WO2018088025A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2018088025A1
WO2018088025A1 PCT/JP2017/033187 JP2017033187W WO2018088025A1 WO 2018088025 A1 WO2018088025 A1 WO 2018088025A1 JP 2017033187 W JP2017033187 W JP 2017033187W WO 2018088025 A1 WO2018088025 A1 WO 2018088025A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
flow rate
heat exchanger
refrigeration cycle
Prior art date
Application number
PCT/JP2017/033187
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 輝一
哲也 武知
義治 遠藤
山口 昭
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018088025A1 publication Critical patent/WO2018088025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus applied to an air conditioner.
  • Patent Document 1 discloses a vapor compression refrigeration cycle apparatus applied to a vehicle air conditioner.
  • the refrigeration cycle apparatus of Patent Document 1 includes an indoor condenser.
  • the indoor condenser is a heating heat exchanger that heats the blown air by causing heat exchange between the high-pressure refrigerant discharged from the compressor and the blown air blown into the vehicle interior during the heating operation for heating the passenger compartment. is there.
  • an expansion valve that is a decompression device that decompresses high-pressure refrigerant so that the refrigerant flowing out of the indoor condenser becomes a liquid-phase refrigerant having a predetermined degree of supercooling during heating operation.
  • the operation is controlled.
  • COP coefficient of performance
  • the flow rate of the circulating refrigerant circulating through the refrigeration cycle apparatus decreases and the refrigerant is started to be supercooled at the upstream side of the refrigerant flow of the indoor condenser, the blown air heated by the indoor condenser is reduced.
  • the range in which the temperature distribution occurs is expanded. The expansion of the range in which such a temperature distribution occurs is a cause of impairing the passenger's comfortable feeling of heating.
  • This indication aims at providing the refrigerating-cycle apparatus which can suppress that the range which the temperature distribution of the ventilation air ventilated by the air-conditioning object space produces expands in view of the said point.
  • a refrigeration cycle apparatus heat-exchanges a compressor that compresses and discharges a refrigerant, and a high-pressure refrigerant discharged from the compressor and blown air that is blown into an air-conditioning target space.
  • the pressure reducing device control unit for controlling the operation of the device, the target subcooling degree determining unit for determining the target subcooling degree of the refrigerant flowing out from the heating heat exchanger, and the circulating refrigerant flow rate of the refrigerant circulating in the cycle are determined in advance.
  • a low flow rate operation determination unit that determines that the low flow rate operation is lower than the reference flow rate.
  • the decompression device control unit controls the operation of the decompression device so that the refrigerant flowing out from the heat exchanger for heating approaches the target supercooling degree. It is a refrigeration cycle apparatus that reduces the target degree of supercooling when it is determined that the flow rate operation is in progress.
  • the target supercooling degree determination unit lowers the target supercooling degree, so that the refrigerant in the upstream portion of the refrigerant flow of the heating heat exchanger It is possible to suppress the start of supercooling. Accordingly, it is possible to suppress the expansion of the range in which the temperature distribution of the blown air heated by the heating heat exchanger occurs even during the low flow rate operation.
  • the refrigeration cycle apparatus can exhibit a high COP by determining the target supercooling degree (SCO) so as to improve the COP.
  • SCO target supercooling degree
  • the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner 1 for a hybrid vehicle that obtains driving force for traveling from an internal combustion engine (that is, an engine) and a traveling electric motor.
  • the refrigeration cycle apparatus 10 fulfills a function of cooling or heating the air blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner 1.
  • the refrigeration cycle apparatus 10 includes a cooling mode refrigerant circuit (see FIG. 1), a serial dehumidifying and heating mode refrigerant circuit (see FIG. 1), a parallel dehumidifying and heating mode refrigerant circuit (see FIG. 2), and a heating mode refrigerant circuit (see FIG. 1). 3) can be switched.
  • a cooling mode refrigerant circuit see FIG. 1
  • a serial dehumidifying and heating mode refrigerant circuit see FIG. 1
  • a parallel dehumidifying and heating mode refrigerant circuit see FIG. 2
  • a heating mode refrigerant circuit see FIG. 1).
  • the cooling mode is an operation mode in which the air inside the vehicle interior is cooled by cooling the blown air and blowing it out into the vehicle interior.
  • the dehumidifying heating mode is an operation mode in which dehumidifying heating in the vehicle interior is performed by reheating the blown air that has been cooled and dehumidified and blowing it out into the vehicle interior.
  • the heating mode is an operation mode in which the vehicle interior is heated by heating the blown air and blowing it out into the vehicle interior.
  • the refrigeration cycle apparatus 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the pressure of the refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. is doing.
  • Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks refrigerant, compresses it, and discharges it.
  • the compressor 11 is arrange
  • the compressor 11 is an electric compressor that rotationally drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor.
  • the compressor 11 has its rotational speed (that is, refrigerant discharge capacity) controlled by a control signal output from an air conditioning control device 40 described later.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 is arrange
  • the indoor condenser 12 is a heating heat exchanger that heats the blown air by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and blown air that has passed through the indoor evaporator 23 described later.
  • a so-called tank-and-tube heat exchanger having a plurality of refrigerant tubes, distribution tanks, collecting tanks, and the like is employed as the indoor condenser 12.
  • the refrigerant tube is a tubular member that allows the refrigerant to flow therethrough.
  • the plurality of refrigerant tubes are stacked in the longitudinal direction of the collecting tank and the distributing tank. Between the adjacent refrigerant tubes, an air passage through which blown air is circulated is formed, and fins that promote heat exchange between the refrigerant and the blown air are arranged. Thereby, the heat exchange part which heat-exchanges a refrigerant
  • a collecting tank and a distribution tank are connected to both ends of the plurality of refrigerant tubes.
  • a refrigerant inlet is formed in the distribution tank. Therefore, the refrigerant flowing into the distribution tank from the refrigerant inlet is distributed to the plurality of refrigerant tubes.
  • a refrigerant outlet is formed in the collecting tank. Therefore, the refrigerant collected in the collecting tank from the plurality of refrigerant tubes flows out from the refrigerant outlet.
  • the indoor condenser 12 of the present embodiment is configured as a so-called one-pass type heat exchanger in which the refrigerant flows in one direction from the distribution tank side toward the collecting tank side in the plurality of refrigerant tubes.
  • the collecting tank is disposed on the lower side in the vertical direction than the distributing tank.
  • the inlet side of the first three-way joint 13a having three inlets and outlets communicating with each other is connected to the refrigerant outlet side of the indoor condenser 12.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle apparatus 10 includes a plurality of three-way joints such as second to fourth three-way joints 13b to 13d as will be described later.
  • the basic configuration of the second to fourth three-way joints 13b to 13d is the same as that of the first three-way joint 13a.
  • the inlet side of the first expansion valve 14a is connected to one outlet of the first three-way joint 13a.
  • One inlet of the second three-way joint 13b is connected to the other outlet of the first three-way joint 13a.
  • a first on-off valve 15a is disposed in the first refrigerant passage 18a that connects the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b.
  • the first on-off valve 15a is an electromagnetic valve that opens and closes the first refrigerant passage 18a. Further, the refrigeration cycle apparatus 10 includes a second on-off valve 15b as will be described later. The basic configuration of the second on-off valve 15b is the same as that of the first on-off valve 15a.
  • the first and second on-off valves 15a and 15b can switch the refrigerant circuit in each operation mode described above by opening and closing the refrigerant passage. Accordingly, the first and second on-off valves 15a and 15b are refrigerant circuit switching devices that switch the refrigerant circuit of the cycle. The operation of the first and second on-off valves 15 a and 15 b is controlled by a control voltage output from the air conditioning control device 40.
  • the first expansion valve 14a is a decompression device that decompresses the high-pressure refrigerant that has flowed out of the indoor condenser 12 at least in the heating mode.
  • the first expansion valve 14a is an electric variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that changes the opening degree of the valve body.
  • the refrigeration cycle apparatus 10 includes a second expansion valve 14b as will be described later.
  • the basic configuration of the second expansion valve 14b is the same as that of the first expansion valve 14a.
  • These first and second expansion valves 14a and 14b have a fully open function that functions as a simple refrigerant passage without substantially exhibiting a flow rate adjusting action and a refrigerant pressure reducing action by fully opening the valve opening degree, and a valve opening degree. It has a fully closed function of closing the refrigerant passage by being fully closed.
  • the first and second expansion valves 14a and 14b can switch the refrigerant circuit in each operation mode described above by the fully open function and the fully closed function. Therefore, the first and second expansion valves 14a and 14b also have a function as a refrigerant circuit switching device.
  • the operations of the first and second expansion valves 14 a and 14 b are controlled by a control signal (control pulse) output from the air conditioning control device 40.
  • the refrigerant inlet side of the outdoor heat exchanger 20 is connected to the outlet of the first expansion valve 14a.
  • the outdoor heat exchanger 20 is a heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the outside air blown from the outside air fan 20a.
  • the outdoor heat exchanger 20 is disposed on the front side in the vehicle bonnet.
  • the outdoor heat exchanger 20 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode, and functions as an evaporator that evaporates low-pressure refrigerant at least in the heating mode.
  • the outside air fan 20 a is an electric outside air blower in which the rotation speed (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
  • the refrigerant outlet of the outdoor heat exchanger 20 is connected to the inlet side of the third three-way joint 13c.
  • the other inflow port side of the second three-way joint 13b is connected to one outflow port of the third three-way joint 13c.
  • One inflow port side of the fourth three-way joint 13d is connected to the other outflow port of the third three-way joint 13c.
  • a second on-off valve 15b that opens and closes the second refrigerant passage 18b is disposed in the second refrigerant passage 18b that connects the other outlet side of the third three-way joint 13c and one inlet side of the fourth three-way joint 13d. Has been.
  • a check valve 21 is disposed in the refrigerant passage that connects one outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b.
  • the check valve 21 allows the refrigerant to flow from the third three-way joint 13c side (that is, the outdoor heat exchanger 20 side) to the second three-way joint 13b side (that is, the second expansion valve 14b side). It functions to inhibit the refrigerant from flowing from the three-way joint 13b side to the third three-way joint 13c side.
  • the inlet side of the second expansion valve 14b is connected to the outlet of the second three-way joint 13b.
  • the second expansion valve 14b is an electric variable throttle mechanism that depressurizes the refrigerant that has flowed out of the outdoor heat exchanger 20 at least in the cooling mode.
  • the refrigerant inlet side of the indoor evaporator 23 is connected to the outlet of the second expansion valve 14b.
  • the indoor evaporator 23 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the indoor evaporator 23 heat-exchanges the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air blown from the blower 32 at least in the cooling mode, evaporates the low-pressure refrigerant, and absorbs heat to the low-pressure refrigerant. It is a heat exchanger for cooling which cools blowing air by making it exhibit.
  • the inlet side of the evaporation pressure adjusting valve 26 is connected to the refrigerant outlet side of the indoor evaporator 23.
  • the evaporation pressure adjustment valve 26 is configured by a mechanical mechanism, and functions to adjust the refrigerant evaporation pressure in the indoor evaporator 23 to a predetermined reference pressure or higher in order to suppress frost formation in the indoor evaporator 23. Fulfill.
  • the evaporation pressure adjustment valve 26 functions to adjust the refrigerant evaporation temperature in the indoor evaporator 23 to a reference temperature or higher that can suppress frost formation in the indoor evaporator 23.
  • the other inlet side of the fourth three-way joint 13d is connected to the outlet of the evaporation pressure adjusting valve 26.
  • the inlet side of the accumulator 24 is connected to the outlet of the fourth three-way joint 13d.
  • the accumulator 24 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator 24 and stores excess liquid-phase refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 blows the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior, and the blower 32 and the indoor evaporator 23 are formed in an air passage formed in the air conditioning case 31 that forms the outer shell of the air.
  • the heater core 39, the indoor condenser 12 and the like are accommodated.
  • the heater core 39 is a heat exchanger for auxiliary heating that heats the blown air by heat exchange between the engine cooling water and the blown air after passing through the indoor evaporator 23.
  • the heater core 39 is connected to an engine coolant circuit that circulates engine coolant.
  • the air conditioning case 31 forms an air passage for blown air to be blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • a resin for example, polypropylene
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the air conditioning case 31 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door. The rate of introduction with the amount of air introduced is changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
  • a blower 32 for blowing the air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the blown air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan with an electric motor.
  • the number of rotations (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the air conditioning control device 40.
  • the indoor evaporator 23 On the downstream side of the blower air flow of the blower 32, the indoor evaporator 23, the heater core 39, and the indoor condenser 12 are arranged in this order with respect to the blown air flow. In other words, the indoor evaporator 23 is arranged on the upstream side of the air flow with respect to the heater core 39 and the indoor condenser 12.
  • a bypass passage 35 is provided in which the blown air that has passed through the indoor evaporator 23 flows through the heater core 39 and the indoor condenser 12.
  • An air mix door 34 is disposed on the downstream side of the blower air flow of the indoor evaporator 23 in the air conditioning case 31 and on the upstream side of the blower air flow of the heater core 39 and the indoor condenser 12.
  • the air mix door 34 adjusts the air volume ratio between the air volume of the blown air passing through the indoor condenser 12 and the air volume of the blown air passing through the bypass passage 35 among the blown air after passing through the indoor evaporator 23. It is an adjustment unit.
  • the air mix door 34 is driven by an electric actuator for the air mix door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
  • the air mix door 34 adjusts the air volume ratio, so that the temperature of the blown air that merges in the merge space 36 is adjusted.
  • an opening hole for blowing the blown air whose temperature has been adjusted in the merge space 36 into the vehicle interior is disposed.
  • a foot opening hole 37a, a face opening hole 37b, and a defroster opening hole 37c are provided as the opening holes.
  • the foot opening hole 37a is an opening hole for blowing air-conditioned air toward the feet of the passengers.
  • the face opening hole 37b is an opening hole for blowing out the conditioned air toward the upper body of the passenger in the passenger compartment.
  • the defroster opening hole 37c is an opening hole for blowing the conditioned air toward the inner surface of the vehicle front window glass.
  • the face opening hole 37b and the defroster opening hole 37c are arranged on the upper side in the vertical direction from the foot opening hole 37a.
  • the blast air flowing out from the face opening hole 37b and the defroster opening hole 37c is mainly above the intermediate part in the vertical direction in the heat exchanging part of the indoor condenser 12, that is, on the side closer to the distribution tank. It tends to be blown air heated at the site.
  • the blown air flowing out from the face opening hole 37b and the defroster opening hole 37c is heated in the heat exchange part of the indoor condenser 12 mainly at a part upstream of the refrigerant flow from the intermediate part in the vertical direction. It becomes blowing air.
  • the blown air that flows out from the foot opening hole 37a is heated in a portion of the heat exchanger of the indoor condenser 12 that is mainly below the intermediate portion in the vertical direction, that is, on the side closer to the collecting tank. It tends to be blown air.
  • the blown air that flows out from the foot opening hole 37a is blown air that is heated in a portion of the heat exchanger of the indoor condenser 12 that is mainly downstream of the refrigerant flow from the intermediate portion in the vertical direction.
  • the foot door 38a for adjusting the opening area of the foot opening hole 37a and the opening area of the face opening hole 37b are adjusted respectively.
  • a defroster door 38c for adjusting the opening area of the face door 38b and the defroster opening hole 37c is disposed.
  • the foot door 38a, the face door 38b, and the defroster door 38c are blowing mode doors that open and close the opening holes 37a to 37c to switch the blowing mode, and constitute a blowing mode switching device.
  • Each of the doors 38a to 38c is rotated by an electric actuator 61 for the blowout mode door via a link mechanism or the like.
  • the operation of the electric actuator 61 is controlled by a control signal output from the air conditioning controller 40.
  • the air flow downstream side of the foot opening hole 37a, the face opening hole 37b, and the defroster opening hole 37c is a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. It is connected to the.
  • the blowing mode switched by the blowing mode switching device specifically includes a face mode, a bi-level mode, a foot mode, and the like.
  • the face mode is a blowout mode in which the face opening hole 37b is fully opened and blown air is blown out from the face blowout port toward the upper body of the passenger in the vehicle cabin.
  • the bi-level mode is a blow-out mode in which both the face opening hole 37b and the foot opening hole 37a are opened and blown air is blown toward the upper body and feet of the passengers in the passenger compartment.
  • the foot mode is a blowing mode in which the foot opening hole 37a is fully opened and the defroster opening hole 37c is opened by a small opening, and blown air is mainly blown out from the foot outlet.
  • the face mode of the present embodiment is a first blow-out mode in which blown air heated mainly at a portion upstream of the refrigerant flow from the intermediate portion in the vertical direction is blown out of the heat exchange portion of the indoor condenser 12. is there.
  • the foot mode of the present embodiment is a second blowing mode in which blown air heated mainly at the downstream side of the refrigerant flow with respect to the intermediate portion in the vertical direction is blown out of the heat exchange portion of the indoor condenser 12. is there.
  • the defroster mode in which the defroster opening hole 37c is fully opened and the blown air is blown out from the defroster outlet to the inner surface of the front windshield of the vehicle may be set. it can.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. And various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the operation of various air conditioning control devices connected to the output side is controlled.
  • the compressor 11 Connected to the output side of the air conditioning controller 40 are the compressor 11, the first and second expansion valves 14a and 14b, the first and second on-off valves 15a and 15b, the outside air fan 20a, the blower 32, and other electric actuators. Has been.
  • the air conditioning control device 40 On the input side of the air conditioning control device 40, there are an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, an inflow air temperature sensor 44, first to third refrigerant temperature sensors 45a to 45c, a high pressure sensor 46a, an outdoor unit pressure sensor. 46b, an evaporator temperature sensor 47, an air conditioning air temperature sensor 48, and the like are connected.
  • the air conditioning control device 40 receives detection signals from these air conditioning control sensor groups.
  • the inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the inflow air temperature sensor 44 is an inflow air temperature detection unit that detects the inflow air temperature TAin of the blown air that flows into the indoor condenser 12.
  • the first refrigerant temperature sensor 45a is a first refrigerant temperature detector that detects an inlet side refrigerant temperature Td of refrigerant discharged from the compressor 11 and flowing into the indoor condenser 12.
  • the second refrigerant temperature sensor 45 b is a second refrigerant temperature detector that detects the outlet-side refrigerant temperature Th of the refrigerant that has flowed out of the indoor condenser 12.
  • the third refrigerant temperature sensor 45 c is a third refrigerant temperature detection unit that detects the temperature (outdoor heat exchanger 20 temperature) Ts of the refrigerant that has flowed out of the outdoor heat exchanger 20.
  • the high-pressure sensor 46a is a high-pressure refrigerant pressure detection unit that detects the high-pressure side refrigerant pressure Ph in the refrigerant passage from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a.
