WO2016195104A1 - Electric actuator - Google Patents

Electric actuator Download PDF

Info

Publication number
WO2016195104A1
WO2016195104A1 PCT/JP2016/066692 JP2016066692W WO2016195104A1 WO 2016195104 A1 WO2016195104 A1 WO 2016195104A1 JP 2016066692 W JP2016066692 W JP 2016066692W WO 2016195104 A1 WO2016195104 A1 WO 2016195104A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sleeve
screw shaft
shaft
electric actuator
Prior art date
Application number
PCT/JP2016/066692
Other languages
French (fr)
Japanese (ja)
Inventor
辰徳 清水
寒山 工藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016195104A1 publication Critical patent/WO2016195104A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to an electric actuator provided with a ball screw mechanism used in a drive unit of a general industrial electric motor or automobile, and more specifically, a rotation input from an electric motor is transmitted to a ball screw in an automobile transmission or a parking brake.
  • the present invention relates to an electric actuator that converts a linear motion of a drive shaft through a mechanism.
  • a gear mechanism such as a trapezoidal screw or a rack and pinion is generally used as a mechanism for converting the rotational motion of the electric motor into a linear linear motion. Since these conversion mechanisms involve a sliding contact portion, the power loss is large, and it is necessary to increase the size of the electric motor and increase the power consumption. Therefore, a ball screw mechanism has been adopted as a more efficient actuator.
  • an electric motor supported by a housing can freely rotate a ball screw shaft constituting a ball screw, and an output member coupled to a nut by rotating the ball screw shaft. Displaceable in the axial direction. Since the ball screw mechanism has very low friction and high efficiency, the ball screw mechanism is also highly efficient against reverse input from the output side. Therefore, the reverse input is transmitted to the input side. That is, since the ball screw shaft is easily rotated by the thrust load acting on the output member side, it is necessary to hold the position of the output member when the electric motor is stopped.
  • the electric actuator 51 is used as an electric parking brake driving device, and includes a cylindrical motor housing 51a and a housing body 51b.
  • An electric motor 52 is provided in the motor housing 51a.
  • the electric motor 52 includes a rotating shaft 52a that functions as a rotation driving unit, a stator 52b, and a rotor 52c.
  • the rotating shaft 52a is rotatably supported by the motor housing 51a via a bearing 53.
  • the rotary shaft 52a is hollow and is configured such that one axial end (the right end in the figure) has a large diameter, and the outer peripheral surface thereof is supported by the inner peripheral surface of the motor housing 51a by a bearing 54. ing.
  • the rotating shaft 52a has a plurality of claw portions 52d protruding in the axial direction from the axial end surface on the large diameter side.
  • the housing main body 51b has a shape in which a large diameter cylindrical portion and a small diameter cylindrical portion are connected in the axial direction, and the outer ring 55 cannot be rotated on the inner peripheral surface of the large diameter cylindrical portion by press fitting or the like. It is attached.
  • a roller 56 that is a locking member and a key 57 are disposed between the claw portions 52d.
  • a flange 55a is formed at one axial end (right side in the drawing) of the outer ring 55 so as to protrude radially inward. The roller 56 is prevented from moving in the axial direction by the flange 55a.
  • a rotating driven portion 59 is rotatably supported on the inner peripheral surface of the housing main body 51b via a bearing 58, and the rollers 56 are arranged so that the outer peripheral surface of the rotating driven portion 59 can roll.
  • a nut 60 is attached to the inner peripheral surface of the rotation driven portion 59 so as not to rotate relative to the rotation driven portion 59 by a set screw or the like.
  • a screw shaft 61 is provided so as to penetrate the nut 60.
  • the screw shaft 61 is arranged so that one end portion (left end portion in the figure) is inserted inside the rotation shaft 52a.
  • a screw groove (not shown) is formed at a location facing the nut 60 in the radial direction.
  • a screw groove (not shown) is formed on the inner peripheral surface of the nut 60 so as to correspond to the screw groove of the screw shaft 61.
  • a large number of balls are movably arranged in a spiral space defined by the respective thread grooves.
  • a cylindrical moving case 62 is disposed at the other end (right end in the figure) of the screw shaft 61, and via a key 62a disposed in a key groove formed at the end of the moving case 62, The screw shaft 61 is non-rotatably attached to the moving case 62.
  • One end of a wire (not shown) is connected to the axial end surface (right end surface in the figure) of the moving case 62, and the moving case 62 is connected to a parking brake device as a driven member via this wire.
  • the parking brake device When the wire moves to the left side, the parking brake device is operated to apply a braking force to a wheel (not shown), and when the wire moves to the right side, the parking brake device is released from braking.
  • the moving case 62 has a linear groove extending in the axial direction formed on the inner peripheral surface, and a pin 62b is provided so as to engage with the linear groove.
  • the case 62 is attached so as to be movable in the axial direction with respect to the housing main body 51b. That is, the moving case 62 is configured to be movable in the axial direction, although it cannot be rotated relative to the housing body 51b.
  • the wire attached to the moving case 62 is always urged to the right in the drawing by a spring or the like (not shown). That is, in a state where the parking brake device is operated, the moving case 62 and the screw shaft 61 are always pulled to the right in the axial direction.
  • a key groove 59b and three cam grooves 59c are formed at equal intervals on the outer peripheral surface of the rotationally driven 59.
  • the cam surface 59a has a slope inclined to one side so as to move away from the axial center in a clockwise direction (approaching the inner peripheral surface of the outer ring 55).
  • the cam surface 59a has an inclined portion 59d and a roller 56 that can roll without the roller 56 biting between the outer ring 55 and the rotationally driven portion 59. It has an inclined portion 59e that bites into both.
  • a roller clutch 63 having a function as a one-way clutch is attached to the inner peripheral surface of the housing body 51b.
  • a sleeve 64 formed in an annular shape is fitted to the outer peripheral surface of the rotationally driven portion 59 with a slight gap.
  • the sleeve 64 is rotatably supported on the inner peripheral surface of the housing main body 51b via the roller clutch 63.
  • the sleeve 64 is hardened by, for example, bearing steel, and the outer diameter surface thereof is a rolling surface of the roller clutch 63, and one of the axial side surfaces thereof is a sliding surface with the friction material. .
  • a friction material (friction means) 65 a is arranged on the outer peripheral surface of the rotationally driven portion 59 so as to be adjacent to the sleeve 64 in the axial direction, and the friction material 65 a is configured to rotate integrally with the rotationally driven portion 59. .
  • a screw 66 is provided on the outer peripheral surface of the rotationally driven portion 59. The screw 66 presses the axial end portion of the sleeve 64 via the friction material 65b, and abuts the sleeve 64 and the friction material 65a. I am letting.
  • the screw 66 is a screw in a direction not loosened by frictional force when the rotary driven portion 59 is rotated in the biting direction of the roller clutch 63, and in this case, is a left screw.
  • the roller clutch 63 is configured to be in a locked state when the rotary driven portion 59 rotates in the direction of arrow A in FIG. 9A, and the sleeve 64 and the rotary driven portion 59 are relatively rotated. On the other hand, when rotating in the direction opposite to the arrow A direction, the unlocked state is established, and the sleeve 64 and the rotary driven portion 59 are allowed to rotate integrally.
  • the ball screw mechanism 67 is configured such that the screw shaft 61 moves to the left in the figure by rotating the rotary shaft 52a and the rotary driven portion 59 in the direction of arrow C in FIG. At this time, the state as shown in FIG. 7 is obtained, and the parking brake device, which is the driven member, is activated. Further, the ball screw mechanism is configured such that the screw shaft 61 moves to the right side of the figure by rotating the rotary shaft 52a and the rotary driven portion 59 in the direction opposite to the direction of arrow C in FIG. . At this time, the parking brake device as the driven member is in a released state.
  • FIG. 9 (a) when releasing the parking brake device which is a driven member, there is a mechanism for applying a braking force to the rotation of the rotationally driven portion 59 due to the external load. Yes.
  • the roller clutch 63 provided in the housing main body 51b has a sleeve when the rotationally driven portion 59 is about to rotate in the direction of arrow A in FIG. 64 is locked so as not to rotate integrally with the rotary driven portion 59.
  • the sleeve 64 is substantially fixed to the housing body 51b.
  • the friction material 65 a is provided so as to come into contact with the sleeve 64, and rotates integrally with the rotation driven portion 59. Then, a frictional force is generated between the sleeve 64 and the friction material 65a, and the rotational acceleration in the direction of arrow A in FIG.
  • the rotational acceleration of the rotationally driven portion 59 that receives an external load can be made smaller than the rotational acceleration of the rotational drive portion (the rotational shaft 52a). For this reason, it is possible to prevent rattling from occurring in the position holding mechanism when releasing the operation of the parking brake device (see, for example, Patent Document 1).
  • the present invention has been made in view of such problems of the prior art. Even when a system error occurs and control becomes impossible, the present invention focuses on a safety mechanism in which the screw shaft does not collide with the housing.
  • An object of the present invention is to provide an electric actuator that is lighter and more compact and that is improved in reliability by avoiding a collision of a screw shaft.
  • the invention according to claim 1 of the present invention includes a housing, an electric motor attached to the housing, and a rotational force of the electric motor transmitted via a motor shaft, A ball screw mechanism that converts the rotational motion of the electric motor into a linear motion in the axial direction of the drive shaft.
  • the ball screw mechanism is rotatable via a support bearing mounted on the housing and cannot move in the axial direction.
  • Mated with A concave groove extending in the axial direction is formed on the inner periphery of the sleeve, and a locking pin is implanted at an end portion of the screw shaft to be engaged with the concave groove.
  • a step portion that can hold the locking pin in the axial direction is formed in the groove of the sleeve.
  • the housing, the electric motor attached to the housing, and the rotational force of the electric motor are transmitted via the motor shaft, and the rotational motion of the electric motor is converted into a linear motion in the axial direction of the drive shaft.
  • a ball screw mechanism, and the ball screw mechanism is rotatably supported via a support bearing mounted on the housing and is not axially movable, and a nut having a helical thread groove formed on the inner periphery thereof;
  • the screw shaft is inserted into the nut through a large number of balls, is integrated with the drive shaft in a coaxial manner, and includes a screw shaft having a spiral screw groove corresponding to the screw groove of the nut formed on the outer periphery.
  • a bag hole for receiving the screw shaft is formed in the housing, and a cylindrical sleeve is fitted to the bag hole in a state of being prevented from rotating, and a concave groove extending in the axial direction is formed on the inner periphery of the sleeve.
  • Screw shaft In the electric actuator in which a locking pin is implanted at the end and engaged with the groove so that the screw shaft cannot be rotated with respect to the housing and can be moved in the axial direction, the locking pin is inserted into the groove of the sleeve. Is formed so that when the reverse input from the output side is loaded, the screw shaft is rotated by this reverse input, and the locking pin moves from the groove to the step.
  • the sleeve is held at an appropriate position of the screw shaft. Even if the reverse input is constantly loaded, the screw shaft can be held at a predetermined position, so that the degree of design freedom is increased and the application range of the electric actuator is expanded.
  • a flat surface is formed on the outer periphery of the sleeve, and a flat surface is formed in the bag hole of the housing corresponding to the flat surface. If the sleeve is fitted in the bag hole in the matched state, the sleeve can be prevented from rotating with respect to the housing.
  • the locking pins are fixed at opposing positions in the circumferential direction of the screw shaft, accommodate these locking pins, and face the inner periphery of the sleeve. If the concave groove is formed, the phase alignment of the screw shaft with respect to the sleeve is simplified, and the number of assembling operations can be reduced.
  • the sleeve is made of sintered metal formed by MIM, even if it has a high workability and a complicated shape, it can be easily and accurately obtained. Can be formed into shapes and dimensions.
  • An electric actuator transmits a rotational force of a housing, an electric motor attached to the housing, and the electric motor via a motor shaft, and the rotational motion of the electric motor in the axial direction of the drive shaft.
  • a ball screw mechanism for converting into linear motion, and this ball screw mechanism is supported by a support bearing mounted on the housing so as to be rotatable and non-movable in the axial direction, and has a spiral thread groove on the inner periphery.
  • a nut that is inserted into the nut through a large number of balls, is coaxially integrated with the drive shaft, and a helical thread groove corresponding to the thread groove of the nut is formed on the outer periphery.
  • the housing is formed with a bag hole for accommodating the screw shaft, and a cylindrical sleeve is fitted in the bag hole in a state in which the rotation is prevented.
  • a concave groove extending in the axial direction is formed on the inner circumference of the screw shaft, a locking pin is implanted at an end of the screw shaft and engaged with the concave groove, and the screw shaft is not rotatable with respect to the housing.
  • a step portion that can hold the locking pin in the axial direction is formed in the concave groove of the sleeve, so when a reverse input from the output side is loaded, Due to this reverse input, the screw shaft rotates, the locking pin moves from the concave groove and is locked to the stepped portion, and the rotation is blocked by the sleeve, resulting in a locked state, resulting in a system error that makes the control impossible. Even in this case, it is possible to prevent the screw shaft from colliding with the housing, and it is possible to reduce the weight and size by reducing the thickness of the housing, and to provide an electric actuator that improves the reliability by avoiding the collision of the screw shaft Rukoto can.
  • (A) is a cross-sectional view taken along line VIIIa-VIIIa of the electric parking brake drive device of FIG. 7, and (b) is a cross-sectional view taken along line VIIIb-VIIIb.
  • (A)-(c) is an expanded sectional view of the principal part which shows operation
  • An aluminum alloy housing An electric motor attached to the housing, a reduction mechanism that transmits the rotational force of the electric motor via a motor shaft, and the rotational movement of the electric motor is driven via the reduction mechanism
  • a bag hole for accommodating the screw shaft is formed in the housing, and a cylindrical sleeve is fitted to the bag hole while being prevented from rotating.
  • a concave groove extending in the axial direction is formed on the inner periphery of the sleeve, and a locking pin is implanted at the end of the screw shaft and engaged with the concave groove, so that the screw shaft cannot rotate with respect to the housing.
  • the axis of the screw shaft extends in a direction in which the groove width gradually increases in parallel with the groove from one end surface of the groove of the sleeve.
  • a plurality of spiral stepped steps are formed.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of an electric actuator according to the present invention
  • FIG. 2 is a longitudinal sectional view showing a ball screw mechanism of FIG. 1
  • FIG. 3 is a main part showing an intermediate gear portion of FIG.
  • FIG. 4 is an enlarged view of the main part showing the sleeve of FIG. 1
  • FIG. 5A is an explanatory view showing the ball screw mechanism of FIG. 1 being locked
  • FIG. FIG. 6 is a perspective view showing the sleeve and the screw shaft of FIG.
  • the electric actuator 1 includes a cylindrical housing 2, an electric motor M attached to the housing 2, and an intermediate gear meshing with an input gear 3 attached to a motor shaft 3a of the electric motor.
  • a speed reduction mechanism 6 comprising a gear 4 and an output gear 5 meshing with the intermediate gear 4, and a ball screw mechanism for converting the rotational motion of the electric motor M into the linear motion in the axial direction of the drive shaft 7 via the speed reduction mechanism 6. 8 and.
  • the housing 2 is made of an aluminum alloy such as A6063TE or ADC12, and includes a first housing 2a and a second housing 2b abutted on the end face thereof, and is fixed integrally by a fixing bolt (not shown). .
  • An electric motor M is attached to the first housing 2a, and a through hole 11 and a bag hole 12 for accommodating the screw shaft 10 are formed in the first housing 2a and the second housing 2b. .
  • the motor shaft 3a of the electric motor M is rotatably supported by a rolling bearing 13 composed of a deep groove ball bearing mounted on the second housing 2b. Yes.
  • the output gear 5 that meshes with the intermediate gear 4 that is a spur gear is integrally fixed to a nut 18 that constitutes a ball screw mechanism 8 that will be described later via a key 14.
  • the drive shaft 7 is integrally formed with a screw shaft 10 constituting the ball screw mechanism 8, and a locking pin 15 is implanted at one end portion (right end portion in the figure) of the drive shaft 7.
  • a cylindrical sleeve 17 described later is fitted into the bag hole 12 of the second housing 2b. Then, a locking pin 15 of the screw shaft 10 is engaged with a concave groove 17a formed in the inner periphery of the sleeve 17 so as to extend in the axial direction, and the screw shaft 10 is supported to be non-rotatable and movable in the axial direction. Has been.
  • the ball screw mechanism 8 includes a screw shaft 10 and a nut 18 externally inserted through the ball 19 to the screw shaft 10 as shown in an enlarged view in FIG.
  • the screw shaft 10 has a spiral thread groove 10a formed on the outer periphery.
  • the nut 18 is extrapolated to the screw shaft 10, and a helical screw groove 18 a corresponding to the screw groove 10 a of the screw shaft 10 is formed on the inner periphery, and a large number of screws 18 a and 18 a are formed between these nuts 18.
  • a ball 19 is accommodated so as to roll freely.
  • the nut 18 is supported by the first and second housings 2a and 2b via the two support bearings 20 and 20 so as to be rotatable and non-movable in the axial direction.
  • Reference numeral 21 denotes a piece member that constitutes a circulation member by connecting the thread grooves 18a of the nut 18, and the piece member 21 allows an infinite circulation of a large number of balls 19.
  • each of the thread grooves 10a and 18a may be a circular arc shape or a gothic arc shape, but here, a gothic arc shape that allows a large contact angle with the ball 19 and a small axial clearance can be set. Is formed. Thereby, the rigidity with respect to an axial load becomes high and generation
  • the nut 18 is made of case-hardened steel such as SCM415 or SCM420, and its surface is hardened in the range of 55 to 62HRC by vacuum carburizing and quenching. Thereby, the buffing etc. for the scale removal after the heat treatment can be omitted, and the cost can be reduced.
  • the screw shaft 10 is formed in a columnar shape from medium carbon steel such as S55C or case-hardened steel such as SCM415 and SCM420, and the screw groove 10a is formed by rolling rather than machining such as turning.
  • the surface is hardened in the range of 55 to 62 HRC by induction hardening or carburizing hardening. Thereby, mass productivity improves and cost reduction can be achieved.
  • the output gear 5 constituting the speed reduction mechanism 6 is integrally fixed to the outer peripheral surface 18b of the nut 18, and two support bearings 20 and 20 are press-fitted on both sides of the output gear 5 via a predetermined shimiro. .
  • the two support bearings 20 and 20 are constituted by sealed deep groove ball bearings having shield plates 20a and 20a attached to both ends, and leakage of the lubricating grease enclosed in the bearings to the outside and from the outside This prevents wear powder from entering the bearing.
  • the support bearing 20 that rotatably supports the nut 18 is composed of deep groove ball bearings having the same specifications, and thus is loaded from the drive shaft 7 through the thrust load and the output gear 5 described above. Both radial loads can be applied, and confirmation work for preventing misassembly during assembly can be simplified, and assembling workability can be improved.
  • the deep groove ball bearings having the same specifications refer to bearings having the same inner diameter, outer diameter, width dimension, rolling element size, number, bearing internal clearance, and the like.
  • one of the pair of support bearings 20, 20 (the left side in the figure) is mounted on the first housing 2a via a washer 27 made of a ring-shaped elastic member.
  • the washer 27 is formed by press working from an austenitic stainless steel sheet (JIS standard SUS304 system or the like) having high strength and wear resistance, or a cold-rolled steel sheet (JIS standard SPCC system or the like) subjected to rust prevention. It consists of a wave washer.
  • the inner diameter D is formed larger than the inner ring outer diameter d of the support bearing 20.
  • the intermediate gear 4 constituting the speed reduction mechanism 6 is rotatably supported on a gear shaft 22 implanted in the first and second housings 2 a and 2 b via a rolling bearing 23.
  • the end portions of the gear shaft 22 for example, when press-fitting the end portion on the first housing 2a side, the end portion on the second housing 2b side is set to be a clearance fit, thereby making misalignment (assembly error). Allowing smooth rotation performance can be ensured.
  • the rolling bearing 23 includes an outer ring 24 made of a steel plate press-fitted into the inner diameter 4 a of the intermediate gear 4, and a plurality of needle rollers 26 accommodated in the outer ring 24 via a cage 25 so as to be freely rollable. And so-called shell-type needle roller bearings. Thereby, availability is high and cost reduction can be achieved.
  • the washer 28 is a flat washer formed by pressing from an austenitic stainless steel plate having high strength and high wear resistance, or a cold-rolled steel plate treated with rust prevention.
  • a thermoplastic synthetic resin such as PA (polyamide) 66 filled with a predetermined amount of a fibrous reinforcing material such as brass, sintered metal, or GF (glass fiber). May be.
  • the width of the rolling bearing 23 is set smaller than the tooth width of the intermediate gear 4. Therefore, wear and deformation of the bearing side surface due to friction can be prevented, and smooth rotation performance can be obtained.
  • the sleeve 17 that supports the screw shaft 10 so as not to rotate and to be movable in the axial direction is fitted in the bag hole 12 of the second housing 2b.
  • flat surfaces 17b and 17b are formed at opposite phases on the outer periphery of the sleeve 17, and at the opposite phases of the bag holes 12 of the second housing 2b corresponding to these flat surfaces 17b and 17b.
  • flat surfaces 12a and 12a are formed.
  • An annular groove 29 is formed at the opening end of the bag hole 12 of the second housing 2b, and a retaining ring 30 is attached to the annular groove 29 so that the flat surfaces 17b and 12a are aligned with each other, and the sleeve 17 Is fitted toward the bottom 12b, and is positioned and fixed in the axial direction in a state in which the sleeve 17 is prevented from rotating with respect to the second housing 2b.
  • the sleeve 17 has a plurality of spiral stepped step portions 31, 32, and 33 formed in the inner periphery from one end face of the concave groove 17 a to the axial center of the screw shaft 10.
  • step portions 31, 32, 33 are formed in a direction in which the groove width increases stepwise in parallel with the concave groove 17 a, and these step portion wall surfaces 31 a, 32 a, 33 a are connected to the screw shaft 10. It is formed along the lead angle of the screw groove 10a, and the step width surfaces 31b, 32b, 33b of the step portions 31, 32, 33 are set wider than the pitch of the screw groove 10a (see FIG. 6). .
  • the “lead” is a length that moves in the axial direction when the screw shaft 10 makes one rotation
  • the “lead angle” means a thread winding coil and one point above it.
  • An angle formed by a plane perpendicular to the passing screw axis 10 and “pitch” refer to a distance between two corresponding points of adjacent threads.
  • pitch lead
  • the screw shaft 10 is supported to the sleeve 17 so as not to rotate and to be movable in the axial direction, but a reverse input from the output side (right direction in the figure) is loaded and the torque of the electric motor is OFF At this time, by this reverse input, the screw shaft 10 rotates clockwise (clockwise direction) as indicated by an arrow in the figure, and the locking pin 15 is locked to the step portion 31. Specifically, it moves along the stepped portion width surface 31b of the stepped portion 31 to abut against the stepped portion wall surface 31a, and the locking pin 15 is fixed in the axial direction.
  • the screw shaft 10 is prevented from rotating by the sleeve 17 and is locked, and even when a system error occurs and control becomes impossible, the screw shaft 10 is prevented from colliding with the second housing 2b.
  • the screw shaft 10 is unlocked, as shown in FIG. 5B, the screw shaft 10 is moved to the left by applying a load greater than the reverse input by operating the shaft in the right direction in the figure from the input side. It rotates (counterclockwise direction), and the locking pin 15 moves upward from the step portion 31. That is, the locking pin 15 of the screw shaft 10 is disengaged from the stepped portion 31 to be unlocked, and the screw shaft 10 is supported so as to be non-rotatable and axially movable with respect to the sleeve 17. To return to the normal state.
  • a plurality of spiral stepped steps 31, 32, 33 are formed on the inner periphery of the sleeve 17, so that the screw shaft 10 can be held at an appropriate position. it can. Thereby, even if the reverse input is constantly loaded, the screw shaft 10 can be held at a predetermined position, and the degree of freedom in design is increased and the application range of the electric actuator is expanded.
  • Locking pins 15, 15 are fixed at opposing positions in the circumferential direction of the screw shaft 10, and the grooves 17 a, 17 a that house the locking pins 15, 15 and prevent the screw shaft 10 from rotating are sleeves 17. Therefore, the phase alignment of the screw shaft 10 with respect to the sleeve 17 is simplified, and the number of assembling operations can be reduced.
  • the sleeve 17 may be formed from medium carbon steel such as S55C or case-hardened steel such as SCM415 or SCM420 by forging or cold forging.
  • the sleeve 17 is made of a metal powder in a plastic form. It consists of a sintered alloy that is adjusted and molded by an injection molding machine. In this injection molding, first, metal powder and a binder made of plastic and wax are kneaded by a kneader, and the kneaded product is granulated into pellets.
  • the granulated pellets are molded by so-called MIM (Metal Injection Molding), which is supplied to a hopper of an injection molding machine and pushed into a mold in a heated and melted state.
  • MIM Metal Injection Molding
  • a sintered alloy formed by such an MIM can be easily and accurately formed into a desired shape / dimension even if it has a high workability and a complicated shape.
  • C carbon
  • Ni nickel
  • Cr chromium
  • Cu copper
  • SCM415 which is 0.04 wt%
  • Mn manganese
  • Mo molecular weight
  • Si silicon
  • Si silicon
  • the rest Fe (iron).
  • the sleeve 17 is performed by adjusting the carburizing quenching and tempering temperatures.
  • the sleeve 17 is made of a material containing 3.0 to 10.0 wt% of Ni and having excellent workability and corrosion resistance (FEN8 of Japanese Powder Metallurgy Industry Standard), or C of 0.07 wt%. %, Cr is 17 wt%, Ni is 4 wt%, Cu is 4 wt%, and the remainder is precipitation hardened stainless steel SUS630 made of Fe or the like. This SUS630 can appropriately increase the surface hardness in the range of 20 to 33 HRC by solution heat treatment, and can ensure toughness and high hardness.
  • the embodiment in the case where there is a reduction gear has been described.
  • the embodiment is not particularly limited to the case in which there is a reduction gear, and can be implemented even when there is no reduction gear.
  • An electric actuator includes a ball screw mechanism that is used in a drive unit of a general industrial electric motor, an automobile, or the like, and that converts a rotational input from an electric motor into a linear motion of a drive shaft via the ball screw mechanism. Applicable to electric actuators.

