WO2017130845A1 - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
WO2017130845A1
WO2017130845A1 PCT/JP2017/001836 JP2017001836W WO2017130845A1 WO 2017130845 A1 WO2017130845 A1 WO 2017130845A1 JP 2017001836 W JP2017001836 W JP 2017001836W WO 2017130845 A1 WO2017130845 A1 WO 2017130845A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
heat exchanger
air
heat
Prior art date
Application number
PCT/JP2017/001836
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 多田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016236054A external-priority patent/JP6493370B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017000488.8T priority Critical patent/DE112017000488T5/en
Priority to US16/071,917 priority patent/US10889163B2/en
Priority to CN201780007407.9A priority patent/CN108474603B/en
Publication of WO2017130845A1 publication Critical patent/WO2017130845A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present disclosure relates to a heat pump system that heats a heat medium by a heat pump cycle and heats a fluid to be heated using the heated heat medium as a heat source.
  • Patent Document 1 warm water that is a heat medium is heated by a heat pump cycle (that is, a vapor compression refrigeration cycle), and heat is exchanged between the heated warm water and blown air that is a fluid to be heated.
  • a heat pump cycle that is, a vapor compression refrigeration cycle
  • a defrosting operation is performed to remove the frost.
  • defrosting is performed by increasing the throttle opening of the expansion valve of the heat pump cycle during the defrosting operation and increasing the temperature of the refrigerant flowing into the outdoor heat exchanger.
  • So-called hot gas defrosting is performed.
  • the refrigerant flowing out of the water-refrigerant heat exchanger that exchanges heat between the high-pressure refrigerant and the hot water is assumed on the premise that the temperature of the hot water is equal to or higher than a predetermined temperature during the defrosting operation.
  • the throttle opening of the expansion valve is adjusted so that the temperature of the expansion valve is equal to that of the hot water.
  • an object of the present disclosure is to provide a heat pump system capable of suppressing a decrease in the heating capacity of a fluid to be heated while exhibiting a stable defrosting capacity during a defrosting operation.
  • the heat pump system includes a heat pump cycle, a heat medium circulation circuit, and a refrigeration cycle apparatus.
  • the heat pump cycle includes a compressor that compresses and discharges the refrigerant, a first heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor and the heat medium, and a decompressor that depressurizes the refrigerant flowing out of the first heat exchanger. And an outdoor heat exchanger for exchanging heat between the low-pressure refrigerant decompressed by the decompression device and the outside air.
  • the heat medium circulation circuit includes a pressure feeding device that pumps the heat medium, and a second heat exchanger that heats the heat target fluid by exchanging heat between the heat medium flowing out from the first heat exchanger and the heat target fluid.
  • the refrigeration cycle apparatus determines a throttle opening degree control unit that controls the throttle opening degree of the pressure reducing device, a pressure feeding capacity control unit that controls the pressure feeding capacity of the pressure feeding device, and frost formation in the outdoor heat exchanger.
  • a frost determination unit The refrigeration cycle apparatus performs a defrosting operation for defrosting the outdoor heat exchanger when it is determined by the frost determination unit that frost is generated in the outdoor heat exchanger.
  • the throttle opening control unit increases the throttle opening during the defrosting operation.
  • the pressure-feeding capacity control unit is required to heat the heating target fluid in a range where the temperature of the refrigerant flowing into the outdoor heat exchanger becomes a temperature at which frost generated in the outdoor heat exchanger can be melted during the defrosting operation.
  • the pumping capacity is increased as the required heating capacity increases.
  • the throttle opening degree control unit increases the throttle opening degree of the decompression device during the defrosting operation, the temperature of the refrigerant flowing into the outdoor heat exchanger is increased to defrost the outdoor heat exchanger. It can be performed.
  • the pumping capacity control unit increases the pumping capacity as the required heating capacity increases, it is possible to prevent the refrigerant from radiating and losing heat necessary for defrosting in the first heat exchanger. can do. Furthermore, it is possible to suppress the temperature drop of the heat medium flowing out from the first heat exchanger and supply a relatively high temperature heat medium to the second heat exchanger.
  • the frost formation determination unit described in the claims is not limited to the determination unit that determines whether or not frost formation has actually occurred in the outdoor heat exchanger.
  • a determination unit that determines whether or not it is an operating condition that may cause frost formation in the outdoor heat exchanger, and a determination unit that determines whether or not frost formation may occur in the outdoor heat exchanger Is also included in the meaning of the term frost formation determination unit.
  • the heat pump system 1 is applied to a vehicle air conditioner for a so-called hybrid vehicle that obtains driving force for vehicle traveling from an internal combustion engine (engine) 60 and a traveling electric motor.
  • the heat pump system 1 fulfills the function of heating or cooling the blown air blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner.
  • the heat pump system 1 includes a heat pump cycle 10 that is a vapor compression refrigeration cycle that heats or cools blown air, and a heat medium circulation circuit 20 that circulates cooling water of the engine 60. And when the heat pump system 1 heats blowing air, it can heat cooling water with the heat pump cycle 10, and can heat blowing air by using the heated cooling water as a heat source. Therefore, the fluid to be heated in the heat pump system 1 of the present embodiment is blown air, and the heat medium is cooling water.
  • the heat pump cycle 10 is configured to be able to switch the refrigerant circuit.
  • a refrigerant circuit for cooling operation that cools the blown air to cool the vehicle interior
  • a refrigerant circuit for heating operation that heats the blown air and heats the vehicle interior, and is cooled and dehumidified
  • It is configured to be switchable to a refrigerant circuit for dehumidifying and heating operation that performs heating while dehumidifying the vehicle interior by reheating the blown air.
  • the refrigerant flow in the refrigerant circuit during the cooling operation is indicated by a white arrow
  • the refrigerant flow in the refrigerant circuit during the heating operation is indicated by a black arrow
  • the refrigerant flow in the refrigerant circuit during the dehumidifying heating operation is indicated.
  • the flow is indicated by hatched arrows.
  • the heat pump cycle 10 can perform a defrosting operation for removing the frost when the outdoor heat exchanger 14 described later is frosted.
  • an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure is configured. Yes.
  • This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed in the engine room, and sucks the refrigerant in the heat pump cycle 10 and discharges it until it becomes a high-pressure refrigerant.
  • the compressor 11 of the present embodiment is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from the air conditioning control device 40 described later, and either an AC motor or a DC motor may be adopted.
  • the inlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
  • the water-refrigerant heat exchanger 12 is a first heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the cooling water circulating in the heat medium circulation circuit 20.
  • Such a water-refrigerant heat exchanger 12 has a plurality of tubes as refrigerant passages through which high-pressure refrigerant flows, and forms water passages through which cooling water flows between adjacent tubes.
  • a heat exchanger or the like configured by disposing inner fins that promote heat exchange between the refrigerant and the cooling water can be employed.
  • the inlet side of the heating expansion valve 13 is connected to the outlet side of the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the heating expansion valve 13 is a decompression device that decompresses the high-pressure refrigerant that has flowed out of the water-refrigerant heat exchanger 12 during heating operation or the like. More specifically, the heating expansion valve 13 includes a valve body configured to be able to change the throttle opening, and an electric actuator including a stepping motor that changes the throttle opening by displacing the valve body. This is an electric variable aperture mechanism.
  • the heating expansion valve 13 of the present embodiment is a variable throttle mechanism with a fully-open function that functions as a simple refrigerant passage with almost no refrigerant decompression effect by fully opening the throttle opening.
  • the operation of the heating expansion valve 13 is controlled by a control signal output from the air conditioning control device 40.
  • the refrigerant inlet side of the outdoor heat exchanger 14 is connected to the outlet side of the heating expansion valve 13.
  • the outdoor heat exchanger 14 is a heat exchanger that is disposed on the front side in the engine room and exchanges heat between the refrigerant on the downstream side of the water-refrigerant heat exchanger 12 and the outside air blown from the blower fan 14a.
  • the outdoor heat exchanger 14 functions as a radiator that radiates high-pressure refrigerant at least during cooling operation, and absorbs heat by evaporating the low-pressure refrigerant decompressed by the heating expansion valve 13 at least during heating operation. It functions as an evaporator that exerts its action.
  • the blower fan 14a is an electric blower in which the operating rate, that is, the rotation speed (blowing capacity) is controlled by the control voltage output from the air conditioning control device 40.
  • the refrigerant outlet side of the outdoor heat exchanger 14 is connected to the refrigerant inlet of the branching portion 15a that branches the flow of the refrigerant flowing out of the outdoor heat exchanger 14.
  • the branch portion 15a is configured by a three-way joint, and one of the three inflow / outflow ports is a refrigerant inflow port, and the remaining two are the refrigerant outflow ports.
  • Such a three-way joint may be formed by joining pipes having different pipe diameters, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the refrigerant inlet side of the cooling expansion valve 16 is connected to one refrigerant outlet of the branch part 15a. Further, a bypass passage 18 is connected to the other refrigerant outlet of the branch portion 15a to guide the refrigerant flowing out from the branch portion 15a to the inlet side of an accumulator 19 described later by bypassing the cooling expansion valve 16 and the like.
  • the basic configuration of the cooling expansion valve 16 is the same as that of the heating expansion valve 13. Furthermore, the cooling expansion valve 16 of the present embodiment has only a fully open function that fully opens the refrigerant passage from the refrigerant outlet side of the outdoor heat exchanger 14 to the refrigerant inlet side of the indoor evaporator 17 when the throttle opening is fully opened. First, it is composed of a variable throttle mechanism with a full-close function that closes the refrigerant passage when the throttle opening is fully closed.
  • the refrigerant circuit for circulating the refrigerant can be switched by the cooling expansion valve 16 closing the refrigerant passage. Therefore, the cooling expansion valve 16 of the present embodiment also has a function as a refrigerant circuit switching device.
  • the refrigerant inlet side of the indoor evaporator 17 is connected to the outlet side of the cooling expansion valve 16.
  • the indoor evaporator 17 is arrange
  • the indoor evaporator 17 is a cooling heat exchanger that cools blown air by evaporating the refrigerant circulating through the heat exchange with blown air at least during cooling operation and dehumidifying heating operation.
  • the inlet side of the accumulator 19 is connected to the refrigerant outlet side of the indoor evaporator 17 via a junction 15b.
  • the accumulator 19 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess liquid-phase refrigerant in the cycle.
  • the merging portion 15b is configured by a three-way joint similar to the branching portion 15a, and two of the three inflow / outflow ports are refrigerant inlets and the remaining one is a refrigerant outlet.
  • bypass passage 18 is connected to the other refrigerant inlet of the junction 15b of the present embodiment.
  • an open / close valve 18 a that opens and closes the bypass passage 18 is disposed in the bypass passage 18.
  • the on-off valve 18 a is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device 40.
  • the on-off valve 18a functions as a refrigerant circuit switching device together with the cooling expansion valve 16.
  • the suction side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 19. Therefore, the accumulator 19 functions to prevent liquid compression of the compressor 11 by suppressing the liquid phase refrigerant from being sucked into the compressor 11.
  • the heat medium circulation circuit 20 is a heat medium circuit that circulates cooling water for cooling the engine 60. Therefore, the heat medium circulation circuit 20 is connected to a cooling water passage formed inside the engine 60. Further, the heat medium circulation circuit 20 is provided with a water pump 21 for circulating the cooling water.
  • the water pump 21 is a pressure feeding device that pumps the cooling water flowing out from the heater core 22 to the inlet side of the cooling water passage of the engine 60.
  • the rotation speed (water pumping capacity) of the water pump 21 is controlled by the control voltage output from the air conditioning control device 40.
  • the inlet side of the water passage of the water-refrigerant heat exchanger 12 is connected to the outlet side of the cooling water passage of the engine 60. Further, the heat medium inlet of the heater core 22 is connected to the outlet side of the water passage of the water-refrigerant heat exchanger 12.
  • the heater core 22 is disposed in the casing 31 of the indoor air conditioning unit 30, and exchanges heat between the cooling water heated by the water-refrigerant heat exchanger 12 and the blown air after passing through the indoor evaporator 17. It is the 2nd heat exchanger which heats.
  • the air conditioning control device 40 operates the water pump 21, in the heat medium circulation circuit 20, as shown by the solid line arrow in FIG. 1, the water pump 21 ⁇ the engine 60 ⁇ the water passage of the water-refrigerant heat exchanger 12 ⁇ Cooling water circulates in the order of the heater core 22 and the water pump 21.
  • the cooling water heated by the water-refrigerant heat exchanger 12 can be flowed into the heater core 22 at the time of heating operation etc., and heating air can be heated.
