on the outer periphery) as a hollow rotary shaft.
  • the rotor core 24 a is fitted to the outer peripheral surface 26 b of the rotor inner 26 after setting the side plate 65 on the shoulder portion 26 a on one axial side of the rotor inner 26.
  • the side plate 65 attached to the outer side of the other end of the rotor core 24a in the axial direction on the rotor inner 26, and the axially outer side thereof. It is positioned and fixed by a circlip 66 attached to.
  • an inner raceway surface 27 a of the rolling bearing 27 is formed on the outer periphery of one end of the rotor inner 26 in the axial direction, and the outer ring 27 b of the rolling bearing 27 is fixed to the inner peripheral surface of the casing 20.
  • the bearing holder 28 is attached to the inner peripheral surface.
  • a rolling bearing 30 is mounted between the inner peripheral surface of the other end in the axial direction of the rotor inner 26 and the outer peripheral surface of the cylindrical portion 29 a of the cover 29.
  • the motion conversion mechanism B of the present embodiment includes a ball screw device 31 and a planetary gear speed reducer 10 as a speed reducer.
  • the ball screw device 31 is arranged coaxially with the rotor 24 (rotor inner 26), and is rotatable on the outer periphery of the ball screw shaft 33 via a ball screw shaft 33 constituting an output member of the electric actuator 1 and a plurality of balls 34.
  • a fitted ball screw nut 32 and a top 35 as a circulation member are provided.
  • a plurality of balls 34 are loaded between the spiral groove 32a formed on the inner peripheral surface of the ball screw nut 32 and the spiral groove 33a formed on the outer peripheral surface of the ball screw shaft 33, and the top 35 is assembled. ing. With such a configuration, when the ball screw shaft 33 moves back and forth in the axial direction (linear motion), the ball 34 circulates between the spiral grooves 32a and 33a.
  • the ball screw shaft 33 is formed in a hollow shape having a hole portion 33b extending in the axial direction (in this embodiment, through-holes opened on both end surfaces in the axial direction) 33b, and the spring mounting collar 36 is accommodated in the hole portion 33b.
  • the spring mounting collar 36 is made of, for example, a resin material such as PPS, and has a circular solid portion 36a provided at one end in the axial direction and a flange-shaped spring receiver provided at the other end in the axial direction.
  • the part 36b and the cylinder part 36c which connects both parts 36a and 36b are integrally provided.
  • the spring mounting collar 36 housed in the hole 33b of the ball screw shaft 33 is connected to the ball screw shaft 33 by fitting a pin 37 so as to penetrate the circular solid portion 36a and the ball screw shaft 33 in the radial direction. Fixed. Both end portions of the pin 37 protrude radially outward from the outer peripheral surface of the ball screw shaft 33, and a guide collar 38 is rotatably fitted on the protruding portion.
  • the guide collar 38 is formed of a resin material such as PPS, for example, and is fitted into a guide groove 20b (see also FIG. 5) extending in the axial direction provided on the inner periphery of the small diameter cylindrical portion 20a of the casing 20.
  • the ball screw shaft 33 linearly moves in the axial direction while being prevented from rotating. Whether the ball screw shaft 33 linearly moves (forwards) in one axial direction or linearly moves (retreats) in the other axial direction basically depends on the rotational direction of the ball screw nut 32.
  • the ball screw shaft 33 can be moved backward by the spring force of the compression coil spring 48 as an urging member (details will be described later).
  • an actuator head 39 as an operation portion C is detachably attached to an end portion on one axial side of the ball screw shaft 33.
  • the actuator head 39 of this embodiment has a base portion 39a that is press-fitted and fixed in the hole portion 33b of the ball screw shaft 33, and a head portion 39b that is directly or indirectly engaged with an operation target (not shown) in the axial direction. Then, as the ball screw shaft 33 linearly moves (advances) in one axial direction, the tip surface of the head 39b presses the operation target in the axial direction.
  • the actuator head 39 is press-fitted and fixed to the ball screw shaft 33.
  • other fixing methods may be employed.
  • a method of fitting screw grooves provided on the inner periphery of the ball screw shaft 33 and the outer periphery of the base portion 39a of the actuator head 39, a fixing method using an easily removable fastener such as a bolt or a pin, and the like are adopted. Can do.
  • an actuator head 39 see FIG. 11 according to another embodiment to be described later.
  • the planetary gear speed reducer 10 includes a ring gear 40 fixed to the casing 20, a sun gear 41 press-fitted and fixed to the inner peripheral surface of the step portion of the rotor inner 26, and a ring gear 40 and a sun gear 41. And a plurality of (four in this embodiment) planetary gears 42 meshed with both gears 40, 41, and a planetary gear carrier 43 and a planetary gear holder 44 holding the planetary gears 42 rotatably.
  • the outer periphery of the ring gear 40 is provided with notches 40 a projecting radially outward at a plurality of locations (four locations in the illustrated example) spaced apart in the circumferential direction.
  • the grooves are fitted in axial grooves 20e (see also FIG. 5) provided at a plurality of locations (four locations in the illustrated example) separated in the circumferential direction of the surface 20c.
  • the planetary gear carrier 43 is rotatable relative to the rotor inner 26 and, as shown in FIGS. 1 to 3, is a cylinder disposed between the inner peripheral surface of the rotor inner 26 and the outer peripheral surface 32b of the ball screw nut 32. It has the part 43a integrally.
  • the outer peripheral surface of the cylindrical portion 43 a faces the inner peripheral surface of the rotor inner 26 (and the inner peripheral surface of the sun gear 41) via a radial gap, and the inner peripheral surface of the cylindrical portion 43 a is press-fitted into the outer peripheral surface 32 b of the ball screw nut 32. It is mated.
  • the planetary gear speed reducer 10 having the above configuration, the rotation of the rotor inner 26 of the motor 25 is decelerated and transmitted to the ball screw nut 32. Thereby, since rotational torque can be increased, the small motor 25 can be employ
  • a thrust washer 45 is disposed between the end face on one axial side of the ball screw nut 32 and the casing 20, and is attached to the outer periphery of the tip of the cylindrical portion 29 a of the cover 29.
  • a needle roller bearing 47 as a thrust bearing is disposed between the thrust receiving ring 46 and the end face on the other axial side of the ball screw nut 32. Due to the presence of such a needle roller bearing 47, a thrust load when the ball screw shaft 33 linearly moves (advances) in one axial direction is smoothly supported.
  • a compression coil spring 48 as an urging member is disposed between the inner peripheral surface 29 b of the cylindrical portion 29 a of the cover 29 and the outer peripheral surface of the ball screw shaft 33. .
  • One end and the other end in the axial direction of the compression coil spring 48 are in contact with the needle roller bearing 47 and the spring receiving portion 36b of the spring mounting collar 36, respectively.
  • the ball screw shaft 33 connected to the spring mounting collar 36 is always urged toward the origin by the spring force of the compression coil spring 48 thus provided. In this way, for example, when the driving power is not properly supplied to the motor unit A (motor 25), the ball screw shaft 33 is automatically returned to the origin, and the operation of the operation target (not shown) is adversely affected. The possibility of exerting can be reduced as much as possible.
  • FIG. 9 is a left side view of FIG. 1, and FIG. 10 is a cross-sectional view taken along the line II in FIG.
  • the cover 29 is formed of a metal material excellent in workability (mass productivity) and thermal conductivity, for example, an aluminum alloy, a zinc alloy, or a magnesium alloy.
  • a cooling fin for increasing the cooling efficiency of the electric actuator 1 may be provided on the outer surface of the cover 29.
  • a bearing mounting surface 63 on which the rolling bearing 30 is mounted and a fitting surface 64 on which the thrust receiving ring 46 is fitted are provided on the outer peripheral surface of the cylindrical portion 29 a of the cover 29. Yes.
  • a through hole (not shown) through which the assembly bolt 61 of the electric actuator 1 is inserted and a mounting bolt for attaching the electric actuator 1 to a device to be used are inserted into the cover 29.
  • a through hole 62 is provided.
  • FIG. 6 is a longitudinal cross-sectional view in which the stator 23 and the terminal portion D of the motor 25 shown in FIG. 1 are taken out and enlarged
  • FIG. 7 is a cross-sectional view taken along the line GG in FIG. 1, and
  • FIG. It is a HH arrow directional cross-sectional view.
  • the terminal portion D has a short cylindrical portion constituting a part of the housing 2 and a disk-shaped portion extending radially inward from the other axial end of the short cylindrical portion. And a bus bar 51 and a printed circuit board 52 screwed to the terminal main body 50 (the disk-shaped portion thereof).
  • FIGS. 6 is a longitudinal cross-sectional view in which the stator 23 and the terminal portion D of the motor 25 shown in FIG. 1 are taken out and enlarged
  • FIG. 7 is a cross-sectional view taken along the line GG in FIG. 1, and FIG. It is a HH arrow directional cross-sectional view.
  • the terminal portion D has a short cylindrical portion
  • the terminal main body 50 (the short cylindrical portion thereof) is provided for attaching the through-hole 50A through which the assembly bolt 61 shown in FIGS. And a through hole 50B through which the bolt is inserted, and is sandwiched between the casing 20 and the cover 29 by the assembly bolt 61 (see FIGS. 1 and 2).
  • the terminal body 50 is formed of a resin material such as PPS, for example.
  • the terminal part D (terminal body 50) holds a power feeding circuit for supplying driving power to the motor 25.
  • the power feeding circuit connects the coils 23c of the stator 23 to the terminals 51a of the bus bar 51 for each of the U phase, the V phase, and the W phase.
  • the terminal 51 b of 51 and the terminal block 50 a of the terminal body 50 are fastened with screws 70.
  • the terminal block 50a has a terminal 50b to which a lead wire (not shown) is connected, and the lead wire is an opening 50c (see FIG. 1) provided in the outer peripheral portion (short cylindrical portion) of the terminal body 50. Is pulled out to the outer diameter side of the housing 2 and connected to a controller 81 (see FIG. 12 or FIG. 13) of the control device 80.
  • the electric actuator 1 is equipped with two types of sensors, and these two types of sensors are held in the terminal portion D.
  • one of the two types of sensors is a rotation angle detection sensor 53 used for rotation control of the motor 25, and the other is stroke control (amount of displacement in the axial direction) of the ball screw shaft 33.
  • This is a stroke detection sensor 55 used for detection.
  • a Hall sensor which is a kind of magnetic sensor is used as the rotation angle detection sensor 53 and the stroke detection sensor 55.
  • the rotation angle detection sensor 53 is attached to a printed circuit board 52 having a disk shape, and a pulsar ring 54 attached to the end portion on the other side in the axial direction of the rotor inner 26 and the shaft Oppositely arranged via a directional gap.
  • the rotation angle detection sensor 53 determines the timing for supplying current to each of the U phase, V phase, and W phase of the motor 25.
  • the stroke detection sensor 55 is attached to a belt-like printed board 56 that extends in the axial direction and has an end on the other side in the axial direction connected to the printed board 52. .
  • the printed circuit board 56 and the stroke detection sensor 55 are disposed on the inner periphery of the hole 33b of the ball screw shaft 33, more specifically, on the inner periphery of the cylindrical portion 36c of the spring mounting collar 36 accommodated in the hole 33b.
  • a permanent magnet 57 as a target is attached to the inner periphery of the cylindrical portion 36c of the spring mounting collar 36 so as to face the stroke detection sensor 55 via a radial clearance. Permanent magnets 57 are attached to two locations separated from each other.
  • the stroke detection sensor 55 comprising a Hall sensor detects the axial and radial magnetic fields formed around the permanent magnet 57, and calculates the axial displacement of the ball screw shaft 33 based on the detected magnetic field. To do.
  • the signal line of the rotation angle detection sensor 53 and the signal line of the stroke detection sensor 55 are both connected to the housing through the opening 50c (see FIG. 1) of the terminal body 50. 2 is pulled out to the outer diameter side and connected to the control device 80 (see FIG. 12 or 13).
  • the ring gear 40 is assembled in the casing 20.
  • the rotor 24 of the motor 25 and the subassembly of the motion conversion mechanism B shown in FIG. 3 are inserted into the casing 20.
  • the planetary gear 42 and the ring gear 40 are engaged with each other, the guide collar 38 is fitted into the guide groove 20 b of the casing 20, and the bearing holder 28 is fitted into the inner peripheral surface 20 c of the casing 20.
  • the stator 23 is fitted to the inner periphery of the casing 20 among the sub-assemblies of the stator 23 and the terminal body 50 of the motor 25 shown in FIG. 6, the cover 29 and the terminal body 50 are assembled to the casing 20. Fastened with bolts 61 (see FIGS. 9 and 10). Thereby, the electric actuator 1 is completed.
  • the actuator head 39 as the operation portion C is provided so as to be attachable to and detachable from the end portion on one side in the axial direction of the ball screw shaft 33.
  • the actuator head 39 may be replaced, and the ball screw device 31 and, in some cases, components other than the actuator head 39 may be shared. it can.
  • a highly versatile electric actuator that can be applied to various devices with minimal changes can be realized, and the electric actuator 1 can be reduced in cost and series.
  • the actuator head 39 can be attached to and detached from the end on one side in the axial direction of the ball screw shaft 33, the electric actuator 1 in which the motor part A, the motion conversion mechanism part B, etc. are assembled, Since the actuator head 39 can be easily replaced without disassembling this, there is also an advantage that the maintainability can be improved.
  • the actuator head 39 shown in FIG. 11A is a so-called push type similar to the actuator head 39 shown in FIGS. 1 and 2, and the head 39 b has two places where the pressing surfaces capable of pressing the operation target in the axial direction are separated from each other. 1 is different from the actuator head 39 shown in FIGS.
  • the actuator head 39 shown in FIGS. 11B and 11C is a so-called push-pull type that can operate the operation target on both sides in the axial direction.
  • the actuator head 39 of FIG. 11B is a type in which the head 39b is connected to the operation target by a pin, and the actuator head 39 shown in FIG. 11C is provided with a thread groove formed on the outer periphery of the head 39b. It is a type that is connected to an operation object by screwing into a thread groove.
  • the rotor inner 26 as a hollow rotating shaft is rotatably supported at one end in the axial direction by a rolling bearing 27 disposed in the vicinity of one end in the axial direction of the rotor core 24a, and the other in the axial direction of the rotor core 24a.
  • the other end portion in the axial direction is rotatably supported by a rolling bearing 30 disposed close to the end portion on the side.
  • the rotor inner 26 can be made compact in the axial direction.
  • the structure in which the rolling bearing 27 is disposed inside the axial width of the ball screw nut 32 is combined to shorten the axial dimension L (see FIG. 1) of the housing 2 of the electric actuator 1. can do.
  • the rolling bearings 27 and 30 that support the rotor inner 26 may support a radial load about the weight of the rotor 24.
  • the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 does not need to be formed of a high-strength material.
  • the rotor inner 26 may be formed of an inexpensive mild steel material in which heat treatment such as quenching and tempering is omitted. Necessary strength can be ensured.
  • the needle roller bearing 47 is disposed within the axial range between the rolling bearings 27 and 30 that support the rotor inner 26, it is advantageous against moment load, and a small-sized one can be used as the bearing. .
  • the needle roller bearing 47 when the needle roller bearing 47 is disposed near the center in the axial direction between the rolling bearings 27 and 30 that support the rotor inner 26, it is extremely advantageous with respect to the moment load, and the needle shape The size reduction of the roller bearing 47 can be further promoted. As a result, extremely small ones can be employed as the needle roller bearing 47 and the thrust receiving ring 46, and the electric actuator 1 can be made more compact through this.
  • the planetary gear carrier 43 and the ball screw nut 32 are formed by using the cylindrical portion 43a of the planetary gear carrier 43 as an output portion of the planetary gear speed reducer 10 and press fitting the cylindrical portion 43a to the outer peripheral surface 32b of the ball screw nut 32.
  • the size reduction of the motor part A (motor 25) by providing the planetary gear speed reducer 10 in the motion conversion mechanism part B, and the radial direction of the rotor inner 26, the cylindrical part 43a of the planetary gear carrier 43 and the ball screw nut 32 are achieved.
  • the radial dimension M (see FIG. 1) of the housing 2 of the electric actuator 1 can also be reduced. Thereby, the electric actuator 1 can be made more compact, and the mountability with respect to the equipment used is further improved.
  • the sun gear 41 of the planetary gear speed reducer 10 is press-fitted and fitted to the inner peripheral surface of the rotor inner 26, so that the rotor inner 26 and the sun gear 41 are connected so that torque can be transmitted.
  • Good connection workability Even if such a connection structure is adopted, the sun gear 41 only needs to be able to rotate integrally with the rotor inner 26 before deceleration, and therefore the torque transmission performance required between the two can be sufficiently ensured.
  • the rotor inner 26 and the sun gear 41 are connected at a position directly below the rolling bearing 27 that supports the rotor inner 26, the rotational accuracy of the sun gear 41 is also good.
  • the rotor inner 26 and the ball screw nut 32 have a separate structure, for example, even when the ball screw device 31 having different specifications is used, the rotor inner 26 (and thus the motor part A) can be shared. As a result, the versatility is further improved, and it becomes easier to realize a series of electric actuators 1 by developing a variety of products that share parts.
  • the lead wire of the power feeding circuit and the signal line of the sensor are drawn out to the outer diameter side of the housing 2 through the sandwich structure and the opening 50c provided in the outer peripheral portion (short cylindrical portion) of the terminal body 50.
  • a plurality of electric actuators 1 (units of motor part A, motion conversion mechanism part B and terminal part D) are arranged in the axial direction, and a plurality of operation objects are individually operated. Possible electric actuators can also be realized.
  • the electric actuator 1 according to the present embodiment is characterized by the combination of the characteristic configurations described above, which is lightweight and compact, excellent in mountability to equipment used, low in cost, and easy to series. .
  • the operation mode of the electric actuator 1 of the present embodiment will be briefly described with reference to FIGS. 1 and 12.
  • the ECU calculates a required position command value based on the operation amount.
  • the position command value is sent to the controller 81 of the control device 80, and the controller 81 calculates a motor rotation angle control signal necessary for the position command value, and sends this control signal to the motor 25.
  • the ball screw shaft 33 moves linearly (advances) in one axial direction while being prevented from rotating. At this time, the ball screw shaft 33 moves forward to a position based on the control signal of the controller 81, and the actuator head 39 fixed to one end of the ball screw shaft 33 in the axial direction operates an operation target (not shown).
  • the axial position (the amount of axial displacement) of the ball screw shaft 33 is detected by the stroke detection sensor 55 as shown in FIG. 12, and the detection signal is sent to the comparison unit 82 of the control device 80. Then, the comparison unit 82 calculates the difference between the detection value detected by the stroke detection sensor 55 and the position command value, and the controller 81 is based on the calculated value and the signal sent from the rotation angle detection sensor 53. A control signal is sent to the motor 25. In this way, the position of the actuator head 39 is feedback controlled. For this reason, when the electric actuator 1 of this embodiment is applied to, for example, shift-by-wire, the shift position can be reliably controlled.
  • the electric power for driving the motor 25, the sensors 53, 55, etc. is supplied from an external power source (not shown) such as a battery provided on the vehicle side to a power supply circuit held in the control device 80 and the terminal portion D. Via the motor 25 and the like.
  • the ball screw shaft 33 is formed in a hollow shape by providing holes 33b (through holes in the axial direction) that are opened on both end surfaces of the ball screw shaft 33 in the axial direction.
  • the stroke detection sensor 55 is disposed on the inner periphery of the ball screw shaft 33.
  • the ball screw shaft 33 is provided with an axially extending hole 33b that is opened only on the other end surface in the axial direction. It is also possible to form a hollow shape.
  • the compression coil spring 48 is provided as a biasing member that constantly biases the ball screw shaft 33 toward the origin, but the compression coil spring 48 requires a function of biasing. It may be provided according to the intended use, and may be omitted if not required.
  • the planetary gear speed reducer 10 is adopted as the speed reducer constituting the motion conversion mechanism B, but a speed reducer having another mechanism may be adopted. Further, the present invention can be applied not only to the electric actuator 1 provided with a reduction gear but also to the electric actuator 1 not provided with a reduction gear. Although illustration is omitted, when the reduction gear is omitted, the ball screw nut 32 and the rotor inner 26 may be connected so as to be able to transmit torque directly.
  • the stroke detection sensor 55 is used. However, depending on the equipment used, the stroke detection sensor 55 may not be used.
  • FIG. 13 is an example of pressure control, and a pressure sensor 83 is provided for an operation target not shown.
  • the ECU calculates a required pressure command value.
  • the controller 81 calculates a motor rotation angle control signal necessary for the pressure command value and sends this control signal to the motor 25.
  • the ball screw shaft 33 advances to a position based on the control signal of the controller 81, and is an actuator head fixed to one end of the ball screw shaft 33 in the axial direction. 39 operates an operation target not shown.
  • the operation pressure of the ball screw shaft 33 (actuator head 39) is detected by a pressure sensor 83 installed outside and is feedback-controlled. For this reason, when the electric actuator 1 that does not use the stroke detection sensor 55 is applied to, for example, brake-by-wire, the brake hydraulic pressure can be reliably controlled.