Abstract

Provided is an electric actuator for which a reduced weight and a more compact size is achieved by reducing the thickness of a housing, and for which collision of the threaded shaft with the housing is avoided, thereby improving reliability. In this electric actuator a pocket hole 12 for accommodating a threaded shaft 10 is formed in a housing, a cylindrical sleeve 17 is fitted therein in a manner so as to be incapable of rotating, concave grooves 17a extending in the axial direction are formed in the sleeve 17, locking pins 15 are implanted in an end part of the threaded shaft 10 and are engaged in the concave grooves 17a, and the threaded shaft 10 is supported so as to be incapable of rotating with respect to the housing, while being movable in the axial direction. Multiple spiral step-like stepped parts 31, 32, 33 are formed from one end surface of the concave grooves 17a of the sleeve 17, in parallel with the concave grooves 17a and in the direction in which the groove width increases in a stepwise manner. Therefore, when a reverse input is applied from the output side, the threaded shaft 10 rotates, the locking pins 15 are locked in the stepped part 31 and rotation is prevented, resulting in a locked state.

Description

電動アクチュエータElectric actuator
 本発明は、一般産業用の電動機、自動車等の駆動部に使用されるボールねじ機構を備えた電動アクチュエータ、詳しくは、自動車のトランスミッションやパーキングブレーキ等で、電動モータからの回転入力を、ボールねじ機構を介して駆動軸の直線運動に変換する電動アクチュエータに関するものである。 The present invention relates to an electric actuator provided with a ball screw mechanism used in a drive unit of a general industrial electric motor or automobile, and more specifically, a rotation input from an electric motor is transmitted to a ball screw in an automobile transmission or a parking brake. The present invention relates to an electric actuator that converts a linear motion of a drive shaft through a mechanism.
 各種駆動部に使用される電動アクチュエータにおいて、電動モータの回転運動を軸方向の直線運動に変換する機構として、台形ねじあるいはラックアンドピニオン等の歯車機構が一般的に使用されている。これらの変換機構は、滑り接触部を伴うため動力損失が大きく、電動モータの大型化や消費電力の増大を余儀なくされている。そのため、より効率的なアクチュエータとしてボールねじ機構が採用されるようになってきた。 In electric actuators used in various drive units, a gear mechanism such as a trapezoidal screw or a rack and pinion is generally used as a mechanism for converting the rotational motion of the electric motor into a linear linear motion. Since these conversion mechanisms involve a sliding contact portion, the power loss is large, and it is necessary to increase the size of the electric motor and increase the power consumption. Therefore, a ball screw mechanism has been adopted as a more efficient actuator.
 従来の電動アクチュエータとしては、例えば、ハウジングに支持された電動モータにより、ボールねじを構成するボールねじ軸を回転駆動自在とし、このボールねじ軸を回転駆動することによってナットに結合された出力部材を軸方向に変位可能としている。ボールねじ機構は、摩擦が非常に低く、高効率であるため、出力側からの逆入力に対しても高効率となる。そのため、逆入力が入力側に伝達されてしまう。すなわち、出力部材側に作用するスラスト荷重によって簡単にボールねじ軸が回転してしまうので、電動モータが停止時に出力部材を位置保持する必要がある。 As a conventional electric actuator, for example, an electric motor supported by a housing can freely rotate a ball screw shaft constituting a ball screw, and an output member coupled to a nut by rotating the ball screw shaft. Displaceable in the axial direction. Since the ball screw mechanism has very low friction and high efficiency, the ball screw mechanism is also highly efficient against reverse input from the output side. Therefore, the reverse input is transmitted to the input side. That is, since the ball screw shaft is easily rotated by the thrust load acting on the output member side, it is necessary to hold the position of the output member when the electric motor is stopped.
 また、前述の電動アクチュエータでは、システムエラー等で制御不能になった時、荷重に押されてハウジングの内壁にボールねじ軸が慣性力で衝突するのを防止した電動アクチュエータが知られている。この電動アクチュエータ51は、図7に示すように、電動パーキングブレーキ駆動装置として使用され、円筒状のモータハウジング51aとハウジング本体51bとを備えている。モータハウジング51a内には電動モータ52が備えられている。電動モータ52は、回転駆動部として機能する回転軸52aと、ステータ52bと、ロータ52cを有している。回転軸52aは、軸受53を介してモータハウジング51aに回転自在に支持されている。 Also, in the above-described electric actuator, there is known an electric actuator that prevents the ball screw shaft from colliding with the inner wall of the housing due to inertial force by being pushed by a load when control becomes impossible due to a system error or the like. As shown in FIG. 7, the electric actuator 51 is used as an electric parking brake driving device, and includes a cylindrical motor housing 51a and a housing body 51b. An electric motor 52 is provided in the motor housing 51a. The electric motor 52 includes a rotating shaft 52a that functions as a rotation driving unit, a stator 52b, and a rotor 52c. The rotating shaft 52a is rotatably supported by the motor housing 51a via a bearing 53.
 回転軸52aは中空で、かつ、一方の軸方向端部(図中右側の端部)が大径となるように構成され、その外周面が軸受54によってモータハウジング51aの内周面に支持されている。回転軸52aは、大径側の軸方向端面から軸方向に突出した複数の爪部52dを有している。 The rotary shaft 52a is hollow and is configured such that one axial end (the right end in the figure) has a large diameter, and the outer peripheral surface thereof is supported by the inner peripheral surface of the motor housing 51a by a bearing 54. ing. The rotating shaft 52a has a plurality of claw portions 52d protruding in the axial direction from the axial end surface on the large diameter side.
 ハウジング本体51bは、大径の円筒部と小径の円筒部とを軸方向に連結したような形状を有し、大径の円筒部の内周面には、外輪55が圧入等によって回転不能に取り付けられている。外輪55の径方向内側には、爪部52d同士の間にロック部材であるころ56と、キー57とが配されている。外輪55の一方の軸方向端部(図中右側)には径方向内側に突出するようにフランジ55aが形成されている。ころ56は、このフランジ55aによって軸方向に移動することが防止されている。 The housing main body 51b has a shape in which a large diameter cylindrical portion and a small diameter cylindrical portion are connected in the axial direction, and the outer ring 55 cannot be rotated on the inner peripheral surface of the large diameter cylindrical portion by press fitting or the like. It is attached. On the radially inner side of the outer ring 55, a roller 56 that is a locking member and a key 57 are disposed between the claw portions 52d. A flange 55a is formed at one axial end (right side in the drawing) of the outer ring 55 so as to protrude radially inward. The roller 56 is prevented from moving in the axial direction by the flange 55a.
 ハウジング本体51bの内周面には、軸受58を介して回転被駆動部59が回転自在に支持され、ころ56はこの回転被駆動部59の外周面を転動可能に配されている。回転被駆動部59の内周面にはナット60が止めねじ等によって回転被駆動部59と相対回転不能に取り付けられている。 A rotating driven portion 59 is rotatably supported on the inner peripheral surface of the housing main body 51b via a bearing 58, and the rollers 56 are arranged so that the outer peripheral surface of the rotating driven portion 59 can roll. A nut 60 is attached to the inner peripheral surface of the rotation driven portion 59 so as not to rotate relative to the rotation driven portion 59 by a set screw or the like.
 ナット60を貫通するようにねじ軸61が設けられている。ねじ軸61は一方の端部(図中左側端部)が回転軸52aの内側に挿入されるように配されている。また、ねじ軸61の外周面において、ナット60と径方向に対向する箇所には図示しないねじ溝が形成されている。また、ナット60の内周面には、ねじ軸61のねじ溝に対応するように図示しないねじ溝が形成されている。それぞれのねじ溝によって区画される螺旋状の空間には多数のボールが転動自在に配置されている。 A screw shaft 61 is provided so as to penetrate the nut 60. The screw shaft 61 is arranged so that one end portion (left end portion in the figure) is inserted inside the rotation shaft 52a. Further, on the outer peripheral surface of the screw shaft 61, a screw groove (not shown) is formed at a location facing the nut 60 in the radial direction. A screw groove (not shown) is formed on the inner peripheral surface of the nut 60 so as to correspond to the screw groove of the screw shaft 61. A large number of balls are movably arranged in a spiral space defined by the respective thread grooves.
 ねじ軸61の他方の端部(図中右側端部)には円筒状の移動ケース62が配置され、この移動ケース62の端部に形成されたキー溝に配されたキー62aを介して、ねじ軸61が移動ケース62に回転不能に取り付けられている。 A cylindrical moving case 62 is disposed at the other end (right end in the figure) of the screw shaft 61, and via a key 62a disposed in a key groove formed at the end of the moving case 62, The screw shaft 61 is non-rotatably attached to the moving case 62.
 移動ケース62の軸方向端面(図中右側端面)には、図示しないワイヤの一端が連結され、移動ケース62がこのワイヤを介して被駆動部材であるパーキングブレーキ装置に連結されている。そして、ワイヤが左側に移動することで、パーキングブレーキ装置を作動して図示しない車輪に制動力を付与し、右側に移動することで、パーキングブレーキ装置の制動を解除するように構成されている。 One end of a wire (not shown) is connected to the axial end surface (right end surface in the figure) of the moving case 62, and the moving case 62 is connected to a parking brake device as a driven member via this wire. When the wire moves to the left side, the parking brake device is operated to apply a braking force to a wheel (not shown), and when the wire moves to the right side, the parking brake device is released from braking.
 ここで、移動ケース62は、内周面に形成された軸方向に延びる直線状の溝を有し、この直線状の溝に係合するようにピン62bが設けられ、このピン62bによって、移動ケース62がハウジング本体51bに対して軸方向に移動することが可能に取り付けられている。つまり、移動ケース62は、ハウジング本体51bに対して相対回転不能であるが、軸方向に移動可能に構成されている。 Here, the moving case 62 has a linear groove extending in the axial direction formed on the inner peripheral surface, and a pin 62b is provided so as to engage with the linear groove. The case 62 is attached so as to be movable in the axial direction with respect to the housing main body 51b. That is, the moving case 62 is configured to be movable in the axial direction, although it cannot be rotated relative to the housing body 51b.
 移動ケース62に取り付けられたワイヤは、図示しないバネ等によって常に図中右側に付勢される。つまり、パーキングブレーキ装置を作動させた状態において、移動ケース62およびねじ軸61が常に軸方向右側に引っ張られている。 The wire attached to the moving case 62 is always urged to the right in the drawing by a spring or the like (not shown). That is, in a state where the parking brake device is operated, the moving case 62 and the screw shaft 61 are always pulled to the right in the axial direction.
 図8(a)および図9(a)~(c)に示すように、回転被駆動59の外周面にはキー溝59bと3つのカム溝59cが互いに等間隔に形成されている。カム面59aは、時計回りの方向に軸心から遠ざかる(外輪55の内周面に近づく)ように一方に傾いた斜面を有している。図9(a)~(c)に示すように、カム面59aは、ころ56が外輪55と回転被駆動部59との間に食い込ませることなく転動可能な傾斜部59dと、ころ56を両者に食い込ませる傾斜部59eとを有している。ころ56を外輪55と回転被駆動部59との間に食い込ませた状態で、キー57と、その両側の爪部52dとの間隔をaとし、ころ56が外輪55と回転被駆動部59との間に食い込んだ状態における図8(a)中の左側の爪部52dとの間隔をb、同右側の爪部52dとの間隔をcとすると、b>a>cなる関係が成立するようになっている。 8A and 9A to 9C, a key groove 59b and three cam grooves 59c are formed at equal intervals on the outer peripheral surface of the rotationally driven 59. The cam surface 59a has a slope inclined to one side so as to move away from the axial center in a clockwise direction (approaching the inner peripheral surface of the outer ring 55). As shown in FIGS. 9A to 9C, the cam surface 59a has an inclined portion 59d and a roller 56 that can roll without the roller 56 biting between the outer ring 55 and the rotationally driven portion 59. It has an inclined portion 59e that bites into both. In a state where the roller 56 is bitten between the outer ring 55 and the rotation driven portion 59, the distance between the key 57 and the claw portions 52d on both sides thereof is a, and the roller 56 is connected to the outer ring 55 and the rotation driven portion 59. When the distance between the left nail part 52d in FIG. 8A and b between the right nail part 52d in FIG. 8A is c and the distance between the right nail part 52d in FIG. It has become.
 図7および図8(b)に示すように、ハウジング本体51bの内周面には一方向クラッチとしての機能を備えたローラクラッチ63が取り付けられている。また、回転被駆動部59の外周面に円環状に形成されたスリーブ64がわずかな隙間を有して嵌合されている。スリーブ64はローラクラッチ63を介してハウジング本体51bの内周面に回転可能に支持されている。スリーブ64は、例えば、軸受鋼等で焼入れされたものであり、その外径面はローラクラッチ63の転動面で、その軸方向側面の一方が摩擦材との摺動面となるものである。 7 and 8 (b), a roller clutch 63 having a function as a one-way clutch is attached to the inner peripheral surface of the housing body 51b. A sleeve 64 formed in an annular shape is fitted to the outer peripheral surface of the rotationally driven portion 59 with a slight gap. The sleeve 64 is rotatably supported on the inner peripheral surface of the housing main body 51b via the roller clutch 63. The sleeve 64 is hardened by, for example, bearing steel, and the outer diameter surface thereof is a rolling surface of the roller clutch 63, and one of the axial side surfaces thereof is a sliding surface with the friction material. .