  • the engine 60 is connected to a circulation circuit 25 for heat dissipation.
  • the heat dissipation circulation circuit 25 is a water circulation circuit for radiating the cooling water whose temperature has risen by absorbing the waste heat of the engine 60.
  • the heat radiation circuit 25 is connected in parallel to the heat medium circuit 20. Further, a radiator 26 is disposed in the heat radiation circuit 25.
  • the radiator 26 is a heat radiating heat exchanger that exchanges heat between the cooling water and the outside air and radiates the heat of the cooling water to the outside air. Furthermore, a mechanical water pump (not shown) that operates in conjunction with the engine 60 is disposed in the circulation circuit 25 for heat dissipation. Therefore, when the engine 60 is operated, the cooling water circulates between the engine 60 and the radiator 26 as indicated by broken line arrows in FIG.
  • the cooling water absorbs the waste heat of the engine 60 and rises in temperature. Therefore, the engine 60 also functions as a heating unit that heats the cooling water.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 accommodates a blower 32, an indoor evaporator 17, a heater core 23, and the like in a casing 31 that forms an outer shell in order to blow the blown air whose temperature is adjusted by the heat pump system 1 into the vehicle interior. is there.
  • the casing 31 forms an air passage for the blown air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • An inside / outside air switching device 33 for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed on the most upstream side of the blast air flow in the casing 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air, by the inside / outside air switching door, The introduction ratio with the introduction air volume is changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
  • a blower (blower) 32 is disposed as a blower that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
  • the indoor evaporator 17 and the heater core 23 are arranged in this order with respect to the flow of the blown air. That is, the indoor evaporator 17 is arranged on the upstream side of the air flow with respect to the heater core 23. Further, in the casing 31, a cold air bypass passage 35 is formed in which the blown air that has passed through the indoor evaporator 17 bypasses the heater core 23 and flows downstream.
  • a mix door 34 is arranged on the downstream side of the blower air flow of the indoor evaporator 17 and on the upstream side of the blower air flow of the heater core 23, the air that adjusts the air volume ratio that passes through the heater core 23 among the blown air that has passed through the indoor evaporator 17.
  • a mixing space for mixing the blown air heated by the heater core 23 and the blown air that has passed through the cold air bypass passage 35 and is not heated by the heater core 23 is provided on the downstream side of the blower air flow of the heater core 23. ing. Furthermore, the opening hole which blows off the ventilation air (air-conditioning wind) mixed in the mixing space to the vehicle interior which is an air-conditioning object space is arrange
  • the opening hole As the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided.
  • the face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior.
  • the foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger.
  • the defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
  • These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space is adjusted by the air mix door 34 adjusting the air volume ratio between the air volume passing through the heater core 23 and the air volume passing through the cold air bypass passage 35. Thereby, the temperature of the blast air (air conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
  • the air mix door 34 functions as a temperature adjusting unit that adjusts the temperature of the conditioned air blown into the vehicle interior.
  • the air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
  • a face door for adjusting the opening area of the face opening hole a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively.
  • a defroster door (both not shown) for adjusting the opening area of the hole is disposed.
  • These face doors, foot doors, and defroster doors constitute an opening hole mode switching device that switches the opening hole mode, and are linked to an electric actuator for driving an outlet mode door via a link mechanism or the like. And rotated.
  • the operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
  • outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
  • the face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blow-out mode in which the foot blow-out opening is fully opened and the defroster blow-out opening is opened by a small opening so that air is mainly blown out from the foot blow-out opening.
  • the defroster mode in which the defroster blowout port is fully opened and air is blown out from the defroster blowout port to the inner surface of the front windshield of the vehicle can be set.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the operations of the various control target devices 11, 13, 14a, 16, 18a, 21, 32, etc. connected to the output side are performed. Control.
  • Third refrigerant temperature sensors 45a to 45c, a refrigerant pressure sensor 46, an evaporator temperature sensor 47, an air conditioning air temperature sensor 48, an inflow air temperature sensor 49, and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40.
  • the inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the first water temperature sensor 44a is a first water temperature detecting unit that detects the inlet side water temperature TW1 of the cooling water flowing into the water passage of the water-refrigerant heat exchanger 12.
  • the second water temperature sensor 44b is a second water temperature detection unit that detects the outlet side water temperature TW2 of the cooling water that has flowed out of the water passage of the water-refrigerant heat exchanger 12.
  • the first refrigerant temperature sensor 45a is a first refrigerant temperature detector that detects an inlet side refrigerant temperature TD1 of refrigerant discharged from the compressor 11 and flowing into the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the second refrigerant temperature sensor 45b is a second refrigerant temperature detector that detects the outlet side refrigerant temperature TD2 of the refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12. More specifically, the second refrigerant temperature sensor 45 b is arranged to detect the temperature of the refrigerant on the outlet side of the heating expansion valve 13 and on the inlet side of the outdoor heat exchanger 14.
  • the third refrigerant temperature sensor 45c is a third refrigerant temperature detector that detects the temperature (outdoor heat exchanger temperature) TD3 of the refrigerant that has flowed out of the outdoor heat exchanger.
  • the refrigerant pressure sensor 46 is a refrigerant pressure detector that detects the high-pressure side refrigerant pressure PD in the refrigerant passage extending from the discharge port side of the compressor 11 to the inlet side of the heating expansion valve 13.
  • the evaporator temperature sensor 47 is an evaporator temperature detector that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 17.
  • the air-conditioning air temperature sensor 48 is an air-conditioning air temperature detector that detects the temperature TAV of air blown from the mixed space into the vehicle interior.
  • the inflow air temperature sensor 49 is an inflow air temperature detector that detects an inflow air temperature TA1 flowing into the heater core 22.
  • coolant temperature sensor 45c of this embodiment has detected the temperature of the piping connected to the refrigerant
  • coolant temperature detection part is not limited to this.
  • the third refrigerant temperature detector a temperature detector that detects the temperature of the main body of the outdoor heat exchanger 14 may be adopted, or the temperature of the refrigerant flowing through the outdoor heat exchanger 14 or the temperature of the refrigerant immediately after flowing out may be determined. You may employ
  • the evaporator temperature sensor 47 detects the heat exchange fin temperature of the indoor evaporator 17, but the evaporator temperature detector is not limited to this.
  • the evaporator temperature detector a temperature detector that detects the temperature of other parts of the indoor evaporator 17 may be employed, or a temperature detector that detects the temperature of the refrigerant flowing through the indoor evaporator 17 may be employed. May be.
  • the ventilation air temperature sensor which detects blowing air temperature TAV is provided, the value calculated based on evaporator temperature Tefin, discharge refrigerant temperature Td, etc. is employ
  • an operation panel 50 disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected.
  • the operation signal is input.
  • various operation switches provided on the operation panel 50 include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner, a cooling switch for requesting cooling of the vehicle interior, and the air volume of the blower 32.
  • the air-conditioning control device 40 is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
  • the configuration (hardware and software) that controls the refrigerant discharge capability (the number of revolutions of the compressor 11) of the compressor 11 constitutes the discharge capability control unit 40a.
  • the structure which controls the throttle opening of the expansion valve 13 for heating comprises the throttle opening control part 40b.
  • the structure which controls the pumping capability of the water pump 21 comprises the pumping capability control part 40c.
  • the discharge capacity control unit 40a, the throttle opening degree control unit 40b, the pumping capacity control unit 40c, and the like may be configured as separate control devices for the air conditioning control device 40.
  • FIG. 1 and the like signal lines and power lines that connect the air conditioning control device 40 and various control target devices are shown, but for clarity of illustration, the sensor group, the air conditioning control device 40, and the sensor group are connected. Illustration of signal lines to be connected is omitted.
  • the cooling operation, the dehumidifying heating operation, and the heating operation can be switched. Switching between these operations is performed by executing an air conditioning control program.
  • This air conditioning control program is executed when the auto switch of the operation panel 50 is turned on.
  • the detection signals of the above-described sensor group for air conditioning control and operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇
  • Tset is a target temperature in the vehicle interior (set temperature in the vehicle interior) set by the temperature setting switch
  • Tr is the internal air temperature detected by the internal air temperature sensor 41
  • Tam is the external air temperature detected by the external air temperature sensor 42
  • I the amount of solar radiation detected by the solar radiation sensor 43.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the operation in the cooling operation is executed.
  • the cooling switch is turned on and the target blowing temperature TAO is equal to or higher than the cooling reference temperature KT.
  • the dehumidifying heating operation is performed.
  • the heating operation is performed.
  • the cooling operation is performed, and the dehumidification heating operation is performed mainly in early spring or early winter. Heating operation is performed mainly when the outside air temperature is relatively low, such as in winter. Furthermore, in the heat pump system 1 of the present embodiment, when frost is generated in the outdoor heat exchanger 14, a defrosting operation for removing the frost is performed. The operation in each operation mode will be described below.
  • the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 operates the water pump 21 so as to exhibit a predetermined pressure-feeding capacity.
  • the throttle opening degree control unit 40b of the air conditioning control device 40 opens the heating expansion valve 13 fully.
  • the air conditioning control device 40 closes the on-off valve 18a and puts the cooling expansion valve 16 into a throttled state that exerts a pressure reducing action.
  • the compressor 11 ⁇ the water-refrigerant heat exchanger 12 ( ⁇ the heating expansion valve 13) ⁇ the outdoor heat exchanger 14 ⁇ the cooling.
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the expansion valve 16 ⁇ the indoor evaporator 17 ⁇ the accumulator 19 ⁇ the compressor 11 is configured.
  • the air conditioning control device 40 indicates the operating states of the various control target devices (control signals output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like. decide.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 17 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
  • the target evaporator blowout temperature TEO is determined to decrease as the target blowout temperature TAO decreases. Further, the target evaporator blowout temperature TEO is determined to be equal to or higher than a reference frost prevention temperature (for example, 1 ° C.) determined to be able to suppress frost formation in the indoor evaporator 17.
  • a reference frost prevention temperature for example, 1 ° C.
  • the evaporator temperature Tefin approaches the target evaporator outlet temperature TEO using a feedback control method.
  • a control signal output to the electric motor of the compressor 11 is determined.
  • control voltage output to the blower 32 is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Specifically, in this control map, the air volume of the blower 32 is set to the maximum air volume in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO.
  • the air blowing amount is decreased according to the increase in the target blowing temperature TAO, and the target blowing temperature TAO is changed from the extremely high temperature range to the intermediate temperature range.
  • the air pressure decreases, the air flow rate is decreased according to the decrease in the target air temperature TAO.
  • the blowing amount is set as the minimum blowing amount.
  • the air mix door 34 closes the air passage on the heater core 23 side, and the total air volume of the blown air after passing through the indoor evaporator 17 is the heater core 23. Is determined to flow around.
  • the degree of supercooling of the refrigerant flowing into the cooling expansion valve 16 is determined by referring to a control map stored in the air conditioning control device 40 in advance. It is determined to approach the degree of supercooling.
  • the target supercooling degree during cooling is a target value that is set so that the coefficient of performance (COP) of the heat pump cycle 10 becomes a substantially maximum value during cooling operation.
  • control voltage output to the blower fan 14a is determined so that the blower fan 14a exhibits a predetermined blowing ability according to the operation mode.
  • control signals determined as described above are output to various control target devices. After that, until the operation stop of the vehicle air conditioner is requested, reading the above detection signal and operation signal at every predetermined control cycle ⁇ calculating the target blowing temperature TAO ⁇ determining the operating state of various control target devices ⁇ control voltage And the control routine such as the output of the control signal is repeated. Such a control routine is repeated in the other operation modes.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the temperature of the cooling water flowing into the water passage of the water-refrigerant heat exchanger 12 is lower than the temperature of the high-pressure refrigerant flowing into the water-refrigerant heat exchanger 12
  • the heat of the high-pressure refrigerant is cooled.
  • the cooling water radiated to the water and circulated through the heat medium circulation circuit 20 is heated.
  • the temperature of the cooling water circulating in the heat medium circulation circuit 20 rises until it becomes equal to the temperature of the high-pressure refrigerant after the start of the cooling operation. Then, when the temperature of the cooling water circulating in the heat medium circuit 20 rises to be equal to the temperature of the high-pressure refrigerant, even if the high-pressure refrigerant flows into the water-refrigerant heat exchanger 12, the cooling water and heat It flows out of the water-refrigerant heat exchanger 12 without replacement.
  • the refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the outdoor heat exchanger 14 through the heating expansion valve 13 that is fully open.
  • the refrigerant flowing into the outdoor heat exchanger 14 exchanges heat with the outside air blown from the blower fan 14a in the outdoor heat exchanger 14 to radiate heat.