Abstract

An electrically driven actuator (1) comprising a motor (A), a motion conversion mechanism (B), and an operating section (C), the motion conversion mechanism (B) having a ball screw shaft (33) and a ball screw nut (32) which is rotatably fitted on the outer periphery of the ball screw shaft (33), the ball screw shaft (33) and the operating section (C) moving forward to one axial side or backward to the other axial side according to the rotational direction of the ball screw nut (32), wherein an actuator head (39) serving as the operating section (C) is mounted in a removable manner to the end of the ball screw shaft (33), which is located on the one axial side thereof.

Description

電動アクチュエータElectric actuator
 本発明は、電動アクチュエータに関する。 The present invention relates to an electric actuator.
 近年、自動車においては、その省力化や低燃費化のために電動化が進展し、例えば、自動変速機、ブレーキおよびステアリング等の操作を電動機(モータ)の力で行うシステムが開発され、市場に投入されている。このようなシステムに使用される電動アクチュエータとして、モータの回転運動を直線運動に変換して出力する運動変換機構にボールねじ機構(ボールねじ装置)を採用したものがある(例えば、特許文献1,2)。この場合、ボールねじ装置を構成するボールねじ軸が、電動アクチュエータの出力部材を構成する。 In recent years, in automobiles, electrification has progressed to save labor and reduce fuel consumption. For example, a system for operating an automatic transmission, a brake, a steering, and the like with the power of an electric motor (motor) has been developed and put on the market. It has been thrown. As an electric actuator used in such a system, there is one that employs a ball screw mechanism (ball screw device) as a motion conversion mechanism that converts a rotational motion of a motor into a linear motion and outputs the motion (for example, Patent Document 1, Patent Document 1). 2). In this case, the ball screw shaft constituting the ball screw device constitutes the output member of the electric actuator.
特開2005-330942号公報JP-A-2005-330942 特開2014-18007号公報JP 2014-18007 A
 ところで、運動変換機構にボールねじ装置を採用した電動アクチュエータにおいては、電動アクチュエータの用途や操作対象の形状等に応じて、ボールねじ軸の軸方向一方側の端部(ボールねじ軸の前進方向の端部)に、操作対象を操作するための操作部が設けられる。この点につき、特許文献1では、ボールねじ軸に操作部を一体的に設けた構成を採用し、特許文献2では、中空状に形成したボールねじ軸を、操作部を有する引き棒と軸方向両側で係合可能に、引き棒の基端外周に装着するようにしている。 By the way, in an electric actuator adopting a ball screw device as a motion conversion mechanism, depending on the use of the electric actuator, the shape of the operation target, etc., one end of the ball screw shaft in the axial direction (in the forward direction of the ball screw shaft). An operation unit for operating the operation target is provided at the end). In this regard, Patent Document 1 employs a configuration in which an operation unit is integrally provided on a ball screw shaft, and Patent Document 2 discloses that a ball screw shaft formed in a hollow shape is connected to a pulling rod having an operation unit in an axial direction. The pull rod is attached to the outer periphery of the base end so that it can be engaged on both sides.
 しかしながら、電動アクチュエータを搭載する機器の拡大が検討されている昨今の実情に鑑み、部品の共用化による電動アクチュエータの低コスト化およびシリーズ化を検討すると、特許文献1,2の構成では改善の余地がある。すなわち、特許文献1,2の何れの構成でも、操作部およびボールねじ軸を含んで構成される出力部材を、用途や操作対象の形状等に応じた専用部品とする必要がある。 However, in view of the recent situation where expansion of devices equipped with electric actuators is being studied, there is room for improvement in the configurations of Patent Documents 1 and 2 when considering the reduction in cost and series of electric actuators by sharing parts. There is. That is, in any configuration of Patent Documents 1 and 2, the output member including the operation unit and the ball screw shaft needs to be a dedicated part corresponding to the application, the shape of the operation target, and the like.
 以上の実情に鑑み、本発明の課題は、種々の機器に適用できる汎用性が高い電動アクチュエータを実現し、もって電動アクチュエータの低コスト化およびシリーズ化に貢献することにある。 In view of the above circumstances, an object of the present invention is to realize a highly versatile electric actuator that can be applied to various devices, thereby contributing to cost reduction and series production of the electric actuator.
 上記の課題を解決するために創案された本発明は、電力の供給を受けて駆動するモータ部と、モータ部の回転運動を直線運動に変換して出力する運動変換機構部と、運動変換機構部の出力を受けて操作対象を操作する操作部とを備え、運動変換機構部が、ボールねじ軸と、複数のボールを介してボールねじ軸の外周に回転自在に嵌合されたボールねじナットとを有し、ボールねじナットの回転方向に応じて、ボールねじ軸および操作部が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータにおいて、操作部が、ボールねじ軸の軸方向一方側の端部に対して着脱可能に設けられていることを特徴とする。 The present invention, which was created to solve the above problems, includes a motor unit that receives power to drive, a motion conversion mechanism unit that converts the rotational motion of the motor unit into a linear motion, and outputs the linear motion, and a motion conversion mechanism. And a ball screw nut in which the motion converting mechanism is rotatably fitted to the outer periphery of the ball screw shaft via a plurality of balls. In the electric actuator in which the ball screw shaft and the operation part move forward in one axial direction or move backward in the other axial direction according to the rotation direction of the ball screw nut, the operation part is arranged in the axial direction of the ball screw shaft. It is provided so that it can be attached or detached with respect to the edge part of one side.
 このような構成によれば、例えば、様々な機器に電動アクチュエータを展開する場合でも、操作部を交換すれば良く、ボールねじ軸を含むボールねじ装置、さらに場合によっては操作部以外の部品を共用化することができる。これにより、最小限の変更で種々の機器に適用できる汎用性の高い電動アクチュエータを実現することができ、電動アクチュエータの低コスト化およびシリーズ化に貢献することができる。 According to such a configuration, for example, even when the electric actuator is deployed in various devices, the operation unit may be replaced, and the ball screw device including the ball screw shaft and, in some cases, components other than the operation unit are shared. Can be As a result, it is possible to realize a highly versatile electric actuator that can be applied to various devices with minimal changes, and can contribute to cost reduction and series production of the electric actuator.
 また、操作部が、ボールねじ軸の軸方向一方側の端部に対して着脱可能であれば、モータ部や運動変換機構部等が組み立てられた電動アクチュエータであっても、これを分解等せずにアクチュエータヘッドを容易に交換することができる。そのため、メンテナンス性を高めることができる、という利点もある。 In addition, if the operation unit can be attached to and detached from the end of one side of the ball screw shaft in the axial direction, it can be disassembled even if it is an electric actuator assembled with a motor unit, a motion conversion mechanism unit, etc. The actuator head can be easily replaced without any change. Therefore, there is an advantage that the maintainability can be improved.
 上記の本発明は、ボールねじ軸が、モータ部の回転中心と同軸に配置された電動アクチュエータに好ましく適用することができる。 The above-described present invention can be preferably applied to an electric actuator in which the ball screw shaft is arranged coaxially with the rotation center of the motor unit.
 運動変換機構部には、モータ部の回転を減速してボールねじナットに伝達する減速機を設けることができる。この場合、小型のモータを採用することができるので、軽量・コンパクトで使用機器に対する搭載性に優れた電動アクチュエータを実現することができる。減速機としては、遊星歯車減速機を採用することができる。遊星歯車減速機であれば、例えば歯車諸元を変更したり、遊星ギヤの設置段数を変更したりすることで減速比を容易に調整することができ、しかも遊星ギヤを多段に設置しても減速機、ひいては電動アクチュエータの大型化を回避することができる、という利点がある。 The motion conversion mechanism can be provided with a speed reducer that decelerates the rotation of the motor and transmits it to the ball screw nut. In this case, since a small motor can be employed, it is possible to realize an electric actuator that is lightweight and compact and has excellent mountability to the equipment used. A planetary gear speed reducer can be adopted as the speed reducer. If it is a planetary gear reducer, the reduction ratio can be easily adjusted by changing the gear specifications or changing the number of installation stages of the planetary gear, and even if the planetary gears are installed in multiple stages. There is an advantage that it is possible to avoid an increase in the size of the speed reducer and consequently the electric actuator.
 上記の構成を有する電動アクチュエータは、モータ部のロータコアを支持する中空回転軸と、中空回転軸を回転自在に支持する転がり軸受とをさらに備えるものとすることができ、この場合、ボールねじナットが、中空回転軸とトルク伝達可能に中空回転軸の内周に配置され、中空回転軸に、転がり軸受の内側軌道面が設けられた構成を採用することができる。このような構成を採用すれば、軸方向にコンパクトな中空回転軸を使用することができるので、電動アクチュエータを軸方向にコンパクト化することができる。 The electric actuator having the above configuration can further include a hollow rotary shaft that supports the rotor core of the motor unit, and a rolling bearing that rotatably supports the hollow rotary shaft. Further, it is possible to adopt a configuration in which a torque is transmitted to the hollow rotating shaft and arranged on the inner periphery of the hollow rotating shaft, and the inner surface of the rolling bearing is provided on the hollow rotating shaft. By adopting such a configuration, a hollow rotary shaft that is compact in the axial direction can be used, so that the electric actuator can be made compact in the axial direction.
 中空回転軸に上記の内側軌道面が設けられている場合、内側軌道面は、ボールねじナットの軸方向幅の内側に配置することができる。これにより、電動アクチュエータを軸方向に一層コンパクト化することができる。 When the inner raceway surface is provided on the hollow rotary shaft, the inner raceway surface can be disposed inside the axial width of the ball screw nut. Thereby, the electric actuator can be made more compact in the axial direction.
 上記構成の電動アクチュエータは、軸方向に結合された複数部材からなり、モータ部および運動変換機構部を収容した筐体と、モータ部に電力を供給するための給電回路を保持したターミナル部とをさらに備えるものとすることができる。この場合、ターミナル部は、筐体の構成部材により軸方向両側から挟持することができる。これにより、電動アクチュエータの組立性を向上することができる。 The electric actuator having the above-described configuration includes a plurality of members coupled in the axial direction, and includes a housing that houses the motor unit and the motion conversion mechanism unit, and a terminal unit that holds a power feeding circuit for supplying power to the motor unit. Further, it can be provided. In this case, the terminal portion can be held from both sides in the axial direction by the constituent members of the casing. Thereby, the assembly property of the electric actuator can be improved.
 ターミナル部は、その外周部に、給電回路に接続されるリード線を筐体の外径側に引き出すための開口部を有するものとすることができる。このようにすれば、例えば、それぞれがボールねじ軸を有する複数の電動アクチュエータを直列に接続し、かつ各ボールねじ軸を個別に直線運動させることができる電動アクチュエータを容易に実現することができる。このような電動アクチュエータは、操作対象が2以上ある使用機器、例えば、自動変速機の一種であるDCT(Dual Clutch Transmission)に搭載することができ、電動アクチュエータを含めた機器全体の軽量・コンパクト化に貢献できる。 The terminal portion may have an opening for pulling out a lead wire connected to the power feeding circuit to the outer diameter side of the casing on the outer peripheral portion thereof. In this way, for example, it is possible to easily realize an electric actuator in which a plurality of electric actuators each having a ball screw shaft are connected in series and each ball screw shaft can be individually linearly moved. Such an electric actuator can be mounted on a device that has two or more operation targets, for example, a DCT (Dual Clutch Transmission), which is a type of automatic transmission, and the entire device including the electric actuator is light and compact. Can contribute.
 以上より、本発明によれば、種々の機器に適用できて汎用性が高い電動アクチュエータを提供することができる。これにより、電動アクチュエータの低コスト化およびシリーズ化に貢献することができる。 As described above, according to the present invention, it is possible to provide an electric actuator that can be applied to various devices and has high versatility. Thereby, it can contribute to the cost reduction and series production | generation of an electric actuator.