 図7に示すように、ローラクラッチ63は、スリーブ64が本図の反時計回りに回転するとき、転動体であるローラが食い込みを生じることでロック状態となる。回転被駆動部59の外周面においてスリーブ64と軸方向に隣接するように摩擦材(摩擦手段)65aが配され、この摩擦材65aは回転被駆動部59と一体に回転するよう構成されている。さらに、回転被駆動部59の外周面にはねじ66が設けられ、このねじ66は、摩擦材65bを介してスリーブ64の軸方向端部を押圧し、スリーブ64と摩擦材65aとを当接させている。ねじ66は、回転被駆動部59がローラクラッチ63の食い込み方向に回転した際に摩擦力によって緩まない方向のねじであって、この場合左ねじである。 As shown in FIG. 7, when the sleeve 64 rotates counterclockwise in the drawing, the roller clutch 63 enters a locked state by causing the roller as a rolling element to bite. A friction material (friction means) 65 a is arranged on the outer peripheral surface of the rotationally driven portion 59 so as to be adjacent to the sleeve 64 in the axial direction, and the friction material 65 a is configured to rotate integrally with the rotationally driven portion 59. . Further, a screw 66 is provided on the outer peripheral surface of the rotationally driven portion 59. The screw 66 presses the axial end portion of the sleeve 64 via the friction material 65b, and abuts the sleeve 64 and the friction material 65a. I am letting. The screw 66 is a screw in a direction not loosened by frictional force when the rotary driven portion 59 is rotated in the biting direction of the roller clutch 63, and in this case, is a left screw.
 ローラクラッチ63は、回転被駆動部59が図9(a)の矢印A方向に回転するときには、ロック状態となり、スリーブ64と回転被駆動部59とが相対回転するように構成されている。一方、矢印A方向とは反対に方向する回転するときには非ロック状態となり、スリーブ64と回転被駆動部59とが一体に回転することを許容するように構成されている。 The roller clutch 63 is configured to be in a locked state when the rotary driven portion 59 rotates in the direction of arrow A in FIG. 9A, and the sleeve 64 and the rotary driven portion 59 are relatively rotated. On the other hand, when rotating in the direction opposite to the arrow A direction, the unlocked state is established, and the sleeve 64 and the rotary driven portion 59 are allowed to rotate integrally.
 電動パーキングブレーキ駆動装置を作動させると、電動モータ52に電力が供給され、回転軸52a(図8参照)が回転被駆動部59に対して相対回転する。このとき、図9(c)に示すように、爪部52dが矢印C方向に回転し、爪部52dの端部がキー57を押圧することで回転軸52a(図7参照)と回転被駆動部59が一体的に回転する。なお、このとき、回転被駆動部59がC方向に回転するので、ころ56は傾斜部59dに自ら寄せられるので外輪55と回転被駆動部59との間に食い込むことがない。そして、図7に示すように、回転被駆動部59の回転に伴いナット60が回転すると、ねじ軸61が軸方向電動モータ52側(図中左側)に移動する。このとき、ねじ軸61に支持された移動ケース62も軸方向に移動し、ワイヤを介して被駆動部材であるパーキングブレーキ装置に動力を伝達し、図示しない車輪に制動力を付与する。 When the electric parking brake driving device is operated, electric power is supplied to the electric motor 52, and the rotary shaft 52a (see FIG. 8) rotates relative to the rotary driven portion 59. At this time, as shown in FIG. 9C, the claw portion 52d rotates in the direction of the arrow C, and the end of the claw portion 52d presses the key 57, so that the rotary shaft 52a (see FIG. 7) and the rotation driven The part 59 rotates integrally. At this time, since the rotationally driven portion 59 rotates in the C direction, the roller 56 is brought to the inclined portion 59d by itself so that it does not bite between the outer ring 55 and the rotationally driven portion 59. Then, as shown in FIG. 7, when the nut 60 rotates with the rotation of the rotary driven portion 59, the screw shaft 61 moves to the axial electric motor 52 side (left side in the figure). At this time, the moving case 62 supported by the screw shaft 61 also moves in the axial direction, transmits power to the parking brake device, which is a driven member, via the wire, and applies braking force to a wheel (not shown).
 ボールねじ機構67は、回転軸52aおよび回転被駆動部59を図9(c)の矢印C方向に回転させることでねじ軸61が図中左側に移動するように構成されている。このとき、図7のような状態となり、被駆動部材であるパーキングブレーキ装置は作動状態となる。また、ボールねじ機構は、回転軸52aおよび回転被駆動部59を図9(c)矢印C方向とは反対側に回転させることでねじ軸61が図の右側に移動するように構成されている。このとき、被駆動部材であるパーキングブレーキ装置は作動が解除された状態となる。 The ball screw mechanism 67 is configured such that the screw shaft 61 moves to the left in the figure by rotating the rotary shaft 52a and the rotary driven portion 59 in the direction of arrow C in FIG. At this time, the state as shown in FIG. 7 is obtained, and the parking brake device, which is the driven member, is activated. Further, the ball screw mechanism is configured such that the screw shaft 61 moves to the right side of the figure by rotating the rotary shaft 52a and the rotary driven portion 59 in the direction opposite to the direction of arrow C in FIG. . At this time, the parking brake device as the driven member is in a released state.
 このように、パーキングブレーキ装置が作動している状態において、電動モータ52が静止した後、ワイヤにかかるバネなどによる付勢力によって、移動ケース62およびねじ軸61には軸方向に対して図7の右側に向かって外部荷重がかかる。この外部荷重はナット60を介して回転被駆動部59を図9(b)の矢印B方向に回転させる力に変換される。また、回転被駆動部59が矢印B方向に回転し、ころ56が相対的に傾斜部59eに移動し、外輪55と回転被駆動部59との間に食い込まれ、回転被駆動部59の回転が阻止される。このときの状態を位置保持機構のロックという。 Thus, after the electric motor 52 is stationary in a state where the parking brake device is in operation, the moving case 62 and the screw shaft 61 are axially moved in the axial direction of FIG. An external load is applied to the right. This external load is converted into a force for rotating the driven part 59 in the direction of arrow B in FIG. Further, the rotationally driven portion 59 rotates in the direction of arrow B, and the roller 56 relatively moves to the inclined portion 59e and is caught between the outer ring 55 and the rotationally driven portion 59, so that the rotationally driven portion 59 rotates. Is blocked. This state is referred to as a position holding mechanism lock.
 また、被駆動部材であるパーキングブレーキ装置を解除する際には、電動モータ52に電力が供給され、回転軸52aが回転すると、図9(a)に示すように、爪部52dが矢印A方向に回転し、爪部52dの1つがキー57を押圧することで、回転被駆動部59を矢印A方向に回転せしめる。すると、ころ56は爪部52dの端面から押圧されるので、傾斜部59dに移動し、食い込むことなく、回転軸52aと回転被駆動部59と一体的に回転する。 When releasing the parking brake device as the driven member, when electric power is supplied to the electric motor 52 and the rotating shaft 52a rotates, the claw portion 52d moves in the direction of arrow A as shown in FIG. When one of the claw portions 52d presses the key 57, the rotation driven portion 59 is rotated in the arrow A direction. Then, since the roller 56 is pressed from the end surface of the claw portion 52d, the roller 56 moves to the inclined portion 59d and rotates integrally with the rotating shaft 52a and the rotationally driven portion 59 without biting.
 ここで、仮に、回転被駆動部59に制動力を付与しないで位置保持機構のロックを解除する場合を考える。回転軸52aの回転に伴い爪部52dを矢印A方向に回転させた際に、爪部52dがころ56を傾斜部59dに押し出し、別の爪部52dがキー57を押圧することで、回転軸52aと回転被駆動部59とが回転し始める。しかし、その直後、回転被駆動部59が外部荷重からの力によって回転軸52aより大きい回転加速度で回転を始めると、一旦は爪部52dに押し出されたころ56が相対的に傾斜部59eに移動することとなる。すると、ころ56が再び外輪55と回転被駆動部59との間に食い込むことがある。つまり、これが、位置保持機構のがたつきの要因となる。 Here, let us consider a case where the position holding mechanism is unlocked without applying a braking force to the rotationally driven portion 59. When the claw portion 52d is rotated in the direction of the arrow A along with the rotation of the rotation shaft 52a, the claw portion 52d pushes the roller 56 to the inclined portion 59d, and the other claw portion 52d presses the key 57, whereby the rotation shaft 52a and the rotation driven part 59 begin to rotate. However, immediately after that, when the rotationally driven portion 59 starts to rotate at a rotational acceleration larger than the rotational shaft 52a due to the force from the external load, the roller 56 once pushed to the claw portion 52d relatively moves to the inclined portion 59e. Will be. Then, the roller 56 may bite between the outer ring 55 and the rotation driven part 59 again. That is, this becomes a cause of shakiness of the position holding mechanism.
 そこで、図9(a)に示すように、被駆動部材であるパーキングブレーキ装置を解除する際に、回転被駆動部59の、外部荷重による回転に対して制動力を作用させる機構を有している。図7および図8(b)に示すように、ハウジング本体51bに設けられたローラクラッチ63は、回転被駆動部59が図9(a)の矢印Aの方向に回転しようとする際に、スリーブ64が回転被駆動部59と一体に回転しないようにロック状態となる。このとき、スリーブ64はハウジング本体51bに実質的に固定された状態になる。一方、摩擦材65aは、スリーブ64に当接するように設けられており、回転被駆動部59と一体に回転する。すると、スリーブ64と摩擦材65aとの間で摩擦力が生じ、制動力が付与されることによって回転被駆動部59は図9(a)の矢印A方向の回転加速度が低下する。 Therefore, as shown in FIG. 9 (a), when releasing the parking brake device which is a driven member, there is a mechanism for applying a braking force to the rotation of the rotationally driven portion 59 due to the external load. Yes. As shown in FIGS. 7 and 8B, the roller clutch 63 provided in the housing main body 51b has a sleeve when the rotationally driven portion 59 is about to rotate in the direction of arrow A in FIG. 64 is locked so as not to rotate integrally with the rotary driven portion 59. At this time, the sleeve 64 is substantially fixed to the housing body 51b. On the other hand, the friction material 65 a is provided so as to come into contact with the sleeve 64, and rotates integrally with the rotation driven portion 59. Then, a frictional force is generated between the sleeve 64 and the friction material 65a, and the rotational acceleration in the direction of arrow A in FIG.
 これにより、パーキングブレーキ装置の作動を解除する際において、外部荷重を受けた回転被駆動部59の回転加速度を回転駆動部(回転軸52a)の回転加速度に比して小さくすることができる。このため、パーキングブレーキ装置の作動を解除する際に位置保持機構においてがたつきが生じることを防止することができる(例えば、特許文献1参照。)。 Thus, when releasing the operation of the parking brake device, the rotational acceleration of the rotationally driven portion 59 that receives an external load can be made smaller than the rotational acceleration of the rotational drive portion (the rotational shaft 52a). For this reason, it is possible to prevent rattling from occurring in the position holding mechanism when releasing the operation of the parking brake device (see, for example, Patent Document 1).
特許第4214371号公報Japanese Patent No. 4214371
 こうした従来の電動アクチュエータ51では、ローラクラッチ63の解除とロックを繰り返すため、その度に異音や振動が発生する。また、こうしたクラッチ機構では、部品点数が多くなるだけでなく組立が煩雑となるため、軽量・コンパクト化と低コスト化の阻害要因となっていた。 In such a conventional electric actuator 51, since the roller clutch 63 is repeatedly released and locked, noise and vibration are generated each time. In addition, such a clutch mechanism not only increases the number of parts but also makes assembly complicated, which has been an impediment to light weight, compactness, and cost reduction.
 本発明は、こうした従来技術の問題点に鑑みてなされたものであり、システムエラーが生じて制御不能となった場合でも、ねじ軸がハウジングに衝突しない安全機構に着眼し、ハウジングの薄肉化によって軽量・コンパクト化を図ると共に、ねじ軸の衝突を回避して信頼性の向上を図った電動アクチュエータを提供することを目的とする。 The present invention has been made in view of such problems of the prior art. Even when a system error occurs and control becomes impossible, the present invention focuses on a safety mechanism in which the screw shaft does not collide with the housing. An object of the present invention is to provide an electric actuator that is lighter and more compact and that is improved in reliability by avoiding a collision of a screw shaft.
 係る目的を達成すべく、本発明のうち請求項1に記載の発明は、ハウジングと、このハウジングに取り付けられた電動モータと、この電動モータの回転力を、モータ軸を介して伝達し、前記電動モータの回転運動を駆動軸の軸方向の直線運動に変換するボールねじ機構とを備え、このボールねじ機構が、前記ハウジングに装着された支持軸受を介して回転可能に、かつ軸方向移動不可に支持され、内周に螺旋状のねじ溝が形成されたナットと、このナットに多数のボールを介して内挿され、前記駆動軸と同軸状に一体化され、外周に前記ナットのねじ溝に対応する螺旋状のねじ溝が形成されたねじ軸とで構成されると共に、前記ハウジングに前記ねじ軸を収容する袋孔が形成され、この袋孔に円筒状のスリーブが回り止めされた状態で嵌合されると共に、このスリーブの内周に軸方向に延びる凹溝が形成され、前記ねじ軸の端部に係止ピンが植設されて前記凹溝に係合され、前記ハウジングに対して前記ねじ軸が回転不可に、かつ軸方向移動可能に支持された電動アクチュエータにおいて、前記スリーブの凹溝に前記係止ピンを軸方向に保持できる段部が形成されている。 In order to achieve such an object, the invention according to claim 1 of the present invention includes a housing, an electric motor attached to the housing, and a rotational force of the electric motor transmitted via a motor shaft, A ball screw mechanism that converts the rotational motion of the electric motor into a linear motion in the axial direction of the drive shaft. The ball screw mechanism is rotatable via a support bearing mounted on the housing and cannot move in the axial direction. And a nut having a spiral thread groove formed on the inner periphery thereof, and a nut inserted into the nut via a number of balls, integrated with the drive shaft, and on the outer periphery thereof. And a screw hole in which the screw shaft is accommodated in the housing, and a cylindrical sleeve is prevented from rotating in the bag hole. Mated with A concave groove extending in the axial direction is formed on the inner periphery of the sleeve, and a locking pin is implanted at an end portion of the screw shaft to be engaged with the concave groove. In the electric actuator supported so as to be non-rotatable and movable in the axial direction, a step portion that can hold the locking pin in the axial direction is formed in the groove of the sleeve.