  • the refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the cooling expansion valve 16 through the branch portion 15a because the on-off valve 18a is closed.
  • the refrigerant flowing into the cooling expansion valve 16 is decompressed until it becomes a low-pressure refrigerant.
  • the refrigerant decompressed by the cooling expansion valve 16 flows into the indoor evaporator 17, absorbs heat from the blown air blown from the blower 32, and evaporates. Thereby, blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 17 flows into the accumulator 19 through the junction 15b.
  • the gas-phase refrigerant separated by flowing into the accumulator 19 is sucked into the compressor 11 and compressed again.
  • the vehicle interior can be cooled by blowing the blown air cooled by the indoor evaporator 17 into the vehicle interior.
  • the pumping capacity control unit 40c of the air conditioning control device 40 may stop the operation of the water pump 21.
  • the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 operates the water pump 21 so as to exhibit a predetermined pressure-feeding capacity. Moreover, the throttle opening degree control part 40b of the air-conditioning control apparatus 40 makes the expansion valve 13 for heating into a throttle state. Further, the air conditioning control device 40 closes the on-off valve 18a and puts the cooling expansion valve 16 into a throttled state that exerts a pressure reducing action.
  • the compressor 11 ⁇ the water-refrigerant heat exchanger 12 ⁇ the heating expansion valve 13 ⁇ the outdoor heat exchanger 14 ( ⁇ A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the cooling expansion valve 16) ⁇ the indoor evaporator 17 ⁇ the accumulator 19 ⁇ the compressor 11 is configured. That is, in the dehumidifying and heating operation, a refrigeration cycle in which the refrigerant circulates in the same order as in the cooling operation is configured.
  • the air-conditioning control device 40 operates the operation states of the various control target devices (output to the various control target devices based on the target blowing temperature TAO and the detection signal of the sensor group). Control signal) to be determined.
  • control signal output to the electric motor of the compressor 11, the control voltage output to the blower 32, and the control voltage output to the blower fan 14a are determined in the same manner as in the cooling operation.
  • the degree of supercooling of the refrigerant flowing into the heating expansion valve 13 is determined by referring to a control map stored in the air conditioning control device 40 in advance. It is determined to approach the degree of supercooling.
  • the target supercooling degree during heating is a target value that is set so that the coefficient of performance (COP) of the heat pump cycle 10 becomes a substantially maximum value during dehumidifying heating operation or during heating operation.
  • control signal output to the electric actuator of the air mix door 34 is determined so that the blown air temperature TAV detected by the conditioned air temperature sensor 48 approaches the target blowing temperature TAO.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12.
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the cooling water flowing through the water passage of the water-refrigerant heat exchanger 12. Thereby, the cooling water circulating through the heat medium circulation circuit 20 is heated.
  • the cooling water heated by the water-refrigerant heat exchanger 12 flows into the heater core 23.
  • the air mix door 34 opens the air passage on the heater core 23 side, the cooling water flowing into the heater core 23 and the blown air after passing through the indoor evaporator 17 exchange heat. Thereby, a part of blowing air after passing through the indoor evaporator 17 is heated. Then, the temperature of the blown air blown from the mixed space of the indoor air conditioning unit 30 into the vehicle interior approaches the target blowing temperature TAO.
  • the refrigerant that has flowed out of the water-refrigerant heat exchanger 12 flows into the heating expansion valve 13 and is decompressed until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the heating expansion valve 13 flows into the outdoor heat exchanger 14.
  • the refrigerant flowing into the outdoor heat exchanger 14 absorbs heat from the outside air blown from the blower fan 14a and evaporates.
  • the refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the indoor evaporator 17 through the branching portion 15a and the cooling expansion valve 16 that is fully open because the on-off valve 18a is closed.
  • the refrigerant flowing into the indoor evaporator 17 further absorbs heat and evaporates from the blown air blown from the blower 32. Thereby, blowing air is cooled and dehumidification of blowing air is made.
  • the subsequent operation is the same as in the cooling operation.
  • the blown air cooled and dehumidified by the indoor evaporator 17 is reheated by the heater core 23 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior.
  • the cooling water can be heated by the heat pump cycle 10, so that the vehicle room can be dehumidified and heated even if the engine 60 as the heating unit is not operating.
  • the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 operates the water pump 21 so as to exhibit a predetermined pressure-feeding capacity. Moreover, the throttle opening degree control part 40b of the air-conditioning control apparatus 40 makes the expansion valve 13 for heating into a throttle state. Furthermore, the air conditioning control device 40 opens the on-off valve 18a and fully closes the cooling expansion valve 16.
  • the air-conditioning control device 40 operates the operation states of the various control target devices (output to the various control target devices based on the target blowing temperature TAO and the detection signal of the sensor group). Control signal) to be determined.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows.
  • the target condensing temperature TCO in the water-refrigerant heat exchanger 12 is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance. Specifically, in this control map, the target condensing temperature TCO is determined to increase as the target blowing temperature TAO increases.
  • the inlet refrigerant temperature TD1 approaches the target condensation temperature TCO using a feedback control method. And the control signal output to the electric motor of the compressor 11 is determined so that the abnormal rise of the high-pressure side refrigerant pressure PD is suppressed.
  • control voltage output to the blower 32 and the control voltage output to the blower fan 14a are determined in the same manner as in the cooling operation.
  • the control signal output to the heating expansion valve 13 is determined in the same manner as in the dehumidifying heating operation.
  • the air mix door 34 closes the cold air bypass passage 35, and the total air volume of the blown air after passing through the indoor evaporator 17 is the air passage on the heater core 23 side. Is determined to pass.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 as in the dehumidifying heating operation.
  • the refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the cooling water flowing through the water passage of the water-refrigerant heat exchanger 12. Thereby, the cooling water circulating through the heat medium circulation circuit 20 is heated.
  • the cooling water heated by the water-refrigerant heat exchanger 12 flows into the heater core 23.
  • the air mix door 34 fully opens the air passage on the heater core 23 side, the cooling water flowing into the heater core 23 and the blown air after passing through the indoor evaporator 17 exchange heat. Thereby, the blown air after passing through the indoor evaporator 17 is heated.
  • the refrigerant that has flowed out of the water-refrigerant heat exchanger 12 flows into the heating expansion valve 13 and is decompressed until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the heating expansion valve 13 flows into the outdoor heat exchanger 14.
  • the refrigerant that has flowed into the outdoor heat exchanger 14 is blown from the blower fan 14a and absorbs heat from the outside air after passing through the radiator 26 and evaporates, as in the dehumidifying and heating operation.
  • the refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the accumulator 19 through the branch portion 15a and the bypass passage 18 because the on-off valve 18a is closed and the cooling expansion valve 16 is fully closed. Gas-liquid separation.
  • the gas-phase refrigerant separated by the accumulator 19 is sucked into the compressor 11 and compressed again as in the cooling operation and the dehumidifying heating operation.
  • the vehicle interior can be heated by blowing the blown air heated by the heater core 23 into the vehicle interior. Further, during the heating operation, the cooling water can be heated by the heat pump cycle 10 as in the dehumidifying heating operation, so that the vehicle compartment can be dehumidified and heated even when the engine 60 is not operating.
  • the refrigerant evaporation temperature of the outdoor heat exchanger 14 is below freezing (0 ° C. or lower).
  • Frost formation may occur in the outdoor heat exchanger 14.
  • FIG. 3 Defrosting operation is demonstrated using the flowchart of FIG. 3 is a control process executed at predetermined intervals as a subroutine for the main routine of the air conditioning control program. Moreover, each control step of the flowchart of FIG. 3 comprises the function implementation apparatus (function implementation part) which the air-conditioning control apparatus 40 has.
  • step S1 it is determined whether or not frost formation has occurred in the outdoor heat exchanger. Specifically, in step S1 of the present embodiment, a value (Tam ⁇ TD3) obtained by subtracting the outdoor heat exchanger temperature TD3 detected by the third refrigerant temperature sensor 45c from the outside air temperature Tam is equal to or larger than a predetermined reference temperature difference. It is determined that frost formation has occurred in the outdoor heat exchanger 14. Therefore, control step S1 comprises the frost determination part.
  • step S1 of this embodiment in order to determine whether or not frost formation has actually occurred in the outdoor heat exchanger 14, frost formation can occur in the outdoor heat exchanger (air heat exchanger) 14. It is determined whether or not the operating condition is met. That is, in step S1, it is determined whether there is a possibility that frost formation has occurred in the outdoor heat exchanger 14.
  • step S1 when it determines with the frost formation having arisen in the outdoor heat exchanger 14 in step S1, it progresses to step S2. On the other hand, if it is not determined in step S1 that frost formation has occurred in the outdoor heat exchanger 14, the process returns to the main routine.
  • step S2 the operating states of the various control target devices (control signals output to the various control target devices) when executing the defrosting operation are determined, and the process proceeds to step S3.
  • the throttle opening degree control unit 40b of the air conditioning control device 40 brings the heating expansion valve 13 into a throttled state.
  • the throttle opening control unit 40b performs the heating operation so that the outlet side refrigerant temperature TD2 detected by the second refrigerant temperature sensor 45b approaches the outlet side water temperature TW2 detected by the second water temperature sensor 44b. Increase the throttle opening more than.
  • the air conditioning control device 40 opens the opening / closing valve 18a, fully closes the cooling expansion valve 16, and stops the operation of the blower fan 14a that blows outside air toward the outdoor heat exchanger 14.
  • step S3 the outside air temperature Tam is compared with the outlet side water temperature TW2. Specifically, when it is determined in step S3 that the outlet side water temperature TW2 is lower than the value (Tam + ⁇ ) obtained by adding the first reference temperature ⁇ (40 ° C. in the present embodiment) to the outside air temperature Tam, Proceed to step S4.
  • step S4 the pumping capacity control unit 40c of the air conditioning control device 40 decreases the flow rate of the water pump 21 (that is, the pumping capacity) by a predetermined amount, and proceeds to step S7.
  • Step S3 when it is determined that the outlet side water temperature TW2 is equal to the value (Tam + ⁇ ) obtained by adding the first reference temperature ⁇ to the outside air temperature Tam, the process proceeds to Step S5.
  • step S5 the pumping capacity control unit 40c maintains the flow rate of the water pump 21 without changing it, and proceeds to step S7.
  • Step S3 when it is determined that the outlet water temperature TW2 is higher than the value obtained by adding the first reference temperature ⁇ to the outside air temperature Tam (Tam + ⁇ ), the process proceeds to Step S6.
  • step S6 the pumping capacity control unit 40c increases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
  • step S3 determines that TW2 is equal to Tam + ⁇ when the value (Tam + ⁇ ) obtained by adding the first reference temperature ⁇ to the actual outlet water temperature TW2 and the actual outside air temperature Tam completely coincides with each other. It is not limited to things. Since each temperature detector has a detection error, etc., when the difference (absolute value) between TW2 and Tam + ⁇ is equal to or less than a predetermined minute value, it is determined that TW2 is equal to Tam + ⁇ . May be.
  • steps S3 to S6 as the temperature difference obtained by subtracting Tam from TW2 (TW2-Tam) increases, the pumping capacity of the water pump 21 is increased stepwise. Furthermore, in a general vehicle, by adjusting the amount of cooling water to be circulated to the radiator 26, the cooling water temperature is prevented from greatly fluctuating.
  • the pumping capacity of the water pump 21 is increased mainly as the outside air temperature Tam decreases. Further, as the outside air temperature Tam decreases, the required heating capacity required for the heat pump system 1 to heat the passenger compartment (that is, the required heating capacity required for heating the blown air) also increases.
  • the pressure-feeding capacity control unit 40c of the present embodiment increases the pressure-feeding capacity of the water pump 21 as the required heating capacity increases during the defrosting operation. More specifically, the pumping capacity control unit 40c increases the required heating capacity as the temperature difference (TW2-Tam) obtained by subtracting the outside air temperature Tam from the outlet side water temperature TW2 increases during the defrosting operation. As a result, the pumping capacity of the water pump 21 is increased.
  • the pressure-feeding capacity control unit 40c changes the pressure-feeding capacity in a range where the outlet side refrigerant temperature TD2 is equal to or higher than a predetermined reference refrigerant temperature KTH.
  • the reference refrigerant temperature KTH is a value determined experimentally or experimentally as a temperature at which the outdoor heat exchanger 14 can be reliably defrosted.
  • step S7 it is determined whether or not the defrosting of the outdoor heat exchanger 14 is completed.
  • step S7 it is determined whether or not the defrosting of the outdoor heat exchanger 14 has been completed.
  • step S8 the process proceeds to step S8.