  • the outdoor unit pressure sensor 46 b is an outdoor unit pressure detection unit that detects the outdoor refrigerant pressure Ps that has flowed out of the outdoor heat exchanger 20.
  • the evaporator temperature sensor 47 is an evaporator temperature detector that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 23.
  • the air-conditioning air temperature sensor 48 is an air-conditioning air temperature detector that detects the temperature of the blown air TAV blown from the merge space 36 into the vehicle interior.
  • an operation panel 50 disposed near the instrument panel in the front of the passenger compartment is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected.
  • the operation signal is input.
  • the various operation switches provided on the operation panel 50 include an operation switch, an auto switch, an operation mode switching switch, an air volume setting switch, a temperature setting switch, a blowing mode switching switch, and the like.
  • the operation switch is an operation request setting unit that requests the operation of the vehicle air conditioner 1.
  • the auto switch is an automatic control setting unit that sets or cancels the automatic control of the vehicle air conditioner 1.
  • the operation mode changeover switch is an operation mode setting unit that sets an operation mode such as a cooling mode.
  • the air volume setting switch is an air volume setting unit that manually sets the air volume of the blower 32.
  • the temperature setting switch is a temperature setting unit that manually sets the target temperature Tset in the vehicle compartment.
  • the blowing mode changeover switch is a blowing mode setting unit that manually sets the blowing mode.
  • the air-conditioning control device 40 is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
  • the configuration (hardware and software) for controlling the refrigerant discharge capacity of the compressor 11 in the air conditioning control device 40 is the discharge capacity control unit 40a.
  • the configuration for controlling the throttle opening degree of the first expansion valve 14a is a decompression device control unit 40b.
  • the configuration for controlling the operation of the refrigerant circuit switching device such as the first and second on-off valves 15a and 15b is a refrigerant circuit control unit 40c.
  • the configuration for controlling the blowing capacity of the outside air fan 20a is the outside air fan control unit 40d.
  • the structure which controls the ventilation capability of the air blower 32 is the air blower control part 40e.
  • operation of the electric actuator 61 for blowing mode doors is the blowing mode control part 40f.
  • each operation mode is performed by executing an air conditioning control program.
  • the air conditioning control program is executed when the auto switch of the operation panel 50 is turned on (ON) and automatic control is set.
  • the main routine of the air conditioning control program will be described using the flowchart of FIG.
  • each control step shown in the flowchart of FIG. 5, FIG. 6 is the various function implementation
  • step S1 of FIG. 5 initialization such as initialization of flags and timers configured by the storage circuit of the air-conditioning control device 40, initial alignment of the stepping motor that constitutes the electric actuator described above, and the like is performed.
  • step S2 the detection signal of the air conditioning control sensor group and the operation signal of the operation panel 50 are read.
  • a target blowing temperature TAO that is a target temperature of the blowing air blown into the vehicle interior is calculated based on the following Equation 1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F1)
  • Tset is the passenger compartment set temperature set by the temperature setting switch
  • Tr is the inside air temperature detected by the inside air temperature sensor 41
  • Tam is the outside air temperature detected by the outside air temperature sensor 42
  • As is detected by the solar radiation sensor 43. Is the amount of solar radiation.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • step S4 the operation mode is determined. Specifically, in a state where the cooling mode is set by the operation mode changeover switch of the operation panel 50, when the target blowout temperature TAO is lower than a predetermined cooling reference temperature ⁇ , the cooling mode is determined.
  • the target outlet temperature TAO is equal to or higher than the cooling reference temperature ⁇ , and the outside air temperature Tam is higher than the predetermined dehumidifying heating reference temperature ⁇ . If it is, it is determined to the serial dehumidifying heating mode.
  • the cooling mode is set by the operation mode changeover switch
  • the target blowing temperature TAO is equal to or higher than the cooling reference temperature ⁇ and the outside air temperature Tam is equal to or lower than the dehumidifying heating reference temperature ⁇ .
  • the operation in the parallel dehumidifying and heating mode is determined. Further, when the cooling mode is not set by the operation mode switch, the heating mode is determined.
  • the cooling mode is executed mainly when the outside air temperature is relatively high, such as in summer.
  • the series dehumidifying heating mode is executed mainly in spring or autumn.
  • the parallel dehumidifying heating mode is executed mainly when the blown air needs to be heated with a higher heating capacity than the serial dehumidifying heating mode, such as in early spring or late autumn.
  • the heating mode is executed mainly at the low outdoor temperature in winter.
  • the air conditioning control device 40 executes a subroutine shown in FIG. Thereby, in the refrigeration cycle apparatus 10 of the present embodiment, the normal heating mode and the low flow rate heating mode are switched.
  • the low flow rate heating mode is a heating mode that is executed when a low flow rate operation is performed in which the circulating refrigerant flow rate of the refrigerant circulating in the cycle is lower than a predetermined reference flow rate.
  • step S41 of FIG. 6 it is determined whether or not the outside air temperature Tam is equal to or higher than the reference outside air temperature KTam.
  • the outside air temperature Tam is equal to or higher than the reference outside air temperature KTam during the heating operation, the heat load of the refrigeration cycle apparatus 10 becomes small, and the circulating refrigerant flow rate tends to decrease. Therefore, in the present embodiment, in the heating mode, the outside air temperature at which the circulating refrigerant flow rate can be equal to or less than the reference flow rate is set as the reference outside air temperature KTam.
  • step S41 When it is determined in step S41 that the outside air temperature Tam is equal to or higher than the reference outside air temperature Ktam, the process proceeds to step S42. Further, when it is determined in step S41 that the outside air temperature Tam is not equal to or higher than the reference outside air temperature KTam, the process proceeds to step S45.
  • step S42 it is determined whether the inflow air temperature TAin of the blown air flowing into the indoor condenser 12 is equal to or higher than the reference inflow temperature KTAin.
  • the inflow air temperature TAin is equal to or higher than the reference inflow temperature KTAin, the heat load of the refrigeration cycle apparatus 10 is reduced, and the circulating refrigerant flow rate is likely to be reduced. Therefore, in the present embodiment, the inflow air temperature at which the circulating refrigerant flow rate can be equal to or lower than the reference flow rate is set as the reference inflow temperature KTAin in the heating mode.
  • step S42 When it is determined in step S42 that the inflow air temperature TAin is equal to or higher than the reference inflow temperature KTAin, the process proceeds to step S43. If it is determined in step S42 that the inflow air temperature TAin is not equal to or higher than the reference inflow temperature KTAin, the process proceeds to step S45.
  • step S43 it is determined whether or not the refrigerant discharge capacity (specifically, the rotation speed Nc) of the compressor 11 is equal to or lower than a predetermined reference discharge capacity (specifically, the reference rotation speed KNc).
  • a predetermined reference discharge capacity specifically, the reference rotation speed KNc.
  • the rotation speed at which the circulating refrigerant flow rate can be equal to or lower than the reference flow rate is set to the reference rotation speed KNc in the heating mode.
  • step S43 When it is determined in step S43 that the rotation speed Nc is equal to or less than the reference rotation speed KNc, the process proceeds to step S44. If it is determined in step S43 that the rotation speed Nc is not less than or equal to the reference rotation speed KNc, the process proceeds to step S45.
  • step S44 it is determined to execute the low flow rate heating mode as the heating mode, and the process returns to the main routine.
  • step S45 it decides to perform normal heating mode as heating mode, and returns to a main routine. Therefore, the control steps S41 to S43 of the present embodiment are a low flow rate operation determination unit that determines that the low flow rate operation is performed in which the circulating refrigerant flow rate is lower than a predetermined reference flow rate.
  • step S5 control states of various air conditioning control devices are determined.
  • the ventilation capability of the air blower 32 ie, the control voltage applied to the electric motor of the air blower 32
  • the control voltage output to the blower 32 is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO.
  • the air flow rate is increased in the extremely low temperature range (maximum cooling range) and the extremely high temperature range (maximum heating range) of the target blowing temperature TAO in the operation mode excluding the low flow rate heating mode, and the target blowing temperature TAO is set to the intermediate temperature.
  • the control voltage is determined so as to reduce the air volume as it approaches the area.
  • step S6 the blowing capacity of the outside air fan 20a, that is, the control voltage applied to the electric motor of the outside air fan 20a is determined according to each operation mode.
  • the control voltage output to the outside air fan 20a is determined based on the outside air temperature Tam with reference to a control map stored in advance in the air conditioning control device 40.
  • control voltage is determined so as to increase the air flow rate of the outside air fan 20a as the outside air temperature Tam decreases in the operation modes other than the low flow rate operation mode.
  • a suction mode that is, a control signal output to the electric actuator for the inside / outside air switching door is determined.
  • the suction mode is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target outlet temperature TAO.
  • the outside air mode for introducing outside air is basically given priority.
  • the inside air mode for introducing the inside air is selected. .
  • step S8 a control signal to be output to the electric actuator 61 for the blowing mode, that is, the blowing mode door is determined.
  • the blowing mode is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO.
  • the blowing mode is sequentially switched from the face mode to the bi-level mode to the foot mode. Accordingly, it is easy to select the face mode mainly in summer, the bi-level mode mainly in spring and autumn, and the foot mode mainly in winter.
  • step S9 the operating states of the first and second expansion valves 14a and 14b, that is, control signals (control pulses) output to the first and second expansion valves 14a and 14b are determined according to each operation mode. .
  • step S10 the open / close state of the first and second on-off valves 15a and 15b, that is, the control voltage output to the first and second on-off valves 15a and 15b is determined according to each operation mode.
  • step S11 according to each operation mode, the opening degree of the air mix door 34, that is, the control signal output to the electric actuator for the air mix door is determined.
  • step S12 the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined according to each operation mode.
  • step S13 control signals and control voltages are output from the air-conditioning control device 40 to various air-conditioning control devices so that the control states determined in the above-described steps S6 to S12 are obtained.
  • step S14 it waits for control period (tau), and if progress of control period (tau) is determined, it will return to step S2. Below, the detailed operation
  • (A) Cooling mode In the cooling mode, the air-conditioning control device 40 opens the first expansion valve 14a and opens the second expansion valve 14b in a throttle state that exerts a pressure reducing action. Further, the air conditioning control device 40 closes the first on-off valve 15a and closes the second on-off valve 15b. In addition, the air conditioning control device 40 displaces the air mix door 34 so that the ventilation path on the heater core 39 and the indoor condenser 12 side is fully closed and the bypass passage 35 side is fully opened.
  • the compressor 11 ( ⁇ the indoor condenser 12 ⁇ the first expansion valve 14a) ⁇ the outdoor heat exchanger 20 ⁇ the second expansion valve 14b ⁇ the indoor evaporator.
  • a vapor compression refrigeration cycle is constructed in which the refrigerant circulates in the order of 23 ⁇ evaporation pressure regulating valve 26 ⁇ accumulator 24 ⁇ compressor 11.
  • the air conditioning controller 40 determines the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11. Specifically, the operation of the compressor 11 is controlled so that the blown air blown from the indoor evaporator 23 becomes the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined on the basis of the target outlet temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance.
  • the target evaporator temperature TEO decreases as the target outlet temperature TAO decreases. Furthermore, the target evaporator temperature TEO is determined within a range (specifically, 1 ° C. or higher) in which frost formation in the indoor evaporator 23 can be suppressed.
  • the air conditioning control device 40 adjusts the throttle opening of the second expansion valve 14b so that the degree of supercooling of the refrigerant flowing into the second expansion valve 14b becomes the target degree of supercooling for cooling.
  • the target supercooling degree for cooling is determined with reference to a control map stored in advance in the air conditioning controller 40 based on the outdoor refrigerant pressure Ps detected by the outdoor unit pressure sensor 46b. In this control map, the target supercooling degree for cooling is determined so that the COP of the cycle approaches the maximum value.
  • a refrigeration cycle is configured in which the outdoor heat exchanger 20 functions as a radiator and the indoor evaporator 23 functions as an evaporator.
  • the heat absorbed from the blown air when the refrigerant evaporates in the indoor evaporator 23 can be radiated to the outside air in the outdoor heat exchanger 20. Thereby, blowing air can be cooled.
  • the vehicle interior can be cooled by blowing the blown air cooled by the indoor evaporator 23 into the vehicle interior.
  • the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the throttle state, closes the first on-off valve 15a, and opens the second on-off The valve 15b is closed. Further, the air conditioning control device 40 displaces the air mix door 34 so that the air passages on the heater core 39 and the indoor condenser 12 side are fully opened and the bypass passage 35 side is fully closed.
  • a vapor compression refrigeration cycle is constructed in which the refrigerant circulates in the order of 23 ⁇ evaporation pressure regulating valve 26 ⁇ accumulator 24 ⁇ compressor 11.
  • the air conditioning control device 40 controls the operation of the compressor 11 as in the cooling mode.
  • the air conditioning control device 40 refers to the control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO and the like, so that the COP of the cycle approaches the maximum value, and the first expansion valve 14a and The operation of the second expansion valve 14b is controlled. More specifically, the air conditioning controller decreases the throttle opening of the first expansion valve 14a and increases the throttle opening of the second expansion valve 14b as the target blowing temperature TAO increases.
  • a refrigeration cycle in which the indoor condenser 12 functions as a radiator and the indoor evaporator 23 functions as an evaporator is configured. Furthermore, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outdoor temperature Tam, the outdoor heat exchanger 20 functions as a radiator, and the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outdoor temperature Tam. If it is lower, the outdoor heat exchanger 20 functions as an evaporator.
  • coolant in the outdoor heat exchanger 20 is higher than the outdoor temperature Tam
  • coolant of the outdoor heat exchanger 20 is reduced with the raise of the target blowing temperature TAO, and outdoor heat exchange is carried out.
  • the amount of heat released from the refrigerant in the vessel 20 can be reduced.
  • coolant in the indoor condenser 12 can be increased, and a heating capability can be improved.
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air temperature Tam
  • the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lowered as the target blowing temperature TAO rises, and the outdoor heat exchange is performed.
  • the amount of heat absorbed by the refrigerant in the vessel 20 can be increased.
  • coolant in the indoor condenser 12 can be increased, and a heating capability can be improved.
  • the air that has been dehumidified by being cooled by the indoor evaporator 23 is reheated by the indoor condenser 12 and blown into the vehicle interior, thereby performing dehumidifying heating in the vehicle interior. it can. Furthermore, the heating capacity of the blown air in the indoor condenser 12 can be adjusted by adjusting the opening degree of the first expansion valve 14a and the second expansion valve 14b.
  • (C) Parallel dehumidifying and heating mode In the parallel dehumidifying and heating mode, the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the throttle state, opens the first on-off valve 15a, and opens and closes the second. Open the valve 15b. Further, the air conditioning control device 40 displaces the air mix door 34 so that the air passages on the heater core 39 and the indoor condenser 12 side are fully opened and the bypass passage 35 side is fully closed.
  • the refrigerant is in the order of the compressor 11 ⁇ the indoor condenser 12 ⁇ the first expansion valve 14 a ⁇ the outdoor heat exchanger 20 ⁇ the accumulator 24 ⁇ the compressor 11.
  • the vapor compression refrigeration cycle in which the refrigerant circulates in the order of the compressor 11 ⁇ the indoor condenser 12 ⁇ the second expansion valve 14b ⁇ the indoor evaporator 23 ⁇ the evaporation pressure adjusting valve 26 ⁇ the accumulator 24 ⁇ the compressor 11 Composed. That is, a refrigeration cycle in which the outdoor heat exchanger 20 and the indoor evaporator 23 are connected in parallel to the refrigerant flow is configured.
  • the air conditioning control device 40 controls the operation of the compressor 11 as in the cooling mode.
  • the air conditioning control device 40 refers to the control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO and the like, so that the COP of the cycle approaches the maximum value, and the first expansion valve 14a and The operation of the second expansion valve 14b is controlled. More specifically, the air conditioning control device decreases the throttle opening of the first expansion valve 14a as the target blowing temperature TAO increases.
  • a refrigeration cycle is configured in which the indoor condenser 12 functions as a radiator and the outdoor heat exchanger 20 and the indoor evaporator 23 function as an evaporator.
  • the heat absorbed when the refrigerant evaporates in the outdoor heat exchanger 20 and the indoor evaporator 23 can be radiated to the blown air by the indoor condenser 12.
  • the blowing air cooled and dehumidified by the indoor evaporator 23 can be reheated.
  • the dehumidifying and heating in the vehicle interior can be performed by reheating the blown air that has been cooled and dehumidified by the indoor evaporator 23 and blown out into the vehicle interior by the indoor condenser 12. it can. Furthermore, since the saturation temperature (evaporation temperature) of the refrigerant in the outdoor heat exchanger 20 can be made lower than the saturation temperature (evaporation temperature) of the refrigerant in the indoor evaporator 23, the air blowing is heated more than in the series dehumidification heating mode. The ability can be increased.
  • (D) Heating mode In the heating mode, as described above, the two heating modes of the normal heating mode and the low flow rate heating mode can be switched.
  • the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the fully closed state, closes the first on-off valve 15a, and opens the second on-off valve 15b. Further, the air conditioning control device 40 displaces the air mix door 34 so that the air passages on the heater core 39 and the indoor condenser 12 side are fully opened and the bypass passage 35 side is fully closed.
  • the refrigerant flows in the order of the compressor 11 ⁇ the indoor condenser 12 ⁇ the first expansion valve 14 a ⁇ the outdoor heat exchanger 20 ⁇ the accumulator 24 ⁇ the compressor 11.
  • a circulating vapor compression refrigeration cycle is configured.
  • the air conditioning controller 40 determines the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11. Specifically, the operation of the compressor 11 is controlled so that the pressure of the refrigerant flowing into the indoor condenser 12 becomes the target condensation pressure PDO.
  • the target condensing pressure PDO is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO.
  • the air conditioning control device 40 controls the first expansion valve 14a so that the supercooling degree SC of the refrigerant flowing out of the indoor condenser 12 and flowing into the first expansion valve 14a approaches the target supercooling degree SCO for heating. Adjust the throttle opening.
  • the target supercooling degree SCO for heating is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the high-pressure side refrigerant pressure Ph detected by the high-pressure sensor 46a and the blowing mode.
  • the target supercooling degree SCO for heating is determined so that the COP of the cycle approaches the maximum value. Further, in the normal heating mode, as shown in the control characteristic diagram of FIG. 7, the target supercooling degree SCO is not changed even if the blowout mode is changed.
  • control step S9 is a target supercooling degree determination unit that determines the target supercooling degree SCO.
  • a refrigeration cycle in which the indoor condenser 12 functions as a radiator and the outdoor heat exchanger 20 functions as an evaporator is configured.