本発明の一実施形態に電動アクチュエータの縦断面図である。1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention. 図1のE-E線矢視断面図である。FIG. 2 is a cross-sectional view taken along line EE in FIG. 1. モータのロータと運動変換機構部とを取り出して拡大した縦断面図である。It is the longitudinal cross-sectional view which took out the rotor and motion conversion mechanism part of the motor, and was expanded. 図1のF-F線矢視断面図である。FIG. 5 is a cross-sectional view taken along line FF in FIG. 1. ケーシングにリングギヤを組み込んだ状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which integrated the ring gear in the casing. モータのステータとターミナル部とを取り出して拡大した縦断面図である。It is the longitudinal cross-sectional view which took out the stator and terminal part of the motor, and was expanded. 図1のG-G線矢視断面図である。FIG. 2 is a cross-sectional view taken along line GG in FIG. 1. 図1のH-H線矢視断面図である。FIG. 2 is a cross-sectional view taken along line HH in FIG. 1. 図1に示す電動アクチュエータの左側面図である。It is a left view of the electric actuator shown in FIG. 図9のI-I線矢視断面図である。FIG. 10 is a cross-sectional view taken along the line II in FIG. 9. 他の実施形態に係る操作部の概略斜視図である。It is a schematic perspective view of the operation part which concerns on other embodiment. 他の実施形態に係る操作部の概略斜視図である。It is a schematic perspective view of the operation part which concerns on other embodiment. 他の実施形態に係る操作部の概略斜視図である。It is a schematic perspective view of the operation part which concerns on other embodiment. 図1の電動アクチュエータの制御系統を示す概略ブロック図である。It is a schematic block diagram which shows the control system of the electric actuator of FIG. 他の実施形態に係る電動アクチュエータの制御系統を示すブロック図である。It is a block diagram which shows the control system of the electric actuator which concerns on other embodiment.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に、本発明の一実施形態に係る電動アクチュエータの縦断面図を示し、図2に、図1のE-E線矢視断面図を示し、図3に、モータのロータと運動変換機構部とを取り出して拡大した縦断面図を示す。なお、図1および図2は、電動アクチュエータの出力部材(を構成するボールねじ装置のボールねじ軸)が原点に位置した状態を示している。本実施形態における「原点に位置した状態」とは、後述する付勢部材としての圧縮コイルばね48のばね力(弾性復元力)により、ボールねじ軸33(に連結されたばね取付カラー36)の端面が、これに対向するカバー29の端面と機械的に当接する位置にある状態のことである。図1および図2に示すように、電動アクチュエータ1は、電力の供給を受けて駆動されるモータ部Aと、モータ部Aの回転運動を直線運動に変換して出力する運動変換機構部Bと、図示外の操作対象を操作する操作部Cと、ターミナル部Dとを備え、これらは筐体2に収容・保持されている。 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line EE of FIG. 1, and FIG. 3 is a motor rotor and motion conversion mechanism. The longitudinal cross-sectional view which took out and expanded the part is shown. 1 and 2 show a state where the output member of the electric actuator (the ball screw shaft of the ball screw device constituting the electric actuator) is located at the origin. In the present embodiment, the “state located at the origin” refers to the end face of the ball screw shaft 33 (the spring mounting collar 36 connected to the ball screw shaft 33) by the spring force (elastic restoring force) of a compression coil spring 48 as an urging member described later. Is in a state where it is in mechanical contact with the end face of the cover 29 facing this. As shown in FIGS. 1 and 2, the electric actuator 1 includes a motor unit A that is driven by the supply of electric power, and a motion conversion mechanism unit B that converts the rotational motion of the motor unit A into a linear motion and outputs the linear motion. , An operation unit C for operating an operation target (not shown), and a terminal unit D, which are accommodated and held in the housing 2.
 筐体2は、軸方向に結合された複数部材からなる。本実施形態の筐体2は、軸方向一方側(図1および図2においては紙面右側。以下同様。)の端部および軸方向他方側(図1および図2においては紙面左側。以下同様。)の端部が開口した筒状のケーシング20と、ケーシング20の軸方向他方側の端部開口を閉塞するカバー29と、ケーシング20とカバー29の間に配置され、ターミナル部Dを構成するターミナル本体50との結合体からなる。カバー29およびターミナル本体50は、図9,10に示す組立用ボルト61によりケーシング20に対して取り付け固定されている。 The housing 2 is composed of a plurality of members coupled in the axial direction. The casing 2 of the present embodiment has an end on one side in the axial direction (the right side in FIG. 1 and FIG. 2), and the other side in the axial direction (the left side in FIG. 1 and FIG. 2). ) Of the cylindrical casing 20 having an open end, a cover 29 that closes the end opening on the other axial side of the casing 20, and a terminal that is disposed between the casing 20 and the cover 29 and constitutes the terminal portion D It consists of a combination with the main body 50. The cover 29 and the terminal main body 50 are fixedly attached to the casing 20 by assembly bolts 61 shown in FIGS.
 モータ部Aは、ケーシング20に固定されたステータ23と、径方向隙間を介してステータ23の内周に対向配置されたロータ24とを備えたラジアルギャップ型のモータ(詳細には、U相、V相およびW相を有する三相ブラシレスモータ)25で構成されている。ステータ23は、ステータコア23aに装着された絶縁用のボビン23bと、ボビン23bに巻き回されたコイル23cとを備える。ロータ24は、ロータコア24aと、ロータコア24aの外周に取り付けられた永久磁石24bと、中空軸状に形成され、ロータコア24aを支持(外周に装着)した中空回転軸としてのロータインナ26とを備える。 The motor part A includes a radial gap type motor (in detail, a U-phase, a stator having a stator 23 fixed to the casing 20 and a rotor 24 disposed to face the inner periphery of the stator 23 via a radial gap. 3 phase brushless motor having a V phase and a W phase) 25. The stator 23 includes an insulating bobbin 23b attached to the stator core 23a, and a coil 23c wound around the bobbin 23b. The rotor 24 includes a rotor core 24a, a permanent magnet 24b attached to the outer periphery of the rotor core 24a, and a rotor inner 26 formed as a hollow shaft and supporting the rotor core 24a (mounted on the outer periphery) as a hollow rotary shaft.
 図3に示すように、ロータコア24aは、ロータインナ26の軸方向一方側の肩部26aにサイドプレート65をセットした後、ロータインナ26の外周面26bに嵌合される。永久磁石24b(図2参照)は、ロータコア24aの外周に嵌合された後、ロータインナ26のうち、ロータコア24aの軸方向他方側の端部外側に取り付けられたサイドプレート65、およびその軸方向外側に取り付けられたサークリップ66により位置決め固定されている。 As shown in FIG. 3, the rotor core 24 a is fitted to the outer peripheral surface 26 b of the rotor inner 26 after setting the side plate 65 on the shoulder portion 26 a on one axial side of the rotor inner 26. After the permanent magnet 24b (see FIG. 2) is fitted on the outer periphery of the rotor core 24a, the side plate 65 attached to the outer side of the other end of the rotor core 24a in the axial direction on the rotor inner 26, and the axially outer side thereof. It is positioned and fixed by a circlip 66 attached to.
 図1~図3に示すように、ロータインナ26の軸方向一方側の端部外周には転がり軸受27の内側軌道面27aが形成され、転がり軸受27の外輪27bはケーシング20の内周面に固定された軸受ホルダ28の内周面に装着されている。また、ロータインナ26の軸方向他方側の端部内周面と、カバー29の円筒部29aの外周面との間に転がり軸受30が装着されている。このような構成により、ロータインナ26は、転がり軸受27,30を介して筐体2に対して回転自在に支持されている。 As shown in FIGS. 1 to 3, an inner raceway surface 27 a of the rolling bearing 27 is formed on the outer periphery of one end of the rotor inner 26 in the axial direction, and the outer ring 27 b of the rolling bearing 27 is fixed to the inner peripheral surface of the casing 20. The bearing holder 28 is attached to the inner peripheral surface. Further, a rolling bearing 30 is mounted between the inner peripheral surface of the other end in the axial direction of the rotor inner 26 and the outer peripheral surface of the cylindrical portion 29 a of the cover 29. With such a configuration, the rotor inner 26 is rotatably supported with respect to the housing 2 via the rolling bearings 27 and 30.
 図1~図3に示すように、本実施形態の運動変換機構部Bは、ボールねじ装置31と、減速機としての遊星歯車減速機10とを備える。 As shown in FIGS. 1 to 3, the motion conversion mechanism B of the present embodiment includes a ball screw device 31 and a planetary gear speed reducer 10 as a speed reducer.
 ボールねじ装置31は、ロータ24(ロータインナ26)と同軸に配置され、電動アクチュエータ1の出力部材を構成するボールねじ軸33と、複数のボール34を介してボールねじ軸33の外周に回転自在に嵌合されたボールねじナット32と、循環部材としてのこま35とを備える。ボールねじナット32の内周面に形成された螺旋状溝32aと、ボールねじ軸33の外周面に形成された螺旋状溝33aとの間に複数のボール34が装填され、こま35が組み込まれている。このような構成により、ボールねじ軸33が軸方向に進退移動(直線運動)する際には、両螺旋状溝32a,33aの間でボール34が循環する。 The ball screw device 31 is arranged coaxially with the rotor 24 (rotor inner 26), and is rotatable on the outer periphery of the ball screw shaft 33 via a ball screw shaft 33 constituting an output member of the electric actuator 1 and a plurality of balls 34. A fitted ball screw nut 32 and a top 35 as a circulation member are provided. A plurality of balls 34 are loaded between the spiral groove 32a formed on the inner peripheral surface of the ball screw nut 32 and the spiral groove 33a formed on the outer peripheral surface of the ball screw shaft 33, and the top 35 is assembled. ing. With such a configuration, when the ball screw shaft 33 moves back and forth in the axial direction (linear motion), the ball 34 circulates between the spiral grooves 32a and 33a.
 ボールねじ軸33は、軸方向に延びた孔部(本実施形態では、軸方向両側の端面に開口した貫通穴)33bを有する中空状に形成され、孔部33bにばね取付カラー36が収容されている。ばね取付カラー36は、例えばPPS等の樹脂材料で形成され、軸方向一方側の端部に設けられた円形中実部36aと、軸方向他方側の端部に設けられたフランジ状のばね受け部36bと、両部36a,36bを接続する筒部36cとを一体に有する。 The ball screw shaft 33 is formed in a hollow shape having a hole portion 33b extending in the axial direction (in this embodiment, through-holes opened on both end surfaces in the axial direction) 33b, and the spring mounting collar 36 is accommodated in the hole portion 33b. ing. The spring mounting collar 36 is made of, for example, a resin material such as PPS, and has a circular solid portion 36a provided at one end in the axial direction and a flange-shaped spring receiver provided at the other end in the axial direction. The part 36b and the cylinder part 36c which connects both parts 36a and 36b are integrally provided.
 ボールねじ軸33の孔部33bに収容されたばね取付カラー36は、その円形中実部36aとボールねじ軸33とを径方向に貫通するようにピン37を嵌め込むことによってボールねじ軸33と連結固定される。ピン37の両端部は、ボールねじ軸33の外周面から径方向外側に突出しており、この突出部分にガイドカラー38が回転自在に外嵌されている。ガイドカラー38は、例えばPPS等の樹脂材料で形成され、ケーシング20の小径円筒部20aの内周に設けられた軸方向に延びる案内溝20b(図5も併せて参照)に嵌め込まれている。このような構成により、モータ25の回転に伴ってボールねじナット32がボールねじ軸33の軸線回りに回転すると、ボールねじ軸33は回り止めされた状態で軸方向に直線運動する。なお、ボールねじ軸33が、軸方向一方側に直線運動(前進)するか、あるいは、軸方向他方側に直線運動(後退)するかは、基本的には、ボールねじナット32の回転方向に応じて決定付けられるが、本実施形態では、付勢部材としての圧縮コイルばね48のばね力によってもボールねじ軸33が後退移動可能となっている(詳細は後述する)。 The spring mounting collar 36 housed in the hole 33b of the ball screw shaft 33 is connected to the ball screw shaft 33 by fitting a pin 37 so as to penetrate the circular solid portion 36a and the ball screw shaft 33 in the radial direction. Fixed. Both end portions of the pin 37 protrude radially outward from the outer peripheral surface of the ball screw shaft 33, and a guide collar 38 is rotatably fitted on the protruding portion. The guide collar 38 is formed of a resin material such as PPS, for example, and is fitted into a guide groove 20b (see also FIG. 5) extending in the axial direction provided on the inner periphery of the small diameter cylindrical portion 20a of the casing 20. With such a configuration, when the ball screw nut 32 rotates around the axis of the ball screw shaft 33 as the motor 25 rotates, the ball screw shaft 33 linearly moves in the axial direction while being prevented from rotating. Whether the ball screw shaft 33 linearly moves (forwards) in one axial direction or linearly moves (retreats) in the other axial direction basically depends on the rotational direction of the ball screw nut 32. In this embodiment, the ball screw shaft 33 can be moved backward by the spring force of the compression coil spring 48 as an urging member (details will be described later).
 図1および図2に示すように、ボールねじ軸33の軸方向一方側の端部には、操作部Cとしてのアクチュエータヘッド39が着脱可能に装着されている。本実施形態のアクチュエータヘッド39は、ボールねじ軸33の孔部33bに圧入固定された基部39aと、図示外の操作対象と直接的又は間接的に軸方向で係合する頭部39bとを有し、ボールねじ軸33が軸方向一方側に直線運動(前進)するのに伴って頭部39bの先端面が操作対象を軸方向に加圧する、いわゆる押しタイプである。 As shown in FIGS. 1 and 2, an actuator head 39 as an operation portion C is detachably attached to an end portion on one axial side of the ball screw shaft 33. The actuator head 39 of this embodiment has a base portion 39a that is press-fitted and fixed in the hole portion 33b of the ball screw shaft 33, and a head portion 39b that is directly or indirectly engaged with an operation target (not shown) in the axial direction. Then, as the ball screw shaft 33 linearly moves (advances) in one axial direction, the tip surface of the head 39b presses the operation target in the axial direction.