  • step S7 it is determined in step S7 that the defrosting of the outdoor heat exchanger 14 has not been completed.
  • step S8 a defrosting operation completion process is performed.
  • the defrosting operation completion process when the defrosting operation is switched to the dehumidifying heating operation or the heating operation, a control for suppressing a sudden change in the pumping capacity of the water pump 21 and a sudden change in the outlet water temperature TW2 is performed. It is processing.
  • step S8 the amount of change in the pumping capacity of the water pump 21 is limited until a predetermined waiting time elapses so that the pumping capacity is not suddenly changed. And after completion
  • the heat pump system 1 of the present embodiment when it is determined that frost formation has occurred in the outdoor heat exchanger 14, the refrigerant circuit is switched to the same refrigerant circuit as in the heating operation, and the throttle of the air conditioning control device 40 is switched.
  • the opening degree control part 40b increases the throttle opening degree of the expansion valve 13 for heating.
  • the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 as the temperature difference (TW2-Tam) increases. Therefore, it is possible to prevent the refrigerant from radiating and losing heat necessary for defrosting in the water-refrigerant heat exchanger 12. Further, it is possible to suppress the temperature drop of the cooling water flowing out from the water-refrigerant heat exchanger 12 and supply the cooling water having a relatively high temperature to the heater core 22.
  • FIG. 4 is a Mollier diagram showing a change in the state of the refrigerant in the heat pump cycle 10 during the defrosting operation.
  • FIG. 5 is a Mollier diagram of a comparative example when the pumping capacity of the water pump 21 is relatively increased during the defrosting operation in a cycle equivalent to the heat pump cycle 10 of the present embodiment.
  • FIG. 6 is a Mollier diagram of a comparative example when the water pump 21 is stopped during the defrosting operation in a cycle equivalent to the heat pump cycle 10 of the present embodiment.
  • each symbol in the Mollier diagram of FIG. 5 and FIG. 6 uses the same alphabet for those indicating the state of the refrigerant in the same or corresponding part in the cycle configuration as compared to the Mollier diagram of FIG. The subscripts (numbers) are changed.
  • the refrigerant discharged from the compressor 11 by changing the pumping capacity of the water pump 21 ( The heat of point a4 in FIG. 4 is radiated to the cooling water (point a4 ⁇ point b4 in FIG. 4). Accordingly, it is possible to suppress the temperature drop of the cooling water flowing out from the water-refrigerant heat exchanger 12. That is, the blown air can be heated.
  • the pumping capacity is changed in a range where the outlet side refrigerant temperature TD2 of the refrigerant flowing out of the water-refrigerant heat exchanger 12 is equal to or higher than the reference refrigerant temperature KTH. Therefore, the heat of the refrigerant (point c4 in FIG. 4) flowing into the outdoor heat exchanger 14 is dissipated by the outdoor heat exchanger 14 (point c4 ⁇ d4 in FIG. 4), and the outdoor heat exchanger 14 is removed. Frost can be realized.
  • the change in the flow rate (that is, the pumping capacity) of the water pump 21 in the heat pump system 1 of the present embodiment, the change in the outlet water temperature TW2, and the change in the heating capacity of the blown air in the heater core 22 are shown by bold lines. Is shown. Moreover, the change of the flow volume of the water pump in the heat pump system 1 of a comparative example, the change of outlet side water temperature TW2, and the change of the heating capability of blowing air are shown with the thick broken line.
  • the flow rate of the water pump 21 is not changed during the defrosting operation as in the comparative example shown by the thick broken line in FIG. 7, the amount of decrease in the outlet side water temperature TW2 during the defrosting operation may increase. For this reason, there exists a possibility that the heating capability (namely, heating capability) of the ventilation air in the heater core 22 may fall rather than a request
  • the flow rate of the water pump 21 is changed during the defrosting operation, so that the outlet side water temperature TW2 decreases during the defrosting operation. Can be suppressed. Therefore, it can suppress that the heating capability of the blowing air in the heater core 22 falls below required heating capability, and it can avoid that a passenger
  • the heat pump system 1 of the present embodiment it is possible to suppress a decrease in the heating capacity of the fluid to be heated (in this embodiment, blown air) while exhibiting a stable defrosting capacity during the defrosting operation. it can.
  • the heat pump system 1 of this embodiment in order to ensure the thermal energy necessary for performing defrosting and the thermal energy necessary for heating the vehicle interior during the defrosting operation, It is not necessary to make the engine 60 as. Therefore, unnecessary energy consumption can be suppressed and vehicle fuel consumption can be improved.
  • the pressure-feeding capacity control unit 40c of the heat pump system 1 of the present embodiment changes the pressure-feeding capacity in a range where the outlet side refrigerant temperature TD2 is equal to or higher than the reference refrigerant temperature KTH. Therefore, the stable defrosting capability can be exhibited more reliably during the defrosting operation.
  • the outside air temperature Tam and the outlet side water temperature TW2 are compared in the control step S3 has been described.
  • the outside air temperature Tam may be compared with other cooling water temperatures.
  • the inlet side water temperature TW1 detected by the first water temperature sensor 44a may be adopted.
  • the shutter 27 opens and closes an inflow path of outside air that flows into the radiator 26.
  • a shutter having a plurality of cantilevered plate doors and a servo motor for driving the plate doors can be adopted.
  • the operation of the shutter 27 is controlled by a control signal output from the air conditioning controller 40. Therefore, in the air conditioning control device 40 of the present embodiment, the configuration that controls the operation of the shutter 27 constitutes the heat dissipation capability control unit 40d.
  • the radiator 26 performs a function of exchanging heat between the cooling water and the outside air to dissipate the heat of the cooling water to the outside air. Therefore, the cooling water is cooled by the radiator 26 when the shutter 27 opens the outside air inflow path. On the other hand, when the shutter 27 closes the inflow path of the outside air, the cooling water is not cooled by the radiator 26.
  • the radiator 26 and the shutter 27 constitute a temperature adjusting unit that adjusts the temperature of the cooling water flowing into the water-refrigerant heat exchanger 12.
  • the structure of the other heat pump system 1 is the same as that of 1st Embodiment.
  • the heat dissipation capability control unit 40d of the air conditioning control device 40 controls the operation of the shutter 27 so as to open the inflow path of the outside air. Further, during the defrosting operation, the heat dissipation capacity control unit 40d of the air conditioning control device 40 controls the operation of the shutter 27 so as to close the inflow path of the outside air.
  • the shutter 27 closes the inflow path of the outside air, the heat dissipation of the cooling water in the radiator 26 can be suppressed, and the temperature of the cooling water flowing into the water-refrigerant heat exchanger 12 can be raised. . Therefore, during the defrosting operation, heat necessary for performing defrosting and heat necessary for heating the passenger compartment are easily absorbed from the cooling water.
  • the defrosting capability and the heating capability of the fluid to be heated are not deficient during the defrosting operation, and are more stable. While exhibiting the defrosting capability, it is possible to suppress a decrease in the heating capability of the heating target fluid.
  • the water bypass passage 28 is a coolant pipe that bypasses the engine 60 and pumps the coolant fed from the water pump 21 to the three-way valve 28a side.
  • the three-way valve 28a is disposed on the outlet side of the water bypass passage 28.
  • the three-way valve 28a includes a heat medium circuit that guides the cooling water flowing out from the water bypass passage 28 to the water passage inlet side of the water-refrigerant heat exchanger 12, and water-refrigerant heat exchange between the cooling water circulating through the heat radiation circuit 25. It is an electric three-way valve that switches between the heat medium circuit that leads to the water passage inlet side of the vessel 12.
  • the operation of the three-way valve 28a is controlled by a control voltage output from the air conditioning control device 40. Therefore, the structure which controls the action
  • the heat medium circuit 20 is turned on.
  • the circulating cooling water is heated by the engine 60.
  • the cooling water flowing into the water bypass passage 28 is switched to the heat medium circuit that guides the cooling water flowing to the water passage inlet side of the water-refrigerant heat exchanger 12
  • the cooling water circulating in the heat medium circulation circuit 20 is the engine 60. Not heated by.
  • the three-way valve 28a of the present embodiment constitutes a temperature adjusting unit that adjusts the temperature of the cooling water flowing into the water-refrigerant heat exchanger 12.
  • the structure of the other heat pump system 1 is the same as that of 1st Embodiment.
  • the heat medium circuit control unit 40e of the air conditioning control device 40 converts the cooling water flowing into the water bypass passage 28 into the water-refrigerant heat exchanger 12.
  • the operation of the three-way valve 28a is controlled so as to form a heat medium circuit that leads to the water passage inlet side.
  • the heat medium circuit control unit 40e of the air conditioning control device 40 serves as a heat medium circuit that guides the cooling water circulating in the heat radiation circuit 25 to the water passage inlet side of the water-refrigerant heat exchanger 12.
  • the operation of the three-way valve 28a is controlled.
  • the three-way valve 28a switches the cooling water circulating through the heat radiation circuit 25 to the heat medium circuit that leads to the water passage inlet side of the water-refrigerant heat exchanger 12, so that the cooling heated by the engine 60 is performed. Water can flow into the water-refrigerant heat exchanger 12. Therefore, during the defrosting operation, heat necessary for performing defrosting and heat necessary for heating the passenger compartment are easily absorbed from the cooling water.
  • the defrosting capability and the heating capability of the fluid to be heated are not deficient during the defrosting operation, and are more stable. While exhibiting the defrosting capability, it is possible to suppress a decrease in the heating capability of the heating target fluid.
  • the outlet side refrigerant temperature TD2 detected by the second refrigerant temperature sensor 45b is compared with a predetermined second reference temperature ⁇ (50 ° C. in the present embodiment).
  • the second reference temperature ⁇ is a value experimentally or experimentally determined as the temperature of the refrigerant that can reliably defrost the outdoor heat exchanger 14 by flowing into the outdoor heat exchanger 14.
  • step S31 If it is determined in step S31 that the outlet-side refrigerant temperature TD2 is lower than the second reference temperature ⁇ , the process proceeds to step S4.
  • step S4 the pumping capacity control unit 40c of the air conditioning control device 40 decreases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
  • step S31 If it is determined in step S31 that the outlet side refrigerant temperature TD2 is equal to the second reference temperature ⁇ , the process proceeds to step S5.
  • step S5 the pumping capacity control unit 40c maintains the flow rate of the water pump 21 without changing it, and proceeds to step S7.
  • step S31 If it is determined in step S31 that the outlet-side refrigerant temperature TD2 is higher than the second reference temperature ⁇ , the process proceeds to step S6.
  • step S6 the pumping capacity control unit 40c increases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
  • step S31 when the actual outlet-side refrigerant temperature TD2 and the second reference temperature ⁇ completely coincide with each other, it is not limited to the one that determines that TD2 is equal to ⁇ . Since there is a detection error, etc., in each temperature detection unit, when the difference (absolute value) between TD2 and ⁇ is equal to or less than a predetermined minute value, one that determines that TD2 is equal to ⁇ is adopted. May be.
  • steps S31 to S6 as TD2 rises, the pumping capacity of the water pump 21 is increased stepwise. Furthermore, in the vehicle air conditioner, the outlet-side refrigerant temperature TD2 is raised in order to raise the temperature of the cooling water flowing into the heater core 22 and raise the temperature of the blown air. Therefore, as the outlet side refrigerant temperature TD2 rises, the required heating capacity required for the heat pump system 1 to heat the passenger compartment (that is, the required heating capacity required to heat the blown air) also increases. To do.
  • the pressure-feeding capacity control unit 40c of the present embodiment increases the pressure-feeding capacity of the water pump 21 as the required heating capacity increases during the defrosting operation. More specifically, the pumping capacity control unit 40c increases the pumping capacity of the water pump 21 on the assumption that the required heating capacity increases as TD2 increases during the defrosting operation. Other operations are the same as those in the first embodiment.
  • the cooling operation, the dehumidifying and heating operation, and the heating operation of the heat pump system 1 of the present embodiment the cooling, the dehumidifying heating, and the heating in the vehicle compartment can be performed just like the first embodiment.
  • the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 as the outlet side refrigerant temperature TD2 rises. Therefore, according to the heat pump system 1 of the present embodiment, similarly to the first embodiment, it is possible to suppress a decrease in the heating capacity of the heating target fluid while exhibiting a stable defrosting capacity during the defrosting operation. .
  • step S32 the inflow air temperature TA1 detected by the inflow air temperature sensor 49 is compared with a predetermined third reference temperature ⁇ (10 ° C. in the present embodiment).
  • step S32 If it is determined in step S32 that the inflow air temperature TA1 is higher than the third reference temperature ⁇ , the process proceeds to step S4.