 このように、ハウジングと、このハウジングに取り付けられた電動モータと、この電動モータの回転力を、モータ軸を介して伝達し、電動モータの回転運動を駆動軸の軸方向の直線運動に変換するボールねじ機構とを備え、このボールねじ機構が、ハウジングに装着された支持軸受を介して回転可能に、かつ軸方向移動不可に支持され、内周に螺旋状のねじ溝が形成されたナットと、このナットに多数のボールを介して内挿され、駆動軸と同軸状に一体化され、外周にナットのねじ溝に対応する螺旋状のねじ溝が形成されたねじ軸とで構成されると共に、ハウジングにねじ軸を収容する袋孔が形成され、この袋孔に円筒状のスリーブが回り止めされた状態で嵌合されると共に、このスリーブの内周に軸方向に延びる凹溝が形成され、ねじ軸の端部に係止ピンが植設されて凹溝に係合されてハウジングに対してねじ軸が回転不可に、かつ軸方向移動可能に支持された電動アクチュエータにおいて、スリーブの凹溝に係止ピンを軸方向に保持できる段部が形成されているので、出力側からの逆入力が負荷された時、この逆入力によりねじ軸が回転し、係止ピンが凹溝から移動して段部に係止されてスリーブによってその回転が阻止されてロック状態になり、システムエラーが生じて制御不能となった場合でも、ねじ軸がハウジングに衝突するのを防止することができ、ハウジングの薄肉化によって軽量・コンパクト化を図ると共に、ねじ軸の衝突を回避して信頼性の向上を図った電動アクチュエータを提供することができる。 Thus, the housing, the electric motor attached to the housing, and the rotational force of the electric motor are transmitted via the motor shaft, and the rotational motion of the electric motor is converted into a linear motion in the axial direction of the drive shaft. A ball screw mechanism, and the ball screw mechanism is rotatably supported via a support bearing mounted on the housing and is not axially movable, and a nut having a helical thread groove formed on the inner periphery thereof; The screw shaft is inserted into the nut through a large number of balls, is integrated with the drive shaft in a coaxial manner, and includes a screw shaft having a spiral screw groove corresponding to the screw groove of the nut formed on the outer periphery. A bag hole for receiving the screw shaft is formed in the housing, and a cylindrical sleeve is fitted to the bag hole in a state of being prevented from rotating, and a concave groove extending in the axial direction is formed on the inner periphery of the sleeve. , Screw shaft In the electric actuator in which a locking pin is implanted at the end and engaged with the groove so that the screw shaft cannot be rotated with respect to the housing and can be moved in the axial direction, the locking pin is inserted into the groove of the sleeve. Is formed so that when the reverse input from the output side is loaded, the screw shaft is rotated by this reverse input, and the locking pin moves from the groove to the step. Even when the sleeve is locked and prevented from rotating, it becomes locked, and even if a system error occurs and control becomes impossible, the screw shaft can be prevented from colliding with the housing. It is possible to provide an electric actuator that is lighter and more compact and that improves the reliability by avoiding the collision of the screw shaft.
 好ましくは、請求項2に記載の発明のように、前記スリーブの段部が前記ねじ軸の軸心に対して螺旋階段状に複数形成されていれば、ねじ軸の適宜な位置で保持することができ、逆入力が常に負荷される状態であっても、所定の位置でねじ軸を保持することができ、設計自由度が大きくなると共に、電動アクチュエータの適用範囲が広がる。 Preferably, as in the invention described in claim 2, if a plurality of step portions of the sleeve are formed in a spiral step shape with respect to the axis of the screw shaft, the sleeve is held at an appropriate position of the screw shaft. Even if the reverse input is constantly loaded, the screw shaft can be held at a predetermined position, so that the degree of design freedom is increased and the application range of the electric actuator is expanded.
 また、請求項3に記載の発明のように、前記スリーブの外周に平坦面が形成されると共に、この平坦面に対応して前記ハウジングの袋孔に平坦面が形成され、これら平坦面同士を一致させた状態で前記スリーブが前記袋孔に嵌合されていれば、ハウジングに対してスリーブを回り止めすることができる。 According to a third aspect of the present invention, a flat surface is formed on the outer periphery of the sleeve, and a flat surface is formed in the bag hole of the housing corresponding to the flat surface. If the sleeve is fitted in the bag hole in the matched state, the sleeve can be prevented from rotating with respect to the housing.
 また、請求項4に記載の発明のように、前記ねじ軸の周方向の対向する位置に前記係止ピンが固定され、これらの係止ピンを収容し、前記スリーブの内周に対向して前記凹溝が形成されていれば、スリーブに対するねじ軸の位相合せが簡素化され、組立作業の工数を低減させることができる。 According to a fourth aspect of the present invention, the locking pins are fixed at opposing positions in the circumferential direction of the screw shaft, accommodate these locking pins, and face the inner periphery of the sleeve. If the concave groove is formed, the phase alignment of the screw shaft with respect to the sleeve is simplified, and the number of assembling operations can be reduced.
 また、請求項5に記載の発明のように、前記スリーブがMIMによって成形された焼結金属で構成されていれば、加工度が高く複雑な形状であっても容易に、かつ精度良く所望の形状・寸法に成形することができる。 Further, as in the invention described in claim 5, if the sleeve is made of sintered metal formed by MIM, even if it has a high workability and a complicated shape, it can be easily and accurately obtained. Can be formed into shapes and dimensions.
 本発明に係る電動アクチュエータは、ハウジングと、このハウジングに取り付けられた電動モータと、この電動モータの回転力を、モータ軸を介して伝達し、前記電動モータの回転運動を駆動軸の軸方向の直線運動に変換するボールねじ機構とを備え、このボールねじ機構が、前記ハウジングに装着された支持軸受を介して回転可能に、かつ軸方向移動不可に支持され、内周に螺旋状のねじ溝が形成されたナットと、このナットに多数のボールを介して内挿され、前記駆動軸と同軸状に一体化され、外周に前記ナットのねじ溝に対応する螺旋状のねじ溝が形成されたねじ軸とで構成されると共に、前記ハウジングに前記ねじ軸を収容する袋孔が形成され、この袋孔に円筒状のスリーブが回り止めされた状態で嵌合されると共に、このスリーブの内周に軸方向に延びる凹溝が形成され、前記ねじ軸の端部に係止ピンが植設されて前記凹溝に係合され、前記ハウジングに対して前記ねじ軸が回転不可に、かつ軸方向移動可能に支持された電動アクチュエータにおいて、前記スリーブの凹溝に前記係止ピンを軸方向に保持できる段部が形成されているので、出力側からの逆入力が負荷された時、この逆入力によりねじ軸が回転し、係止ピンが凹溝から移動して段部に係止されてスリーブによってその回転が阻止されてロック状態になり、システムエラーが生じて制御不能となった場合でも、ねじ軸がハウジングに衝突するのを防止することができ、ハウジングの薄肉化によって軽量・コンパクト化を図ると共に、ねじ軸の衝突を回避して信頼性の向上を図った電動アクチュエータを提供することができる。 An electric actuator according to the present invention transmits a rotational force of a housing, an electric motor attached to the housing, and the electric motor via a motor shaft, and the rotational motion of the electric motor in the axial direction of the drive shaft. A ball screw mechanism for converting into linear motion, and this ball screw mechanism is supported by a support bearing mounted on the housing so as to be rotatable and non-movable in the axial direction, and has a spiral thread groove on the inner periphery. And a nut that is inserted into the nut through a large number of balls, is coaxially integrated with the drive shaft, and a helical thread groove corresponding to the thread groove of the nut is formed on the outer periphery. The housing is formed with a bag hole for accommodating the screw shaft, and a cylindrical sleeve is fitted in the bag hole in a state in which the rotation is prevented. A concave groove extending in the axial direction is formed on the inner circumference of the screw shaft, a locking pin is implanted at an end of the screw shaft and engaged with the concave groove, and the screw shaft is not rotatable with respect to the housing. And in the electric actuator supported so as to be movable in the axial direction, a step portion that can hold the locking pin in the axial direction is formed in the concave groove of the sleeve, so when a reverse input from the output side is loaded, Due to this reverse input, the screw shaft rotates, the locking pin moves from the concave groove and is locked to the stepped portion, and the rotation is blocked by the sleeve, resulting in a locked state, resulting in a system error that makes the control impossible. Even in this case, it is possible to prevent the screw shaft from colliding with the housing, and it is possible to reduce the weight and size by reducing the thickness of the housing, and to provide an electric actuator that improves the reliability by avoiding the collision of the screw shaft Rukoto can.
本発明に係る電動アクチュエータの一実施形態を示す縦断面図である。It is a longitudinal section showing one embodiment of an electric actuator concerning the present invention. 図1のボールねじ機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ball screw mechanism of FIG. 図1の中間歯車部を示す要部拡大図である。It is a principal part enlarged view which shows the intermediate | middle gear part of FIG. 図1のスリーブを示す要部拡大図である。It is a principal part enlarged view which shows the sleeve of FIG. (a)は、図1のボールねじ機構のロック時を示す説明図、(b)は、(a)のロック解除時を示す説明図である。(A) is explanatory drawing which shows the time of locking of the ball screw mechanism of FIG. 1, (b) is explanatory drawing which shows the time of unlocking of (a). 図1のスリーブとねじ軸を示す斜視図である。It is a perspective view which shows the sleeve and screw shaft of FIG. 従来の電動アクチュエータを適用した電動パーキングブレーキ駆動装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the electric parking brake drive device to which the conventional electric actuator is applied. (a)は、図7の電動パーキングブレーキ駆動装置のVIIIa-VIIIa線に沿った横断面図、(b)は、同上、VIIIb-VIIIb線に沿った横断面図である。(A) is a cross-sectional view taken along line VIIIa-VIIIa of the electric parking brake drive device of FIG. 7, and (b) is a cross-sectional view taken along line VIIIb-VIIIb. (a)~(c)は、図7の電動パーキングブレーキ駆動装置の動作を示す要部拡大断面図である。(A)-(c) is an expanded sectional view of the principal part which shows operation | movement of the electric parking brake drive device of FIG.
 アルミ合金製のハウジングと、このハウジングに取り付けられた電動モータと、この電動モータの回転力を、モータ軸を介して伝達する減速機構と、この減速機構を介して前記電動モータの回転運動を駆動軸の軸方向の直線運動に変換するボールねじ機構とを備え、このボールねじ機構が、前記ハウジングに装着された支持軸受を介して回転可能に、かつ軸方向移動不可に支持され、内周に螺旋状のねじ溝が形成されたナットと、このナットに多数のボールを介して内挿され、前記駆動軸と同軸状に一体化され、外周に前記ナットのねじ溝に対応する螺旋状のねじ溝が形成されたねじ軸とで構成されると共に、前記ハウジングに前記ねじ軸を収容する袋孔が形成され、この袋孔に円筒状のスリーブが回り止めされた状態で嵌合されると共に、このスリーブの内周に軸方向に延びる凹溝が形成され、前記ねじ軸の端部に係止ピンが植設されて前記凹溝に係合され、前記ハウジングに対して前記ねじ軸が回転不可に、かつ軸方向移動可能に支持された電動アクチュエータにおいて、前記スリーブの凹溝の一方の端面から当該凹溝に平行してその溝幅が段階的に大きくなる方向に、前記ねじ軸の軸心に対して複数の螺旋階段状の段部が形成されている。 An aluminum alloy housing, an electric motor attached to the housing, a reduction mechanism that transmits the rotational force of the electric motor via a motor shaft, and the rotational movement of the electric motor is driven via the reduction mechanism A ball screw mechanism for converting the shaft into a linear motion in the axial direction, and this ball screw mechanism is supported by a support bearing mounted on the housing so as to be rotatable and non-movable in the axial direction. A nut formed with a helical thread groove, and a helical screw that is inserted into the nut through a large number of balls, is coaxially integrated with the drive shaft, and corresponds to the thread groove of the nut on the outer periphery A bag hole for accommodating the screw shaft is formed in the housing, and a cylindrical sleeve is fitted to the bag hole while being prevented from rotating. A concave groove extending in the axial direction is formed on the inner periphery of the sleeve, and a locking pin is implanted at the end of the screw shaft and engaged with the concave groove, so that the screw shaft cannot rotate with respect to the housing. Further, in the electric actuator supported so as to be movable in the axial direction, the axis of the screw shaft extends in a direction in which the groove width gradually increases in parallel with the groove from one end surface of the groove of the sleeve. On the other hand, a plurality of spiral stepped steps are formed.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、本発明に係る電動アクチュエータの一実施形態を示す縦断面図、図2は、図1のボールねじ機構を示す縦断面図、図3は、図1の中間歯車部を示す要部拡大図、図4は、図1のスリーブを示す要部拡大図、図5(a)は、図1のボールねじ機構のロック時を示す説明図、(b)は、(a)のロック解除時を示す説明図、図6は、図1のスリーブとねじ軸を示す斜視図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a longitudinal sectional view showing an embodiment of an electric actuator according to the present invention, FIG. 2 is a longitudinal sectional view showing a ball screw mechanism of FIG. 1, and FIG. 3 is a main part showing an intermediate gear portion of FIG. FIG. 4 is an enlarged view of the main part showing the sleeve of FIG. 1, FIG. 5A is an explanatory view showing the ball screw mechanism of FIG. 1 being locked, and FIG. FIG. 6 is a perspective view showing the sleeve and the screw shaft of FIG.