 なお、本実施形態では、アクチュエータヘッド39をボールねじ軸33に圧入固定しているが、アクチュエータヘッド39がボールねじ軸33に対して着脱可能であれば、その他の固定方法を採用することもできる。例えば、ボールねじ軸33の内周およびアクチュエータヘッド39の基部39aの外周に設けたねじ溝同士を嵌合させる方法、ボルトやピン等の取り外し容易な締結具を使用した固定方法などを採用することができる。後述する他の実施形態に係るアクチュエータヘッド39(図11参照)においても同様である。 In this embodiment, the actuator head 39 is press-fitted and fixed to the ball screw shaft 33. However, as long as the actuator head 39 can be attached to and detached from the ball screw shaft 33, other fixing methods may be employed. . For example, a method of fitting screw grooves provided on the inner periphery of the ball screw shaft 33 and the outer periphery of the base portion 39a of the actuator head 39, a fixing method using an easily removable fastener such as a bolt or a pin, and the like are adopted. Can do. The same applies to an actuator head 39 (see FIG. 11) according to another embodiment to be described later.
 遊星歯車減速機10は、図1~図4に示すように、ケーシング20に固定されたリングギヤ40と、ロータインナ26の段部内周面に圧入固定されたサンギヤ41と、リングギヤ40とサンギヤ41の間に配置され、両ギヤ40,41に噛合った複数(本実施形態では4つ)の遊星ギヤ42と、遊星ギヤ42を回転自在に保持した遊星ギヤキャリア43および遊星ギヤホルダ44と、を備える。 As shown in FIGS. 1 to 4, the planetary gear speed reducer 10 includes a ring gear 40 fixed to the casing 20, a sun gear 41 press-fitted and fixed to the inner peripheral surface of the step portion of the rotor inner 26, and a ring gear 40 and a sun gear 41. And a plurality of (four in this embodiment) planetary gears 42 meshed with both gears 40, 41, and a planetary gear carrier 43 and a planetary gear holder 44 holding the planetary gears 42 rotatably.
 図4に示すように、リングギヤ40の外周には径方向外側に突出したノッチ40aが周方向に離間した複数箇所(図示例では4箇所)に設けられ、各ノッチ40aは、ケーシング20の内周面20cの周方向に離間した複数箇所(図示例では4箇所)に設けられた軸方向溝20e(図5を併せて参照)にそれぞれ嵌合されている。これにより、リングギヤ40は、ケーシング20に対して回り止めされている。 As shown in FIG. 4, the outer periphery of the ring gear 40 is provided with notches 40 a projecting radially outward at a plurality of locations (four locations in the illustrated example) spaced apart in the circumferential direction. The grooves are fitted in axial grooves 20e (see also FIG. 5) provided at a plurality of locations (four locations in the illustrated example) separated in the circumferential direction of the surface 20c. Thereby, the ring gear 40 is prevented from rotating with respect to the casing 20.
 遊星ギヤキャリア43は、ロータインナ26に対して相対回転可能であり、図1~図3に示すように、ロータインナ26の内周面とボールねじナット32の外周面32bとの間に配置された円筒部43aを一体に有する。円筒部43aの外周面はロータインナ26の内周面(およびサンギヤ41の内周面)と径方向隙間を介して対向し、円筒部43aの内周面はボールねじナット32の外周面32bに圧入嵌合されている。以上の構成を有する遊星歯車減速機10により、モータ25のロータインナ26の回転が減速された上でボールねじナット32に伝達される。これにより、回転トルクを増加することができるので、小型のモータ25を採用することができ、電動アクチュエータ1を全体として軽量・コンパクト化することができる。 The planetary gear carrier 43 is rotatable relative to the rotor inner 26 and, as shown in FIGS. 1 to 3, is a cylinder disposed between the inner peripheral surface of the rotor inner 26 and the outer peripheral surface 32b of the ball screw nut 32. It has the part 43a integrally. The outer peripheral surface of the cylindrical portion 43 a faces the inner peripheral surface of the rotor inner 26 (and the inner peripheral surface of the sun gear 41) via a radial gap, and the inner peripheral surface of the cylindrical portion 43 a is press-fitted into the outer peripheral surface 32 b of the ball screw nut 32. It is mated. By the planetary gear speed reducer 10 having the above configuration, the rotation of the rotor inner 26 of the motor 25 is decelerated and transmitted to the ball screw nut 32. Thereby, since rotational torque can be increased, the small motor 25 can be employ | adopted and the electric actuator 1 can be reduced in weight and compact as a whole.
 図1~図3に示すように、ボールねじナット32の軸方向一方側の端面とケーシング20との間にスラストワッシャ45が配設され、カバー29の円筒部29aの先端部外周に取り付けられたスラスト受けリング46とボールねじナット32の軸方向他方側の端面との間にスラスト軸受としての針状ころ軸受47が配設されている。このような針状ころ軸受47の存在により、ボールねじ軸33が軸方向一方側に直線運動(前進)する際のスラスト荷重が滑らかに支持される。 As shown in FIGS. 1 to 3, a thrust washer 45 is disposed between the end face on one axial side of the ball screw nut 32 and the casing 20, and is attached to the outer periphery of the tip of the cylindrical portion 29 a of the cover 29. A needle roller bearing 47 as a thrust bearing is disposed between the thrust receiving ring 46 and the end face on the other axial side of the ball screw nut 32. Due to the presence of such a needle roller bearing 47, a thrust load when the ball screw shaft 33 linearly moves (advances) in one axial direction is smoothly supported.
 図1および図2に示すように、カバー29の円筒部29aの内周面29bとボールねじ軸33の外周面との間には、付勢部材としての圧縮コイルばね48が配設されている。圧縮コイルばね48の軸方向一方側および他方側の端部は、それぞれ、針状ころ軸受47およびばね取付カラー36のばね受け部36bに当接している。このように設けられた圧縮コイルばね48のばね力により、ばね取付カラー36と連結されたボールねじ軸33が常時原点側に付勢される。このようにすれば、例えば、モータ部A(モータ25)に適切に駆動電力が供給されないような場合には、ボールねじ軸33を自動的に原点復帰させ、図示しない操作対象の作動に悪影響を及ぼす可能性を可及的に低減することができる。 As shown in FIGS. 1 and 2, a compression coil spring 48 as an urging member is disposed between the inner peripheral surface 29 b of the cylindrical portion 29 a of the cover 29 and the outer peripheral surface of the ball screw shaft 33. . One end and the other end in the axial direction of the compression coil spring 48 are in contact with the needle roller bearing 47 and the spring receiving portion 36b of the spring mounting collar 36, respectively. The ball screw shaft 33 connected to the spring mounting collar 36 is always urged toward the origin by the spring force of the compression coil spring 48 thus provided. In this way, for example, when the driving power is not properly supplied to the motor unit A (motor 25), the ball screw shaft 33 is automatically returned to the origin, and the operation of the operation target (not shown) is adversely affected. The possibility of exerting can be reduced as much as possible.
 カバー29の詳細を図9および図10を参照して説明する。図9は、図1の左側面図であり、図10は、図9中に示すI-I線矢視断面図である。カバー29は、加工性(量産性)および熱伝導率に優れた金属材料、例えば、アルミニウム合金、亜鉛合金又はマグネシウム合金で形成される。図示は省略しているが、カバー29の外側表面には、電動アクチュエータ1の冷却効率を高めるための冷却フィンを設けても良い。図10に示すように、カバー29の円筒部29aの外周面には、転がり軸受30が装着された軸受装着面63と、スラスト受けリング46が嵌合された嵌合面64とが設けられている。また、図9に示すように、カバー29には、電動アクチュエータ1の組立用ボルト61が挿通された図示外の貫通穴と、電動アクチュエータ1を使用機器に取り付けるための取付用ボルトが挿通される貫通穴62とが設けられている。 Details of the cover 29 will be described with reference to FIG. 9 and FIG. 9 is a left side view of FIG. 1, and FIG. 10 is a cross-sectional view taken along the line II in FIG. The cover 29 is formed of a metal material excellent in workability (mass productivity) and thermal conductivity, for example, an aluminum alloy, a zinc alloy, or a magnesium alloy. Although not shown, a cooling fin for increasing the cooling efficiency of the electric actuator 1 may be provided on the outer surface of the cover 29. As shown in FIG. 10, a bearing mounting surface 63 on which the rolling bearing 30 is mounted and a fitting surface 64 on which the thrust receiving ring 46 is fitted are provided on the outer peripheral surface of the cylindrical portion 29 a of the cover 29. Yes. Further, as shown in FIG. 9, a through hole (not shown) through which the assembly bolt 61 of the electric actuator 1 is inserted and a mounting bolt for attaching the electric actuator 1 to a device to be used are inserted into the cover 29. A through hole 62 is provided.
 次に、ターミナル部Dを図1および図6~図8を参照して説明する。図6は、図1に示すモータ25のステータ23とターミナル部Dとを取り出して拡大した縦断面図、図7は、図1のG-G線矢視断面図、図8は、図1のH-H線矢視断面図である。図6に示すように、ターミナル部Dは、筐体2の一部を構成する短筒状部、および短筒状部の軸方向他方側の端部から径方向内側に延びる円盤状部を一体に有するターミナル本体50と、ターミナル本体50(の円盤状部)に対してねじ止めされたバスバー51およびプリント基板52とを備える。図7および図8に示すように、ターミナル本体50(の短筒状部)は、図9,10に示す組立用ボルト61が挿通される貫通穴50Aと、電動アクチュエータ1を使用機器に取り付けるためのボルトが挿通される貫通穴50Bとを有し、上記の組立用ボルト61により、ケーシング20とカバー29の間で挟持される(図1,2参照)。ターミナル本体50は、例えばPPS等の樹脂材料で形成される。 Next, the terminal part D will be described with reference to FIG. 1 and FIGS. 6 is a longitudinal cross-sectional view in which the stator 23 and the terminal portion D of the motor 25 shown in FIG. 1 are taken out and enlarged, FIG. 7 is a cross-sectional view taken along the line GG in FIG. 1, and FIG. It is a HH arrow directional cross-sectional view. As shown in FIG. 6, the terminal portion D has a short cylindrical portion constituting a part of the housing 2 and a disk-shaped portion extending radially inward from the other axial end of the short cylindrical portion. And a bus bar 51 and a printed circuit board 52 screwed to the terminal main body 50 (the disk-shaped portion thereof). As shown in FIGS. 7 and 8, the terminal main body 50 (the short cylindrical portion thereof) is provided for attaching the through-hole 50A through which the assembly bolt 61 shown in FIGS. And a through hole 50B through which the bolt is inserted, and is sandwiched between the casing 20 and the cover 29 by the assembly bolt 61 (see FIGS. 1 and 2). The terminal body 50 is formed of a resin material such as PPS, for example.
 ターミナル部D(ターミナル本体50)は、モータ25に駆動電力を供給するための給電回路を保持している。給電回路は、図7および図8に示すように、ステータ23のコイル23cをU相、V相、W相の相別にバスバー51の端子51aに結線し、さらに、図2に示すように、バスバー51の端子51bと、ターミナル本体50の端子台50aとをねじ70で締結することで構成される。端子台50aは、図示外のリード線が接続される端子50bを有し、上記のリード線は、ターミナル本体50の外周部(短筒状部)に設けられた開口部50c(図1参照)を介して筐体2の外径側に引き出され、制御装置80のコントローラ81(図12又は図13参照)に接続される。 The terminal part D (terminal body 50) holds a power feeding circuit for supplying driving power to the motor 25. As shown in FIGS. 7 and 8, the power feeding circuit connects the coils 23c of the stator 23 to the terminals 51a of the bus bar 51 for each of the U phase, the V phase, and the W phase. Further, as shown in FIG. The terminal 51 b of 51 and the terminal block 50 a of the terminal body 50 are fastened with screws 70. The terminal block 50a has a terminal 50b to which a lead wire (not shown) is connected, and the lead wire is an opening 50c (see FIG. 1) provided in the outer peripheral portion (short cylindrical portion) of the terminal body 50. Is pulled out to the outer diameter side of the housing 2 and connected to a controller 81 (see FIG. 12 or FIG. 13) of the control device 80.
 電動アクチュエータ1には2種類のセンサが搭載されており、これら2種類のセンサはターミナル部Dに保持されている。図1等に示すように、2種類のセンサのうちの一方は、モータ25の回転制御に用いる回転角度検出用センサ53であり、他方は、ボールねじ軸33のストローク制御(軸方向の変位量検出)のために用いるストローク検出用センサ55である。回転角度検出用センサ53およびストローク検出用センサ55としては、何れも、磁気センサの一種であるホールセンサが使用される。 The electric actuator 1 is equipped with two types of sensors, and these two types of sensors are held in the terminal portion D. As shown in FIG. 1 and the like, one of the two types of sensors is a rotation angle detection sensor 53 used for rotation control of the motor 25, and the other is stroke control (amount of displacement in the axial direction) of the ball screw shaft 33. This is a stroke detection sensor 55 used for detection. As the rotation angle detection sensor 53 and the stroke detection sensor 55, a Hall sensor which is a kind of magnetic sensor is used.
 図1および図8に示すように、回転角度検出用センサ53は、円盤状をなしたプリント基板52に取り付けられており、ロータインナ26の軸方向他方側の端部に取り付けられたパルサリング54と軸方向隙間を介して対向配置されている。この回転角度検出用センサ53は、モータ25のU相、V相、W相のそれぞれに電流を流すタイミングを決める。 As shown in FIGS. 1 and 8, the rotation angle detection sensor 53 is attached to a printed circuit board 52 having a disk shape, and a pulsar ring 54 attached to the end portion on the other side in the axial direction of the rotor inner 26 and the shaft Oppositely arranged via a directional gap. The rotation angle detection sensor 53 determines the timing for supplying current to each of the U phase, V phase, and W phase of the motor 25.