  • step S4 the pumping capacity control unit 40c of the air conditioning control device 40 decreases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
  • step S32 if it is determined that the inflow air temperature TA1 is equal to the third reference temperature ⁇ , the process proceeds to step S5.
  • step S5 the pumping capacity control unit 40c maintains the flow rate of the water pump 21 without changing it, and proceeds to step S7.
  • step S32 If it is determined in step S32 that the inflow air temperature TA1 is lower than the third reference temperature ⁇ , the process proceeds to step S6.
  • step S6 the pumping capacity control unit 40c increases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
  • step S32 is not limited to the case where it is determined that TA1 is equal to ⁇ when the actual inflow air temperature TA1 completely matches the third reference temperature ⁇ . Since there is a detection error, etc., in each temperature detection unit, it is possible to adopt one that determines that TA1 is equal to ⁇ when the difference (absolute value) from TA2 is less than or equal to a predetermined minute value. Good.
  • steps S31 to S6 as TA1 decreases, the pumping capacity of the water pump 21 is increased stepwise. Further, in the vehicle air conditioner, the required heating capacity required for the heat pump system 1 to heat the passenger compartment increases as the inflow air temperature TA1 decreases during the heating operation or the dehumidifying heating operation.
  • the pressure-feeding capacity control unit 40c of the present embodiment increases the pressure-feeding capacity of the water pump 21 as the required heating capacity increases during the defrosting operation. More specifically, the pumping capacity control unit 40c increases the pumping capacity of the water pump 21 on the assumption that the required heating capacity increases as TA1 decreases during the defrosting operation. Other operations are the same as those in the first embodiment.
  • the cooling operation, the dehumidifying and heating operation, and the heating operation of the heat pump system 1 of the present embodiment the cooling, the dehumidifying heating, and the heating in the vehicle compartment can be performed just like the first embodiment.
  • the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 as the incoming air temperature TA1 decreases. Therefore, according to the heat pump system 1 of the present embodiment, similarly to the first embodiment, it is possible to suppress a decrease in the heating capacity of the heating target fluid while exhibiting a stable defrosting capacity during the defrosting operation. .
  • the heat pump system 1 according to the present disclosure is applied to a vehicle air conditioner for a hybrid vehicle, but application of the heat pump system 1 is not limited to this.
  • the present invention may be applied to an electric vehicle (including a fuel cell vehicle) that obtains driving force for driving a vehicle from an electric motor for driving the vehicle, or an air conditioner for a normal vehicle that obtains driving force for driving the vehicle from an engine.
  • the heat pump system 1 is not limited to a vehicle air conditioner, and may be applied to a stationary air conditioner, a cold / hot storage, a hot water supply device, and the like. Therefore, the air conditioning control device 40 may be a refrigeration cycle device.
  • the heat medium is not limited to this.
  • it may be cooling water for cooling an inverter that supplies electric power to the traveling electric motor.
  • the inverter serves as a heating unit that heats the heat medium.
  • the heating unit is not an essential configuration.
  • the example in which the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 stepwise as the required heating capacity increases has been described. You may make it make it. In this case, for example, based on the temperature difference (TW2 ⁇ Tam), the outlet side refrigerant temperature TD2, the inflow air temperature TA1, and the like, referring to the control map stored in the air conditioning controller 40 in advance, the pressure pumping of the water pump 21 is performed. You just have to decide your ability.
  • the discharge capacity control unit 40a determines that the temperature of the refrigerant flowing into the water-refrigerant heat exchanger 12 (that is, the inlet-side refrigerant temperature TD1) is a predetermined reference during the defrosting operation.
  • the operation of the compressor 11 may be controlled so as to be equal to or lower than the temperature KTL. According to this, during the defrosting operation, the temperature of the refrigerant discharged from the compressor 11 is not excessively increased, and unnecessary energy consumption can be suppressed.
  • the heat pump cycle 10 configured to be able to switch the refrigerant circuit
  • the heat pump cycle is not limited thereto. It is sufficient that at least a cycle capable of flowing the refrigerant in the same order as in the heating operation of the above-described embodiment can be configured.
  • an electric compressor is employed as the compressor 11 of the heat pump cycle 10
  • the compressor 11 is not limited thereto.
  • an engine-driven compressor driven by a rotational driving force transmitted from an internal combustion engine (engine) via a pulley, a belt, or the like may be employed as the compressor.
  • variable displacement compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, and adjusting the refrigerant discharge capacity by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed capacity compressor or the like can be employed.
  • R134a is adopted as the refrigerant of the heat pump cycle 10
  • the refrigerant is not limited to this.
  • HFO refrigerants R1234yf, HFO-1234ze, HFO-1234zd
  • carbon dioxide may be adopted as the refrigerant
  • a heat pump cycle constituting a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be adopted.
  • coolant temperature sensor 45b is demonstrated.
  • the second refrigerant temperature sensor 45b is not limited to this.
  • the second refrigerant temperature sensor 45b may detect the temperature of the refrigerant immediately after flowing into the outdoor heat exchanger 14. Further, the second refrigerant temperature sensor 45b may detect the temperature of the refrigerant on the inlet side of the heating expansion valve 13. In this case, the refrigerant temperature flowing into the outdoor heat exchanger 14 may be estimated based on the throttle opening of the heating expansion valve 13 and the detection value of the second refrigerant temperature sensor 45b. Further, the temperature of the refrigerant flowing through the refrigerant flow path from the discharge port of the compressor 11 to the water-refrigerant heat exchanger 12, the amount of heat radiated by the water-refrigerant heat exchanger 12, and the opening of the expansion valve 13 for heating are opened. Based on the degree, the temperature of the refrigerant flowing into the outdoor heat exchanger 14 may be estimated.
  • each of the above embodiments may be appropriately combined within a practicable range.
  • the control mode during the defrosting operation described in the fourth and fifth embodiments may be applied.

Abstract

A heat pump system, provided with a heat pump cycle (10), a heat medium circulation circuit (20), and a refrigeration cycle device. The heat pump cycle has a compressor (11), a first heat exchanger (12), a decompression device (13), and an outdoor heat exchanger (14). The heat medium circulation circuit has a pumping device (21) and a second heat exchanger (22). The refrigeration cycle device is provided with a throttle opening degree control unit (40b) for controlling the throttle opening degree of the decompression device, a pumping performance control unit (40c) for controlling the pumping performance of the pumping device, and a frost formation determination unit (S1) for determining frost formation on the outdoor heat exchanger. When it is determined that frost formation has occurred, the refrigeration cycle device performs a defrosting operation. During the defrosting operation, the throttle opening degree control unit expands the throttle opening degree. During the defrosting operation, the pumping performance control unit increases the pumping performance along with an increase in the required heating performance required to heat a fluid to be heated, in a range over which the temperature of a refrigerant flowing into the outdoor heat exchanger can melt the frost.

Description

ヒートポンプシステムHeat pump system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年1月25日に出願された日本特許出願2016-011531および、2016年12月5日に出願された日本特許出願2016-236054を基にしている。 The present application includes Japanese Patent Application 2016-011531 filed on January 25, 2016 and Japanese Patent Application 2016- filed on December 5, 2016, the disclosures of which are incorporated herein by reference. 236054.
 本開示は、ヒートポンプサイクルによって熱媒体を加熱し、加熱された熱媒体を熱源として加熱対象流体を加熱するヒートポンプシステムに関する。 The present disclosure relates to a heat pump system that heats a heat medium by a heat pump cycle and heats a fluid to be heated using the heated heat medium as a heat source.
 従来、特許文献1に、ヒートポンプサイクル(すなわち、蒸気圧縮式の冷凍サイクル)によって熱媒体である温水を加熱し、加熱された温水と加熱対象流体である送風空気とを熱交換させて送風空気を加熱するヒートポンプシステムが開示されている。 Conventionally, in Patent Document 1, warm water that is a heat medium is heated by a heat pump cycle (that is, a vapor compression refrigeration cycle), and heat is exchanged between the heated warm water and blown air that is a fluid to be heated. A heat pump system for heating is disclosed.
 この特許文献1のヒートポンプシステムでは、ヒートポンプサイクルの蒸発器として機能する室外熱交換器に着霜が生じた際に、これを取り除くための除霜運転を行う。具体的には、特許文献1のヒートポンプシステムでは、除霜運転時にヒートポンプサイクルの膨張弁の絞り開度を増加させて、室外熱交換器へ流入する冷媒の温度を上昇させることによって除霜を行う、いわゆるホットガス除霜を実行する。 In the heat pump system of Patent Document 1, when frost is generated in an outdoor heat exchanger that functions as an evaporator of a heat pump cycle, a defrosting operation is performed to remove the frost. Specifically, in the heat pump system of Patent Document 1, defrosting is performed by increasing the throttle opening of the expansion valve of the heat pump cycle during the defrosting operation and increasing the temperature of the refrigerant flowing into the outdoor heat exchanger. , So-called hot gas defrosting is performed.
特許4631576号公報Japanese Patent No. 4631576
 しかしながら、特許文献1のヒートポンプシステムでは、除霜運転時に、温水の温度が所定温度以上になっていることを前提として、高圧冷媒と温水とを熱交換させる水-冷媒熱交換器から流出する冷媒の温度が温水と同等となるように、膨張弁の絞り開度を調整している。 However, in the heat pump system of Patent Document 1, the refrigerant flowing out of the water-refrigerant heat exchanger that exchanges heat between the high-pressure refrigerant and the hot water is assumed on the premise that the temperature of the hot water is equal to or higher than a predetermined temperature during the defrosting operation. The throttle opening of the expansion valve is adjusted so that the temperature of the expansion valve is equal to that of the hot water.
 このため、本開示の発明者の検討によると、特許文献1のヒートポンプシステムでは、温水の温度が変化すると室外熱交換器を除霜するための除霜能力が変化してしまい、安定した除霜能力を発揮できなくなってしまうおそれがある。例えば、温水の温度が低くなってしまうと、除霜時間が長時間化してしまうおそれがある。さらに、温水の温度が低くなっていると、送風空気の加熱能力が不充分となってしまうおそれもある。 For this reason, according to examination of the inventor of this indication, in the heat pump system of patent documents 1, if the temperature of warm water changes, the defrosting capability for defrosting an outdoor heat exchanger will change, and stable defrosting will be carried out. There is a risk that you will not be able to demonstrate your ability. For example, if the temperature of the hot water is lowered, the defrosting time may be extended. Furthermore, when the temperature of the hot water is low, there is a possibility that the heating capacity of the blown air becomes insufficient.
 本開示は、上記点に鑑み、除霜運転時に、安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制可能なヒートポンプシステムを提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a heat pump system capable of suppressing a decrease in the heating capacity of a fluid to be heated while exhibiting a stable defrosting capacity during a defrosting operation.
 本開示の一態様によるヒートポンプシステムは、ヒートポンプサイクルと、熱媒体循環回路と、冷凍サイクル装置と、を備える。ヒートポンプサイクルは、冷媒を圧縮して吐出する圧縮機、圧縮機から吐出された高圧冷媒と熱媒体とを熱交換させる第1熱交換器、第1熱交換器から流出した冷媒を減圧させる減圧装置、および減圧装置にて減圧された低圧冷媒と外気とを熱交換させる室外熱交換器を有する。熱媒体循環回路は、熱媒体を圧送する圧送装置、および第1熱交換器から流出した熱媒体と加熱対象流体とを熱交換させて加熱対象流体を加熱する第2熱交換器を有する。冷凍サイクル装置は、減圧装置の絞り開度を制御する絞り開度制御部と、圧送装置の圧送能力を制御する圧送能力制御部と、室外熱交換器に着霜が生じていることを判定する着霜判定部と、を備える。冷凍サイクル装置は、着霜判定部によって室外熱交換器に着霜が生じていると判定された際に、室外熱交換器を除霜する除霜運転を行う。絞り開度制御部は、除霜運転時に、絞り開度を拡大させる。圧送能力制御部は、除霜運転時に、室外熱交換器へ流入する冷媒の温度が室外熱交換器に生じた霜を融解できる温度となる範囲で、加熱対象流体を加熱するために要求される要求加熱能力の増加に伴って、圧送能力を増加させる。 The heat pump system according to an aspect of the present disclosure includes a heat pump cycle, a heat medium circulation circuit, and a refrigeration cycle apparatus. The heat pump cycle includes a compressor that compresses and discharges the refrigerant, a first heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor and the heat medium, and a decompressor that depressurizes the refrigerant flowing out of the first heat exchanger. And an outdoor heat exchanger for exchanging heat between the low-pressure refrigerant decompressed by the decompression device and the outside air. The heat medium circulation circuit includes a pressure feeding device that pumps the heat medium, and a second heat exchanger that heats the heat target fluid by exchanging heat between the heat medium flowing out from the first heat exchanger and the heat target fluid. The refrigeration cycle apparatus determines a throttle opening degree control unit that controls the throttle opening degree of the pressure reducing device, a pressure feeding capacity control unit that controls the pressure feeding capacity of the pressure feeding device, and frost formation in the outdoor heat exchanger. A frost determination unit. The refrigeration cycle apparatus performs a defrosting operation for defrosting the outdoor heat exchanger when it is determined by the frost determination unit that frost is generated in the outdoor heat exchanger. The throttle opening control unit increases the throttle opening during the defrosting operation. The pressure-feeding capacity control unit is required to heat the heating target fluid in a range where the temperature of the refrigerant flowing into the outdoor heat exchanger becomes a temperature at which frost generated in the outdoor heat exchanger can be melted during the defrosting operation. The pumping capacity is increased as the required heating capacity increases.