  • the heat absorbed from the outside air when the refrigerant evaporates in the outdoor heat exchanger 20 can be radiated to the blown air by the indoor condenser 12. Thereby, blowing air can be heated.
  • the vehicle interior can be heated by blowing the blown air heated by the indoor condenser 12 into the vehicle interior. Further, by bringing the supercooling degree SC of the refrigerant flowing out of the indoor condenser 12 close to the target supercooling degree SCO, a high COP can be exhibited in the cycle.
  • the air conditioning control device 40 brings the first expansion valve 14a into the throttled state. Further, the air conditioning control device 40 controls the operation of the second expansion valve 14b, the first and second on-off valves 15a and 15b, and the electric actuator for the air mix door, as in the normal heating mode. Thereby, in the low flow rate heating mode, as shown by the thick solid line arrow in FIG. 3, a vapor compression refrigeration cycle in which the refrigerant circulates as in the normal heating mode is configured.
  • the air conditioning control device 40 controls the operation of the compressor 11 as in the normal heating mode.
  • the air conditioning control device 40 controls the first expansion valve 14a so that the supercooling degree SC of the refrigerant flowing out of the indoor condenser 12 and flowing into the first expansion valve 14a becomes the heating target supercooling degree SCO. Adjust the throttle opening.
  • the target supercooling degree SCO for heating is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the high-pressure side refrigerant pressure Ph detected by the high-pressure sensor 46a and the blowing mode.
  • the target supercooling degree SCO for heating is determined so that the COP of the cycle approaches the maximum value.
  • the target supercooling degree SCO is reduced.
  • the air conditioning control device 40 increases the blowing capacity of the blower 32, that is, the control voltage applied to the electric motor of the blower 32. Specifically, a predetermined voltage is applied in advance to the control voltage determined in the same manner as in other operation modes. Moreover, the air-conditioning control apparatus 40 reduces the ventilation capability of the external air fan 20a, ie, the control voltage applied to the electric motor of the external air fan 20a. Specifically, the minimum applied voltage is maintained regardless of the outside temperature Tam.
  • the vehicle interior can be heated by blowing the blown air heated by the indoor condenser 12 into the vehicle interior.
  • the vehicle air conditioner 1 of the present embodiment it is possible to perform cooling, dehumidifying heating, and heating in the passenger compartment.
  • the operation of the first expansion valve 14a is performed so that the supercooling degree SC of the refrigerant flowing out from the indoor condenser 12 approaches the target supercooling degree SCO. If the control is performed, the COP of the cycle can be improved, but a temperature change occurs in the refrigerant flowing through the indoor condenser 12. For this reason, temperature distribution will arise also in the ventilation air heated with the indoor condenser 12.
  • FIG. 1 the operation of the first expansion valve 14a is performed so that the supercooling degree SC of the refrigerant flowing out from the indoor condenser 12 approaches the target supercooling degree SCO.
  • the temperature distribution of the blown air heated by the indoor condenser 12 is generated. The range will expand.
  • the temperature of the blown air heated in the downstream portion of the refrigerant flow with respect to the intermediate portion in the vertical direction may greatly deviate. And such deviation of the temperature of the blown air causes a passenger's comfortable feeling of heating to be impaired.
  • the expansion of the range in which the temperature distribution of the blown air heated by the indoor condenser 12 occurs can be suppressed even during the low flow operation. Furthermore, when it is not determined that the low-flow operation is being performed, the target supercooling degree SCO is determined so that the COP approaches the maximum value, so that the refrigeration cycle apparatus 10 can exhibit a high COP. it can.
  • the target supercooling degree SCO is lowered when the blowing mode is the foot mode. According to this, it is possible to prevent the COP from being lowered by unnecessarily lowering the target supercooling degree SCO.
  • the blown air heated mainly at the downstream portion of the refrigerant flow from the intermediate portion in the vertical direction in the heat exchanger of the indoor condenser 12 is the foot opening. It blows out toward the passenger
  • the temperature of the blown air heated mainly at the downstream side of the refrigerant flow with respect to the vertical intermediate portion is likely to increase in temperature during low flow operation.
  • the temperature of the blown air heated mainly at the upstream side of the refrigerant flow with respect to the intermediate part in the vertical direction is lowered even during low flow operation. Is small. Therefore, even during low-flow operation, when the face mode (that is, the first blowing mode) is in effect, the passenger's heating is more effective than when the foot mode (that is, the second blowing mode) is set. It is difficult to worsen the feeling.
  • the COP is unnecessarily reduced in the low-flow-rate heating mode by reducing the target supercooling degree SCO during the low-flow-rate operation and the foot mode in which the passenger's feeling of heating tends to deteriorate. Can be suppressed.
  • the blowing capacity of the blower 32 is increased in the low flow rate heating mode. Since the refrigerant
  • the air blowing capacity of the outside air fan 20a is reduced during the low flow rate heating mode. According to this, since the refrigerant
  • the target supercooling degree SCO is reduced when it is determined that the low-flow operation is performed and the blowing mode is the foot mode has been described.
  • the target supercooling degree SCO may be decreased regardless of the blowout mode. The reason is that the distribution mode of the temperature of the blown air varies depending on the path configuration of the indoor condenser 12 and the like.
  • a shutter device for example, a grill shutter
  • the ventilation path may be blocked by the shutter in the low flow rate heating mode.
  • the refrigeration cycle apparatus 10 is not limited to the one disclosed in the above embodiment.
  • the refrigeration cycle apparatus may constitute a gas injection cycle in the heating mode (that is, the normal heating mode and the low flow rate heating mode).
  • the compressor 11 has a two-stage booster having a suction port for sucking refrigerant, a discharge port for discharging compressed refrigerant, and an intermediate pressure port for joining the intermediate pressure refrigerant generated in the cycle with the refrigerant in the compression process.
  • a formula type may be adopted.
  • a gas-liquid separation unit for separating the gas-liquid of the intermediate pressure refrigerant decompressed by the first expansion valve 14a is provided.
  • a refrigerant circuit switching device is connected to a refrigerant passage connecting the gas-phase refrigerant outlet side of the gas-liquid separator and the intermediate pressure port side of the compressor, and connecting the gas-phase refrigerant outlet side and the intermediate pressure port side of the compressor.
  • An on-off valve similar to the above-described embodiment is arranged.
  • the gas-liquid separator is connected to a refrigerant passage connecting the liquid-phase refrigerant outlet side of the gas-liquid separator and the inlet side of the outdoor heat exchanger 20 and connecting the liquid-phase refrigerant outlet side and the inlet side of the outdoor heat exchanger 20.
  • An expansion valve similar to that of the above-described embodiment may be disposed as a decompression device that decompresses the liquid-phase refrigerant that has flowed out of the refrigerant until it becomes a low-pressure refrigerant.
  • the refrigeration cycle apparatus 10 configured to be able to switch the refrigerant circuit has been described, but switching of the refrigerant circuit is not essential. If it is a refrigeration cycle apparatus that can be operated at least in the heating mode, it is possible to obtain an effect of reducing the range in which the temperature distribution of the blown air described above occurs.
  • coolant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A refrigeration cycle device is provided with: a decompression device control unit (40b) for controlling the operation of a decompression device; a target supercooling degree determination unit (S9) for determining the target supercooling degree (SCO) of refrigerant flowing out of a heating heat exchanger; and a low-flow-rate operation determination unit (S41-S43) for determining that the circulation refrigerant flow rate of the refrigerant circulating in the cycle has reached a low-flow-rate operation that is less than a preset reference flow rate. The decompression device control unit controls the operation of the decompression device so that the refrigerant flowing out of the heating heat exchanger approaches the target supercooling degree (SCO), and the target supercooling degree determination unit reduces the target supercooling degree (SCO) when the low-flow-rate operation determination unit has determined the cycle to be in the low-flow-rate operation. Expansion of the range in which the temperature distribution of ventilation air heated by an indoor condenser occurs can thereby be suppressed.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年11月11日に出願された日本特許出願2016-220487号を基にしている。 This application is based on Japanese Patent Application No. 2016-220487 filed on November 11, 2016, the disclosure of which is incorporated into this application by reference.
 本開示は、空調装置に適用される冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle apparatus applied to an air conditioner.
 従来、特許文献1に、車両用空調装置に適用された蒸気圧縮式の冷凍サイクル装置が開示されている。この特許文献1の冷凍サイクル装置は、室内凝縮器を備えている。室内凝縮器は、車室内の暖房を行う暖房運転時に、圧縮機から吐出された高圧冷媒と車室内へ送風される送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。 Conventionally, Patent Document 1 discloses a vapor compression refrigeration cycle apparatus applied to a vehicle air conditioner. The refrigeration cycle apparatus of Patent Document 1 includes an indoor condenser. The indoor condenser is a heating heat exchanger that heats the blown air by causing heat exchange between the high-pressure refrigerant discharged from the compressor and the blown air blown into the vehicle interior during the heating operation for heating the passenger compartment. is there.
 さらに、特許文献1の冷凍サイクル装置では、暖房運転時に、室内凝縮器から流出する冷媒が所定の過冷却度を有する液相冷媒となるように、高圧冷媒を減圧させる減圧装置である膨張弁の作動を制御している。これにより、特許文献1の冷凍サイクル装置では、サイクルの成績係数(COP)を向上させようとしている。 Furthermore, in the refrigeration cycle apparatus of Patent Document 1, an expansion valve that is a decompression device that decompresses high-pressure refrigerant so that the refrigerant flowing out of the indoor condenser becomes a liquid-phase refrigerant having a predetermined degree of supercooling during heating operation. The operation is controlled. Thereby, in the refrigerating cycle device of patent documents 1, it is going to improve a coefficient of performance (COP) of a cycle.
特開平6-347129号公報JP-A-6-347129
 本開示の発明者らの検討によると、特許文献1の冷凍サイクル装置のように、室内凝縮器から流出する冷媒が過冷却度を有する液相冷媒となるように膨張弁の作動を制御すると、室内凝縮器を流通する冷媒に温度変化が生じる。このため、室内凝縮器にて加熱された送風空気にも温度分布が生じしやすい。 According to the study of the inventors of the present disclosure, as in the refrigeration cycle device of Patent Document 1, when the operation of the expansion valve is controlled so that the refrigerant flowing out of the indoor condenser becomes a liquid phase refrigerant having a degree of supercooling, A temperature change occurs in the refrigerant flowing through the indoor condenser. For this reason, temperature distribution tends to occur in the blown air heated by the indoor condenser.
 さらに、冷凍サイクル装置を循環する循環冷媒流量が減少して、室内凝縮器の冷媒流れ上流側の部位で冷媒の過冷却化が開始されてしまうと、室内凝縮器にて加熱された送風空気の温度分布の生じる範囲が拡大してしまう。このような温度分布の生じる範囲の拡大は、乗員の快適な暖房感を損なう原因となる。 Furthermore, when the flow rate of the circulating refrigerant circulating through the refrigeration cycle apparatus decreases and the refrigerant is started to be supercooled at the upstream side of the refrigerant flow of the indoor condenser, the blown air heated by the indoor condenser is reduced. The range in which the temperature distribution occurs is expanded. The expansion of the range in which such a temperature distribution occurs is a cause of impairing the passenger's comfortable feeling of heating.
 本開示は、上記点に鑑み、空調対象空間へ送風される送風空気の温度分布が生じる範囲が拡大してしまうことを抑制可能な冷凍サイクル装置を提供することを目的とする。 This indication aims at providing the refrigerating-cycle apparatus which can suppress that the range which the temperature distribution of the ventilation air ventilated by the air-conditioning object space produces expands in view of the said point.
 本開示の一つの特徴例による冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された高圧冷媒と空調対象空間へ送風される送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器と、加熱用熱交換器から流出した冷媒を減圧させる減圧装置と、減圧装置にて減圧された低圧冷媒と外気とを熱交換させる室外熱交換器と、減圧装置の作動を制御する減圧装置制御部と、加熱用熱交換器から流出する冷媒の目標過冷却度を決定する目標過冷却度決定部と、サイクルを循環する冷媒の循環冷媒流量が予め定めた基準流量よりも低下した低流量運転になっていることを判定する低流量運転判定部と、を備える。 A refrigeration cycle apparatus according to one feature example of the present disclosure heat-exchanges a compressor that compresses and discharges a refrigerant, and a high-pressure refrigerant discharged from the compressor and blown air that is blown into an air-conditioning target space. A heat exchanger for heating air, a decompressor for decompressing the refrigerant flowing out of the heat exchanger for heating, an outdoor heat exchanger for exchanging heat between the low-pressure refrigerant decompressed by the decompressor and the outside air, and a decompression The pressure reducing device control unit for controlling the operation of the device, the target subcooling degree determining unit for determining the target subcooling degree of the refrigerant flowing out from the heating heat exchanger, and the circulating refrigerant flow rate of the refrigerant circulating in the cycle are determined in advance. A low flow rate operation determination unit that determines that the low flow rate operation is lower than the reference flow rate.
 減圧装置制御部は、加熱用熱交換器から流出する冷媒が目標過冷却度に近づくように減圧装置の作動を制御するものであり、目標過冷却度決定部は、低流量運転判定部が低流量運転になっていることを判定した際に、目標過冷却度を低下させる冷凍サイクル装置である。 The decompression device control unit controls the operation of the decompression device so that the refrigerant flowing out from the heat exchanger for heating approaches the target supercooling degree. It is a refrigeration cycle apparatus that reduces the target degree of supercooling when it is determined that the flow rate operation is in progress.
 これによれば、低流量運転になっていることが判定された際に、目標過冷却度決定部が目標過冷却度を低下させるので、加熱用熱交換器の冷媒流れ上流側の部位で冷媒の過冷却化が開始されてしまうことを抑制することができる。従って、低流量運転時であっても加熱用熱交換器にて加熱された送風空気の温度分布が生じる範囲の拡大を抑制することができる。 According to this, when it is determined that the low-flow operation is being performed, the target supercooling degree determination unit lowers the target supercooling degree, so that the refrigerant in the upstream portion of the refrigerant flow of the heating heat exchanger It is possible to suppress the start of supercooling. Accordingly, it is possible to suppress the expansion of the range in which the temperature distribution of the blown air heated by the heating heat exchanger occurs even during the low flow rate operation.
 さらに、低流量運転になっていると判定されていない際には、COPを向上させるように目標過冷却度(SCO)を決定することで、冷凍サイクル装置に高いCOPを発揮させることができる。 Furthermore, when it is not determined that the operation is at a low flow rate, the refrigeration cycle apparatus can exhibit a high COP by determining the target supercooling degree (SCO) so as to improve the COP.
一実施形態の冷凍サイクル装置の冷房モード時および直列除湿暖房モード時の冷媒流れを示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow at the time of the air_conditioning | cooling mode and serial dehumidification heating mode of the refrigerating-cycle apparatus of one Embodiment. 一実施形態の冷凍サイクル装置の並列除湿暖房モード時の冷媒の流れを示す全体構成図である。It is a whole block diagram which shows the flow of the refrigerant | coolant at the time of the parallel dehumidification heating mode of the refrigerating-cycle apparatus of one Embodiment. 一実施形態の冷凍サイクル装置の暖房モード時の冷媒の流れを示す全体構成図である。It is a whole lineblock diagram showing a refrigerant flow at the time of heating mode of a refrigerating cycle device of one embodiment. 一実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner of one Embodiment. 一実施形態の車両用空調装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the vehicle air conditioner of one Embodiment. 一実施形態の車両用空調装置の制御処理の一部を示すフローチャートである。It is a flowchart which shows a part of control process of the vehicle air conditioner of one Embodiment. 通常暖房モード時に目標過冷却度を決定するための制御特性図である。It is a control characteristic diagram for determining a target supercooling degree at the time of normal heating mode. 低流量暖房モード時に目標過冷却度を決定するための制御特性図である。It is a control characteristic diagram for determining a target supercooling degree at the time of low flow rate heating mode.
 図1~図8を用いて、本開示の一実施形態について説明する。本実施形態では、本開示に係る冷凍サイクル装置10を、内燃機関(すなわち、エンジン)および走行用電動モータから車両走行用の駆動力を得るハイブリッド車両の車両用空調装置1に適用している。この冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。 1 to 8 will be used to describe an embodiment of the present disclosure. In the present embodiment, the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner 1 for a hybrid vehicle that obtains driving force for traveling from an internal combustion engine (that is, an engine) and a traveling electric motor. The refrigeration cycle apparatus 10 fulfills a function of cooling or heating the air blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner 1.
 冷凍サイクル装置10は、冷房モードの冷媒回路(図1参照)、直列除湿暖房モードの冷媒回路(図1参照)、並列除湿暖房モードの冷媒回路(図2参照)、および暖房モードの冷媒回路(図3参照)を切り替え可能に構成されている。図1~図3では、それぞれの運転モードにおける冷媒の流れを太実線矢印で示している。 The refrigeration cycle apparatus 10 includes a cooling mode refrigerant circuit (see FIG. 1), a serial dehumidifying and heating mode refrigerant circuit (see FIG. 1), a parallel dehumidifying and heating mode refrigerant circuit (see FIG. 2), and a heating mode refrigerant circuit (see FIG. 1). 3) can be switched. In FIGS. 1 to 3, the refrigerant flow in each operation mode is indicated by a thick solid arrow.
 車両用空調装置1において、冷房モードは、送風空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。暖房モードは、送風空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 In the vehicle air conditioner 1, the cooling mode is an operation mode in which the air inside the vehicle interior is cooled by cooling the blown air and blowing it out into the vehicle interior. The dehumidifying heating mode is an operation mode in which dehumidifying heating in the vehicle interior is performed by reheating the blown air that has been cooled and dehumidified and blowing it out into the vehicle interior. The heating mode is an operation mode in which the vehicle interior is heated by heating the blown air and blowing it out into the vehicle interior.
 冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、圧縮機11吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 employs an HFC refrigerant (specifically, R134a) as a refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the pressure of the refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. is doing. Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10において、圧縮機11は、冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、車両のボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する空調制御装置40から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 In the refrigeration cycle apparatus 10, the compressor 11 sucks refrigerant, compresses it, and discharges it. The compressor 11 is arrange | positioned in the hood of a vehicle. The compressor 11 is an electric compressor that rotationally drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor. The compressor 11 has its rotational speed (that is, refrigerant discharge capacity) controlled by a control signal output from an air conditioning control device 40 described later.
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する車両用空調装置1の室内空調ユニット30の空調ケース31内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と、後述する室内蒸発器23を通過した送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11. The indoor condenser 12 is arrange | positioned in the air-conditioning case 31 of the indoor air-conditioning unit 30 of the vehicle air conditioner 1 mentioned later. The indoor condenser 12 is a heating heat exchanger that heats the blown air by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and blown air that has passed through the indoor evaporator 23 described later.