 図2、図7および図8に示すように、ストローク検出用センサ55は、軸方向に延び、軸方向他方側の端部がプリント基板52に接続された帯状のプリント基板56に取り付けられている。プリント基板56およびストローク検出用センサ55は、ボールねじ軸33の孔部33bの内周、より詳細には、孔部33bに収容されたばね取付カラー36の筒部36c内周に配置されている。また、ばね取付カラー36の筒部36cの内周には、ストローク検出用センサ55と径方向隙間を介して対向するようにターゲットとしての永久磁石57が取り付けられており、本実施形態では軸方向に離間した二箇所に永久磁石57が取り付けられている。そして、ホールセンサからなるストローク検出用センサ55は、永久磁石57の周囲に形成される軸方向および径方向の磁界をそれぞれ検出し、これに基づいてボールねじ軸33の軸方向の変位量を算出する。 As shown in FIGS. 2, 7, and 8, the stroke detection sensor 55 is attached to a belt-like printed board 56 that extends in the axial direction and has an end on the other side in the axial direction connected to the printed board 52. . The printed circuit board 56 and the stroke detection sensor 55 are disposed on the inner periphery of the hole 33b of the ball screw shaft 33, more specifically, on the inner periphery of the cylindrical portion 36c of the spring mounting collar 36 accommodated in the hole 33b. A permanent magnet 57 as a target is attached to the inner periphery of the cylindrical portion 36c of the spring mounting collar 36 so as to face the stroke detection sensor 55 via a radial clearance. Permanent magnets 57 are attached to two locations separated from each other. The stroke detection sensor 55 comprising a Hall sensor detects the axial and radial magnetic fields formed around the permanent magnet 57, and calculates the axial displacement of the ball screw shaft 33 based on the detected magnetic field. To do.
 詳細な図示は省略しているが、回転角度検出用センサ53の信号線およびストローク検出用センサ55の信号線は、何れも、ターミナル本体50の開口部50c(図1参照)を介して筐体2の外径側に引き出され、制御装置80(図12又は図13参照)に接続される。 Although detailed illustration is omitted, the signal line of the rotation angle detection sensor 53 and the signal line of the stroke detection sensor 55 are both connected to the housing through the opening 50c (see FIG. 1) of the terminal body 50. 2 is pulled out to the outer diameter side and connected to the control device 80 (see FIG. 12 or 13).
 以上の構成を有する電動アクチュエータ1の組立手順を簡単に説明する。まず、図5に示すように、リングギヤ40をケーシング20に組み込む。次いで、図3に示すモータ25のロータ24と運動変換機構部Bのサブアセンブリをケーシング20に挿入する。このとき、遊星ギヤ42とリングギヤ40とを噛み合わせ、ガイドカラー38をケーシング20の案内溝20bに嵌合させ、さらに軸受ホルダ28をケーシング20の内周面20cに嵌合させる。その後、図6に示すモータ25のステータ23とターミナル本体50のサブアセンブリのうち、ステータ23をケーシング20の内周に嵌合してから、カバー29およびターミナル本体50をケーシング20に対して組立用ボルト61(図9,10参照)により締結する。これにより、電動アクチュエータ1が完成する。 The assembly procedure of the electric actuator 1 having the above configuration will be briefly described. First, as shown in FIG. 5, the ring gear 40 is assembled in the casing 20. Next, the rotor 24 of the motor 25 and the subassembly of the motion conversion mechanism B shown in FIG. 3 are inserted into the casing 20. At this time, the planetary gear 42 and the ring gear 40 are engaged with each other, the guide collar 38 is fitted into the guide groove 20 b of the casing 20, and the bearing holder 28 is fitted into the inner peripheral surface 20 c of the casing 20. Then, after the stator 23 is fitted to the inner periphery of the casing 20 among the sub-assemblies of the stator 23 and the terminal body 50 of the motor 25 shown in FIG. 6, the cover 29 and the terminal body 50 are assembled to the casing 20. Fastened with bolts 61 (see FIGS. 9 and 10). Thereby, the electric actuator 1 is completed.
 以上で説明したように、本発明に係る電動アクチュエータ1においては、操作部Cとしてのアクチュエータヘッド39が、ボールねじ軸33の軸方向一方側の端部に対して着脱可能に設けられている。このようにすれば、例えば、様々な機器に電動アクチュエータ1を展開する場合でも、アクチュエータヘッド39を交換すれば良く、ボールねじ装置31、さらに場合によってはアクチュエータヘッド39以外の部品を共用することができる。これにより、最小限の変更で種々の機器に適用できる汎用性の高い電動アクチュエータを実現することができ、電動アクチュエータ1の低コスト化およびシリーズ化に貢献することができる。また、アクチュエータヘッド39が、ボールねじ軸33の軸方向一方側の端部に対して着脱可能であれば、モータ部Aや運動変換機構部B等が組み立てられた電動アクチュエータ1であっても、これを分解せずにアクチュエータヘッド39を容易に交換することができるので、メンテナンス性を高めることができる、という利点もある。 As described above, in the electric actuator 1 according to the present invention, the actuator head 39 as the operation portion C is provided so as to be attachable to and detachable from the end portion on one side in the axial direction of the ball screw shaft 33. In this way, for example, even when the electric actuator 1 is deployed in various devices, the actuator head 39 may be replaced, and the ball screw device 31 and, in some cases, components other than the actuator head 39 may be shared. it can. As a result, a highly versatile electric actuator that can be applied to various devices with minimal changes can be realized, and the electric actuator 1 can be reduced in cost and series. Further, if the actuator head 39 can be attached to and detached from the end on one side in the axial direction of the ball screw shaft 33, the electric actuator 1 in which the motor part A, the motion conversion mechanism part B, etc. are assembled, Since the actuator head 39 can be easily replaced without disassembling this, there is also an advantage that the maintainability can be improved.
 なお、使用可能な他のアクチュエータヘッド39としては、図11A~図11Cに例示するものを挙げることができる。図11Aに示すアクチュエータヘッド39は、図1,2に示すアクチュエータヘッド39と同様のいわゆる押しタイプであり、頭部39bに、操作対象を軸方向に加圧可能な加圧面が互いに分離した2箇所に設けられている点において、図1,2に示すアクチュエータヘッド39と異なる。また、図11Bおよび図11Cに示すアクチュエータヘッド39は、何れも、操作対象を軸方向両側に操作することのできる、いわゆる押し引きタイプである。図11Bのアクチュエータヘッド39は、頭部39bがピンにより操作対象と連結されるタイプであり、図11Cに示すアクチュエータヘッド39は、頭部39bの外周に形成したねじ溝を操作対象に設けられたねじ溝に螺着することにより、操作対象と連結されるタイプである。 As other usable actuator heads 39, those exemplified in FIGS. 11A to 11C can be cited. The actuator head 39 shown in FIG. 11A is a so-called push type similar to the actuator head 39 shown in FIGS. 1 and 2, and the head 39 b has two places where the pressing surfaces capable of pressing the operation target in the axial direction are separated from each other. 1 is different from the actuator head 39 shown in FIGS. Further, the actuator head 39 shown in FIGS. 11B and 11C is a so-called push-pull type that can operate the operation target on both sides in the axial direction. The actuator head 39 of FIG. 11B is a type in which the head 39b is connected to the operation target by a pin, and the actuator head 39 shown in FIG. 11C is provided with a thread groove formed on the outer periphery of the head 39b. It is a type that is connected to an operation object by screwing into a thread groove.
 また、中空回転軸としてのロータインナ26は、ロータコア24aの軸方向一方側の端部に近接配置された転がり軸受27により軸方向一方側の端部が回転自在に支持され、ロータコア24aの軸方向他方側の端部に近接配置された転がり軸受30により軸方向他方側の端部が回転自在に支持されている。このような構造により、ロータインナ26を軸方向にコンパクト化することができる。これに加えて、転がり軸受27が、ボールねじナット32の軸方向幅の内側に配置された構造が相俟って、電動アクチュエータ1の筐体2の軸方向寸法L(図1参照)を短縮することができる。 Further, the rotor inner 26 as a hollow rotating shaft is rotatably supported at one end in the axial direction by a rolling bearing 27 disposed in the vicinity of one end in the axial direction of the rotor core 24a, and the other in the axial direction of the rotor core 24a. The other end portion in the axial direction is rotatably supported by a rolling bearing 30 disposed close to the end portion on the side. With such a structure, the rotor inner 26 can be made compact in the axial direction. In addition, the structure in which the rolling bearing 27 is disposed inside the axial width of the ball screw nut 32 is combined to shorten the axial dimension L (see FIG. 1) of the housing 2 of the electric actuator 1. can do.
 また、ロータ24の回転バランスが取られていれば、ロータインナ26を支持する転がり軸受27,30は、ロータ24の自重程度のラジアル荷重を支持できれば良い。この場合、転がり軸受27の内側軌道面27aを一体に有するロータインナ26は、高強度の材料で形成する必要がなく、例えば、焼入れ焼戻し等の熱処理が省略された安価な軟鋼材で形成しても必要強度を確保することができる。特に、本実施形態では、モータ25の回転運動を、遊星歯車減速機10を介してボールねじナット32に伝達するようにしているためにラジアル荷重の発生はなく、また、ボールねじ軸33の直線運動に伴って生じる反力(スラスト荷重)は専用の針状ころ軸受47で支持される。従って、転がり軸受27は、ラジアル方向の位置決め機能を有していれば足りるため、転がり軸受27の内側軌道面27aを一体に有するロータインナ26は、上記のような材料仕様で足りる。これにより、電動アクチュエータ1を低コスト化することができる。 In addition, if the rotation balance of the rotor 24 is taken, the rolling bearings 27 and 30 that support the rotor inner 26 may support a radial load about the weight of the rotor 24. In this case, the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 does not need to be formed of a high-strength material. For example, the rotor inner 26 may be formed of an inexpensive mild steel material in which heat treatment such as quenching and tempering is omitted. Necessary strength can be ensured. In particular, in this embodiment, since the rotational motion of the motor 25 is transmitted to the ball screw nut 32 via the planetary gear speed reducer 10, no radial load is generated, and the straight line of the ball screw shaft 33 is not generated. The reaction force (thrust load) generated along with the movement is supported by a dedicated needle roller bearing 47. Accordingly, since the rolling bearing 27 only needs to have a radial positioning function, the rotor inner 26 integrally including the inner raceway surface 27a of the rolling bearing 27 is sufficient for the material specifications as described above. Thereby, the cost of the electric actuator 1 can be reduced.
 また、針状ころ軸受47は、ロータインナ26を支持する転がり軸受27,30間の軸方向範囲内に配置されているので、モーメント荷重に対して有利であり、当該軸受として小型のものを使用できる。特に、本実施形態のように、針状ころ軸受47を、ロータインナ26を支持する転がり軸受27,30間の軸方向中央付近に配置した場合は、モーメント荷重に対して極めて有利であり、針状ころ軸受47の小型化を一層促進できる。その結果、針状ころ軸受47およびスラスト受けリング46等として極めて小型のものを採用することができ、これを通じて電動アクチュエータ1を一層コンパクト化することができる。 Further, since the needle roller bearing 47 is disposed within the axial range between the rolling bearings 27 and 30 that support the rotor inner 26, it is advantageous against moment load, and a small-sized one can be used as the bearing. . In particular, as in the present embodiment, when the needle roller bearing 47 is disposed near the center in the axial direction between the rolling bearings 27 and 30 that support the rotor inner 26, it is extremely advantageous with respect to the moment load, and the needle shape The size reduction of the roller bearing 47 can be further promoted. As a result, extremely small ones can be employed as the needle roller bearing 47 and the thrust receiving ring 46, and the electric actuator 1 can be made more compact through this.
 また、遊星ギヤキャリア43の円筒部43aを遊星歯車減速機10の出力部とし、この円筒部43aをボールねじナット32の外周面32bに圧入嵌合することで遊星ギヤキャリア43とボールねじナット32とをトルク伝達可能に連結したので、組立時の連結作業性が良好であることに加え、減速後の高トルクに対しても安定したトルク伝達が可能である。 The planetary gear carrier 43 and the ball screw nut 32 are formed by using the cylindrical portion 43a of the planetary gear carrier 43 as an output portion of the planetary gear speed reducer 10 and press fitting the cylindrical portion 43a to the outer peripheral surface 32b of the ball screw nut 32. Are connected so as to be able to transmit torque, so that the connection workability during assembly is good, and stable torque transmission is possible even for high torque after deceleration.
 また、運動変換機構部Bに遊星歯車減速機10を設けたことによるモータ部A(モータ25)の小型化と、ロータインナ26、遊星ギヤキャリア43の円筒部43aおよびボールねじナット32の半径方向での重畳構造とが相俟って、電動アクチュエータ1の筐体2の径方向寸法M(図1参照)も小さくすることができる。これにより、電動アクチュエータ1を一層コンパクト化することができ、使用機器に対する搭載性が一層向上する。 Further, the size reduction of the motor part A (motor 25) by providing the planetary gear speed reducer 10 in the motion conversion mechanism part B, and the radial direction of the rotor inner 26, the cylindrical part 43a of the planetary gear carrier 43 and the ball screw nut 32 are achieved. In combination with this superposition structure, the radial dimension M (see FIG. 1) of the housing 2 of the electric actuator 1 can also be reduced. Thereby, the electric actuator 1 can be made more compact, and the mountability with respect to the equipment used is further improved.
 また、ロータインナ26の内周面に遊星歯車減速機10のサンギヤ41が圧入嵌合されることで、ロータインナ26とサンギヤ41とがトルク伝達可能に連結されているので、この点においても組立時の連結作業性が良好である。なお、このような連結構造を採用しても、サンギヤ41は、減速前のロータインナ26と一体回転できれば良いので、両者間で必要とされるトルク伝達性能は十分に確保できる。さらに、ロータインナ26とサンギヤ41とは、ロータインナ26を支持する転がり軸受27の直下位置で連結されているので、サンギヤ41の回転精度も良好である。 Further, the sun gear 41 of the planetary gear speed reducer 10 is press-fitted and fitted to the inner peripheral surface of the rotor inner 26, so that the rotor inner 26 and the sun gear 41 are connected so that torque can be transmitted. Good connection workability. Even if such a connection structure is adopted, the sun gear 41 only needs to be able to rotate integrally with the rotor inner 26 before deceleration, and therefore the torque transmission performance required between the two can be sufficiently ensured. Furthermore, since the rotor inner 26 and the sun gear 41 are connected at a position directly below the rolling bearing 27 that supports the rotor inner 26, the rotational accuracy of the sun gear 41 is also good.