 これによれば、除霜運転時に、絞り開度制御部が、減圧装置の絞り開度を増加させるので、室外熱交換器へ流入する冷媒の温度を上昇させて、室外熱交換器の除霜を行うことができる。 According to this, since the throttle opening degree control unit increases the throttle opening degree of the decompression device during the defrosting operation, the temperature of the refrigerant flowing into the outdoor heat exchanger is increased to defrost the outdoor heat exchanger. It can be performed.
 この際、圧送能力制御部が、要求加熱能力の増加に伴って、圧送能力を増加させるので、冷媒が第1熱交換器にて除霜に必要な熱を放熱して失ってしまうことを抑制することができる。さらに、第1熱交換器から流出する熱媒体の温度低下を抑制して、比較的高い温度の熱媒体を第2熱交換器へ供給することができる。 At this time, since the pumping capacity control unit increases the pumping capacity as the required heating capacity increases, it is possible to prevent the refrigerant from radiating and losing heat necessary for defrosting in the first heat exchanger. can do. Furthermore, it is possible to suppress the temperature drop of the heat medium flowing out from the first heat exchanger and supply a relatively high temperature heat medium to the second heat exchanger.
 すなわち、本態様によれば、除霜運転時に、安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制可能なヒートポンプシステムを提供することができる。 That is, according to this aspect, it is possible to provide a heat pump system capable of suppressing a decrease in the heating capacity of the heating target fluid while exhibiting a stable defrosting capacity during the defrosting operation.
 ここで、請求項に記載された着霜判定部は、実際に室外熱交換器に着霜が生じているか否かを判定する判定部に限定されない。例えば、室外熱交換器に着霜が生じ得る運転条件であるか否かを判定する判定部や、室外熱交換器に着霜が生じている可能性があるか否かを判定する判定部についても、着霜判定部という用語の意味に含まれる。 Here, the frost formation determination unit described in the claims is not limited to the determination unit that determines whether or not frost formation has actually occurred in the outdoor heat exchanger. For example, a determination unit that determines whether or not it is an operating condition that may cause frost formation in the outdoor heat exchanger, and a determination unit that determines whether or not frost formation may occur in the outdoor heat exchanger Is also included in the meaning of the term frost formation determination unit.
第1実施形態のヒートポンプシステムの模式的な全体構成図である。It is a typical whole block diagram of the heat pump system of 1st Embodiment. 第1実施形態のヒートポンプシステムの電気制御部のブロック図である。It is a block diagram of the electric control part of the heat pump system of a 1st embodiment. 第1実施形態のヒートポンプシステムの制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the heat pump system of 1st Embodiment. 第1実施形態の除霜運転時のヒートポンプサイクルにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the heat pump cycle at the time of the defrost operation of 1st Embodiment. 除霜運転時に水ポンプの圧送能力を大きくした際の比較例のヒートポンプサイクルにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the heat pump cycle of the comparative example at the time of enlarging the pumping capability of a water pump at the time of a defrost operation. 除霜運転時に水ポンプを停止させた際の比較例のヒートポンプサイクルにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the heat pump cycle of the comparative example at the time of stopping a water pump at the time of a defrost driving | operation. 第1実施形態のヒートポンプシステムの除霜運転時の加熱能力等の経時変化を示すタイムチャートである。It is a time chart which shows temporal changes, such as a heating capability at the time of the defrost operation of the heat pump system of 1st Embodiment. 第2実施形態のヒートポンプシステムの模式的な全体構成図である。It is a typical whole block diagram of the heat pump system of 2nd Embodiment. 第3実施形態のヒートポンプシステムの模式的な全体構成図である。It is a typical whole block diagram of the heat pump system of 3rd Embodiment. 第4実施形態のヒートポンプシステムの制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the heat pump system of 4th Embodiment. 第5実施形態のヒートポンプシステムの制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the heat pump system of 5th Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1~図7を用いて、本開示の第1実施形態について説明する。本実施形態では、本開示に係るヒートポンプシステム1を、内燃機関(エンジン)60および走行用電動モータから車両走行用の駆動力を得る、いわゆるハイブリッド自動車の車両用空調装置に適用している。ヒートポンプシステム1は、車両用空調装置において、空調対象空間である車室内へ送風される送風空気を加熱あるいは冷却する機能を果たす。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 7. In the present embodiment, the heat pump system 1 according to the present disclosure is applied to a vehicle air conditioner for a so-called hybrid vehicle that obtains driving force for vehicle traveling from an internal combustion engine (engine) 60 and a traveling electric motor. The heat pump system 1 fulfills the function of heating or cooling the blown air blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner.
 ヒートポンプシステム1は、送風空気を加熱あるいは冷却する蒸気圧縮式の冷凍サイクルであるヒートポンプサイクル10、およびエンジン60の冷却水を循環させる熱媒体循環回路20を備えている。そして、ヒートポンプシステム1は、送風空気を加熱する際に、ヒートポンプサイクル10によって冷却水を加熱し、加熱された冷却水を熱源として送風空気を加熱することができる。従って、本実施形態のヒートポンプシステム1における加熱対象流体は送風空気であり、熱媒体は冷却水である。 The heat pump system 1 includes a heat pump cycle 10 that is a vapor compression refrigeration cycle that heats or cools blown air, and a heat medium circulation circuit 20 that circulates cooling water of the engine 60. And when the heat pump system 1 heats blowing air, it can heat cooling water with the heat pump cycle 10, and can heat blowing air by using the heated cooling water as a heat source. Therefore, the fluid to be heated in the heat pump system 1 of the present embodiment is blown air, and the heat medium is cooling water.
 さらに、ヒートポンプサイクル10は冷媒回路を切替可能に構成されている。具体的には、送風空気を冷却して車室内の冷房を行う冷房運転用の冷媒回路、送風空気を加熱して車室内の暖房を行う暖房運転用の冷媒回路、および冷却して除湿された送風空気を再加熱することによって車室内を除湿しながら暖房を行う除湿暖房運転用の冷媒回路に切替可能に構成されている。 Furthermore, the heat pump cycle 10 is configured to be able to switch the refrigerant circuit. Specifically, a refrigerant circuit for cooling operation that cools the blown air to cool the vehicle interior, a refrigerant circuit for heating operation that heats the blown air and heats the vehicle interior, and is cooled and dehumidified It is configured to be switchable to a refrigerant circuit for dehumidifying and heating operation that performs heating while dehumidifying the vehicle interior by reheating the blown air.
 なお、図1では、冷房運転時の冷媒回路における冷媒の流れを白抜き矢印で示し、暖房運転時の冷媒回路における冷媒の流れを黒塗り矢印で示し、除湿暖房運転時の冷媒回路における冷媒の流れを斜線ハッチング付き矢印で示している。さらに、ヒートポンプサイクル10は、冷房運転、暖房運転、除湿暖房運転の他に、後述する室外熱交換器14に着霜が生じた際に、これを取り除くための除霜運転を行うこともできる。 In FIG. 1, the refrigerant flow in the refrigerant circuit during the cooling operation is indicated by a white arrow, the refrigerant flow in the refrigerant circuit during the heating operation is indicated by a black arrow, and the refrigerant flow in the refrigerant circuit during the dehumidifying heating operation is indicated. The flow is indicated by hatched arrows. Furthermore, in addition to the cooling operation, the heating operation, and the dehumidifying heating operation, the heat pump cycle 10 can perform a defrosting operation for removing the frost when the outdoor heat exchanger 14 described later is frosted.
 また、本実施形態のヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 In the heat pump cycle 10 of the present embodiment, an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure is configured. Yes. This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 ヒートポンプサイクル10の構成機器のうち、圧縮機11は、エンジンルーム内に配置されて、ヒートポンプサイクル10において冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。 Among the constituent devices of the heat pump cycle 10, the compressor 11 is disposed in the engine room, and sucks the refrigerant in the heat pump cycle 10 and discharges it until it becomes a high-pressure refrigerant. Specifically, the compressor 11 of the present embodiment is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。また、電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。 As this compression mechanism, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from the air conditioning control device 40 described later, and either an AC motor or a DC motor may be adopted.
 圧縮機11の吐出口には、水-冷媒熱交換器12の冷媒通路の入口側が接続されている。水-冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒と熱媒体循環回路20を循環する冷却水とを熱交換させる第1熱交換器である。 The inlet of the refrigerant passage of the water-refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11. The water-refrigerant heat exchanger 12 is a first heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor 11 and the cooling water circulating in the heat medium circulation circuit 20.
 このような水-冷媒熱交換器12としては、高圧冷媒を流通させる冷媒通路として複数本のチューブを有し、隣り合うチューブ間に冷却水を流通させる水通路を形成し、これらの水通路内に冷媒と冷却水との間の熱交換を促進するインナーフィンを配置することによって構成された熱交換器等を採用することができる。 Such a water-refrigerant heat exchanger 12 has a plurality of tubes as refrigerant passages through which high-pressure refrigerant flows, and forms water passages through which cooling water flows between adjacent tubes. A heat exchanger or the like configured by disposing inner fins that promote heat exchange between the refrigerant and the cooling water can be employed.
 水-冷媒熱交換器12の冷媒通路の出口側には、暖房用膨張弁13の入口側が接続されている。暖房用膨張弁13は、暖房運転時等に、水-冷媒熱交換器12から流出した高圧冷媒を減圧させる減圧装置である。より具体的には、暖房用膨張弁13は、絞り開度を変更可能に構成された弁体と、この弁体を変位させて絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 The inlet side of the heating expansion valve 13 is connected to the outlet side of the refrigerant passage of the water-refrigerant heat exchanger 12. The heating expansion valve 13 is a decompression device that decompresses the high-pressure refrigerant that has flowed out of the water-refrigerant heat exchanger 12 during heating operation or the like. More specifically, the heating expansion valve 13 includes a valve body configured to be able to change the throttle opening, and an electric actuator including a stepping motor that changes the throttle opening by displacing the valve body. This is an electric variable aperture mechanism.
 さらに、本実施形態の暖房用膨張弁13は、絞り開度を全開にすることで冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能付きの可変絞り機構である。暖房用膨張弁13は、空調制御装置40から出力される制御信号によって、その作動が制御される。 Furthermore, the heating expansion valve 13 of the present embodiment is a variable throttle mechanism with a fully-open function that functions as a simple refrigerant passage with almost no refrigerant decompression effect by fully opening the throttle opening. The operation of the heating expansion valve 13 is controlled by a control signal output from the air conditioning control device 40.
 暖房用膨張弁13の出口側には、室外熱交換器14の冷媒入口側が接続されている。室外熱交換器14は、エンジンルーム内の前方側に配置されて、水-冷媒熱交換器12下流側の冷媒と送風ファン14aから送風された外気とを熱交換させる熱交換器である。 The refrigerant inlet side of the outdoor heat exchanger 14 is connected to the outlet side of the heating expansion valve 13. The outdoor heat exchanger 14 is a heat exchanger that is disposed on the front side in the engine room and exchanges heat between the refrigerant on the downstream side of the water-refrigerant heat exchanger 12 and the outside air blown from the blower fan 14a.
 より詳細には、室外熱交換器14は、少なくとも冷房運転時には、高圧冷媒を放熱させる放熱器として機能し、少なくとも暖房運転時には、暖房用膨張弁13にて減圧された低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能する。また、送風ファン14aは、空調制御装置40から出力される制御電圧によって稼働率、すなわち回転数(送風能力)が制御される電動送風機である。 More specifically, the outdoor heat exchanger 14 functions as a radiator that radiates high-pressure refrigerant at least during cooling operation, and absorbs heat by evaporating the low-pressure refrigerant decompressed by the heating expansion valve 13 at least during heating operation. It functions as an evaporator that exerts its action. The blower fan 14a is an electric blower in which the operating rate, that is, the rotation speed (blowing capacity) is controlled by the control voltage output from the air conditioning control device 40.