 本実施形態では、室内凝縮器12として、複数の冷媒チューブ、分配用タンク、集合用タンク等を有する、いわゆるタンクアンドチューブ型の熱交換器を採用している。 In the present embodiment, a so-called tank-and-tube heat exchanger having a plurality of refrigerant tubes, distribution tanks, collecting tanks, and the like is employed as the indoor condenser 12.
 冷媒チューブは、内部に冷媒を流通させる管状部材である。複数の冷媒チューブは、集合用タンクおよび分配用タンクの長手方向に積層配置されている。隣り合う冷媒チューブの間には、送風空気を流通させる空気通路が形成されており、さらに、冷媒と送風空気との熱交換を促進するフィンが配置されている。これにより、冷媒と送風空気とを熱交換させる熱交換部が形成されている。 The refrigerant tube is a tubular member that allows the refrigerant to flow therethrough. The plurality of refrigerant tubes are stacked in the longitudinal direction of the collecting tank and the distributing tank. Between the adjacent refrigerant tubes, an air passage through which blown air is circulated is formed, and fins that promote heat exchange between the refrigerant and the blown air are arranged. Thereby, the heat exchange part which heat-exchanges a refrigerant | coolant and blowing air is formed.
 複数の冷媒チューブの両端部には、集合用タンクおよび分配用タンクが接続されている。分配用タンクには、冷媒入口が形成されている。従って、冷媒入口から分配用タンク内へ流入した冷媒は、複数の冷媒チューブに分配される。集合タンクには、冷媒出口が形成されている。従って、複数の冷媒チューブから集合用タンク内に集合した冷媒は、冷媒出口から流出する。 A collecting tank and a distribution tank are connected to both ends of the plurality of refrigerant tubes. A refrigerant inlet is formed in the distribution tank. Therefore, the refrigerant flowing into the distribution tank from the refrigerant inlet is distributed to the plurality of refrigerant tubes. A refrigerant outlet is formed in the collecting tank. Therefore, the refrigerant collected in the collecting tank from the plurality of refrigerant tubes flows out from the refrigerant outlet.
 つまり、本実施形態の室内凝縮器12では、冷媒が複数の冷媒チューブ内を分配用タンク側から集合用タンク側に向かって一方向へ流れる、いわゆるワンパスタイプの熱交換器として構成されている。また、本実施形態では、集合用タンクが分配用タンクよりも鉛直方向下方側に配置されている。 That is, the indoor condenser 12 of the present embodiment is configured as a so-called one-pass type heat exchanger in which the refrigerant flows in one direction from the distribution tank side toward the collecting tank side in the plurality of refrigerant tubes. In the present embodiment, the collecting tank is disposed on the lower side in the vertical direction than the distributing tank.
 室内凝縮器12の冷媒出口側には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet side of the first three-way joint 13a having three inlets and outlets communicating with each other is connected to the refrigerant outlet side of the indoor condenser 12. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 さらに、冷凍サイクル装置10では、後述するように、第2~第4三方継手13b~13d等の複数の三方継手を備えている。第2~第4三方継手13b~13d等の基本的構成は、第1三方継手13aと同様である。 Furthermore, the refrigeration cycle apparatus 10 includes a plurality of three-way joints such as second to fourth three-way joints 13b to 13d as will be described later. The basic configuration of the second to fourth three-way joints 13b to 13d is the same as that of the first three-way joint 13a.
 第1三方継手13aの一方の流出口には、第1膨張弁14aの入口側が接続されている。また、第1三方継手13aの他方の流出口には、第2三方継手13bの一方の流入口側が接続されている。第1三方継手13aの他方の流出口側と第2三方継手13bの一方の流入口側とを接続する第1冷媒通路18aには、第1開閉弁15aが配置されている。 The inlet side of the first expansion valve 14a is connected to one outlet of the first three-way joint 13a. One inlet of the second three-way joint 13b is connected to the other outlet of the first three-way joint 13a. A first on-off valve 15a is disposed in the first refrigerant passage 18a that connects the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b.
 第1開閉弁15aは、第1冷媒通路18aを開閉する電磁弁である。さらに、冷凍サイクル装置10では、後述するように、第2開閉弁15bを備えている。第2開閉弁15bの基本的構成は、第1開閉弁15aと同様である。 The first on-off valve 15a is an electromagnetic valve that opens and closes the first refrigerant passage 18a. Further, the refrigeration cycle apparatus 10 includes a second on-off valve 15b as will be described later. The basic configuration of the second on-off valve 15b is the same as that of the first on-off valve 15a.
 第1、第2開閉弁15a、15bは、冷媒通路を開閉することで、上述した各運転モードの冷媒回路を切り替えることができる。従って、第1、第2開閉弁15a、15bは、サイクルの冷媒回路を切り替える冷媒回路切替装置である。第1、第2開閉弁15a、15bは、空調制御装置40から出力される制御電圧によって、その作動が制御される。 The first and second on-off valves 15a and 15b can switch the refrigerant circuit in each operation mode described above by opening and closing the refrigerant passage. Accordingly, the first and second on-off valves 15a and 15b are refrigerant circuit switching devices that switch the refrigerant circuit of the cycle. The operation of the first and second on-off valves 15 a and 15 b is controlled by a control voltage output from the air conditioning control device 40.
 第1膨張弁14aは、少なくとも暖房モード時に、室内凝縮器12から流出した高圧冷媒を減圧させる減圧装置である。第1膨張弁14aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 The first expansion valve 14a is a decompression device that decompresses the high-pressure refrigerant that has flowed out of the indoor condenser 12 at least in the heating mode. The first expansion valve 14a is an electric variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that changes the opening degree of the valve body.
 さらに、冷凍サイクル装置10では、後述するように、第2膨張弁14bを備えている。第2膨張弁14bの基本的構成は、第1膨張弁14aと同様である。これらの第1、第2膨張弁14a、14bは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 Furthermore, the refrigeration cycle apparatus 10 includes a second expansion valve 14b as will be described later. The basic configuration of the second expansion valve 14b is the same as that of the first expansion valve 14a. These first and second expansion valves 14a and 14b have a fully open function that functions as a simple refrigerant passage without substantially exhibiting a flow rate adjusting action and a refrigerant pressure reducing action by fully opening the valve opening degree, and a valve opening degree. It has a fully closed function of closing the refrigerant passage by being fully closed.
 そして、この全開機能および全閉機能によって、第1、第2膨張弁14a、14bは、上述した各運転モードの冷媒回路を切り替えることができる。従って、第1、第2膨張弁14a、14bは、冷媒回路切替装置としての機能を兼ね備えている。第1、第2膨張弁14a、14bは、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。 The first and second expansion valves 14a and 14b can switch the refrigerant circuit in each operation mode described above by the fully open function and the fully closed function. Therefore, the first and second expansion valves 14a and 14b also have a function as a refrigerant circuit switching device. The operations of the first and second expansion valves 14 a and 14 b are controlled by a control signal (control pulse) output from the air conditioning control device 40.
 第1膨張弁14aの出口には、室外熱交換器20の冷媒入口側が接続されている。室外熱交換器20は、第1膨張弁14aから流出した冷媒と外気ファン20aから送風された外気とを熱交換させる熱交換器である。室外熱交換器20は、車両ボンネット内の前方側に配置されている。 The refrigerant inlet side of the outdoor heat exchanger 20 is connected to the outlet of the first expansion valve 14a. The outdoor heat exchanger 20 is a heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the outside air blown from the outside air fan 20a. The outdoor heat exchanger 20 is disposed on the front side in the vehicle bonnet.
 室外熱交換器20は、少なくとも冷房モード時には、高圧冷媒を放熱させる放熱器として機能し、少なくとも暖房モード時には、低圧冷媒を蒸発させる蒸発器として機能する。外気ファン20aは、空調制御装置40から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動式の外気送風機である。 The outdoor heat exchanger 20 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode, and functions as an evaporator that evaporates low-pressure refrigerant at least in the heating mode. The outside air fan 20 a is an electric outside air blower in which the rotation speed (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
 室外熱交換器20の冷媒出口には、第3三方継手13cの流入口側が接続されている。第3三方継手13cの一方の流出口には、第2三方継手13bの他方の流入口側が接続されている。第3三方継手13cの他方の流出口には、第4三方継手13dの一方の流入口側が接続されている。 The refrigerant outlet of the outdoor heat exchanger 20 is connected to the inlet side of the third three-way joint 13c. The other inflow port side of the second three-way joint 13b is connected to one outflow port of the third three-way joint 13c. One inflow port side of the fourth three-way joint 13d is connected to the other outflow port of the third three-way joint 13c.
 第3三方継手13cの他方の流出口側と第4三方継手13dの一方の流入口側とを接続する第2冷媒通路18bには、第2冷媒通路18bを開閉する第2開閉弁15bが配置されている。 A second on-off valve 15b that opens and closes the second refrigerant passage 18b is disposed in the second refrigerant passage 18b that connects the other outlet side of the third three-way joint 13c and one inlet side of the fourth three-way joint 13d. Has been.
 第3三方継手13cの一方の流出口側と第2三方継手13bの他方の流入口側とを接続する冷媒通路には、逆止弁21が配置されている。逆止弁21は、第3三方継手13c側(すなわち、室外熱交換器20側)から第2三方継手13b側(すなわち、第2膨張弁14b側)へ冷媒が流れることを許容し、第2三方継手13b側から第3三方継手13c側へ冷媒が流れることを禁止する機能を果たすものである。 A check valve 21 is disposed in the refrigerant passage that connects one outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b. The check valve 21 allows the refrigerant to flow from the third three-way joint 13c side (that is, the outdoor heat exchanger 20 side) to the second three-way joint 13b side (that is, the second expansion valve 14b side). It functions to inhibit the refrigerant from flowing from the three-way joint 13b side to the third three-way joint 13c side.
 第2三方継手13bの流出口には、第2膨張弁14bの入口側が接続されている。第2膨張弁14bは、少なくとも冷房モード時に、室外熱交換器20から流出した冷媒を減圧させる電気式の可変絞り機構である。第2膨張弁14bの出口には、室内蒸発器23の冷媒入口側が接続されている。 The inlet side of the second expansion valve 14b is connected to the outlet of the second three-way joint 13b. The second expansion valve 14b is an electric variable throttle mechanism that depressurizes the refrigerant that has flowed out of the outdoor heat exchanger 20 at least in the cooling mode. The refrigerant inlet side of the indoor evaporator 23 is connected to the outlet of the second expansion valve 14b.
 室内蒸発器23は、室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器23は、少なくとも冷房モード時に、第2膨張弁14bにて減圧された低圧冷媒と送風機32から送風された送風空気とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって送風空気を冷却する冷却用熱交換器である。 The indoor evaporator 23 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30. The indoor evaporator 23 heat-exchanges the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air blown from the blower 32 at least in the cooling mode, evaporates the low-pressure refrigerant, and absorbs heat to the low-pressure refrigerant. It is a heat exchanger for cooling which cools blowing air by making it exhibit.
 室内蒸発器23の冷媒出口側には、蒸発圧力調整弁26の入口側が接続されている。この蒸発圧力調整弁26は、機械的機構で構成されており、室内蒸発器23の着霜を抑制するために、室内蒸発器23における冷媒蒸発圧力を、予め定めた基準圧力以上に調整する機能を果たす。換言すると、蒸発圧力調整弁26は、室内蒸発器23における冷媒蒸発温度を、室内蒸発器23の着霜を抑制可能な基準温度以上に調整する機能を果たす。 The inlet side of the evaporation pressure adjusting valve 26 is connected to the refrigerant outlet side of the indoor evaporator 23. The evaporation pressure adjustment valve 26 is configured by a mechanical mechanism, and functions to adjust the refrigerant evaporation pressure in the indoor evaporator 23 to a predetermined reference pressure or higher in order to suppress frost formation in the indoor evaporator 23. Fulfill. In other words, the evaporation pressure adjustment valve 26 functions to adjust the refrigerant evaporation temperature in the indoor evaporator 23 to a reference temperature or higher that can suppress frost formation in the indoor evaporator 23.
 蒸発圧力調整弁26の出口には、第4三方継手13dの他方の流入口側が接続されている。第4三方継手13dの流出口には、アキュムレータ24の入口側が接続されている。アキュムレータ24は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離器である。アキュムレータ24の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The other inlet side of the fourth three-way joint 13d is connected to the outlet of the evaporation pressure adjusting valve 26. The inlet side of the accumulator 24 is connected to the outlet of the fourth three-way joint 13d. The accumulator 24 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator 24 and stores excess liquid-phase refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すために、その外殻を形成する空調ケース31内に形成された空気通路内に送風機32、室内蒸発器23、ヒータコア39、室内凝縮器12等を収容したものである。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. The indoor air conditioning unit 30 blows the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior, and the blower 32 and the indoor evaporator 23 are formed in an air passage formed in the air conditioning case 31 that forms the outer shell of the air. The heater core 39, the indoor condenser 12 and the like are accommodated.
 ヒータコア39は、エンジン冷却水と室内蒸発器23通過後の送風空気とを熱交換させることによって、送風空気を補助的に加熱する補助加熱用熱交換器である。ヒータコア39は、エンジン冷却水を循環させるエンジン冷却水回路に接続されている。 The heater core 39 is a heat exchanger for auxiliary heating that heats the blown air by heat exchange between the engine cooling water and the blown air after passing through the indoor evaporator 23. The heater core 39 is connected to an engine coolant circuit that circulates engine coolant.
 空調ケース31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。空調ケース31の送風空気流れ最上流側には、空調ケース31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替装置33が配置されている。 The air conditioning case 31 forms an air passage for blown air to be blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength. On the most upstream side of the air flow of the air conditioning case 31, an inside / outside air switching device 33 that switches and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the air conditioning case 31 is disposed.
 内外気切替装置33は、空調ケース31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the air conditioning case 31 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door. The rate of introduction with the amount of air introduced is changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
 内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機32は、空調制御装置40から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 32 for blowing the air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the blown air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan with an electric motor. The number of rotations (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the air conditioning control device 40.
 送風機32の送風空気流れ下流側には、室内蒸発器23、ヒータコア39、室内凝縮器12が、送風空気流れに対して、この順に配置されている。つまり、室内蒸発器23は、ヒータコア39および室内凝縮器12よりも、送風空気流れ上流側に配置されている。 On the downstream side of the blower air flow of the blower 32, the indoor evaporator 23, the heater core 39, and the indoor condenser 12 are arranged in this order with respect to the blown air flow. In other words, the indoor evaporator 23 is arranged on the upstream side of the air flow with respect to the heater core 39 and the indoor condenser 12.
 空調ケース31内には、室内蒸発器23通過後の送風空気を、ヒータコア39および室内凝縮器12を迂回して流すバイパス通路35が設けられている。また、空調ケース31内の室内蒸発器23の送風空気流れ下流側であって、かつ、ヒータコア39および室内凝縮器12の送風空気流れ上流側には、エアミックスドア34が配置されている。 In the air conditioning case 31, a bypass passage 35 is provided in which the blown air that has passed through the indoor evaporator 23 flows through the heater core 39 and the indoor condenser 12. An air mix door 34 is disposed on the downstream side of the blower air flow of the indoor evaporator 23 in the air conditioning case 31 and on the upstream side of the blower air flow of the heater core 39 and the indoor condenser 12.
 エアミックスドア34は、室内蒸発器23通過後の送風空気のうち、室内凝縮器12側を通過する送風空気の風量とバイパス通路35を通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The air mix door 34 adjusts the air volume ratio between the air volume of the blown air passing through the indoor condenser 12 and the air volume of the blown air passing through the bypass passage 35 among the blown air after passing through the indoor evaporator 23. It is an adjustment unit. The air mix door 34 is driven by an electric actuator for the air mix door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
 室内凝縮器12およびバイパス通路35の送風空気流れ下流側には、ヒータコア39および室内凝縮器12にて冷媒と熱交換して加熱された送風空気とバイパス通路35を通過して加熱されていない送風空気が合流する合流空間36が形成されている。このため、エアミックスドア34が、風量割合を調整することによって、合流空間36にて合流した送風空気の温度が調整される。 On the downstream side of the blast air flow of the indoor condenser 12 and the bypass passage 35, the blast air heated by exchanging heat with the refrigerant in the heater core 39 and the indoor condenser 12 and the blast air not heated through the bypass passage 35 A merge space 36 in which air merges is formed. For this reason, the air mix door 34 adjusts the air volume ratio, so that the temperature of the blown air that merges in the merge space 36 is adjusted.
 空調ケース31の送風空気流れ最下流部には、合流空間36にて温度調整された送風空気を、車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、フット開口穴37a、フェイス開口穴37b、デフロスタ開口穴37cが設けられている。 At the most downstream portion of the air flow of the air conditioning case 31, an opening hole for blowing the blown air whose temperature has been adjusted in the merge space 36 into the vehicle interior is disposed. Specifically, a foot opening hole 37a, a face opening hole 37b, and a defroster opening hole 37c are provided as the opening holes.
 フット開口穴37aは、空調風を乗員の足元に向けて吹き出すための開口穴である。フェイス開口穴37bは、空調風を車室内の乗員の上半身に向けて吹き出すための開口穴である。デフロスタ開口穴37cは、空調風を車両前面窓ガラス内側面に向けて吹き出すための開口穴である。 The foot opening hole 37a is an opening hole for blowing air-conditioned air toward the feet of the passengers. The face opening hole 37b is an opening hole for blowing out the conditioned air toward the upper body of the passenger in the passenger compartment. The defroster opening hole 37c is an opening hole for blowing the conditioned air toward the inner surface of the vehicle front window glass.
 ここで、本実施形態の空調ケース31では、フェイス開口穴37bおよびデフロスタ開口穴37cが、フット開口穴37aよりも鉛直方向上方側に配置されている。 Here, in the air conditioning case 31 of the present embodiment, the face opening hole 37b and the defroster opening hole 37c are arranged on the upper side in the vertical direction from the foot opening hole 37a.
 このため、フェイス開口穴37bおよびデフロスタ開口穴37cから流出する送風空気は、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも上方側、すなわち分配用タンクに近い側の部位にて加熱された送風空気となりやすい。換言すると、フェイス開口穴37bおよびデフロスタ開口穴37cから流出する送風空気は、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ上流側の部位にて加熱された送風空気となる。 For this reason, the blast air flowing out from the face opening hole 37b and the defroster opening hole 37c is mainly above the intermediate part in the vertical direction in the heat exchanging part of the indoor condenser 12, that is, on the side closer to the distribution tank. It tends to be blown air heated at the site. In other words, the blown air flowing out from the face opening hole 37b and the defroster opening hole 37c is heated in the heat exchange part of the indoor condenser 12 mainly at a part upstream of the refrigerant flow from the intermediate part in the vertical direction. It becomes blowing air.