 この電動アクチュエータ1は、図1に示すように、円筒状のハウジング2と、このハウジング2に取り付けられた電動モータMと、この電動モータのモータ軸3aに取付けられた入力歯車3に噛合する中間歯車4、およびこの中間歯車4に噛合する出力歯車5からなる減速機構6と、この減速機構6を介して電動モータMの回転運動を駆動軸7の軸方向の直線運動に変換するボールねじ機構8とを備えている。 As shown in FIG. 1, the electric actuator 1 includes a cylindrical housing 2, an electric motor M attached to the housing 2, and an intermediate gear meshing with an input gear 3 attached to a motor shaft 3a of the electric motor. A speed reduction mechanism 6 comprising a gear 4 and an output gear 5 meshing with the intermediate gear 4, and a ball screw mechanism for converting the rotational motion of the electric motor M into the linear motion in the axial direction of the drive shaft 7 via the speed reduction mechanism 6. 8 and.
 ハウジング2はA6063TEやADC12等のアルミ合金からなり、第1のハウジング2aと、その端面に衝合された第2のハウジング2bとからなり、固定ボルト(図示せず)によって一体に固定されている。第1のハウジング2aには電動モータMが取り付けられると共に、これら第1のハウジング2aと第2のハウジング2bには、ねじ軸10を収容するための貫通孔11と袋孔12が形成されている。 The housing 2 is made of an aluminum alloy such as A6063TE or ADC12, and includes a first housing 2a and a second housing 2b abutted on the end face thereof, and is fixed integrally by a fixing bolt (not shown). . An electric motor M is attached to the first housing 2a, and a through hole 11 and a bag hole 12 for accommodating the screw shaft 10 are formed in the first housing 2a and the second housing 2b. .
 電動モータMのモータ軸3aは、その端部に入力歯車3が圧入により相対回転不能に取り付けられ、第2のハウジング2bに装着された深溝玉軸受からなる転がり軸受13によって回転自在に支持されている。また、平歯車からなる中間歯車4に噛合する出力歯車5は、後述するボールねじ機構8を構成するナット18にキー14を介して一体に固定されている。 The motor shaft 3a of the electric motor M is rotatably supported by a rolling bearing 13 composed of a deep groove ball bearing mounted on the second housing 2b. Yes. The output gear 5 that meshes with the intermediate gear 4 that is a spur gear is integrally fixed to a nut 18 that constitutes a ball screw mechanism 8 that will be described later via a key 14.
 駆動軸7は、ボールねじ機構8を構成するねじ軸10と一体に構成され、この駆動軸7の一端部(図中右端部)に係止ピン15が植設されている。また、第2のハウジング2bの袋孔12には後述する円筒状のスリーブ17が嵌合されている。そして、このスリーブ17の内周に軸方向に延びて形成された凹溝17aにねじ軸10の係止ピン15が係合され、ねじ軸10が、回転不可に、かつ軸方向移動可能に支持されている。 The drive shaft 7 is integrally formed with a screw shaft 10 constituting the ball screw mechanism 8, and a locking pin 15 is implanted at one end portion (right end portion in the figure) of the drive shaft 7. A cylindrical sleeve 17 described later is fitted into the bag hole 12 of the second housing 2b. Then, a locking pin 15 of the screw shaft 10 is engaged with a concave groove 17a formed in the inner periphery of the sleeve 17 so as to extend in the axial direction, and the screw shaft 10 is supported to be non-rotatable and movable in the axial direction. Has been.
 ボールねじ機構8は、図2に拡大して示すように、ねじ軸10と、このねじ軸10にボール19を介して外挿されたナット18とを備えている。ねじ軸10は、外周に螺旋状のねじ溝10aが形成されている。一方、ナット18は、ねじ軸10に外挿されると共に、内周にねじ軸10のねじ溝10aに対応する螺旋状のねじ溝18aが形成され、これらねじ溝10a、18aとの間に多数のボール19が転動自在に収容されている。そして、ナット18は、第1、第2のハウジング2a、2bに対して、2つの支持軸受20、20を介して回転自在に、かつ軸方向移動不可に支承されている。21は、ナット18のねじ溝18aを連結して循環部材を構成する駒部材で、この駒部材21によって多数のボール19が無限循環することができる。 The ball screw mechanism 8 includes a screw shaft 10 and a nut 18 externally inserted through the ball 19 to the screw shaft 10 as shown in an enlarged view in FIG. The screw shaft 10 has a spiral thread groove 10a formed on the outer periphery. On the other hand, the nut 18 is extrapolated to the screw shaft 10, and a helical screw groove 18 a corresponding to the screw groove 10 a of the screw shaft 10 is formed on the inner periphery, and a large number of screws 18 a and 18 a are formed between these nuts 18. A ball 19 is accommodated so as to roll freely. The nut 18 is supported by the first and second housings 2a and 2b via the two support bearings 20 and 20 so as to be rotatable and non-movable in the axial direction. Reference numeral 21 denotes a piece member that constitutes a circulation member by connecting the thread grooves 18a of the nut 18, and the piece member 21 allows an infinite circulation of a large number of balls 19.
 各ねじ溝10a、18aの断面形状は、サーキュラアーク形状であってもゴシックアーク形状であっても良いが、ここではボール19との接触角が大きくとれ、アキシアルすきまが小さく設定できるゴシックアーク形状に形成されている。これにより、軸方向荷重に対する剛性が高くなり、かつ振動の発生を抑制することができる。 The cross-sectional shape of each of the thread grooves 10a and 18a may be a circular arc shape or a gothic arc shape, but here, a gothic arc shape that allows a large contact angle with the ball 19 and a small axial clearance can be set. Is formed. Thereby, the rigidity with respect to an axial load becomes high and generation | occurrence | production of a vibration can be suppressed.
 ナット18はSCM415やSCM420等の肌焼き鋼からなり、真空浸炭焼入れによってその表面に55~62HRCの範囲に硬化処理が施されている。これにより、熱処理後のスケール除去のためのバフ加工等を省略することができ、低コスト化を図ることができる。一方、ねじ軸10はS55C等の中炭素鋼あるいはSCM415やSCM420等の肌焼き鋼から円柱状に形成され、ねじ溝10aは旋削等の機械加工ではなく転造加工によって形成されている。そして、高周波焼入れ、あるいは浸炭焼入れによってその表面に55~62HRCの範囲に硬化処理が施されている。これにより、量産性が向上し、低コスト化を図ることができる。 The nut 18 is made of case-hardened steel such as SCM415 or SCM420, and its surface is hardened in the range of 55 to 62HRC by vacuum carburizing and quenching. Thereby, the buffing etc. for the scale removal after the heat treatment can be omitted, and the cost can be reduced. On the other hand, the screw shaft 10 is formed in a columnar shape from medium carbon steel such as S55C or case-hardened steel such as SCM415 and SCM420, and the screw groove 10a is formed by rolling rather than machining such as turning. The surface is hardened in the range of 55 to 62 HRC by induction hardening or carburizing hardening. Thereby, mass productivity improves and cost reduction can be achieved.
 ナット18の外周面18bには減速機構6を構成する出力歯車5が一体に固定されると共に、この出力歯車5の両側に2つの支持軸受20、20が所定のシメシロを介して圧入されている。これにより、駆動軸7からスラスト荷重が負荷されても支持軸受20、20と出力歯車5の軸方向の位置ズレを防止することができる。また、2つの支持軸受20、20は、両端部にシールド板20a、20aが装着された密封型の深溝玉軸受で構成され、軸受内部に封入された潤滑グリースの外部への漏洩と、外部から摩耗粉等が軸受内部に侵入するのを防止している。 The output gear 5 constituting the speed reduction mechanism 6 is integrally fixed to the outer peripheral surface 18b of the nut 18, and two support bearings 20 and 20 are press-fitted on both sides of the output gear 5 via a predetermined shimiro. . Thereby, even if a thrust load is applied from the drive shaft 7, it is possible to prevent the axial displacement between the support bearings 20 and 20 and the output gear 5. Further, the two support bearings 20 and 20 are constituted by sealed deep groove ball bearings having shield plates 20a and 20a attached to both ends, and leakage of the lubricating grease enclosed in the bearings to the outside and from the outside This prevents wear powder from entering the bearing.
 また、本実施形態では、ナット18を回転自在に支持する支持軸受20が同じ仕様の深溝玉軸受で構成されているので、前述した駆動軸7からスラスト荷重および出力歯車5を介して負荷されるラジアル荷重の両方を負荷することができると共に、組立時に誤組み防止のための確認作業を簡便化することができ、組立作業性を向上させることができる。なお、ここで、同じ仕様の深溝玉軸受とは、軸受の内径、外径、幅寸法をはじめ、転動体サイズ、個数および軸受内部すきま等が同一なものを言う。 Further, in the present embodiment, the support bearing 20 that rotatably supports the nut 18 is composed of deep groove ball bearings having the same specifications, and thus is loaded from the drive shaft 7 through the thrust load and the output gear 5 described above. Both radial loads can be applied, and confirmation work for preventing misassembly during assembly can be simplified, and assembling workability can be improved. Here, the deep groove ball bearings having the same specifications refer to bearings having the same inner diameter, outer diameter, width dimension, rolling element size, number, bearing internal clearance, and the like.
 また、ここでは、一対の支持軸受20、20のうち一方(図中左側)の支持軸受20がリング状の弾性部材からなるワッシャ27を介して第1のハウジング2aに装着されている。このワッシャ27は、強度や耐摩耗性が高いオーステナイト系ステンレス鋼板(JIS規格のSUS304系等)、あるいは防錆処理された冷間圧延鋼板(JIS規格のSPCC系等)からプレス加工にて形成されたウェーブワッシャからなる。そして、その内径Dが支持軸受20の内輪外径dよりも大径に形成されている。これにより、一対の支持軸受20、20の軸方向ガタをなくすことができ、円滑な回転性能を得ることができると共に、ワッシャ27が、支持軸受20の外輪のみに当接して回転輪となる内輪とは干渉しないため、逆スラスト荷重が生じてナット18が第1のハウジング2a側に押し付けられても支持軸受20の内輪が第1のハウジング2aに当接して摩擦力が上昇するのを防止し、ロック状態になるのを防止することができる。 Also, here, one of the pair of support bearings 20, 20 (the left side in the figure) is mounted on the first housing 2a via a washer 27 made of a ring-shaped elastic member. The washer 27 is formed by press working from an austenitic stainless steel sheet (JIS standard SUS304 system or the like) having high strength and wear resistance, or a cold-rolled steel sheet (JIS standard SPCC system or the like) subjected to rust prevention. It consists of a wave washer. The inner diameter D is formed larger than the inner ring outer diameter d of the support bearing 20. As a result, the axial backlash of the pair of support bearings 20 and 20 can be eliminated, and smooth rotation performance can be obtained. Therefore, even if a reverse thrust load is generated and the nut 18 is pressed against the first housing 2a, the inner ring of the support bearing 20 is prevented from coming into contact with the first housing 2a to increase the frictional force. , It can be prevented from being locked.
 減速機構6を構成する中間歯車4は、図3に示すように、転がり軸受23を介して第1、第2のハウジング2a、2bに植設された歯車軸22に回転自在に支承されている。歯車軸22の端部のうち、例えば、第1のハウジング2a側の端部を圧入する場合、第2のハウジング2b側の端部をすきま嵌めに設定することにより、ミスアライメント(組立誤差)を許容して円滑な回転性能を確保することができる。本実施形態では、転がり軸受23は、中間歯車4の内径4aに圧入される鋼板プレス製の外輪24と、保持器25を介して外輪24に転動自在に収容された複数の針状ころ26とを備えた、所謂シェル型の針状ころ軸受で構成されている。これにより、入手性が高く、低コスト化を図ることができる。 As shown in FIG. 3, the intermediate gear 4 constituting the speed reduction mechanism 6 is rotatably supported on a gear shaft 22 implanted in the first and second housings 2 a and 2 b via a rolling bearing 23. . Of the end portions of the gear shaft 22, for example, when press-fitting the end portion on the first housing 2a side, the end portion on the second housing 2b side is set to be a clearance fit, thereby making misalignment (assembly error). Allowing smooth rotation performance can be ensured. In the present embodiment, the rolling bearing 23 includes an outer ring 24 made of a steel plate press-fitted into the inner diameter 4 a of the intermediate gear 4, and a plurality of needle rollers 26 accommodated in the outer ring 24 via a cage 25 so as to be freely rollable. And so-called shell-type needle roller bearings. Thereby, availability is high and cost reduction can be achieved.
 また、中間歯車4の両側にはリング状のワッシャ28、28が装着され、中間歯車4が直接第1、第2のハウジング2a、2bに接触するのを防止している。ここで、中間歯車4の歯部4bの幅が歯幅よりも小さく形成されている。これにより、ワッシャ28との接触面積を小さくすることができ、回転時の摩擦抵抗を抑えて円滑な回転性能を得ることができる。ここで、ワッシャ28は、強度や耐摩耗性が高いオーステナイト系ステンレス鋼板、あるいは防錆処理された冷間圧延鋼板からプレス加工にて形成された平ワッシャからなる。なお、これ以外にも、例えば、黄銅や焼結金属、または、GF(グラス繊維)等の繊維状強化材が所定量充填されたPA(ポリアミド)66等の熱可塑性の合成樹脂で形成されていても良い。 Further, ring-shaped washers 28 and 28 are mounted on both sides of the intermediate gear 4 to prevent the intermediate gear 4 from directly contacting the first and second housings 2a and 2b. Here, the width of the tooth portion 4b of the intermediate gear 4 is formed smaller than the tooth width. As a result, the contact area with the washer 28 can be reduced, and the frictional resistance during rotation can be suppressed and smooth rotation performance can be obtained. Here, the washer 28 is a flat washer formed by pressing from an austenitic stainless steel plate having high strength and high wear resistance, or a cold-rolled steel plate treated with rust prevention. In addition to this, for example, it is formed of a thermoplastic synthetic resin such as PA (polyamide) 66 filled with a predetermined amount of a fibrous reinforcing material such as brass, sintered metal, or GF (glass fiber). May be.
 さらに、転がり軸受23の幅が中間歯車4の歯幅よりも小さく設定されている。これにより、摩擦による軸受側面の摩耗や変形を防止することができ、円滑な回転性能を得ることができる。 Furthermore, the width of the rolling bearing 23 is set smaller than the tooth width of the intermediate gear 4. Thereby, wear and deformation of the bearing side surface due to friction can be prevented, and smooth rotation performance can be obtained.