 室外熱交換器14の冷媒出口側には、室外熱交換器14から流出した冷媒の流れを分岐する分岐部15aの冷媒流入口が接続されている。分岐部15aは、三方継手で構成されており、3つの流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。このような三方継手は、管径の異なる配管を接合して形成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成してもよい。 The refrigerant outlet side of the outdoor heat exchanger 14 is connected to the refrigerant inlet of the branching portion 15a that branches the flow of the refrigerant flowing out of the outdoor heat exchanger 14. The branch portion 15a is configured by a three-way joint, and one of the three inflow / outflow ports is a refrigerant inflow port, and the remaining two are the refrigerant outflow ports. Such a three-way joint may be formed by joining pipes having different pipe diameters, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
 分岐部15aの一方の冷媒流出口には、冷房用膨張弁16の冷媒入口側が接続されている。また、分岐部15aの他方の冷媒流出口には、分岐部15aから流出した冷媒を冷房用膨張弁16等を迂回させて後述するアキュムレータ19の入口側へ導く迂回通路18が接続されている。 The refrigerant inlet side of the cooling expansion valve 16 is connected to one refrigerant outlet of the branch part 15a. Further, a bypass passage 18 is connected to the other refrigerant outlet of the branch portion 15a to guide the refrigerant flowing out from the branch portion 15a to the inlet side of an accumulator 19 described later by bypassing the cooling expansion valve 16 and the like.
 冷房用膨張弁16の基本的構成は、暖房用膨張弁13と同様である。さらに、本実施形態の冷房用膨張弁16は、絞り開度を全開した際に室外熱交換器14の冷媒出口側から室内蒸発器17の冷媒入口側へ至る冷媒通路を全開する全開機能のみならず、絞り開度を全閉した際に当該冷媒通路を閉塞する全閉機能付きの可変絞り機構で構成されている。 The basic configuration of the cooling expansion valve 16 is the same as that of the heating expansion valve 13. Furthermore, the cooling expansion valve 16 of the present embodiment has only a fully open function that fully opens the refrigerant passage from the refrigerant outlet side of the outdoor heat exchanger 14 to the refrigerant inlet side of the indoor evaporator 17 when the throttle opening is fully opened. First, it is composed of a variable throttle mechanism with a full-close function that closes the refrigerant passage when the throttle opening is fully closed.
 本実施形態のヒートポンプサイクル10では、冷房用膨張弁16が冷媒通路を閉塞することによって、冷媒を循環させる冷媒回路を切り替えることができる。従って、本実施形態の冷房用膨張弁16は、冷媒回路切替装置としての機能を兼ね備えている。 In the heat pump cycle 10 of the present embodiment, the refrigerant circuit for circulating the refrigerant can be switched by the cooling expansion valve 16 closing the refrigerant passage. Therefore, the cooling expansion valve 16 of the present embodiment also has a function as a refrigerant circuit switching device.
 冷房用膨張弁16の出口側には、室内蒸発器17の冷媒入口側が接続されている。室内蒸発器17は、後述する室内空調ユニット30のケーシング31内に配置されている。室内蒸発器17は、少なくとも冷房運転時および除湿暖房運転時に、内部を流通する冷媒を送風空気と熱交換させて蒸発させることによって、送風空気を冷却する冷却用熱交換器である。 The refrigerant inlet side of the indoor evaporator 17 is connected to the outlet side of the cooling expansion valve 16. The indoor evaporator 17 is arrange | positioned in the casing 31 of the indoor air conditioning unit 30 mentioned later. The indoor evaporator 17 is a cooling heat exchanger that cools blown air by evaporating the refrigerant circulating through the heat exchange with blown air at least during cooling operation and dehumidifying heating operation.
 室内蒸発器17の冷媒出口側には、合流部15bを介して、アキュムレータ19の入口側が接続されている。アキュムレータ19は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離器である。合流部15bは、分岐部15aと同様の三方継手で構成されており、3つの流入出口のうち2つを冷媒流入口とし、残りの1つを冷媒流出口としたものである。 The inlet side of the accumulator 19 is connected to the refrigerant outlet side of the indoor evaporator 17 via a junction 15b. The accumulator 19 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess liquid-phase refrigerant in the cycle. The merging portion 15b is configured by a three-way joint similar to the branching portion 15a, and two of the three inflow / outflow ports are refrigerant inlets and the remaining one is a refrigerant outlet.
 さらに、本実施形態の合流部15bの他方の冷媒流入口には、前述の迂回通路18の出口側が接続されている。また、この迂回通路18には、迂回通路18を開閉する開閉弁18aが配置されている。開閉弁18aは、空調制御装置40から出力される制御電圧によって、その開閉作動が制御される電磁弁である。開閉弁18aは、冷房用膨張弁16とともに冷媒回路切替装置としての機能を果たす。 Furthermore, the outlet side of the bypass passage 18 is connected to the other refrigerant inlet of the junction 15b of the present embodiment. Further, an open / close valve 18 a that opens and closes the bypass passage 18 is disposed in the bypass passage 18. The on-off valve 18 a is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device 40. The on-off valve 18a functions as a refrigerant circuit switching device together with the cooling expansion valve 16.
 アキュムレータ19の気相冷媒出口には、圧縮機11の吸入側が接続されている。従って、アキュムレータ19は、圧縮機11に液相冷媒が吸入されてしまうことを抑制して、圧縮機11の液圧縮を防止する機能を果たす。 The suction side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 19. Therefore, the accumulator 19 functions to prevent liquid compression of the compressor 11 by suppressing the liquid phase refrigerant from being sucked into the compressor 11.
 次に、熱媒体循環回路20について説明する。前述の如く、熱媒体循環回路20は、エンジン60を冷却するための冷却水を循環させる熱媒体回路である。従って、熱媒体循環回路20は、エンジン60の内部に形成された冷却水通路に接続されている。さらに、熱媒体循環回路20には、冷却水を循環させるための水ポンプ21が配置されている。 Next, the heat medium circulation circuit 20 will be described. As described above, the heat medium circulation circuit 20 is a heat medium circuit that circulates cooling water for cooling the engine 60. Therefore, the heat medium circulation circuit 20 is connected to a cooling water passage formed inside the engine 60. Further, the heat medium circulation circuit 20 is provided with a water pump 21 for circulating the cooling water.
 水ポンプ21は、ヒータコア22から流出した冷却水をエンジン60の冷却水通路の入口側へ圧送する圧送装置である。水ポンプ21は、空調制御装置40から出力される制御電圧によって、その回転数(水圧送能力)が制御される。 The water pump 21 is a pressure feeding device that pumps the cooling water flowing out from the heater core 22 to the inlet side of the cooling water passage of the engine 60. The rotation speed (water pumping capacity) of the water pump 21 is controlled by the control voltage output from the air conditioning control device 40.
 エンジン60の冷却水通路の出口側には、水-冷媒熱交換器12の水通路の入口側が接続されている。さらに、水-冷媒熱交換器12の水通路の出口側には、ヒータコア22の熱媒体流入口が接続されている。ヒータコア22は、室内空調ユニット30のケーシング31内に配置されて、水-冷媒熱交換器12にて加熱された冷却水と室内蒸発器17通過後の送風空気とを熱交換させて、送風空気を加熱する第2熱交換器である。 The inlet side of the water passage of the water-refrigerant heat exchanger 12 is connected to the outlet side of the cooling water passage of the engine 60. Further, the heat medium inlet of the heater core 22 is connected to the outlet side of the water passage of the water-refrigerant heat exchanger 12. The heater core 22 is disposed in the casing 31 of the indoor air conditioning unit 30, and exchanges heat between the cooling water heated by the water-refrigerant heat exchanger 12 and the blown air after passing through the indoor evaporator 17. It is the 2nd heat exchanger which heats.
 従って、空調制御装置40が水ポンプ21を作動させると、熱媒体循環回路20では、図1の実線矢印に示すように、水ポンプ21→エンジン60→水-冷媒熱交換器12の水通路→ヒータコア22→水ポンプ21の順で冷却水が循環する。これにより、本実施形態のヒートポンプシステム1では、暖房運転時等に、水-冷媒熱交換器12にて加熱された冷却水をヒータコア22へ流入させて、送風空気を加熱することができる。 Therefore, when the air conditioning control device 40 operates the water pump 21, in the heat medium circulation circuit 20, as shown by the solid line arrow in FIG. 1, the water pump 21 → the engine 60 → the water passage of the water-refrigerant heat exchanger 12 → Cooling water circulates in the order of the heater core 22 and the water pump 21. Thereby, in the heat pump system 1 of this embodiment, the cooling water heated by the water-refrigerant heat exchanger 12 can be flowed into the heater core 22 at the time of heating operation etc., and heating air can be heated.
 また、エンジン60には、放熱用循環回路25が接続されている。放熱用循環回路25は、エンジン60の廃熱を吸熱して温度上昇した冷却水を放熱させるための水循環回路である。放熱用循環回路25は、熱媒体循環回路20に対して並列的に接続されている。さらに、放熱用循環回路25には、ラジエータ26が配置されている。 Also, the engine 60 is connected to a circulation circuit 25 for heat dissipation. The heat dissipation circulation circuit 25 is a water circulation circuit for radiating the cooling water whose temperature has risen by absorbing the waste heat of the engine 60. The heat radiation circuit 25 is connected in parallel to the heat medium circuit 20. Further, a radiator 26 is disposed in the heat radiation circuit 25.
 ラジエータ26は、冷却水と外気とを熱交換させて、冷却水の有する熱を外気に放熱させる放熱用熱交換器である。さらに、放熱用循環回路25には、エンジン60に連動して作動する図示しない機械式の水ポンプが配置されている。従って、エンジン60が作動すると、図1の破線矢印に示すように、エンジン60とラジエータ26との間で冷却水が循環する。 The radiator 26 is a heat radiating heat exchanger that exchanges heat between the cooling water and the outside air and radiates the heat of the cooling water to the outside air. Furthermore, a mechanical water pump (not shown) that operates in conjunction with the engine 60 is disposed in the circulation circuit 25 for heat dissipation. Therefore, when the engine 60 is operated, the cooling water circulates between the engine 60 and the radiator 26 as indicated by broken line arrows in FIG.
 ここで、エンジン60の作動時には、冷却水はエンジン60の廃熱を吸熱して温度上昇する。従って、エンジン60は、冷却水を加熱する加熱部としての機能も果たしている。 Here, during the operation of the engine 60, the cooling water absorbs the waste heat of the engine 60 and rises in temperature. Therefore, the engine 60 also functions as a heating unit that heats the cooling water.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。室内空調ユニット30は、ヒートポンプシステム1によって温度調整された送風空気を車室内へ吹き出すために、その外殻を形成するケーシング31内に送風機32、室内蒸発器17、ヒータコア23等を収容したものである。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. The indoor air conditioning unit 30 accommodates a blower 32, an indoor evaporator 17, a heater core 23, and the like in a casing 31 that forms an outer shell in order to blow the blown air whose temperature is adjusted by the heat pump system 1 into the vehicle interior. is there.
 ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替装置33が配置されている。 The casing 31 forms an air passage for the blown air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength. An inside / outside air switching device 33 for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed on the most upstream side of the blast air flow in the casing 31.
 内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air, by the inside / outside air switching door, The introduction ratio with the introduction air volume is changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
 内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風装置としての送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。 On the downstream side of the blown air flow of the inside / outside air switching device 33, a blower (blower) 32 is disposed as a blower that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
 送風機32の送風空気流れ下流側には、室内蒸発器17およびヒータコア23が、送風空気の流れに対して、この順に配置されている。つまり、室内蒸発器17は、ヒータコア23に対して、送風空気流れ上流側に配置されている。また、ケーシング31内には、室内蒸発器17を通過した送風空気を、ヒータコア23を迂回させて下流側へ流す冷風バイパス通路35が形成されている。 On the downstream side of the blower air flow of the blower 32, the indoor evaporator 17 and the heater core 23 are arranged in this order with respect to the flow of the blown air. That is, the indoor evaporator 17 is arranged on the upstream side of the air flow with respect to the heater core 23. Further, in the casing 31, a cold air bypass passage 35 is formed in which the blown air that has passed through the indoor evaporator 17 bypasses the heater core 23 and flows downstream.