 一方、フット開口穴37aから流出する送風空気は、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも下方側、すなわち集合用タンクに近い側の部位にて加熱された送風空気となりやすい。換言すると、フット開口穴37aから流出する送風空気は、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ下流側の部位にて加熱された送風空気となる。 On the other hand, the blown air that flows out from the foot opening hole 37a is heated in a portion of the heat exchanger of the indoor condenser 12 that is mainly below the intermediate portion in the vertical direction, that is, on the side closer to the collecting tank. It tends to be blown air. In other words, the blown air that flows out from the foot opening hole 37a is blown air that is heated in a portion of the heat exchanger of the indoor condenser 12 that is mainly downstream of the refrigerant flow from the intermediate portion in the vertical direction.
 さらに、フット開口穴37a、フェイス開口穴37b、およびデフロスタ開口穴37cの送風空気流れ上流側には、それぞれ、フット開口穴37aの開口面積を調整するフットドア38a、フェイス開口穴37bの開口面積を調整するフェイスドア38b、デフロスタ開口穴37cの開口面積を調整するデフロスタドア38cが配置されている。 Further, on the upstream side of the blowing air flow of the foot opening hole 37a, the face opening hole 37b, and the defroster opening hole 37c, the foot door 38a for adjusting the opening area of the foot opening hole 37a and the opening area of the face opening hole 37b are adjusted respectively. A defroster door 38c for adjusting the opening area of the face door 38b and the defroster opening hole 37c is disposed.
 フットドア38a、フェイスドア38b、およびデフロスタドア38cは、各開口穴37a~37cを開閉して、吹出モードを切り替える吹出モードドアであり、吹出モード切替装置を構成している。各ドア38a~38cは、リンク機構等を介して、吹出モードドア用の電動アクチュエータ61によって回転操作される。この電動アクチュエータ61は、空調制御装置40から出力される制御信号によって、その作動が制御される。 The foot door 38a, the face door 38b, and the defroster door 38c are blowing mode doors that open and close the opening holes 37a to 37c to switch the blowing mode, and constitute a blowing mode switching device. Each of the doors 38a to 38c is rotated by an electric actuator 61 for the blowout mode door via a link mechanism or the like. The operation of the electric actuator 61 is controlled by a control signal output from the air conditioning controller 40.
 フット開口穴37a、フェイス開口穴37bおよびデフロスタ開口穴37cの送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。 The air flow downstream side of the foot opening hole 37a, the face opening hole 37b, and the defroster opening hole 37c is a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. It is connected to the.
 また、吹出モード切替装置によって切り替えられる吹出モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Also, the blowing mode switched by the blowing mode switching device specifically includes a face mode, a bi-level mode, a foot mode, and the like.
 フェイスモードは、フェイス開口穴37bを全開してフェイス吹出口から車室内乗員の上半身に向けて送風空気を吹き出す吹出モードである。バイレベルモードは、フェイス開口穴37bとフット開口穴37aの両方を開口して車室内乗員の上半身と足元に向けて送風空気を吹き出す吹出モードである。フットモードは、フット開口穴37aを全開するとともにデフロスタ開口穴37cを小開度だけ開口して、主にフット吹出口から送風空気を吹き出す吹出モードである。 The face mode is a blowout mode in which the face opening hole 37b is fully opened and blown air is blown out from the face blowout port toward the upper body of the passenger in the vehicle cabin. The bi-level mode is a blow-out mode in which both the face opening hole 37b and the foot opening hole 37a are opened and blown air is blown toward the upper body and feet of the passengers in the passenger compartment. The foot mode is a blowing mode in which the foot opening hole 37a is fully opened and the defroster opening hole 37c is opened by a small opening, and blown air is mainly blown out from the foot outlet.
 従って、本実施形態のフェイスモードは、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ上流側の部位にて加熱された送風空気を吹き出す第1吹出モードである。また、本実施形態のフットモードは、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ下流側の部位にて加熱された送風空気を吹き出す第2吹出モードである。 Therefore, the face mode of the present embodiment is a first blow-out mode in which blown air heated mainly at a portion upstream of the refrigerant flow from the intermediate portion in the vertical direction is blown out of the heat exchange portion of the indoor condenser 12. is there. In addition, the foot mode of the present embodiment is a second blowing mode in which blown air heated mainly at the downstream side of the refrigerant flow with respect to the intermediate portion in the vertical direction is blown out of the heat exchange portion of the indoor condenser 12. is there.
 さらに、乗員が操作パネル50に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ開口穴37cを全開してデフロスタ吹出口から車両フロント窓ガラス内面に送風空気を吹き出すデフロスタモードとすることもできる。 Further, when the occupant manually operates the blow mode switching switch provided on the operation panel 50, the defroster mode in which the defroster opening hole 37c is fully opened and the blown air is blown out from the defroster outlet to the inner surface of the front windshield of the vehicle may be set. it can.
 次に、図4を用いて、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器の作動を制御する。 Next, the electric control unit of this embodiment will be described with reference to FIG. The air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. And various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the operation of various air conditioning control devices connected to the output side is controlled.
 空調制御装置40の出力側には、圧縮機11、第1、第2膨張弁14a、14b、第1、第2開閉弁15a、15b、外気ファン20a、送風機32、その他の電動アクチュエータ等が接続されている。 Connected to the output side of the air conditioning controller 40 are the compressor 11, the first and second expansion valves 14a and 14b, the first and second on-off valves 15a and 15b, the outside air fan 20a, the blower 32, and other electric actuators. Has been.
 空調制御装置40の入力側には、内気温センサ41、外気温センサ42、日射センサ43、流入空気温度センサ44、第1~第3冷媒温度センサ45a~45c、高圧センサ46a、室外器圧力センサ46b、蒸発器温度センサ47、空調風温度センサ48等が接続されている。そして、空調制御装置40には、これらの空調制御用のセンサ群の検出信号が入力される。 On the input side of the air conditioning control device 40, there are an inside air temperature sensor 41, an outside air temperature sensor 42, a solar radiation sensor 43, an inflow air temperature sensor 44, first to third refrigerant temperature sensors 45a to 45c, a high pressure sensor 46a, an outdoor unit pressure sensor. 46b, an evaporator temperature sensor 47, an air conditioning air temperature sensor 48, and the like are connected. The air conditioning control device 40 receives detection signals from these air conditioning control sensor groups.
 内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。流入空気温度センサ44は、室内凝縮器12へ流入する送風空気の流入空気温度TAinを検出する流入空気温度検出部である。 The inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam. The solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior. The inflow air temperature sensor 44 is an inflow air temperature detection unit that detects the inflow air temperature TAin of the blown air that flows into the indoor condenser 12.
 第1冷媒温度センサ45aは、圧縮機11から吐出されて室内凝縮器12へ流入する冷媒の入口側冷媒温度Tdを検出する第1冷媒温度検出部である。第2冷媒温度センサ45bは、室内凝縮器12から流出した冷媒の出口側冷媒温度Thを検出する第2冷媒温度検出部である。第3冷媒温度センサ45cは、室外熱交換器20から流出した冷媒の温度(室外熱交換器20温度)Tsを検出する第3冷媒温度検出部である。 The first refrigerant temperature sensor 45a is a first refrigerant temperature detector that detects an inlet side refrigerant temperature Td of refrigerant discharged from the compressor 11 and flowing into the indoor condenser 12. The second refrigerant temperature sensor 45 b is a second refrigerant temperature detector that detects the outlet-side refrigerant temperature Th of the refrigerant that has flowed out of the indoor condenser 12. The third refrigerant temperature sensor 45 c is a third refrigerant temperature detection unit that detects the temperature (outdoor heat exchanger 20 temperature) Ts of the refrigerant that has flowed out of the outdoor heat exchanger 20.
 高圧センサ46aは、圧縮機11の吐出口側から第1膨張弁14aの入口側へ至る冷媒通路の高圧側冷媒圧力Phを検出する高圧冷媒圧力検出部である。室外器圧力センサ46bは、室外熱交換器20から流出した室外冷媒圧力Psを検出する室外器圧力検出部である。蒸発器温度センサ47は、室内蒸発器23における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ48は、合流空間36から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The high-pressure sensor 46a is a high-pressure refrigerant pressure detection unit that detects the high-pressure side refrigerant pressure Ph in the refrigerant passage from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a. The outdoor unit pressure sensor 46 b is an outdoor unit pressure detection unit that detects the outdoor refrigerant pressure Ps that has flowed out of the outdoor heat exchanger 20. The evaporator temperature sensor 47 is an evaporator temperature detector that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 23. The air-conditioning air temperature sensor 48 is an air-conditioning air temperature detector that detects the temperature of the blown air TAV blown from the merge space 36 into the vehicle interior.
 さらに、空調制御装置40の入力側には、図4に示すように、車室内前部の計器盤付近に配置された操作パネル50が接続され、この操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。 Further, as shown in FIG. 4, an operation panel 50 disposed near the instrument panel in the front of the passenger compartment is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected. The operation signal is input.
 操作パネル50に設けられた各種操作スイッチとしては、作動スイッチ、オートスイッチ、運転モード切替スイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。 The various operation switches provided on the operation panel 50 include an operation switch, an auto switch, an operation mode switching switch, an air volume setting switch, a temperature setting switch, a blowing mode switching switch, and the like.
 作動スイッチは、車両用空調装置1の作動を要求する作動要求設定部である。オートスイッチは、車両用空調装置1の自動制御を設定あるいは解除する自動制御設定部である。運転モード切替スイッチは、冷房モード等の運転モードを設定する運転モード設定部である。風量設定スイッチは、送風機32の風量をマニュアル設定する風量設定部である。温度設定スイッチは、車室内の目標温度Tsetをマニュアル設定する温度設定部である。吹出モード切替スイッチは、吹出モードをマニュアル設定する吹出モード設定部である。 The operation switch is an operation request setting unit that requests the operation of the vehicle air conditioner 1. The auto switch is an automatic control setting unit that sets or cancels the automatic control of the vehicle air conditioner 1. The operation mode changeover switch is an operation mode setting unit that sets an operation mode such as a cooling mode. The air volume setting switch is an air volume setting unit that manually sets the air volume of the blower 32. The temperature setting switch is a temperature setting unit that manually sets the target temperature Tset in the vehicle compartment. The blowing mode changeover switch is a blowing mode setting unit that manually sets the blowing mode.
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The air-conditioning control device 40 according to the present embodiment is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
 例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力を制御する構成(ハードウェアおよびソフトウェア)は、吐出能力制御部40aである。第1膨張弁14aの絞り開度を制御する構成は、減圧装置制御部40bである。第1、第2開閉弁15a、15b等の冷媒回路切替装置の作動を制御する構成は、冷媒回路制御部40cである。外気ファン20aの送風能力を制御する構成は、外気ファン制御部40dである。送風機32の送風能力を制御する構成は、送風機制御部40eである。吹出モードドア用の電動アクチュエータ61の作動を制御する構成は、吹出モード制御部40fである。 For example, the configuration (hardware and software) for controlling the refrigerant discharge capacity of the compressor 11 in the air conditioning control device 40 is the discharge capacity control unit 40a. The configuration for controlling the throttle opening degree of the first expansion valve 14a is a decompression device control unit 40b. The configuration for controlling the operation of the refrigerant circuit switching device such as the first and second on-off valves 15a and 15b is a refrigerant circuit control unit 40c. The configuration for controlling the blowing capacity of the outside air fan 20a is the outside air fan control unit 40d. The structure which controls the ventilation capability of the air blower 32 is the air blower control part 40e. The structure which controls the action | operation of the electric actuator 61 for blowing mode doors is the blowing mode control part 40f.
 次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置1では、車室内の冷房、除湿暖房、および暖房を行う。このため、冷凍サイクル装置10では、冷房モードの運転、直列除湿暖房モードの運転、並列除湿暖房モードの運転、および暖房モードの運転を切り替えることができる。 Next, the operation of this embodiment in the above configuration will be described. In the vehicle air conditioner 1 of the present embodiment, cooling, dehumidifying heating, and heating of the passenger compartment are performed. For this reason, in the refrigeration cycle apparatus 10, the operation in the cooling mode, the operation in the series dehumidification heating mode, the operation in the parallel dehumidification heating mode, and the operation in the heating mode can be switched.
 これらの各運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)されて、自動制御が設定された際に実行される。図5のフローチャートを用いて、空調制御プログラムのメインルーチンについて説明する。なお、図5、図6のフローチャートに示す各制御ステップは、空調制御装置40が有する各種の機能実現部である。 These switching of each operation mode is performed by executing an air conditioning control program. The air conditioning control program is executed when the auto switch of the operation panel 50 is turned on (ON) and automatic control is set. The main routine of the air conditioning control program will be described using the flowchart of FIG. In addition, each control step shown in the flowchart of FIG. 5, FIG. 6 is the various function implementation | achievement part which the air-conditioning control apparatus 40 has.
 まず、図5のステップS1では、空調制御装置40の記憶回路によって構成されるフラグ、タイマ等の初期化、上述した電動アクチュエータを構成するステッピングモータの初期位置合わせ等のイニシャライズが行われる。ステップS2では、空調制御用のセンサ群の検出信号および操作パネル50の操作信号を読み込む。 First, in step S1 of FIG. 5, initialization such as initialization of flags and timers configured by the storage circuit of the air-conditioning control device 40, initial alignment of the stepping motor that constitutes the electric actuator described above, and the like is performed. In step S2, the detection signal of the air conditioning control sensor group and the operation signal of the operation panel 50 are read.
 ステップS3では、ステップS2で読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 ここで、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気温センサ41によって検出された内気温、Tamは外気温センサ42によって検出された外気温、Asは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
In step S3, based on the value of the detection signal and the operation signal read in step S2, a target blowing temperature TAO that is a target temperature of the blowing air blown into the vehicle interior is calculated based on the following Equation 1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Here, Tset is the passenger compartment set temperature set by the temperature setting switch, Tr is the inside air temperature detected by the inside air temperature sensor 41, Tam is the outside air temperature detected by the outside air temperature sensor 42, and As is detected by the solar radiation sensor 43. Is the amount of solar radiation. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 ステップS4では、運転モードを決定する。具体的には、操作パネル50の運転モード切替スイッチによって冷房モードが設定された状態で、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、冷房モードに決定される。 In step S4, the operation mode is determined. Specifically, in a state where the cooling mode is set by the operation mode changeover switch of the operation panel 50, when the target blowout temperature TAO is lower than a predetermined cooling reference temperature α, the cooling mode is determined. The
 また、運転モード切替スイッチによって冷房モードが設定された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、直列除湿暖房モードに決定される。 Further, in the state where the cooling mode is set by the operation mode changeover switch, the target outlet temperature TAO is equal to or higher than the cooling reference temperature α, and the outside air temperature Tam is higher than the predetermined dehumidifying heating reference temperature β. If it is, it is determined to the serial dehumidifying heating mode.
 また、運転モード切替スイッチによって冷房モードが設定された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、並列除湿暖房モードでの運転に決定される。また、運転モード切替スイッチによって冷房モードが設定されていない場合には、暖房モードに決定される。 In the state where the cooling mode is set by the operation mode changeover switch, when the target blowing temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is equal to or lower than the dehumidifying heating reference temperature β. The operation in the parallel dehumidifying and heating mode is determined. Further, when the cooling mode is not set by the operation mode switch, the heating mode is determined.
 これにより、冷房モードは、主に夏季のように比較的外気温が高い場合に実行される。直列除湿暖房モードは、主に春季あるいは秋季に実行される。並列除湿暖房モードは、主に早春季あるいは晩秋季のように直列除湿暖房モードよりも高い加熱能力で送風空気を加熱する必要のある場合に実行される。暖房モードは、主に冬季の低外気温時に実行される。 Therefore, the cooling mode is executed mainly when the outside air temperature is relatively high, such as in summer. The series dehumidifying heating mode is executed mainly in spring or autumn. The parallel dehumidifying heating mode is executed mainly when the blown air needs to be heated with a higher heating capacity than the serial dehumidifying heating mode, such as in early spring or late autumn. The heating mode is executed mainly at the low outdoor temperature in winter.
 さらに、ステップS4にて、運転モードが暖房モードに決定された際には、空調制御装置40が、図6に示すサブルーチンを実行する。これにより、本実施形態の冷凍サイクル装置10では、通常暖房モードと低流量暖房モードが切り替えられる。低流量暖房モードは、サイクルを循環する冷媒の循環冷媒流量が予め定めた基準流量よりも低下した低流量運転になった際に実行される暖房モードである。 Furthermore, when the operation mode is determined to be the heating mode in step S4, the air conditioning control device 40 executes a subroutine shown in FIG. Thereby, in the refrigeration cycle apparatus 10 of the present embodiment, the normal heating mode and the low flow rate heating mode are switched. The low flow rate heating mode is a heating mode that is executed when a low flow rate operation is performed in which the circulating refrigerant flow rate of the refrigerant circulating in the cycle is lower than a predetermined reference flow rate.
 図6のステップS41では、外気温Tamが基準外気温KTam以上になっているか否かを判定する。暖房運転時に外気温Tamが基準外気温KTam以上になっている際には、冷凍サイクル装置10の熱負荷が小さくなり、循環冷媒流量も少なくなりやすい。そこで、本実施形態では、暖房モード時に、循環冷媒流量が基準流量以下となり得る外気温を基準外気温KTamに設定している。 In step S41 of FIG. 6, it is determined whether or not the outside air temperature Tam is equal to or higher than the reference outside air temperature KTam. When the outside air temperature Tam is equal to or higher than the reference outside air temperature KTam during the heating operation, the heat load of the refrigeration cycle apparatus 10 becomes small, and the circulating refrigerant flow rate tends to decrease. Therefore, in the present embodiment, in the heating mode, the outside air temperature at which the circulating refrigerant flow rate can be equal to or less than the reference flow rate is set as the reference outside air temperature KTam.
 ステップS41にて、外気温Tamが基準外気温KTam以上になっていると判定された際には、ステップS42へ進む。また、ステップS41にて、外気温Tamが基準外気温KTam以上になっていないと判定された場合は、ステップS45へ進む。 When it is determined in step S41 that the outside air temperature Tam is equal to or higher than the reference outside air temperature Ktam, the process proceeds to step S42. Further, when it is determined in step S41 that the outside air temperature Tam is not equal to or higher than the reference outside air temperature KTam, the process proceeds to step S45.