 また、ロータインナ26とボールねじナット32とを別体構造としたので、例えば、仕様が異なるボールねじ装置31を採用する場合でも、ロータインナ26(ひいてはモータ部A)を共用化することができる。これにより、汎用性を一層向上し、部品を共用化した多品種展開による電動アクチュエータ1のシリーズ化を実現することも一層容易となる。 In addition, since the rotor inner 26 and the ball screw nut 32 have a separate structure, for example, even when the ball screw device 31 having different specifications is used, the rotor inner 26 (and thus the motor part A) can be shared. As a result, the versatility is further improved, and it becomes easier to realize a series of electric actuators 1 by developing a variety of products that share parts.
 また、給電回路、回転角度検出用センサ53およびストローク検出用センサ55等をターミナル本体50で保持し、このターミナル本体50(ターミナル部D)をケーシング20とカバー29とで軸方向に挟持するサンドイッチ構造を採用したので、組立性が良好である。さらに、上記のサンドイッチ構造と、ターミナル本体50の外周部(短筒状部)に設けた開口部50cを介して給電回路のリード線や上記センサの信号線を筐体2の外径側に引き出し可能な構造とにより、複数の電動アクチュエータ1(モータ部A、運動変換機構部Bおよびターミナル部Dをユニット化したもの)を軸方向に連ねて配置してなり、複数の操作対象を個別に操作可能な電動アクチュエータを実現することもできる。 Further, a sandwich structure in which the power feeding circuit, the rotation angle detection sensor 53, the stroke detection sensor 55, and the like are held by the terminal body 50 and the terminal body 50 (terminal portion D) is sandwiched between the casing 20 and the cover 29 in the axial direction. As a result, it is easy to assemble. Furthermore, the lead wire of the power feeding circuit and the signal line of the sensor are drawn out to the outer diameter side of the housing 2 through the sandwich structure and the opening 50c provided in the outer peripheral portion (short cylindrical portion) of the terminal body 50. Depending on the possible structure, a plurality of electric actuators 1 (units of motor part A, motion conversion mechanism part B and terminal part D) are arranged in the axial direction, and a plurality of operation objects are individually operated. Possible electric actuators can also be realized.
 本実施形態の電動アクチュエータ1は、以上で説明した特徴的な構成が相俟って、軽量・コンパクトで使用機器に対する搭載性に優れ、かつ低コストでシリーズ化も容易である、という特長を有する。 The electric actuator 1 according to the present embodiment is characterized by the combination of the characteristic configurations described above, which is lightweight and compact, excellent in mountability to equipment used, low in cost, and easy to series. .
 最後に、図1および図12を参照して本実施形態の電動アクチュエータ1の作動態様を簡単に説明する。例えば、図示しない車両上位のECUに操作量が入力されると、この操作量に基づいてECUは要求される位置指令値を演算する。図12に示すように、位置指令値は制御装置80のコントローラ81に送られ、コントローラ81は、位置指令値に必要なモータ回転角の制御信号を演算し、この制御信号をモータ25に送る。 Finally, the operation mode of the electric actuator 1 of the present embodiment will be briefly described with reference to FIGS. 1 and 12. For example, when an operation amount is input to an upper ECU (not shown), the ECU calculates a required position command value based on the operation amount. As shown in FIG. 12, the position command value is sent to the controller 81 of the control device 80, and the controller 81 calculates a motor rotation angle control signal necessary for the position command value, and sends this control signal to the motor 25.
 コントローラ81から送られた制御信号に基づいてロータ24(ロータインナ26)が回転すると、この回転運動が運動変換機構部Bに伝達される。具体的には、ロータインナ26が回転すると、ロータインナ26に連結された遊星歯車減速機10のサンギヤ41が回転し、これに伴って遊星ギヤ42が公転すると共に遊星ギヤキャリア43が回転する。これにより、ロータインナ26の回転運動が遊星ギヤキャリア43に連結されたボールねじナット32に伝達される。このとき、遊星ギヤ42の公転運動により、ロータインナ26の回転数が減速されるので、ボールねじナット32に伝達される回転トルクが増加する。 When the rotor 24 (rotor inner 26) rotates based on the control signal sent from the controller 81, this rotational motion is transmitted to the motion converting mechanism B. Specifically, when the rotor inner 26 rotates, the sun gear 41 of the planetary gear speed reducer 10 connected to the rotor inner 26 rotates, and accordingly, the planetary gear 42 revolves and the planetary gear carrier 43 rotates. Thereby, the rotational motion of the rotor inner 26 is transmitted to the ball screw nut 32 connected to the planetary gear carrier 43. At this time, the revolution speed of the planetary gear 42 reduces the rotational speed of the rotor inner 26, so that the rotational torque transmitted to the ball screw nut 32 increases.
 ロータインナ26の回転運動を受けてボールねじナット32が回転すると、ボールねじ軸33は、回り止めされた状態で軸方向一方側に直線運動(前進)する。この際、ボールねじ軸33はコントローラ81の制御信号に基づく位置まで前進し、ボールねじ軸33の軸方向一方側の端部に固定されたアクチュエータヘッド39が図示しない操作対象を操作する。 When the ball screw nut 32 rotates in response to the rotational motion of the rotor inner 26, the ball screw shaft 33 moves linearly (advances) in one axial direction while being prevented from rotating. At this time, the ball screw shaft 33 moves forward to a position based on the control signal of the controller 81, and the actuator head 39 fixed to one end of the ball screw shaft 33 in the axial direction operates an operation target (not shown).
 ボールねじ軸33の軸方向位置(軸方向の変位量)は、図12にも示すように、ストローク検出用センサ55により検出され、その検出信号は制御装置80の比較部82に送られる。そして、比較部82は、ストローク検出用センサ55により検出された検出値と位置指令値との差分を算出し、コントローラ81はこの算出値および回転角度検出用センサ53から送られた信号に基づいてモータ25に制御信号を送る。このようにして、アクチュエータヘッド39の位置がフィードバック制御される。このため、本実施形態の電動アクチュエータ1を、例えば、シフト・バイ・ワイヤに適用した場合、シフト位置を確実にコントロールすることができる。なお、モータ25やセンサ53,55等を駆動するための電力は、車両側に設けられたバッテリ等の外部電源(図示せず)から、制御装置80およびターミナル部Dに保持された給電回路を介してモータ25等に供給される。 The axial position (the amount of axial displacement) of the ball screw shaft 33 is detected by the stroke detection sensor 55 as shown in FIG. 12, and the detection signal is sent to the comparison unit 82 of the control device 80. Then, the comparison unit 82 calculates the difference between the detection value detected by the stroke detection sensor 55 and the position command value, and the controller 81 is based on the calculated value and the signal sent from the rotation angle detection sensor 53. A control signal is sent to the motor 25. In this way, the position of the actuator head 39 is feedback controlled. For this reason, when the electric actuator 1 of this embodiment is applied to, for example, shift-by-wire, the shift position can be reliably controlled. The electric power for driving the motor 25, the sensors 53, 55, etc. is supplied from an external power source (not shown) such as a battery provided on the vehicle side to a power supply circuit held in the control device 80 and the terminal portion D. Via the motor 25 and the like.
 以上、本発明の一実施形態に係る電動アクチュエータ1について説明を行ったが、本発明の実施の形態はこれに限られない。 As mentioned above, although the electric actuator 1 which concerns on one Embodiment of this invention was demonstrated, embodiment of this invention is not restricted to this.
 例えば、以上で説明した実施形態においては、ボールねじ軸33の軸方向の両端面に開口した孔部33b(軸方向の貫通穴)を設けることによって、ボールねじ軸33を中空状に形成すると共に、ボールねじ軸33の内周にストローク検出用センサ55を配置したが、ボールねじ軸33に軸方向他方側の端面のみに開口した軸方向に延びる孔部33bを設けることでボールねじ軸33を中空状に形成することも可能である。 For example, in the embodiment described above, the ball screw shaft 33 is formed in a hollow shape by providing holes 33b (through holes in the axial direction) that are opened on both end surfaces of the ball screw shaft 33 in the axial direction. The stroke detection sensor 55 is disposed on the inner periphery of the ball screw shaft 33. However, the ball screw shaft 33 is provided with an axially extending hole 33b that is opened only on the other end surface in the axial direction. It is also possible to form a hollow shape.
 また、以上で説明した実施形態においては、ボールねじ軸33を常時原点側に付勢する付勢部材としての圧縮コイルばね48を設けているが、圧縮コイルばね48は付勢する機能を必要とする用途に応じて設ければよく、必要としない場合は省略しても構わない。 In the embodiment described above, the compression coil spring 48 is provided as a biasing member that constantly biases the ball screw shaft 33 toward the origin, but the compression coil spring 48 requires a function of biasing. It may be provided according to the intended use, and may be omitted if not required.
 また、以上で説明した実施形態においては、運動変換機構部Bを構成する減速機に遊星歯車減速機10を採用したが、他の機構を有する減速機を採用しても良い。また、本発明は、減速機を具備した電動アクチュエータ1のみならず、減速機を具備しない電動アクチュエータ1に適用することも可能である。図示は省略するが、減速機を省略する場合には、ボールねじナット32とロータインナ26とを直接的にトルク伝達可能に連結すれば良い。 In the embodiment described above, the planetary gear speed reducer 10 is adopted as the speed reducer constituting the motion conversion mechanism B, but a speed reducer having another mechanism may be adopted. Further, the present invention can be applied not only to the electric actuator 1 provided with a reduction gear but also to the electric actuator 1 not provided with a reduction gear. Although illustration is omitted, when the reduction gear is omitted, the ball screw nut 32 and the rotor inner 26 may be connected so as to be able to transmit torque directly.
 また、以上で説明した実施形態においては、ストローク検出用センサ55を使用するようにしているが、使用機器によっては、ストローク検出用センサ55を使用しない場合もある。 In the embodiment described above, the stroke detection sensor 55 is used. However, depending on the equipment used, the stroke detection sensor 55 may not be used.
 図13に基づき、ストローク検出用センサ55を使用しない場合における電動アクチュエータ1の作動態様の一例を説明する。図13は、圧力制御の例であり、図示外の操作対象に圧力センサ83が設けられている。図示外のECUに操作量が入力されると、ECUは要求される圧力指令値を演算する。この圧力指令値が制御装置80のコントローラ81に送られると、コントローラ81は、圧力指令値に必要なモータ回転角の制御信号を演算し、この制御信号をモータ25に送る。そして、図12を参照して説明した場合と同様に、ボールねじ軸33がコントローラ81の制御信号に基づく位置まで前進し、ボールねじ軸33の軸方向一方側の端部に固定されたアクチュエータヘッド39が図示外の操作対象を操作する。 An example of the operation mode of the electric actuator 1 when the stroke detection sensor 55 is not used will be described with reference to FIG. FIG. 13 is an example of pressure control, and a pressure sensor 83 is provided for an operation target not shown. When an operation amount is input to an ECU (not shown), the ECU calculates a required pressure command value. When this pressure command value is sent to the controller 81 of the control device 80, the controller 81 calculates a motor rotation angle control signal necessary for the pressure command value and sends this control signal to the motor 25. Then, similarly to the case described with reference to FIG. 12, the ball screw shaft 33 advances to a position based on the control signal of the controller 81, and is an actuator head fixed to one end of the ball screw shaft 33 in the axial direction. 39 operates an operation target not shown.
 ボールねじ軸33(アクチュエータヘッド39)の操作圧力は、外部に設置された圧力センサ83により検出され、フィードバック制御される。このため、ストローク検出用センサ55を使用しない電動アクチュエータ1を例えばブレーキバイワイヤに適用した場合、ブレーキの液圧を確実にコントロールすることができる。 The operation pressure of the ball screw shaft 33 (actuator head 39) is detected by a pressure sensor 83 installed outside and is feedback-controlled. For this reason, when the electric actuator 1 that does not use the stroke detection sensor 55 is applied to, for example, brake-by-wire, the brake hydraulic pressure can be reliably controlled.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. The equivalent meanings recited in the claims, and all modifications within the scope.
1    電動アクチュエータ
2    筐体
10   遊星歯車減速機(減速機)
20   ケーシング
23   ステータ
24   ロータ
25   モータ
26   ロータインナ(中空回転軸)
29   カバー
31   ボールねじ装置
32   ボールねじナット
33   ボールねじ軸
34   ボール
39   アクチュエータヘッド
40   リングギヤ
41   サンギヤ
42   遊星ギヤ
43   遊星ギヤキャリア
47   針状ころ軸受
48   圧縮コイルばね(付勢部材)
50   ターミナル本体
50c  開口部
55   ストローク検出用センサ
57   永久磁石
A    モータ部
B    運動変換機構部
C    操作部
D    ターミナル部
L    筐体の軸方向寸法
M    筐体の径方向寸法
DESCRIPTION OF SYMBOLS 1 Electric actuator 2 Case 10 Planetary gear speed reducer (speed reducer)
20 Casing 23 Stator 24 Rotor 25 Motor 26 Rotor inner (hollow rotating shaft)
29 cover 31 ball screw device 32 ball screw nut 33 ball screw shaft 34 ball 39 actuator head 40 ring gear 41 sun gear 42 planetary gear 43 planetary gear carrier 47 needle roller bearing 48 compression coil spring (biasing member)
50 Terminal body 50c Opening 55 Stroke detection sensor 57 Permanent magnet A Motor part B Motion conversion mechanism part C Operation part D Terminal part L Axial dimension of the casing M Radial dimension of the casing