 図4に示すように、ねじ軸10を回転不可に、かつ軸方向移動可能に支持するスリーブ17は、第2のハウジング2bの袋孔12に嵌合されている。具体的には、スリーブ17の外周の対向する位相に平坦面17b、17bが形成されると共に、これらの平坦面17b、17bに対応して第2のハウジング2bの袋孔12の対向する位相にも平坦面12a、12aが形成されている。また、第2のハウジング2bの袋孔12の開口端部に環状溝29が形成されると共に、この環状溝29に止め輪30が装着され、両平坦面17b、12a同士を一致させ、スリーブ17を底部12bに向けて嵌合することにより、第2のハウジング2bに対してスリーブ17が回り止めされた状態で、軸方向に位置決め固定されている。 As shown in FIG. 4, the sleeve 17 that supports the screw shaft 10 so as not to rotate and to be movable in the axial direction is fitted in the bag hole 12 of the second housing 2b. Specifically, flat surfaces 17b and 17b are formed at opposite phases on the outer periphery of the sleeve 17, and at the opposite phases of the bag holes 12 of the second housing 2b corresponding to these flat surfaces 17b and 17b. Also, flat surfaces 12a and 12a are formed. An annular groove 29 is formed at the opening end of the bag hole 12 of the second housing 2b, and a retaining ring 30 is attached to the annular groove 29 so that the flat surfaces 17b and 12a are aligned with each other, and the sleeve 17 Is fitted toward the bottom 12b, and is positioned and fixed in the axial direction in a state in which the sleeve 17 is prevented from rotating with respect to the second housing 2b.
 ここで、スリーブ17は、内周に凹溝17aの一方の端面からねじ軸10の軸心に対して螺旋階段状の複数(ここでは3段)の段部31、32、33が形成されている。具体的には、凹溝17aに平行して溝幅が段階的にそれぞれ大きくなる方向に段部31、32、33が形成され、これらの段部壁面31a、32a、33aが、ねじ軸10のねじ溝10aのリード角に沿って形成されると共に、これら段部31、32、33の段部幅面31b、32b、33bがねじ溝10aのピッチよりも幅広に設定されている(図6参照)。なお、ここでいう「リード」というのは、ねじ軸10が1回転する時に軸方向に移動する長さで、「リード角」とは、ねじ山のつる巻き線と、その上の1点を通るねじ軸10に直角な平面とがなす角度、また、「ピッチ」というのは、ねじ山の相隣り合う山の対応する2点間の距離をいう。例えば、ねじ上の1点が軸方向に移動した距離1本のつる巻線に沿ってねじ山を設けた1条ねじでは、ピッチ=リードとなり、1本の円筒に2本のつる巻線を等間隔に巻き付けた2条ねじでは、リード=2×ピッチとなる。 Here, the sleeve 17 has a plurality of spiral stepped step portions 31, 32, and 33 formed in the inner periphery from one end face of the concave groove 17 a to the axial center of the screw shaft 10. Yes. Specifically, step portions 31, 32, 33 are formed in a direction in which the groove width increases stepwise in parallel with the concave groove 17 a, and these step portion wall surfaces 31 a, 32 a, 33 a are connected to the screw shaft 10. It is formed along the lead angle of the screw groove 10a, and the step width surfaces 31b, 32b, 33b of the step portions 31, 32, 33 are set wider than the pitch of the screw groove 10a (see FIG. 6). . Here, the “lead” is a length that moves in the axial direction when the screw shaft 10 makes one rotation, and the “lead angle” means a thread winding coil and one point above it. An angle formed by a plane perpendicular to the passing screw axis 10 and “pitch” refer to a distance between two corresponding points of adjacent threads. For example, in a single-threaded screw with a screw thread along a single helical winding at a distance of one point on the screw in the axial direction, pitch = lead, and two helical windings on one cylinder. In a double thread wound at equal intervals, the lead = 2 × pitch.
 次に、図5を用いて、本発明に係る安全機構の作用について説明する。
 図5(a)に示すように、ねじ軸10が右ねじ、かつ図中右方向に荷重を受けつつ、荷重に逆らって図中左方向に軸を作動させる場合、通常、ナット18の回転に伴い、ねじ軸10の係止ピン15は段部幅面31b(段部側)に沿って摺動する。ねじ軸10がスリーブ17に対して、回転不可に、かつ軸方向移動可能に支持されているが、出力側からの逆入力(図中、右方向)が負荷され、かつ電動モータのトルクがOFFの時、この逆入力によりねじ軸10は、図中矢印に示すように、右回転(時計回りの方向)し、係止ピン15は段部31に係止される。具体的には、段部31の段部幅面31bに沿って移動して段部壁面31aに衝合し、係止ピン15が軸方向に固定される。これにより、ねじ軸10はスリーブ17によってその回転が阻止されてロック状態になり、システムエラーが生じて制御不能となった場合でも、ねじ軸10が第2のハウジング2bに衝突するのを防止することができ、ハウジングの薄肉化によって軽量・コンパクト化を図ると共に、ねじ軸10の衝突を回避して信頼性の向上を図った電動アクチュエータを提供することができる。
Next, the operation of the safety mechanism according to the present invention will be described with reference to FIG.
As shown in FIG. 5 (a), when the screw shaft 10 is a right-hand screw and receives a load in the right direction in the drawing, and the shaft is operated in the left direction in the drawing against the load, the nut 18 is usually rotated. Accordingly, the locking pin 15 of the screw shaft 10 slides along the stepped portion width surface 31b (stepped portion side). The screw shaft 10 is supported to the sleeve 17 so as not to rotate and to be movable in the axial direction, but a reverse input from the output side (right direction in the figure) is loaded and the torque of the electric motor is OFF At this time, by this reverse input, the screw shaft 10 rotates clockwise (clockwise direction) as indicated by an arrow in the figure, and the locking pin 15 is locked to the step portion 31. Specifically, it moves along the stepped portion width surface 31b of the stepped portion 31 to abut against the stepped portion wall surface 31a, and the locking pin 15 is fixed in the axial direction. As a result, the screw shaft 10 is prevented from rotating by the sleeve 17 and is locked, and even when a system error occurs and control becomes impossible, the screw shaft 10 is prevented from colliding with the second housing 2b. In addition, it is possible to provide an electric actuator that can be reduced in weight and size by reducing the thickness of the housing and can improve the reliability by avoiding the collision of the screw shaft 10.
 一方、ねじ軸10のロック解除時は、図5(b)に示すように、入力側から軸を図中右方向に作動させることで逆入力以上の荷重を加えることにより、ねじ軸10が左回転(反時計回りの方向)し、係止ピン15が段部31から上方向に移動する。すなわち、ねじ軸10の係止ピン15が段部31との係合が解かれてロックが解除され、ねじ軸10が、スリーブ17に対して、回転不可に、かつ軸方向移動可能に支持されて通常状態に復帰する。 On the other hand, when the screw shaft 10 is unlocked, as shown in FIG. 5B, the screw shaft 10 is moved to the left by applying a load greater than the reverse input by operating the shaft in the right direction in the figure from the input side. It rotates (counterclockwise direction), and the locking pin 15 moves upward from the step portion 31. That is, the locking pin 15 of the screw shaft 10 is disengaged from the stepped portion 31 to be unlocked, and the screw shaft 10 is supported so as to be non-rotatable and axially movable with respect to the sleeve 17. To return to the normal state.
 本実施形態では、図6に示すように、スリーブ17の内周に螺旋階段状の複数の段部31、32、33が形成されているので、ねじ軸10の適宜な位置で保持することができる。これにより、逆入力が常に負荷される状態であっても、所定の位置でねじ軸10を保持することができ、設計自由度が大きくなると共に、電動アクチュエータの適用範囲が広がる。 In the present embodiment, as shown in FIG. 6, a plurality of spiral stepped steps 31, 32, 33 are formed on the inner periphery of the sleeve 17, so that the screw shaft 10 can be held at an appropriate position. it can. Thereby, even if the reverse input is constantly loaded, the screw shaft 10 can be held at a predetermined position, and the degree of freedom in design is increased and the application range of the electric actuator is expanded.
 また、ねじ軸10の周方向の対向する位置に係止ピン15、15が固定され、この係止ピン15、15を収容し、ねじ軸10の回転を阻止する凹溝17a、17aがスリーブ17の内周に対向して形成されているので、スリーブ17に対するねじ軸10の位相合せが簡素化され、組立作業の工数を低減させることができる。 Locking pins 15, 15 are fixed at opposing positions in the circumferential direction of the screw shaft 10, and the grooves 17 a, 17 a that house the locking pins 15, 15 and prevent the screw shaft 10 from rotating are sleeves 17. Therefore, the phase alignment of the screw shaft 10 with respect to the sleeve 17 is simplified, and the number of assembling operations can be reduced.
 このスリーブ17はS55C等の中炭素鋼あるいはSCM415やSCM420等の肌焼き鋼から鍛造加工あるいは冷間圧造法によって形成されても良いが、本実施形態では、スリーブ17は、金属粉末を可塑状に調整し、射出成形機で成形される焼結合金からなる。この射出成形に際しては、まず、金属粉と、プラスチックおよびワックスからなるバインダとを混練機で混練し、その混練物をペレット状に造粒する。造粒したペレットは、射出成形機のホッパに供給し、金型内に加熱溶融状態で押し込む、所謂MIM(Metal Injection Molding)により成形されている。こうしたMIMによって成形される焼結合金であれば、加工度が高く複雑な形状であっても容易に、かつ精度良く所望の形状・寸法に成形することができる。 The sleeve 17 may be formed from medium carbon steel such as S55C or case-hardened steel such as SCM415 or SCM420 by forging or cold forging. In the present embodiment, the sleeve 17 is made of a metal powder in a plastic form. It consists of a sintered alloy that is adjusted and molded by an injection molding machine. In this injection molding, first, metal powder and a binder made of plastic and wax are kneaded by a kneader, and the kneaded product is granulated into pellets. The granulated pellets are molded by so-called MIM (Metal Injection Molding), which is supplied to a hopper of an injection molding machine and pushed into a mold in a heated and melted state. A sintered alloy formed by such an MIM can be easily and accurately formed into a desired shape / dimension even if it has a high workability and a complicated shape.
 前記金属粉として、後に浸炭焼入が可能な材質、例えば、C(炭素)が0.13wt%、Ni(ニッケル)が0.21wt%、Cr(クロム)が1.1wt%、Cu(銅)が0.04wt%、Mn(マンガン)が0.76wt%、Mo(モリブデン)が0.19wt%、Si(シリコン)が0.20wt%、残りがFe(鉄)等からなるSCM415を例示することができる。なお、スリーブ17は、浸炭焼入れおよび焼戻し温度を調整して行われる。 As the metal powder, a material that can be subsequently carburized and hardened, for example, C (carbon) is 0.13 wt%, Ni (nickel) is 0.21 wt%, Cr (chromium) is 1.1 wt%, Cu (copper) Exemplifies SCM415 which is 0.04 wt%, Mn (manganese) is 0.76 wt%, Mo (molybdenum) is 0.19 wt%, Si (silicon) is 0.20 wt%, and the rest is Fe (iron). Can do. The sleeve 17 is performed by adjusting the carburizing quenching and tempering temperatures.
 また、スリーブ17の材料としてこれ以外にも、Niが3.0~10.0wt%含有し、加工性、耐食性に優れた材料(日本粉末冶金工業規格のFEN8)、あるいは、Cが0.07wt%、Crが17wt%、Niが4wt%、Cuが4wt%、残りがFe等からなる析出硬化系ステンレスSUS630であっても良い。このSUS630は、固溶化熱処理で20~33HRCの範囲に表面硬さを適切に上げることができ、強靭性と高硬度を確保することができる。 In addition to this, the sleeve 17 is made of a material containing 3.0 to 10.0 wt% of Ni and having excellent workability and corrosion resistance (FEN8 of Japanese Powder Metallurgy Industry Standard), or C of 0.07 wt%. %, Cr is 17 wt%, Ni is 4 wt%, Cu is 4 wt%, and the remainder is precipitation hardened stainless steel SUS630 made of Fe or the like. This SUS630 can appropriately increase the surface hardness in the range of 20 to 33 HRC by solution heat treatment, and can ensure toughness and high hardness.
 なお、本実施形態では、減速機がある場合での実施の形態について説明を行ったが、特に減速機がある場合に限定されず、減速機がない場合でも実施することができる。 In the present embodiment, the embodiment in the case where there is a reduction gear has been described. However, the embodiment is not particularly limited to the case in which there is a reduction gear, and can be implemented even when there is no reduction gear.
 以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.
 本発明に係る電動アクチュエータは、一般産業用の電動機、自動車等の駆動部に使用され、電動モータからの回転入力を、ボールねじ機構を介して駆動軸の直線運動に変換するボールねじ機構を備えた電動アクチュエータに適用できる。 An electric actuator according to the present invention includes a ball screw mechanism that is used in a drive unit of a general industrial electric motor, an automobile, or the like, and that converts a rotational input from an electric motor into a linear motion of a drive shaft via the ball screw mechanism. Applicable to electric actuators.
1 電動アクチュエータ
2 ハウジング
2a 第1のハウジング
2b 第2のハウジング
3 入力歯車
3a モータ軸
4 中間歯車
4a 中間歯車の内径
4b 歯部
5 出力歯車
6 減速機構
7 駆動軸
8 ボールねじ機構
10 ねじ軸
10a、18a ねじ溝
11 貫通孔
12 袋孔
12a、17b 平坦面
12b 袋孔の底面
13、23 転がり軸受
14 キー
15 係止ピン
16 止め輪
17 スリーブ
17a 凹溝
18 ナット
18b ナットの外周面
19 ボール
20 支持軸受
20a シールド板
21 駒部材
22 歯車軸
24 外輪
25 保持器
26 針状ころ
27、28 ワッシャ
29 環状溝
30 止め輪
31、32、33 段部
31a、32a、33a 段部壁面
31b、32b、33b 段部幅面
51 電動アクチュエータ
51a モータハウジング
51b ハウジング本体
52 電動モータ
52a 回転軸
52b ステータ
52c ロータ
52d 爪部
53、54、58 軸受
55 外輪
55a フランジ体
56 ころ
57、62a キー
59 回転被駆動部
59a カム面
59b キー溝
59c カム溝
59d、59e 傾斜部
60 ナット
61 ねじ軸
62 移動ケース
62b ピン
63 ローラクラッチ
64 スリーブ
65a、65b 摩擦材
66 ねじ
67 ボールねじ機構
a、b、c キーと爪部との間隔
d 支持軸受の内輪外径
D ワッシャの内径
M 電動モータ
DESCRIPTION OF SYMBOLS 1 Electric actuator 2 Housing 2a 1st housing 2b 2nd housing 3 Input gear 3a Motor shaft 4 Intermediate gear 4a Inner gear 4b Inner diameter 4b Tooth part 5 Output gear 6 Reduction mechanism 7 Drive shaft 8 Ball screw mechanism 10 Screw shaft 10a, 18a Thread groove 11 Through-hole 12 Bag hole 12a, 17b Flat surface 12b Bottom surface of bag hole 13, 23 Rolling bearing 14 Key 15 Locking pin 16 Retaining ring 17 Sleeve 17a Groove 18 Nut 18b Nut outer surface 19 Ball 20 Support bearing 20a Shield plate 21 Piece member 22 Gear shaft 24 Outer ring 25 Cage 26 Needle rollers 27, 28 Washers 29 Annular groove 30 Retaining rings 31, 32, 33 Step portions 31a, 32a, 33a Step portion wall surfaces 31b, 32b, 33b Step portions Width surface 51 Electric actuator 51a Motor housing 51b Housing body 52 Electric Motor 52a Rotating shaft 52b Stator 52c Rotor 52d Claw 53, 54, 58 Bearing 55 Outer ring 55a Flange body 56 Roller 57, 62a Key 59 Rotated driven part 59a Cam surface 59b Key groove 59c Cam groove 59d, 59e Inclined part 60 Nut 61 Screw shaft 62 Moving case 62b Pin 63 Roller clutch 64 Sleeve 65a, 65b Friction material 66 Screw 67 Ball screw mechanism a, b, c Distance between key and claw part d Inner ring outer diameter D of support bearing Washer inner diameter M Electric motor