 ステップS42では、室内凝縮器12へ流入する送風空気の流入空気温度TAinが基準流入温度KTAin以上になっているか否かを判定する。流入空気温度TAinが基準流入温度KTAin以上になっている際には、冷凍サイクル装置10の熱負荷が小さくなり、循環冷媒流量も少なくなりやすい。そこで、本実施形態では、暖房モード時に、循環冷媒流量が基準流量以下となり得る流入空気温度を基準流入温度KTAinに設定している。 In step S42, it is determined whether the inflow air temperature TAin of the blown air flowing into the indoor condenser 12 is equal to or higher than the reference inflow temperature KTAin. When the inflow air temperature TAin is equal to or higher than the reference inflow temperature KTAin, the heat load of the refrigeration cycle apparatus 10 is reduced, and the circulating refrigerant flow rate is likely to be reduced. Therefore, in the present embodiment, the inflow air temperature at which the circulating refrigerant flow rate can be equal to or lower than the reference flow rate is set as the reference inflow temperature KTAin in the heating mode.
 ステップS42にて、流入空気温度TAinが基準流入温度KTAin以上になっていると判定された際には、ステップS43へ進む。また、ステップS42にて、流入空気温度TAinが基準流入温度KTAin以上になっていないと判定された場合は、ステップS45へ進む。 When it is determined in step S42 that the inflow air temperature TAin is equal to or higher than the reference inflow temperature KTAin, the process proceeds to step S43. If it is determined in step S42 that the inflow air temperature TAin is not equal to or higher than the reference inflow temperature KTAin, the process proceeds to step S45.
 ステップS43では、圧縮機11の冷媒吐出能力(具体的には、回転数Nc)が予め定めた基準吐出能力(具体的には、基準回転数KNc)以下になっているか否かを判定する。本実施形態では、暖房モード時に、循環冷媒流量が基準流量以下となり得る回転数を基準回転数KNcに設定している。 In step S43, it is determined whether or not the refrigerant discharge capacity (specifically, the rotation speed Nc) of the compressor 11 is equal to or lower than a predetermined reference discharge capacity (specifically, the reference rotation speed KNc). In the present embodiment, the rotation speed at which the circulating refrigerant flow rate can be equal to or lower than the reference flow rate is set to the reference rotation speed KNc in the heating mode.
 ステップS43にて、回転数Ncが基準回転数KNc以下になっていると判定された際には、ステップS44へ進む。また、ステップS43にて、回転数Ncが基準回転数KNc以下になっていないと判定された場合は、ステップS45へ進む。 When it is determined in step S43 that the rotation speed Nc is equal to or less than the reference rotation speed KNc, the process proceeds to step S44. If it is determined in step S43 that the rotation speed Nc is not less than or equal to the reference rotation speed KNc, the process proceeds to step S45.
 ステップS44では、暖房モードとして、低流量暖房モードを実行することを決定してメインルーチンへ戻る。ステップS45では、暖房モードとして、通常暖房モードを実行することを決定してメインルーチンへ戻る。従って、本実施形態の制御ステップS41~S43は、循環冷媒流量が予め定めた基準流量よりも低下した低流量運転になっていることを判定する低流量運転判定部である。 In step S44, it is determined to execute the low flow rate heating mode as the heating mode, and the process returns to the main routine. In step S45, it decides to perform normal heating mode as heating mode, and returns to a main routine. Therefore, the control steps S41 to S43 of the present embodiment are a low flow rate operation determination unit that determines that the low flow rate operation is performed in which the circulating refrigerant flow rate is lower than a predetermined reference flow rate.
 次に、図5に示すステップS5~S12では、各種空調制御機器の制御状態が決定される。ステップS5では、各運転モードに応じて、送風機32の送風能力、すなわち、送風機32の電動モータに印可する制御電圧を決定する。送風機32に出力される制御電圧は、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 Next, in steps S5 to S12 shown in FIG. 5, control states of various air conditioning control devices are determined. In step S5, according to each operation mode, the ventilation capability of the air blower 32, ie, the control voltage applied to the electric motor of the air blower 32, is determined. The control voltage output to the blower 32 is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO.
 この制御マップでは、低流量暖房モードを除く運転モードで、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で風量を増加させ、目標吹出温度TAOが中間温度域に近づくに伴って風量を減少させるように制御電圧を決定する。 In this control map, the air flow rate is increased in the extremely low temperature range (maximum cooling range) and the extremely high temperature range (maximum heating range) of the target blowing temperature TAO in the operation mode excluding the low flow rate heating mode, and the target blowing temperature TAO is set to the intermediate temperature. The control voltage is determined so as to reduce the air volume as it approaches the area.
 ステップS6では、各運転モードに応じて、外気ファン20aの送風能力、すなわち、外気ファン20aの電動モータに印可する制御電圧を決定する。外気ファン20aに出力される制御電圧は、外気温Tamに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 In step S6, the blowing capacity of the outside air fan 20a, that is, the control voltage applied to the electric motor of the outside air fan 20a is determined according to each operation mode. The control voltage output to the outside air fan 20a is determined based on the outside air temperature Tam with reference to a control map stored in advance in the air conditioning control device 40.
 この制御マップでは、低流量運転モードを除く運転モードで、外気温Tamの低下に伴って、外気ファン20aの送風量を増加させるように制御電圧を決定する。 In this control map, the control voltage is determined so as to increase the air flow rate of the outside air fan 20a as the outside air temperature Tam decreases in the operation modes other than the low flow rate operation mode.
 ステップS7では、吸込モード、すなわち内外気切替ドア用の電動アクチュエータに出力される制御信号を決定する。吸込モードは、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。この制御マップでは、基本的に外気を導入する外気モードが優先されるが、目標吹出温度TAOが極低温域あるいは極高温域となっている場合には、内気を導入する内気モードが選択される。 In step S7, a suction mode, that is, a control signal output to the electric actuator for the inside / outside air switching door is determined. The suction mode is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target outlet temperature TAO. In this control map, the outside air mode for introducing outside air is basically given priority. However, when the target blowing temperature TAO is in the extremely low temperature range or the extremely high temperature range, the inside air mode for introducing the inside air is selected. .
 ステップS8では、吹出モード、すなわち吹出モードドア用の電動アクチュエータ61に出力される制御信号を決定する。吹出モードは、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 In step S8, a control signal to be output to the electric actuator 61 for the blowing mode, that is, the blowing mode door is determined. The blowing mode is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO.
 この制御マップでは、目標吹出温度TAOが低温域から高温域へと上昇するに伴って、吹出モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。従って、夏季は主にフェイスモード、春秋季は主にバイレベルモード、そして冬季は主にフットモードが選択されやすい。 In this control map, as the target blowing temperature TAO rises from the low temperature range to the high temperature range, the blowing mode is sequentially switched from the face mode to the bi-level mode to the foot mode. Accordingly, it is easy to select the face mode mainly in summer, the bi-level mode mainly in spring and autumn, and the foot mode mainly in winter.
 ステップS9では、各運転モードに応じて、第1、第2膨張弁14a、14bの作動状態、すなわち第1、第2膨張弁14a、14bへ出力される制御信号(制御パルス)が決定される。 In step S9, the operating states of the first and second expansion valves 14a and 14b, that is, control signals (control pulses) output to the first and second expansion valves 14a and 14b are determined according to each operation mode. .
 ステップS10では、各運転モードに応じて、第1、第2開閉弁15a、15bの開閉状態、すなわち第1、第2開閉弁15a、15bへ出力される制御電圧が決定される。 In step S10, the open / close state of the first and second on-off valves 15a and 15b, that is, the control voltage output to the first and second on-off valves 15a and 15b is determined according to each operation mode.
 ステップS11では、各運転モードに応じて、エアミックスドア34の開度、すなわちエアミックスドア用の電動アクチュエータへ出力される制御信号が決定される。 In step S11, according to each operation mode, the opening degree of the air mix door 34, that is, the control signal output to the electric actuator for the air mix door is determined.
 ステップS12では、各運転モードに応じて、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータへ出力される制御信号が決定される。 In step S12, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined according to each operation mode.
 そして、ステップS13では、上述のステップS6~S12で決定された制御状態が得られるように、空調制御装置40より各種空調制御機器に対して制御信号および制御電圧が出力される。続くステップS14では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2へ戻る。以下に、各運転モードの詳細作動について説明する。 In step S13, control signals and control voltages are output from the air-conditioning control device 40 to various air-conditioning control devices so that the control states determined in the above-described steps S6 to S12 are obtained. In continuing step S14, it waits for control period (tau), and if progress of control period (tau) is determined, it will return to step S2. Below, the detailed operation | movement of each operation mode is demonstrated.
 (a)冷房モード
 冷房モードでは、空調制御装置40が、第1膨張弁14aを全開状態とし、第2膨張弁14bを減圧作用を発揮する絞り状態する。また、空調制御装置40は、第1開閉弁15aを閉じ、第2開閉弁15bを閉じる。また、空調制御装置40は、ヒータコア39および室内凝縮器12側の通風路が全閉となり、バイパス通路35側が全開となるようにエアミックスドア34を変位させる。
(A) Cooling mode In the cooling mode, the air-conditioning control device 40 opens the first expansion valve 14a and opens the second expansion valve 14b in a throttle state that exerts a pressure reducing action. Further, the air conditioning control device 40 closes the first on-off valve 15a and closes the second on-off valve 15b. In addition, the air conditioning control device 40 displaces the air mix door 34 so that the ventilation path on the heater core 39 and the indoor condenser 12 side is fully closed and the bypass passage 35 side is fully opened.
 これにより、冷房モードでは、図1の太実線矢印に示すように、圧縮機11(→室内凝縮器12→第1膨張弁14a)→室外熱交換器20→第2膨張弁14b→室内蒸発器23→蒸発圧力調整弁26→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thus, in the cooling mode, as indicated by the thick solid arrow in FIG. 1, the compressor 11 (→ the indoor condenser 12 → the first expansion valve 14a) → the outdoor heat exchanger 20 → the second expansion valve 14b → the indoor evaporator. A vapor compression refrigeration cycle is constructed in which the refrigerant circulates in the order of 23 → evaporation pressure regulating valve 26 → accumulator 24 → compressor 11.
 このサイクル構成で、空調制御装置40は、圧縮機11の冷媒吐出能力、すなわち、圧縮機11の電動モータへ出力される制御信号を決定する。具体的には、室内蒸発器23から吹き出される送風空気が目標蒸発器温度TEOとなるように、圧縮機11の作動を制御する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 In this cycle configuration, the air conditioning controller 40 determines the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11. Specifically, the operation of the compressor 11 is controlled so that the blown air blown from the indoor evaporator 23 becomes the target evaporator temperature TEO. The target evaporator temperature TEO is determined on the basis of the target outlet temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance.
 この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器温度TEOが低下するように決定される。さらに、目標蒸発器温度TEOは、室内蒸発器23の着霜を抑制可能な範囲(具体的には、1℃以上)で決定される。 In this control map, it is determined that the target evaporator temperature TEO decreases as the target outlet temperature TAO decreases. Furthermore, the target evaporator temperature TEO is determined within a range (specifically, 1 ° C. or higher) in which frost formation in the indoor evaporator 23 can be suppressed.
 また、空調制御装置40は、第2膨張弁14bへ流入する冷媒の過冷却度が冷房用の目標過冷却度となるように、第2膨張弁14bの絞り開度を調整する。冷房用の目標過冷却度は、室外器圧力センサ46bによって検出された室外冷媒圧力Psに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。この制御マップでは、サイクルのCOPが極大値に近づくように冷房用の目標過冷却度を決定する。 Also, the air conditioning control device 40 adjusts the throttle opening of the second expansion valve 14b so that the degree of supercooling of the refrigerant flowing into the second expansion valve 14b becomes the target degree of supercooling for cooling. The target supercooling degree for cooling is determined with reference to a control map stored in advance in the air conditioning controller 40 based on the outdoor refrigerant pressure Ps detected by the outdoor unit pressure sensor 46b. In this control map, the target supercooling degree for cooling is determined so that the COP of the cycle approaches the maximum value.
 このため、冷房モードの冷凍サイクル装置では、室外熱交換器20が放熱器として機能し、室内蒸発器23が蒸発器として機能する冷凍サイクルが構成される。そして、室内蒸発器23にて冷媒が蒸発する際に送風空気から吸熱した熱を室外熱交換器20にて外気に放熱させることができる。これにより、送風空気を冷却することができる。 Therefore, in the refrigeration cycle apparatus in the cooling mode, a refrigeration cycle is configured in which the outdoor heat exchanger 20 functions as a radiator and the indoor evaporator 23 functions as an evaporator. The heat absorbed from the blown air when the refrigerant evaporates in the indoor evaporator 23 can be radiated to the outside air in the outdoor heat exchanger 20. Thereby, blowing air can be cooled.
 従って、冷房モードでは、室内蒸発器23にて冷却された送風空気を車室内に吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the cooling mode, the vehicle interior can be cooled by blowing the blown air cooled by the indoor evaporator 23 into the vehicle interior.
 (b)直列除湿暖房モード
 直列除湿暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とし、第2膨張弁14bを絞り状態とし、第1開閉弁15aを閉じ、第2開閉弁15bを閉じる。また、空調制御装置40は、ヒータコア39および室内凝縮器12側の通風路が全開となり、バイパス通路35側が全閉となるようにエアミックスドア34を変位させる。
(B) Series Dehumidification Heating Mode In the series dehumidification heating mode, the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the throttle state, closes the first on-off valve 15a, and opens the second on-off The valve 15b is closed. Further, the air conditioning control device 40 displaces the air mix door 34 so that the air passages on the heater core 39 and the indoor condenser 12 side are fully opened and the bypass passage 35 side is fully closed.
 これにより、直列除湿暖房モードでは、図1の太実線矢印に示すように、圧縮機11→室内凝縮器12→第1膨張弁14a→室外熱交換器20→第2膨張弁14b→室内蒸発器23→蒸発圧力調整弁26→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thereby, in the serial dehumidification heating mode, as shown by the thick solid arrow in FIG. 1, the compressor 11, the indoor condenser 12, the first expansion valve 14a, the outdoor heat exchanger 20, the second expansion valve 14b, and the indoor evaporator. A vapor compression refrigeration cycle is constructed in which the refrigerant circulates in the order of 23 → evaporation pressure regulating valve 26 → accumulator 24 → compressor 11.
 このサイクル構成で、空調制御装置40は、冷房モードと同様に圧縮機11の作動を制御する。 In this cycle configuration, the air conditioning control device 40 controls the operation of the compressor 11 as in the cooling mode.
 また、空調制御装置40は、目標吹出温度TAO等に基づいて、予め空調制御装置40に記憶されている制御マップを参照して、サイクルのCOPが極大値に近づくように第1膨張弁14aおよび第2膨張弁14bの作動を制御する。より具体的には、空調制御装置は、目標吹出温度TAOの上昇に伴って、第1膨張弁14aの絞り開度を減少させ、第2膨張弁14bの絞り開度を増加させる。 Further, the air conditioning control device 40 refers to the control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO and the like, so that the COP of the cycle approaches the maximum value, and the first expansion valve 14a and The operation of the second expansion valve 14b is controlled. More specifically, the air conditioning controller decreases the throttle opening of the first expansion valve 14a and increases the throttle opening of the second expansion valve 14b as the target blowing temperature TAO increases.
 このため、直列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12が放熱器として機能し、室内蒸発器23が蒸発器として機能する冷凍サイクルが構成される。さらに、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器20は放熱器として機能し、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器20は蒸発器として機能する。 For this reason, in the refrigeration cycle apparatus 10 in the series dehumidifying and heating mode, a refrigeration cycle in which the indoor condenser 12 functions as a radiator and the indoor evaporator 23 functions as an evaporator is configured. Furthermore, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outdoor temperature Tam, the outdoor heat exchanger 20 functions as a radiator, and the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is higher than the outdoor temperature Tam. If it is lower, the outdoor heat exchanger 20 functions as an evaporator.
 そして、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも高い場合には、目標吹出温度TAOの上昇に伴って室外熱交換器20の冷媒の飽和温度を低下させて、室外熱交換器20における冷媒の放熱量を減少させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて加熱能力を向上させることができる。 And when the saturation temperature of the refrigerant | coolant in the outdoor heat exchanger 20 is higher than the outdoor temperature Tam, the saturation temperature of the refrigerant | coolant of the outdoor heat exchanger 20 is reduced with the raise of the target blowing temperature TAO, and outdoor heat exchange is carried out. The amount of heat released from the refrigerant in the vessel 20 can be reduced. Thereby, the thermal radiation amount of the refrigerant | coolant in the indoor condenser 12 can be increased, and a heating capability can be improved.
 また、室外熱交換器20における冷媒の飽和温度が外気温Tamよりも低い場合には、目標吹出温度TAOの上昇に伴って室外熱交換器20の冷媒の飽和温度を低下させて、室外熱交換器20における冷媒の吸熱量を増加させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて加熱能力を向上させることができる。 Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lower than the outside air temperature Tam, the saturation temperature of the refrigerant in the outdoor heat exchanger 20 is lowered as the target blowing temperature TAO rises, and the outdoor heat exchange is performed. The amount of heat absorbed by the refrigerant in the vessel 20 can be increased. Thereby, the thermal radiation amount of the refrigerant | coolant in the indoor condenser 12 can be increased, and a heating capability can be improved.
 従って、直列除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を、室内凝縮器12にて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、第1膨張弁14aおよび第2膨張弁14bの絞り開度を調整することによって、室内凝縮器12における送風空気の加熱能力を調整することができる。 Therefore, in the series dehumidifying heating mode, the air that has been dehumidified by being cooled by the indoor evaporator 23 is reheated by the indoor condenser 12 and blown into the vehicle interior, thereby performing dehumidifying heating in the vehicle interior. it can. Furthermore, the heating capacity of the blown air in the indoor condenser 12 can be adjusted by adjusting the opening degree of the first expansion valve 14a and the second expansion valve 14b.
 (c)並列除湿暖房モード
 並列除湿暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とし、第2膨張弁14bを絞り状態とし、第1開閉弁15aを開き、第2開閉弁15bを開く。また、空調制御装置40は、ヒータコア39および室内凝縮器12側の通風路が全開となり、バイパス通路35側が全閉となるようにエアミックスドア34を変位させる。
(C) Parallel dehumidifying and heating mode In the parallel dehumidifying and heating mode, the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the throttle state, opens the first on-off valve 15a, and opens and closes the second. Open the valve 15b. Further, the air conditioning control device 40 displaces the air mix door 34 so that the air passages on the heater core 39 and the indoor condenser 12 side are fully opened and the bypass passage 35 side is fully closed.