Claims (8)

  1.  電力の供給を受けて駆動するモータ部と、該モータ部の回転運動を直線運動に変換して出力する運動変換機構部と、該運動変換機構部の出力を受けて操作対象を操作する操作部とを備え、前記運動変換機構部が、ボールねじ軸と、複数のボールを介して前記ボールねじ軸の外周に回転自在に嵌合されたボールねじナットとを有し、該ボールねじナットの回転方向に応じて、前記ボールねじ軸および前記操作部が軸方向一方側に前進又は軸方向他方側に後退する電動アクチュエータにおいて、
     前記操作部が、前記ボールねじ軸の軸方向一方側の端部に対して着脱可能に設けられていることを特徴とする電動アクチュエータ。
    A motor unit that is driven by receiving power supply, a motion conversion mechanism unit that converts the rotational motion of the motor unit into a linear motion and outputs it, and an operation unit that operates an operation target by receiving the output of the motion conversion mechanism unit And the motion conversion mechanism section includes a ball screw shaft and a ball screw nut rotatably fitted to the outer periphery of the ball screw shaft via a plurality of balls, and the rotation of the ball screw nut. Depending on the direction, in the electric actuator in which the ball screw shaft and the operation part advance in the axial direction one side or retract in the axial direction other side,
    The electric actuator is characterized in that the operation portion is detachably attached to an end portion on one axial side of the ball screw shaft.
  2.  前記ボールねじ軸が、前記モータ部の回転中心と同軸に配置されている請求項1に記載の電動アクチュエータ。 The electric actuator according to claim 1, wherein the ball screw shaft is disposed coaxially with a rotation center of the motor unit.
  3.  前記運動変換機構部が、前記モータ部の回転を減速して前記ボールねじナットに伝達する減速機をさらに備える請求項1又は2に記載の電動アクチュエータ。 The electric actuator according to claim 1 or 2, wherein the motion conversion mechanism section further includes a speed reducer that decelerates the rotation of the motor section and transmits it to the ball screw nut.
  4.  前記減速機が、遊星歯車減速機である請求項3に記載の電動アクチュエータ。 The electric actuator according to claim 3, wherein the speed reducer is a planetary gear speed reducer.
  5.  前記モータ部のロータコアを支持する中空回転軸と、該中空回転軸を回転自在に支持する転がり軸受とをさらに備え、
     前記ボールねじナットが、前記中空回転軸とトルク伝達可能に前記中空回転軸の内周に配置され、
     前記中空回転軸に、前記転がり軸受の内側軌道面が設けられている請求項1~4の何れか一項に記載の電動アクチュエータ。
    A hollow rotary shaft that supports the rotor core of the motor unit, and a rolling bearing that rotatably supports the hollow rotary shaft;
    The ball screw nut is disposed on the inner periphery of the hollow rotary shaft so that torque can be transmitted to the hollow rotary shaft,
    The electric actuator according to any one of claims 1 to 4, wherein an inner raceway surface of the rolling bearing is provided on the hollow rotary shaft.
  6.  前記転がり軸受の内側軌道面が、前記ボールねじナットの軸方向幅の内側に配置されている請求項5に記載の電動アクチュエータ。 The electric actuator according to claim 5, wherein an inner raceway surface of the rolling bearing is disposed inside an axial width of the ball screw nut.
  7.  軸方向に結合された複数部材からなり、前記モータ部および前記運動変換機構部を収容した筐体と、前記モータ部に前記電力を供給するための給電回路を保持したターミナル部とをさらに備え、
     前記ターミナル部が、前記筐体の構成部材により軸方向両側から挟持されている請求項1~6の何れか一項に記載の電動アクチュエータ。
    It is composed of a plurality of members coupled in the axial direction, and further includes a housing that houses the motor unit and the motion conversion mechanism unit, and a terminal unit that holds a power feeding circuit for supplying the power to the motor unit,
    The electric actuator according to any one of claims 1 to 6, wherein the terminal portion is clamped from both sides in the axial direction by the constituent members of the casing.
  8.  前記ターミナル部は、その外周部に、前記給電回路に接続されるリード線を前記筐体の外径側に引き出すための開口部を有する請求項7に記載の電動アクチュエータ。 The electric actuator according to claim 7, wherein the terminal portion has an opening for pulling out a lead wire connected to the power feeding circuit to an outer diameter side of the casing on an outer peripheral portion thereof.
PCT/JP2017/005023 2016-02-24 2017-02-10 Electrically driven actuator WO2017145827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-032993 2016-02-24
JP2016032993A JP6651381B2 (en) 2016-02-24 2016-02-24 Electric actuator