Claims (5)

  1.  ハウジングと、
     このハウジングに取り付けられた電動モータと、
     この電動モータの回転力を、モータ軸を介して伝達し、前記電動モータの回転運動を駆動軸の軸方向の直線運動に変換するボールねじ機構とを備え、
     このボールねじ機構が、前記ハウジングに装着された支持軸受を介して回転可能に、かつ軸方向移動不可に支持され、内周に螺旋状のねじ溝が形成されたナットと、
     このナットに多数のボールを介して内挿され、前記駆動軸と同軸状に一体化され、外周に前記ナットのねじ溝に対応する螺旋状のねじ溝が形成されたねじ軸とで構成されると共に、
     前記ハウジングに前記ねじ軸を収容する袋孔が形成され、この袋孔に円筒状のスリーブが回り止めされた状態で嵌合されると共に、
     このスリーブの内周に軸方向に延びる凹溝が形成され、前記ねじ軸の端部に係止ピンが植設されて前記凹溝に係合され、前記ハウジングに対して前記ねじ軸が回転不可に、かつ軸方向移動可能に支持された電動アクチュエータにおいて、
     前記スリーブの凹溝に前記係止ピンを軸方向に保持できる段部が形成されていることを特徴とする電動アクチュエータ。
    A housing;
    An electric motor attached to the housing;
    A ball screw mechanism that transmits the rotational force of the electric motor via a motor shaft and converts the rotational motion of the electric motor into a linear motion in the axial direction of the drive shaft;
    The ball screw mechanism is rotatably supported via a support bearing mounted on the housing and is not axially movable, and a nut having a helical thread groove formed on the inner periphery,
    The nut is inserted through a large number of balls, is integrated with the drive shaft coaxially, and includes a screw shaft in which a spiral screw groove corresponding to the screw groove of the nut is formed on the outer periphery. With
    A bag hole for accommodating the screw shaft is formed in the housing, and a cylindrical sleeve is fitted in the bag hole while being prevented from rotating,
    A concave groove extending in the axial direction is formed on the inner periphery of the sleeve, and a locking pin is implanted at the end of the screw shaft and engaged with the concave groove, so that the screw shaft cannot rotate relative to the housing. And an electric actuator supported so as to be axially movable,
    An electric actuator characterized in that a step portion capable of holding the locking pin in the axial direction is formed in the concave groove of the sleeve.
  2.  前記スリーブの段部が前記ねじ軸の軸心に対して螺旋階段状に複数形成されている請求項1に記載の電動アクチュエータ。 The electric actuator according to claim 1, wherein a plurality of step portions of the sleeve are formed in a spiral staircase shape with respect to the axis of the screw shaft.
  3.  前記スリーブの外周に平坦面が形成されると共に、この平坦面に対応して前記ハウジングの袋孔に平坦面が形成され、これら平坦面同士を一致させた状態で前記スリーブが前記袋孔に嵌合されている請求項1に記載の電動アクチュエータ。 A flat surface is formed on the outer periphery of the sleeve, and a flat surface is formed in the bag hole of the housing corresponding to the flat surface, and the sleeve is fitted into the bag hole in a state where the flat surfaces are aligned with each other. The electric actuator according to claim 1 combined.
  4.  前記ねじ軸の周方向の対向する位置に前記係止ピンが固定され、これらの係止ピンを収容し、前記スリーブの内周に対向して前記凹溝が形成されている請求項1に記載の電動アクチュエータ。 The said latching pin is fixed to the position where the circumferential direction of the said screw shaft opposes, These latching pins are accommodated, The said recessed groove is formed facing the inner periphery of the said sleeve. Electric actuator.
  5.  前記スリーブがMIMによって成形された焼結金属で構成されている請求項1乃至4いずれかに記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 4, wherein the sleeve is made of sintered metal formed by MIM.
PCT/JP2016/066692 2015-06-04 2016-06-03 Electric actuator WO2016195104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-113733 2015-06-04
JP2015113733A JP6039748B1 (en) 2015-06-04 2015-06-04 Electric actuator