 これにより、並列除湿暖房モードでは、図2の太実線矢印に示すように、圧縮機11→室内凝縮器12→第1膨張弁14a→室外熱交換器20→アキュムレータ24→圧縮機11の順に冷媒が循環するとともに、圧縮機11→室内凝縮器12→第2膨張弁14b→室内蒸発器23→蒸発圧力調整弁26→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。すなわち、室外熱交換器20と室内蒸発器23が冷媒流れに対して並列的に接続される冷凍サイクルが構成される。 Thus, in the parallel dehumidifying and heating mode, as shown by the thick solid arrows in FIG. 2, the refrigerant is in the order of the compressor 11 → the indoor condenser 12 → the first expansion valve 14 a → the outdoor heat exchanger 20 → the accumulator 24 → the compressor 11. The vapor compression refrigeration cycle in which the refrigerant circulates in the order of the compressor 11 → the indoor condenser 12 → the second expansion valve 14b → the indoor evaporator 23 → the evaporation pressure adjusting valve 26 → the accumulator 24 → the compressor 11 Composed. That is, a refrigeration cycle in which the outdoor heat exchanger 20 and the indoor evaporator 23 are connected in parallel to the refrigerant flow is configured.
 このサイクル構成で、空調制御装置40は、冷房モードと同様に圧縮機11の作動を制御する。 In this cycle configuration, the air conditioning control device 40 controls the operation of the compressor 11 as in the cooling mode.
 また、空調制御装置40は、目標吹出温度TAO等に基づいて、予め空調制御装置40に記憶されている制御マップを参照して、サイクルのCOPが極大値に近づくように第1膨張弁14aおよび第2膨張弁14bの作動を制御する。より具体的には、空調制御装置は、目標吹出温度TAOの上昇に伴って、第1膨張弁14aの絞り開度を減少させる。 Further, the air conditioning control device 40 refers to the control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO and the like, so that the COP of the cycle approaches the maximum value, and the first expansion valve 14a and The operation of the second expansion valve 14b is controlled. More specifically, the air conditioning control device decreases the throttle opening of the first expansion valve 14a as the target blowing temperature TAO increases.
 このため、並列除湿暖房モードの冷凍サイクル装置10では、室内凝縮器12が放熱器として機能し、室外熱交換器20および室内蒸発器23が蒸発器として機能する冷凍サイクルが構成される。室外熱交換器20および室内蒸発器23にて冷媒が蒸発する際に吸熱した熱を室内凝縮器12にて送風空気に放熱させることができる。これにより、室内蒸発器23にて冷却されて除湿された送風空気を再加熱することができる。 Therefore, in the refrigeration cycle apparatus 10 in the parallel dehumidifying and heating mode, a refrigeration cycle is configured in which the indoor condenser 12 functions as a radiator and the outdoor heat exchanger 20 and the indoor evaporator 23 function as an evaporator. The heat absorbed when the refrigerant evaporates in the outdoor heat exchanger 20 and the indoor evaporator 23 can be radiated to the blown air by the indoor condenser 12. Thereby, the blowing air cooled and dehumidified by the indoor evaporator 23 can be reheated.
 従って、並列除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を、室内凝縮器12にて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を行うことができる。さらに、室外熱交換器20における冷媒の飽和温度(蒸発温度)を、室内蒸発器23における冷媒の飽和温度(蒸発温度)よりも低下させることができるので、直列除湿暖房モードよりも送風空気の加熱能力を増加させることができる。 Therefore, in the parallel dehumidifying and heating mode, the dehumidifying and heating in the vehicle interior can be performed by reheating the blown air that has been cooled and dehumidified by the indoor evaporator 23 and blown out into the vehicle interior by the indoor condenser 12. it can. Furthermore, since the saturation temperature (evaporation temperature) of the refrigerant in the outdoor heat exchanger 20 can be made lower than the saturation temperature (evaporation temperature) of the refrigerant in the indoor evaporator 23, the air blowing is heated more than in the series dehumidification heating mode. The ability can be increased.
 (d)暖房モード
 暖房モードでは、前述の如く、通常暖房モードと低流量暖房モードとの2つの暖房モードを切り替えることができる。
(D) Heating mode In the heating mode, as described above, the two heating modes of the normal heating mode and the low flow rate heating mode can be switched.
 まず、通常暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とし、第2膨張弁14bを全閉状態とし、第1開閉弁15aを閉じ、第2開閉弁15bを開く。また、空調制御装置40は、ヒータコア39および室内凝縮器12側の通風路が全開となり、バイパス通路35側が全閉となるようにエアミックスドア34を変位させる。 First, in the normal heating mode, the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the fully closed state, closes the first on-off valve 15a, and opens the second on-off valve 15b. Further, the air conditioning control device 40 displaces the air mix door 34 so that the air passages on the heater core 39 and the indoor condenser 12 side are fully opened and the bypass passage 35 side is fully closed.
 これにより、通常暖房モードでは、図3の太実線矢印に示すように、圧縮機11→室内凝縮器12→第1膨張弁14a→室外熱交換器20→アキュムレータ24→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thereby, in the normal heating mode, as indicated by the thick solid arrow in FIG. 3, the refrigerant flows in the order of the compressor 11 → the indoor condenser 12 → the first expansion valve 14 a → the outdoor heat exchanger 20 → the accumulator 24 → the compressor 11. A circulating vapor compression refrigeration cycle is configured.
 このサイクル構成で、空調制御装置40は、圧縮機11の冷媒吐出能力、すなわち、圧縮機11の電動モータへ出力される制御信号を決定する。具体的には、室内凝縮器12へ流入する冷媒の圧力が目標凝縮圧力PDOとなるように、圧縮機11の作動を制御する。目標凝縮圧力PDOは、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 In this cycle configuration, the air conditioning controller 40 determines the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11. Specifically, the operation of the compressor 11 is controlled so that the pressure of the refrigerant flowing into the indoor condenser 12 becomes the target condensation pressure PDO. The target condensing pressure PDO is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO.
 この制御マップでは、目標吹出温度TAOの上昇に伴って、目標凝縮圧力PDOが上昇するように決定される。 In this control map, it is determined that the target condensation pressure PDO increases as the target blowing temperature TAO increases.
 また、空調制御装置40は、室内凝縮器12から流出して第1膨張弁14aへ流入する冷媒の過冷却度SCが暖房用の目標過冷却度SCOに近づくように、第1膨張弁14aの絞り開度を調整する。暖房用の目標過冷却度SCOは、高圧センサ46aによって検出された高圧側冷媒圧力Ph、および吹出モードに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 Further, the air conditioning control device 40 controls the first expansion valve 14a so that the supercooling degree SC of the refrigerant flowing out of the indoor condenser 12 and flowing into the first expansion valve 14a approaches the target supercooling degree SCO for heating. Adjust the throttle opening. The target supercooling degree SCO for heating is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the high-pressure side refrigerant pressure Ph detected by the high-pressure sensor 46a and the blowing mode.
 この制御マップでは、サイクルのCOPが極大値に近づくように暖房用の目標過冷却度SCOを決定する。さらに、通常暖房モードでは、図7の制御特性図に示すように、吹出モードが変化しても目標過冷却度SCOを変化させない。 In this control map, the target supercooling degree SCO for heating is determined so that the COP of the cycle approaches the maximum value. Further, in the normal heating mode, as shown in the control characteristic diagram of FIG. 7, the target supercooling degree SCO is not changed even if the blowout mode is changed.
 このような、第1膨張弁14aの絞り開度の制御は、前述した空調制御プログラムのメインルーチンの制御ステップS9にて行われる。従って、制御ステップS9は、目標過冷却度SCOを決定する目標過冷却度決定部である。 Such control of the opening degree of the first expansion valve 14a is performed in the control step S9 of the main routine of the air conditioning control program described above. Therefore, the control step S9 is a target supercooling degree determination unit that determines the target supercooling degree SCO.
 このため、通常暖房モードの冷凍サイクル装置10では、室内凝縮器12が放熱器として機能し、室外熱交換器20が蒸発器として機能する冷凍サイクルが構成される。そして、室外熱交換器20にて冷媒が蒸発する際に外気から吸熱した熱を室内凝縮器12にて送風空気に放熱させることができる。これにより、送風空気を加熱することができる。 Therefore, in the refrigeration cycle apparatus 10 in the normal heating mode, a refrigeration cycle in which the indoor condenser 12 functions as a radiator and the outdoor heat exchanger 20 functions as an evaporator is configured. The heat absorbed from the outside air when the refrigerant evaporates in the outdoor heat exchanger 20 can be radiated to the blown air by the indoor condenser 12. Thereby, blowing air can be heated.
 従って、通常暖房モードでは、室内凝縮器12にて加熱された送風空気を車室内に吹き出すことによって、車室内の暖房を行うことができる。さらに、室内凝縮器12から流出する冷媒の過冷却度SCを目標過冷却度SCOに近づけることで、サイクルに高いCOPを発揮させることができる。 Therefore, in the normal heating mode, the vehicle interior can be heated by blowing the blown air heated by the indoor condenser 12 into the vehicle interior. Further, by bringing the supercooling degree SC of the refrigerant flowing out of the indoor condenser 12 close to the target supercooling degree SCO, a high COP can be exhibited in the cycle.
 次に、低流量暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とする。さらに、空調制御装置40は、通常暖房モードと同様に、第2膨張弁14b、第1、第2開閉弁15a、15b、およびエアミックスドア用の電動アクチュエータの作動を制御する。これにより、低流量暖房モードでは、図3の太実線矢印に示すように、通常暖房モードと同様に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Next, in the low flow rate heating mode, the air conditioning control device 40 brings the first expansion valve 14a into the throttled state. Further, the air conditioning control device 40 controls the operation of the second expansion valve 14b, the first and second on-off valves 15a and 15b, and the electric actuator for the air mix door, as in the normal heating mode. Thereby, in the low flow rate heating mode, as shown by the thick solid line arrow in FIG. 3, a vapor compression refrigeration cycle in which the refrigerant circulates as in the normal heating mode is configured.
 このサイクル構成で、空調制御装置40は、通常暖房モードと同様に圧縮機11の作動を制御する。 In this cycle configuration, the air conditioning control device 40 controls the operation of the compressor 11 as in the normal heating mode.
 また、空調制御装置40は、室内凝縮器12から流出して第1膨張弁14aへ流入する冷媒の過冷却度SCが暖房用の目標過冷却度SCOとなるように、第1膨張弁14aの絞り開度を調整する。暖房用の目標過冷却度SCOは、高圧センサ46aによって検出された高圧側冷媒圧力Ph、および吹出モードに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 In addition, the air conditioning control device 40 controls the first expansion valve 14a so that the supercooling degree SC of the refrigerant flowing out of the indoor condenser 12 and flowing into the first expansion valve 14a becomes the heating target supercooling degree SCO. Adjust the throttle opening. The target supercooling degree SCO for heating is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the high-pressure side refrigerant pressure Ph detected by the high-pressure sensor 46a and the blowing mode.
 この制御マップでは、通常暖房モードと同様に、サイクルのCOPが極大値に近づくように暖房用の目標過冷却度SCOを決定するものの、図8の制御特性図に示すように、吹出モードがフットモードとなっている際に、目標過冷却度SCOを低下させる。 In this control map, as in the normal heating mode, the target supercooling degree SCO for heating is determined so that the COP of the cycle approaches the maximum value. However, as shown in the control characteristic diagram of FIG. While in the mode, the target supercooling degree SCO is reduced.
 また、空調制御装置40は、送風機32の送風能力、すなわち送風機32の電動モータに印可される制御電圧を増加させる。具体的には、他の運転モードと同様に決定された制御電圧に対して予め定めた所定電圧を加える。また、空調制御装置40は、外気ファン20aの送風能力、すなわち外気ファン20aの電動モータに印可される制御電圧を減少させる。具体的には、外気温Tamによらず、最低印可電圧に維持する。 Also, the air conditioning control device 40 increases the blowing capacity of the blower 32, that is, the control voltage applied to the electric motor of the blower 32. Specifically, a predetermined voltage is applied in advance to the control voltage determined in the same manner as in other operation modes. Moreover, the air-conditioning control apparatus 40 reduces the ventilation capability of the external air fan 20a, ie, the control voltage applied to the electric motor of the external air fan 20a. Specifically, the minimum applied voltage is maintained regardless of the outside temperature Tam.
 その他の作動は、通常暖房モードと同様である。従って、低流量暖房モードでは、室内凝縮器12にて加熱された送風空気を車室内に吹き出すことによって、車室内の暖房を行うことができる。 Other operations are the same as the normal heating mode. Therefore, in the low flow rate heating mode, the vehicle interior can be heated by blowing the blown air heated by the indoor condenser 12 into the vehicle interior.
 以上の如く、本実施形態の車両用空調装置1によれば、車室内の冷房、除湿暖房、および暖房を行うことができる。 As described above, according to the vehicle air conditioner 1 of the present embodiment, it is possible to perform cooling, dehumidifying heating, and heating in the passenger compartment.
 ここで、本実施形態の冷凍サイクル装置10のように、通常暖房モード時に、室内凝縮器12から流出する冷媒の過冷却度SCが目標過冷却度SCOに近づくように第1膨張弁14aの作動を制御すると、サイクルのCOPを向上させることはできるものの、室内凝縮器12を流通する冷媒に温度変化が生じる。このため、室内凝縮器12にて加熱された送風空気にも温度分布が生じてしまう。 Here, as in the refrigeration cycle apparatus 10 of the present embodiment, in the normal heating mode, the operation of the first expansion valve 14a is performed so that the supercooling degree SC of the refrigerant flowing out from the indoor condenser 12 approaches the target supercooling degree SCO. If the control is performed, the COP of the cycle can be improved, but a temperature change occurs in the refrigerant flowing through the indoor condenser 12. For this reason, temperature distribution will arise also in the ventilation air heated with the indoor condenser 12. FIG.
 さらに、循環冷媒流量が減少して、室内凝縮器12の冷媒流れ上流側の部位で冷媒の過冷却化が開始されてしまうと、室内凝縮器12にて加熱された送風空気の温度分布の生じる範囲が拡大してしまう。 Furthermore, if the circulating refrigerant flow rate decreases and the refrigerant is started to be supercooled at the upstream side of the refrigerant flow of the indoor condenser 12, the temperature distribution of the blown air heated by the indoor condenser 12 is generated. The range will expand.
 従って、循環冷媒流量が減少してしまうと、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ上流側の部位にて加熱された送風空気の温度と主に鉛直方向の中間部よりも冷媒流れ下流側の部位にて加熱された送風空気の温度が大きく乖離してしまうことがある。そして、このような送風空気の温度の乖離は、乗員の快適な暖房感を損なう原因となる。 Therefore, when the circulating refrigerant flow rate decreases, the temperature of the blown air heated mainly in the portion upstream of the refrigerant flow from the middle portion in the vertical direction in the heat exchanger of the indoor condenser 12 mainly. The temperature of the blown air heated in the downstream portion of the refrigerant flow with respect to the intermediate portion in the vertical direction may greatly deviate. And such deviation of the temperature of the blown air causes a passenger's comfortable feeling of heating to be impaired.
 これに対して、本実施形態の冷凍サイクル装置10では、車室内の暖房を行う際に、低流量運転になっていることが判定されると、低流量暖房モードへ移行し、目標過冷却度SCOを低下させる。従って、室内凝縮器12の冷媒流れ上流側の部位で冷媒の過冷却化が開始されてしまうことを抑制することができる。 In contrast, in the refrigeration cycle apparatus 10 of the present embodiment, when it is determined that the low-flow-rate operation is performed when heating the passenger compartment, the low-flow-rate heating mode is entered, and the target subcooling degree is achieved. Reduce SCO. Therefore, it is possible to prevent the refrigerant from being supercooled at the upstream side of the refrigerant flow in the indoor condenser 12.
 その結果、低流量運転時であっても室内凝縮器12にて加熱された送風空気の温度分布が生じる範囲の拡大を抑制することができる。さらに、低流量運転になっていると判定されていない際には、COPが極大値に近づくように目標過冷却度SCOを決定しているので、冷凍サイクル装置10に高いCOPを発揮させることができる。 As a result, the expansion of the range in which the temperature distribution of the blown air heated by the indoor condenser 12 occurs can be suppressed even during the low flow operation. Furthermore, when it is not determined that the low-flow operation is being performed, the target supercooling degree SCO is determined so that the COP approaches the maximum value, so that the refrigeration cycle apparatus 10 can exhibit a high COP. it can.
 また、本実施形態の冷凍サイクル装置10では、吹出モードがフットモードとなっている際に、目標過冷却度SCOを低下させている。これによれば、不必要に目標過冷却度SCOを低下させて、COPを低下させてしまうことを抑制することができる。 Further, in the refrigeration cycle apparatus 10 of the present embodiment, the target supercooling degree SCO is lowered when the blowing mode is the foot mode. According to this, it is possible to prevent the COP from being lowered by unnecessarily lowering the target supercooling degree SCO.
 このことをより詳細に説明すると、フットモードでは、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ下流側の部位にて加熱された送風空気が、フット開口穴37aを介して、乗員の足元に向けて吹き出される。前述の如く、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ下流側の部位にて加熱された送風空気は、低流量運転時に温度低下が大きくなりやすい。 To explain this in more detail, in the foot mode, the blown air heated mainly at the downstream portion of the refrigerant flow from the intermediate portion in the vertical direction in the heat exchanger of the indoor condenser 12 is the foot opening. It blows out toward the passenger | crew's step through the hole 37a. As described above, in the heat exchanger of the indoor condenser 12, the temperature of the blown air heated mainly at the downstream side of the refrigerant flow with respect to the vertical intermediate portion is likely to increase in temperature during low flow operation.
 これに対して、室内凝縮器12の熱交換部のうち、主に鉛直方向の中間部よりも冷媒流れ上流側の部位にて加熱された送風空気は、低流量運転時であっても温度低下が小さい。従って、低流量運転時であっても、フェイスモード(すなわち、第1吹出モード)になっている際には、フットモード(すなわち、第2吹出モード)になっている際よりも、乗員の暖房感を悪化させ難い。 On the other hand, in the heat exchange part of the indoor condenser 12, the temperature of the blown air heated mainly at the upstream side of the refrigerant flow with respect to the intermediate part in the vertical direction is lowered even during low flow operation. Is small. Therefore, even during low-flow operation, when the face mode (that is, the first blowing mode) is in effect, the passenger's heating is more effective than when the foot mode (that is, the second blowing mode) is set. It is difficult to worsen the feeling.
 それゆえ、低流量運転時であって、かつ、乗員の暖房感が悪化しやすいフットモードとなっている際に、目標過冷却度SCOを低下させることで、低流量暖房モード時に不必要にCOPを低下させてしまうことを抑制することができる。 Therefore, the COP is unnecessarily reduced in the low-flow-rate heating mode by reducing the target supercooling degree SCO during the low-flow-rate operation and the foot mode in which the passenger's feeling of heating tends to deteriorate. Can be suppressed.