Publications (1)

Publication Number Publication Date
WO2017145827A1 true WO2017145827A1 (en) 2017-08-31

Family

ID=59686372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005023 WO2017145827A1 (en) 2016-02-24 2017-02-10 Electrically driven actuator

Country Status (2)

Country Link
JP (1) JP6651381B2 (en)
WO (1) WO2017145827A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007766A1 (en) * 2018-08-02 2020-02-02 Magneti Marelli Spa FLEXIBLE LINEAR ELECTRIC ACTUATOR FOR AUTOMOTIVE APPLICATIONS
JP7145014B2 (en) * 2018-09-11 2022-09-30 日立Astemo株式会社 steering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329070A (en) * 2002-05-15 2003-11-19 Nissin Kogyo Co Ltd Electric disc-brake
JP2005170064A (en) * 2003-12-05 2005-06-30 Toyota Motor Corp Steering device for vehicle
JP2010115111A (en) * 2010-02-08 2010-05-20 Oriental Motor Co Ltd Linear actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329070A (en) * 2002-05-15 2003-11-19 Nissin Kogyo Co Ltd Electric disc-brake
JP2005170064A (en) * 2003-12-05 2005-06-30 Toyota Motor Corp Steering device for vehicle
JP2010115111A (en) * 2010-02-08 2010-05-20 Oriental Motor Co Ltd Linear actuator

Also Published As

Publication number Publication date
JP2017150557A (en) 2017-08-31
JP6651381B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2017138353A1 (en) Ball screw device and electric actuator equipped with same
WO2017141659A1 (en) Electric actuator
JP6794121B2 (en) Electric actuator
JP6765193B2 (en) Electric actuator
JP6762114B2 (en) Electric actuator
WO2017169657A1 (en) Electric actuator
WO2017169855A1 (en) Electric actuator
WO2017169846A1 (en) Electric actuator
WO2017145827A1 (en) Electrically driven actuator
JP6621687B2 (en) Electric actuator
JP2018159406A (en) Electric actuator
WO2017169935A1 (en) Electric actuator
JP6736352B2 (en) Electric actuator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756268

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756268

Country of ref document: EP

Kind code of ref document: A1