Publications (1)

Publication Number Publication Date
WO2016195104A1 true WO2016195104A1 (en) 2016-12-08

Family

ID=57440606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066692 WO2016195104A1 (en) 2015-06-04 2016-06-03 Electric actuator

Country Status (2)

Country Link
JP (1) JP6039748B1 (en)
WO (1) WO2016195104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828272A (en) * 2020-08-11 2020-10-27 何景安 Ball reciprocating rotator of unidirectional rotating device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800020782A1 (en) 2018-12-21 2020-06-21 Danieli Off Mecc PRESS FOR DIRECT EXTRUSION OF METALLIC MATERIAL
US11193565B2 (en) * 2019-05-09 2021-12-07 Westcoast Cylinders Inc. Anti-rotation system having replaceable keyway
KR102323132B1 (en) * 2020-02-19 2021-11-10 박준웅 Decoration sheet for shoe upper and method of manufacturing decoration sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333046A (en) * 2006-06-14 2007-12-27 Ntn Corp Electric actuator
JP2014037854A (en) * 2012-08-14 2014-02-27 Ntn Corp Electric linear actuator
JP2014080994A (en) * 2012-10-12 2014-05-08 Ntn Corp Electric linear actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333046A (en) * 2006-06-14 2007-12-27 Ntn Corp Electric actuator
JP2014037854A (en) * 2012-08-14 2014-02-27 Ntn Corp Electric linear actuator
JP2014080994A (en) * 2012-10-12 2014-05-08 Ntn Corp Electric linear actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828272A (en) * 2020-08-11 2020-10-27 何景安 Ball reciprocating rotator of unidirectional rotating device

Also Published As

Publication number Publication date
JP2017002912A (en) 2017-01-05
JP6039748B1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6091149B2 (en) Electric linear actuator
JP5918510B2 (en) Electric linear actuator
WO2013122158A1 (en) Electric linear actuator
JP6111042B2 (en) Electric linear actuator
JP6111078B2 (en) Electric linear actuator
WO2016080513A1 (en) Gear and electric actuator provided with same
WO2016024578A1 (en) Gear and electric actuator provided with same
JP2013104525A5 (en)
WO2016195104A1 (en) Electric actuator
JP2016151332A (en) Ball screw and electric linear actuator having the same
JP5924899B2 (en) Electric linear actuator
WO2016052477A1 (en) Electric actuator
JP6074192B2 (en) Electric linear actuator
WO2017010553A1 (en) Ball-screw and electrically driven actuator with same
JP6312728B2 (en) Electric linear actuator
JP2012039765A (en) Electric actuator
JP6111038B2 (en) Electric linear actuator
JP6114548B2 (en) Electric linear actuator
JP5982220B2 (en) Electric linear actuator
JP2016161087A (en) Electric linear actuator
JP6121760B2 (en) Electric linear actuator
JP6406747B2 (en) Electric actuator
JP6111041B2 (en) Electric linear actuator
JP2016114118A (en) Electric actuator
JP6130235B2 (en) Electric linear actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803535

Country of ref document: EP

Kind code of ref document: A1