 また、本実施形態の冷凍サイクル装置10では、低流量暖房モード時に、送風機32の送風能力を増加させる。これによれば、送風機32の送風能力の増加によって、室内凝縮器12における冷媒凝縮圧力が低下するので、室内凝縮器12へ流入する冷媒の圧力が目標凝縮圧力PDOとなるように、空調制御装置40が圧縮機11の冷媒吐出能力(すなわち、回転数)を増加させる。 Further, in the refrigeration cycle apparatus 10 of the present embodiment, the blowing capacity of the blower 32 is increased in the low flow rate heating mode. Since the refrigerant | coolant condensing pressure in the indoor condenser 12 falls according to this, with the increase in the ventilation capability of the air blower 32, an air-conditioning control apparatus is used so that the pressure of the refrigerant | coolant which flows in into the indoor condenser 12 may become the target condensing pressure PDO. 40 increases the refrigerant discharge capacity (that is, the rotational speed) of the compressor 11.
 その結果、室内凝縮器12にて加熱された送風空気の温度分布が生じる範囲を効果的に縮小させることができる。 As a result, the range in which the temperature distribution of the blown air heated by the indoor condenser 12 occurs can be effectively reduced.
 また、本実施形態の冷凍サイクル装置10では、低流量暖房モード時に、外気ファン20aの送風能力を減少させる。これによれば、外気ファン20aの送風能力の減少によって、室外熱交換器20における冷媒蒸発圧力が低下するので、室内凝縮器12における冷媒凝縮圧力も低下する。従って、室内凝縮器12へ流入する冷媒の圧力が目標凝縮圧力PDOとなるように、空調制御装置40が圧縮機11の冷媒吐出能力(すなわち、回転数)を増加させる。 Moreover, in the refrigeration cycle apparatus 10 of the present embodiment, the air blowing capacity of the outside air fan 20a is reduced during the low flow rate heating mode. According to this, since the refrigerant | coolant evaporation pressure in the outdoor heat exchanger 20 falls by the reduction | decrease in the ventilation capability of the outdoor air fan 20a, the refrigerant | coolant condensing pressure in the indoor condenser 12 also falls. Therefore, the air conditioning controller 40 increases the refrigerant discharge capacity (that is, the rotation speed) of the compressor 11 so that the pressure of the refrigerant flowing into the indoor condenser 12 becomes the target condensation pressure PDO.
 その結果、室内凝縮器12にて加熱された送風空気の温度分布が生じる範囲を効果的に縮小させることができる。 As a result, the range in which the temperature distribution of the blown air heated by the indoor condenser 12 occurs can be effectively reduced.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)上述の実施形態では、本開示に係る冷凍サイクル装置10をハイブリッド車両の車両用空調装置に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。もちろん、エンジンから車両走行用の駆動力を得る通常のエンジン車両や、走行用電動モータから車両走行用の駆動力を得る電気自動車用の車両用空調装置に適用してもよいし、定置型の空調装置に適用してもよい。 (1) In the above-described embodiment, an example in which the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner for a hybrid vehicle has been described, but application of the refrigeration cycle apparatus 10 is not limited thereto. Of course, the present invention may be applied to a normal engine vehicle that obtains driving force for driving a vehicle from an engine, a vehicle air conditioner for an electric vehicle that obtains driving force for driving a vehicle from an electric motor for traveling, or a stationary type You may apply to an air conditioner.
 (2)上述の実施形態では、低流量運転判定部として、制御ステップS41~S43を採用し、制御ステップS41~S43の全ての条件を満足した際に(判定がYesとなった際に)、低流量運転になっていると判定した例を説明したが、低流量運転判定部はこれに限定されない。例えば、制御ステップS41~S43の少なくとも一つの条件を満足した際に、低流量運転になっていると判定してもよい。 (2) In the above-described embodiment, when the control steps S41 to S43 are employed as the low flow rate operation determination unit and all the conditions of the control steps S41 to S43 are satisfied (when the determination is Yes), The example in which it is determined that the low flow operation is performed has been described, but the low flow operation determination unit is not limited to this. For example, when at least one of the control steps S41 to S43 is satisfied, it may be determined that the low flow operation is being performed.
 (3)上述の実施形態では、低流量運転になっていることが判定され、かつ、吹出モードがフットモードとなっている際に、目標過冷却度SCOを低下させる例を説明したが、低流量運転になっていることが判定された際に、吹出モードによらず、目標過冷却度SCOを低下させてもよい。その理由は、室内凝縮器12のパス構成等によっても、送風空気の温度の分布態様が変化するからである。 (3) In the above-described embodiment, the example in which the target supercooling degree SCO is reduced when it is determined that the low-flow operation is performed and the blowing mode is the foot mode has been described. When it is determined that the flow rate operation is performed, the target supercooling degree SCO may be decreased regardless of the blowout mode. The reason is that the distribution mode of the temperature of the blown air varies depending on the path configuration of the indoor condenser 12 and the like.
 (4)上述の実施形態では、低流量運転になっていることが判定された際に、外気ファン20aの送風能力を減少させた例を説明したが、室外熱交換器20へ流入する外気の流量を低減させることで同様の効果を得ることができる。従って、室外熱交換器20へ外気を導く通風経路にシャッター装置(例えば、グリルシャッター)を配置し、低流量暖房モード時に、シャッターによって当該通風経路を閉塞させてもよい。 (4) In the above-described embodiment, the example in which the blowing capacity of the outside air fan 20a is reduced when it is determined that the low flow operation is performed has been described. However, the outside air flowing into the outdoor heat exchanger 20 has been described. A similar effect can be obtained by reducing the flow rate. Therefore, a shutter device (for example, a grill shutter) may be disposed in a ventilation path that guides outside air to the outdoor heat exchanger 20, and the ventilation path may be blocked by the shutter in the low flow rate heating mode.
 (5)冷凍サイクル装置10は、上述の実施形態に開示されたものに限定されない。例えば、冷凍サイクル装置は、暖房モード(すなわち、通常暖房モードおよび低流量暖房モード)時に、ガスインジェクションサイクルを構成するものであってもよい。 (5) The refrigeration cycle apparatus 10 is not limited to the one disclosed in the above embodiment. For example, the refrigeration cycle apparatus may constitute a gas injection cycle in the heating mode (that is, the normal heating mode and the low flow rate heating mode).
 この場合は、圧縮機11として、冷媒を吸入する吸入ポート、圧縮した冷媒を吐出させる吐出ポート、サイクル内で生成された中間圧冷媒を圧縮過程の冷媒に合流させる中間圧ポートを有する二段昇圧式のものを採用すればよい。 In this case, the compressor 11 has a two-stage booster having a suction port for sucking refrigerant, a discharge port for discharging compressed refrigerant, and an intermediate pressure port for joining the intermediate pressure refrigerant generated in the cycle with the refrigerant in the compression process. A formula type may be adopted.
 さらに、第1膨張弁14aにて減圧された中間圧冷媒の気液を分離する気液分離部を設ける。この気液分離部の気相冷媒出口側と圧縮機の中間圧ポート側とを接続し、気相冷媒出口側と圧縮機の中間圧ポート側とを接続する冷媒通路に、冷媒回路切替装置として上述の実施形態と同様の開閉弁を配置する。 Furthermore, a gas-liquid separation unit for separating the gas-liquid of the intermediate pressure refrigerant decompressed by the first expansion valve 14a is provided. A refrigerant circuit switching device is connected to a refrigerant passage connecting the gas-phase refrigerant outlet side of the gas-liquid separator and the intermediate pressure port side of the compressor, and connecting the gas-phase refrigerant outlet side and the intermediate pressure port side of the compressor. An on-off valve similar to the above-described embodiment is arranged.
 気液分離部の液相冷媒出口側と室外熱交換器20の入口側とを接続し、液相冷媒出口側と室外熱交換器20の入口側とを接続する冷媒通路に、気液分離部から流出した液相冷媒を低圧冷媒となるまで減圧させる減圧装置として上述の実施形態と同様の膨張弁を配置すればよい。 The gas-liquid separator is connected to a refrigerant passage connecting the liquid-phase refrigerant outlet side of the gas-liquid separator and the inlet side of the outdoor heat exchanger 20 and connecting the liquid-phase refrigerant outlet side and the inlet side of the outdoor heat exchanger 20. An expansion valve similar to that of the above-described embodiment may be disposed as a decompression device that decompresses the liquid-phase refrigerant that has flowed out of the refrigerant until it becomes a low-pressure refrigerant.
 また、上述の実施形態では、冷媒回路を切替可能に構成された冷凍サイクル装置10について説明したが、冷媒回路の切り替えは必須ではない。少なくとも暖房モードでの運転が可能な冷凍サイクル装置であれば、上述した送風空気の温度分布の生じる範囲を縮小させる効果を得ることができる。 In the above-described embodiment, the refrigeration cycle apparatus 10 configured to be able to switch the refrigerant circuit has been described, but switching of the refrigerant circuit is not essential. If it is a refrigeration cycle apparatus that can be operated at least in the heating mode, it is possible to obtain an effect of reducing the range in which the temperature distribution of the blown air described above occurs.
 また、上述の実施形態では、冷凍サイクル装置10の冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。

 
Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted R134a as a refrigerant | coolant of the refrigerating-cycle apparatus 10, a refrigerant | coolant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants.

Claims (7)

  1.  空調装置に適用される冷凍サイクル装置であって、
     冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された高圧冷媒と空調対象空間へ送風される送風空気とを熱交換させて、前記送風空気を加熱する加熱用熱交換器(12)と、
     前記加熱用熱交換器から流出した冷媒を減圧させる減圧装置(14a)と、
     前記減圧装置にて減圧された低圧冷媒と外気とを熱交換させる室外熱交換器(20)と、
     前記減圧装置の作動を制御する減圧装置制御部(40b)と、
     前記加熱用熱交換器から流出する冷媒の目標過冷却度(SCO)を決定する目標過冷却度決定部(S9)と、
     サイクルを循環する冷媒の循環冷媒流量が予め定めた基準流量よりも低下した低流量運転になっていることを判定する低流量運転判定部(S41~S43)と、を備え、
     前記減圧装置制御部は、前記加熱用熱交換器から流出する冷媒が前記目標過冷却度(SCO)に近づくように前記減圧装置の作動を制御するものであり、
     前記目標過冷却度決定部は、前記低流量運転判定部が前記低流量運転になっていることを判定した際に、前記目標過冷却度(SCO)を低下させるものである冷凍サイクル装置。
    A refrigeration cycle apparatus applied to an air conditioner,
    A compressor (11) for compressing and discharging the refrigerant;
    A heat exchanger (12) for heating that heat-exchanges the high-pressure refrigerant discharged from the compressor and the blown air blown into the air-conditioning target space, and heats the blown air;
    A decompression device (14a) for decompressing the refrigerant flowing out of the heating heat exchanger;
    An outdoor heat exchanger (20) for exchanging heat between the low-pressure refrigerant decompressed by the decompression device and the outside air;
    A decompression device controller (40b) for controlling the operation of the decompression device;
    A target supercooling degree determination unit (S9) for determining a target supercooling degree (SCO) of the refrigerant flowing out of the heating heat exchanger;
    A low flow rate operation determination unit (S41 to S43) for determining that the flow rate of the refrigerant circulating through the cycle is a low flow rate operation in which the flow rate is lower than a predetermined reference flow rate,
    The decompression device control unit controls the operation of the decompression device so that the refrigerant flowing out of the heat exchanger for heating approaches the target supercooling degree (SCO),
    The target supercooling degree determination unit is a refrigeration cycle apparatus that reduces the target supercooling degree (SCO) when the low flow rate operation determination unit determines that the low flow rate operation is performed.
  2.  前記低流量運転判定部(S41)は、外気温(Tam)が予め定めた基準外気温(KTam)以上になった際に、前記低流量運転になっていることを判定するものである請求項1に記載の冷凍サイクル装置。 The low flow rate operation determination unit (S41) is configured to determine that the low flow rate operation is performed when an outside air temperature (Tam) is equal to or higher than a predetermined reference outside air temperature (KTam). The refrigeration cycle apparatus according to 1.
  3.  前記低流量運転判定部(S42)は、前記加熱用熱交換器へ流入する送風空気の流入空気温度(TAin)が予め定めた基準流入温度(KTAin)以上になった際に、前記低流量運転になっていることを判定するものである請求項1または2に記載の冷凍サイクル装置。 The low flow rate operation determination unit (S42) performs the low flow rate operation when the inflow air temperature (TAin) of the blown air flowing into the heating heat exchanger becomes equal to or higher than a predetermined reference inflow temperature (KTAin). The refrigeration cycle apparatus according to claim 1 or 2, wherein it is determined that
  4.  前記低流量運転判定部(S43)は、前記圧縮機11の冷媒吐出能力が予め定めた基準吐出能力以下になった際に、前記低流量運転になっていることを判定するものである請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 The low flow rate operation determination unit (S43) determines that the low flow rate operation is in effect when the refrigerant discharge capacity of the compressor 11 is equal to or lower than a predetermined reference discharge capacity. The refrigeration cycle apparatus according to any one of 1 to 3.
  5.  前記室外熱交換器へ外気を送風する外気ファン(20a)と、
     前記外気ファンの送風能力を制御する外気ファン制御部(40d)と、を備え、
     前記外気ファン制御部は、前記低流量運転判定部が前記低流量運転になっていることを判定した際に、前記外気ファンの送風能力を低下させるものである請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
    An outside air fan (20a) for blowing outside air to the outdoor heat exchanger;
    An outside air fan control unit (40d) for controlling the blowing capacity of the outside air fan,
    The said outside air fan control part reduces the ventilation capacity of the said outside air fan, when the said low flow operation determination part determines that it is the said low flow operation. The refrigeration cycle apparatus described in 1.
  6.  車両用空調装置に適用される冷凍サイクル装置であって、
     前記加熱用熱交換器の熱交換部のうち、中間部よりも冷媒流れ上流側の部位にて加熱された送風空気を吹き出す第1吹出モードと前記加熱用熱交換器の熱交換部のうち中間部よりも冷媒流れ下流側の部位にて加熱された送風空気を吹き出す第2吹出モードとを切り替える吹出モード切替装置(38a~38c)を備え、
     前記目標過冷却度決定部は、前記低流量運転判定部が前記低流量運転になっていることを判定し、かつ、前記吹出モード切替装置が第2吹出モードに切り替えている際に、前記目標過冷却度(SCO)を低下させるものである請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。
    A refrigeration cycle apparatus applied to a vehicle air conditioner,
    Among the heat exchange parts of the heat exchanger for heating, the first blow mode for blowing blown air heated at the part upstream of the refrigerant flow from the intermediate part and the middle of the heat exchange parts of the heat exchanger for heating. A blowing mode switching device (38a to 38c) for switching between a second blowing mode for blowing out the blown air heated at a site downstream of the refrigerant flow from the unit,
    The target supercooling degree determination unit determines that the low flow rate operation determination unit is in the low flow rate operation, and the target mode is determined when the blow mode switching device is switched to the second blow mode. The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the refrigeration cycle apparatus reduces the degree of supercooling (SCO).
  7.  前記加熱用熱交換器へ送風空気を送風する送風機(32)と、
     前記送風機の送風能力を制御する送風機制御部(40e)と、を備え、
     前記送風機制御部は、前記低流量運転判定部が前記低流量運転になっていることを判定した際に、前記送風機の送風能力を増加させるものである請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。

     
    A blower (32) for blowing air to the heat exchanger for heating;
    A blower control unit (40e) for controlling the blowing capacity of the blower,
    The blower control unit increases the blowing capacity of the blower when the low flow rate operation determination unit determines that the low flow rate operation is performed. The refrigeration cycle apparatus described.

PCT/JP2017/033187 2016-11-11 2017-09-14 Refrigeration cycle device WO2018088025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220487 2016-11-11
JP2016220487A JP6702147B2 (en) 2016-11-11 2016-11-11 Refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2018088025A1 true WO2018088025A1 (en) 2018-05-17

Family

ID=62109210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033187 WO2018088025A1 (en) 2016-11-11 2017-09-14 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6702147B2 (en)
WO (1) WO2018088025A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147127A (en) * 1996-11-18 1998-06-02 Denso Corp Air conditioner
JP2009002576A (en) * 2007-06-21 2009-01-08 Denso Corp Refrigerating cycle apparatus
JP2015229370A (en) * 2014-06-03 2015-12-21 サンデンホールディングス株式会社 Air-conditioning system for vehicle
WO2016059945A1 (en) * 2014-09-29 2016-04-21 サンデンホールディングス株式会社 Vehicle air-conditioning device
CN106642526A (en) * 2016-10-13 2017-05-10 四川长虹电器股份有限公司 Method of promoting heating performance of air conditioner system under low-temperature environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147127A (en) * 1996-11-18 1998-06-02 Denso Corp Air conditioner
JP2009002576A (en) * 2007-06-21 2009-01-08 Denso Corp Refrigerating cycle apparatus
JP2015229370A (en) * 2014-06-03 2015-12-21 サンデンホールディングス株式会社 Air-conditioning system for vehicle
WO2016059945A1 (en) * 2014-09-29 2016-04-21 サンデンホールディングス株式会社 Vehicle air-conditioning device
CN106642526A (en) * 2016-10-13 2017-05-10 四川长虹电器股份有限公司 Method of promoting heating performance of air conditioner system under low-temperature environment

Also Published As

Publication number Publication date
JP2018077029A (en) 2018-05-17
JP6702147B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6277888B2 (en) Refrigeration cycle equipment
JP6295676B2 (en) Heat pump cycle
JP6332193B2 (en) Air conditioner for vehicles
WO2014171107A1 (en) Refrigeration cycle device
CN109642756B (en) Refrigeration cycle device
WO2013084502A1 (en) Air-conditioning system for vehicle
JP6711258B2 (en) Refrigeration cycle equipment
JP5935625B2 (en) Refrigeration cycle controller
JP2018091536A (en) Refrigeration cycle device
US11117445B2 (en) Vehicle air conditioning device
JP2018077020A (en) Refrigeration cycle device
JP2015137778A (en) Refrigeration cycle device
WO2018180291A1 (en) Refrigeration cycle apparatus
JP5935714B2 (en) Refrigeration cycle equipment
JP6375796B2 (en) Refrigeration cycle equipment
WO2017130845A1 (en) Heat pump system
WO2018088025A1 (en) Refrigeration cycle device
JP6369237B2 (en) Air conditioner
WO2020095638A1 (en) Refrigeration cycle device
JP6583222B2 (en) Air conditioner
JP6699460B2 (en) Refrigeration cycle equipment
JP7302394B2 (en) vehicle air conditioner
JP5888126B2 (en) Air conditioner for vehicles
WO2023053746A1 (en) Refrigeration cycle apparatus
JP7155649B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870187

Country of ref document: EP

Kind code of ref document: A1