 室内蒸発器17の送風空気流れ下流側であって、かつ、ヒータコア23の送風空気流れ上流側には、室内蒸発器17通過後の送風空気のうち、ヒータコア23を通過させる風量割合を調整するエアミックスドア34が配置されている。 On the downstream side of the blower air flow of the indoor evaporator 17 and on the upstream side of the blower air flow of the heater core 23, the air that adjusts the air volume ratio that passes through the heater core 23 among the blown air that has passed through the indoor evaporator 17. A mix door 34 is arranged.
 また、ヒータコア23の送風空気流れ下流側には、ヒータコア23にて加熱された送風空気と冷風バイパス通路35を通過してヒータコア23にて加熱されていない送風空気とを混合させる混合空間が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が配置されている。 Further, a mixing space for mixing the blown air heated by the heater core 23 and the blown air that has passed through the cold air bypass passage 35 and is not heated by the heater core 23 is provided on the downstream side of the blower air flow of the heater core 23. ing. Furthermore, the opening hole which blows off the ventilation air (air-conditioning wind) mixed in the mixing space to the vehicle interior which is an air-conditioning object space is arrange | positioned in the most downstream part of the ventilation air flow of the casing 31. FIG.
 この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided. The face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior. The foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger. The defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
 これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
 従って、エアミックスドア34が、ヒータコア23を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整されることになる。 Therefore, the temperature of the conditioned air mixed in the mixing space is adjusted by the air mix door 34 adjusting the air volume ratio between the air volume passing through the heater core 23 and the air volume passing through the cold air bypass passage 35. Thereby, the temperature of the blast air (air conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
 つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部としての機能を果たす。なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 That is, the air mix door 34 functions as a temperature adjusting unit that adjusts the temperature of the conditioned air blown into the vehicle interior. The air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 Further, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively. A defroster door (both not shown) for adjusting the opening area of the hole is disposed.
 これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替装置を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置40から出力される制御信号によって、その作動が制御される。 These face doors, foot doors, and defroster doors constitute an opening hole mode switching device that switches the opening hole mode, and are linked to an electric actuator for driving an outlet mode door via a link mechanism or the like. And rotated. The operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
 フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。 The face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment. The foot mode is a blow-out mode in which the foot blow-out opening is fully opened and the defroster blow-out opening is opened by a small opening so that air is mainly blown out from the foot blow-out opening.
 さらに、乗員が操作パネル50に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。 Furthermore, when the occupant manually operates a blow mode switching switch provided on the operation panel 50, the defroster mode in which the defroster blowout port is fully opened and air is blown out from the defroster blowout port to the inner surface of the front windshield of the vehicle can be set.
 次に、本実施形態の電気制御部の概要について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、13、14a、16、18a、21、32等の作動を制御する。 Next, an outline of the electric control unit of this embodiment will be described. The air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the operations of the various control target devices 11, 13, 14a, 16, 18a, 21, 32, etc. connected to the output side are performed. Control.
 また、空調制御装置40の入力側には、図2のブロック図に示すように、内気温センサ41、外気温センサ42、日射センサ43、第1、第2水温センサ44a、44b、第1~第3冷媒温度センサ45a~45c、冷媒圧力センサ46、蒸発器温度センサ47、空調風温度センサ48、流入風温度センサ49等が接続されている。そして、空調制御装置40には、これらのセンサ群の検出信号が入力される。 Further, on the input side of the air conditioning control device 40, as shown in the block diagram of FIG. 2, the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the first and second water temperature sensors 44a and 44b, and the first to second water temperature sensors 44a and 44b. Third refrigerant temperature sensors 45a to 45c, a refrigerant pressure sensor 46, an evaporator temperature sensor 47, an air conditioning air temperature sensor 48, an inflow air temperature sensor 49, and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40. FIG.
 内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。 The inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam. The solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
 第1水温センサ44aは、水-冷媒熱交換器12の水通路へ流入する冷却水の入口側水温度TW1を検出する第1水温検出部である。第2水温センサ44bは、水-冷媒熱交換器12の水通路から流出した冷却水の出口側水温度TW2を検出する第2水温検出部である。 The first water temperature sensor 44a is a first water temperature detecting unit that detects the inlet side water temperature TW1 of the cooling water flowing into the water passage of the water-refrigerant heat exchanger 12. The second water temperature sensor 44b is a second water temperature detection unit that detects the outlet side water temperature TW2 of the cooling water that has flowed out of the water passage of the water-refrigerant heat exchanger 12.
 第1冷媒温度センサ45aは、圧縮機11から吐出されて水-冷媒熱交換器12の冷媒通路へ流入する冷媒の入口側冷媒温度TD1を検出する第1冷媒温度検出部である。第2冷媒温度センサ45bは、水-冷媒熱交換器12の冷媒通路から流出した冷媒の出口側冷媒温度TD2を検出する第2冷媒温度検出部である。より詳細には、第2冷媒温度センサ45bは、暖房用膨張弁13の出口側で、かつ、室外熱交換器14の入口側の冷媒の温度を検出するように配置されている。第3冷媒温度センサ45cは、室外熱交換器から流出した冷媒の温度(室外熱交換器温度)TD3を検出する第3冷媒温度検出部である。 The first refrigerant temperature sensor 45a is a first refrigerant temperature detector that detects an inlet side refrigerant temperature TD1 of refrigerant discharged from the compressor 11 and flowing into the refrigerant passage of the water-refrigerant heat exchanger 12. The second refrigerant temperature sensor 45b is a second refrigerant temperature detector that detects the outlet side refrigerant temperature TD2 of the refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12. More specifically, the second refrigerant temperature sensor 45 b is arranged to detect the temperature of the refrigerant on the outlet side of the heating expansion valve 13 and on the inlet side of the outdoor heat exchanger 14. The third refrigerant temperature sensor 45c is a third refrigerant temperature detector that detects the temperature (outdoor heat exchanger temperature) TD3 of the refrigerant that has flowed out of the outdoor heat exchanger.
 冷媒圧力センサ46は、圧縮機11の吐出口側から暖房用膨張弁13の入口側へ至る冷媒通路の高圧側冷媒圧力PDを検出する冷媒圧力検出部である。蒸発器温度センサ47は、室内蒸発器17における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ48は、混合空間から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。流入風温度センサ49は、ヒータコア22へ流入する流入空気温度TA1を検出する流入風温度検出部である。 The refrigerant pressure sensor 46 is a refrigerant pressure detector that detects the high-pressure side refrigerant pressure PD in the refrigerant passage extending from the discharge port side of the compressor 11 to the inlet side of the heating expansion valve 13. The evaporator temperature sensor 47 is an evaporator temperature detector that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 17. The air-conditioning air temperature sensor 48 is an air-conditioning air temperature detector that detects the temperature TAV of air blown from the mixed space into the vehicle interior. The inflow air temperature sensor 49 is an inflow air temperature detector that detects an inflow air temperature TA1 flowing into the heater core 22.
 なお、本実施形態の第3冷媒温度センサ45cは、室外熱交換器14の冷媒流出口に接続された配管の温度を検出しているが、第3冷媒温度検出部は、これに限定されない。第3冷媒温度検出部として、室外熱交換器14本体の温度を検出する温度検出部を採用してもよいし、室外熱交換器14を流通する冷媒の温度あるいは流出した直後の冷媒の温度を検出する温度検出部を採用してもよい。 In addition, although the 3rd refrigerant | coolant temperature sensor 45c of this embodiment has detected the temperature of the piping connected to the refrigerant | coolant outflow port of the outdoor heat exchanger 14, a 3rd refrigerant | coolant temperature detection part is not limited to this. As the third refrigerant temperature detector, a temperature detector that detects the temperature of the main body of the outdoor heat exchanger 14 may be adopted, or the temperature of the refrigerant flowing through the outdoor heat exchanger 14 or the temperature of the refrigerant immediately after flowing out may be determined. You may employ | adopt the temperature detection part to detect.
 また、蒸発器温度センサ47は、室内蒸発器17の熱交換フィン温度を検出しているが、蒸発器温度検出部は、これに限定されない。蒸発器温度検出部として、室内蒸発器17のその他の部位の温度を検出する温度検出部を採用してもよいし、室内蒸発器17を流通する冷媒の温度を検出する温度検出部を採用してもよい。 The evaporator temperature sensor 47 detects the heat exchange fin temperature of the indoor evaporator 17, but the evaporator temperature detector is not limited to this. As the evaporator temperature detector, a temperature detector that detects the temperature of other parts of the indoor evaporator 17 may be employed, or a temperature detector that detects the temperature of the refrigerant flowing through the indoor evaporator 17 may be employed. May be.
 また、本実施形態では、送風空気温度TAVを検出する送風空気温度センサを設けているが、この送風空気温度TAVとして、蒸発器温度Tefin、吐出冷媒温度Td等に基づいて算出された値を採用してもよい。 Moreover, in this embodiment, although the ventilation air temperature sensor which detects blowing air temperature TAV is provided, the value calculated based on evaporator temperature Tefin, discharge refrigerant temperature Td, etc. is employ | adopted as this blowing air temperature TAV. May be.
 さらに、空調制御装置40の入力側には、図2に示すように、車室内前部の計器盤付近に配置された操作パネル50が接続され、この操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。 Further, as shown in FIG. 2, an operation panel 50 disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected. The operation signal is input.
 操作パネル50に設けられた各種操作スイッチとしては、具体的に、車両用空調装置の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。 Specifically, various operation switches provided on the operation panel 50 include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner, a cooling switch for requesting cooling of the vehicle interior, and the air volume of the blower 32. There are an air volume setting switch for manually setting the air temperature, a temperature setting switch for setting the target temperature Tset in the passenger compartment, a blow mode switching switch for manually setting the blow mode.
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The air-conditioning control device 40 according to the present embodiment is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
 例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力(圧縮機11の回転数)を制御する構成(ハードウェアおよびソフトウェア)は、吐出能力制御部40aを構成している。また、暖房用膨張弁13の絞り開度を制御する構成は、絞り開度制御部40bを構成している。また、水ポンプ21の圧送能力を制御する構成は、圧送能力制御部40cを構成している。 For example, in the air-conditioning control device 40, the configuration (hardware and software) that controls the refrigerant discharge capability (the number of revolutions of the compressor 11) of the compressor 11 constitutes the discharge capability control unit 40a. Moreover, the structure which controls the throttle opening of the expansion valve 13 for heating comprises the throttle opening control part 40b. Moreover, the structure which controls the pumping capability of the water pump 21 comprises the pumping capability control part 40c.
 もちろん、吐出能力制御部40a、絞り開度制御部40b、圧送能力制御部40c等を空調制御装置40に対して別体の制御装置として構成してもよい。なお、図1等では、空調制御装置40と各種制御対象機器とを接続する信号線および電力線は図示しているが、図示の明確化のため、センサ群および空調制御装置40とセンサ群とを接続する信号線の図示を省略している。 Of course, the discharge capacity control unit 40a, the throttle opening degree control unit 40b, the pumping capacity control unit 40c, and the like may be configured as separate control devices for the air conditioning control device 40. In FIG. 1 and the like, signal lines and power lines that connect the air conditioning control device 40 and various control target devices are shown, but for clarity of illustration, the sensor group, the air conditioning control device 40, and the sensor group are connected. Illustration of signal lines to be connected is omitted.
 次に、上記構成における本実施形態の作動について説明する。本実施形態のヒートポンプシステム1では、冷房運転、除湿暖房運転、および暖房運転での運転を切り替えることができる。これらの各運転の切り替えは、空調制御プログラムが実行されることによって行われる。この空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)された際に実行される。 Next, the operation of this embodiment in the above configuration will be described. In the heat pump system 1 of this embodiment, the cooling operation, the dehumidifying heating operation, and the heating operation can be switched. Switching between these operations is performed by executing an air conditioning control program. This air conditioning control program is executed when the auto switch of the operation panel 50 is turned on.
 より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内の目標温度(車室内設定温度)、Trは内気温センサ41によって検出された内気温、Tamは外気温センサ42によって検出された外気温、Asは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
More specifically, in the main routine of the air conditioning control program, the detection signals of the above-described sensor group for air conditioning control and operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Tset is a target temperature in the vehicle interior (set temperature in the vehicle interior) set by the temperature setting switch, Tr is the internal air temperature detected by the internal air temperature sensor 41, Tam is the external air temperature detected by the external air temperature sensor 42, As Is the amount of solar radiation detected by the solar radiation sensor 43. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 さらに、操作パネル50の冷房スイッチが投入されており、かつ、目標吹出温度TAOが予め定めた冷房基準温度KTよりも低くなっている場合には、冷房運転での運転を実行する。また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度KT以上になっている場合には、除湿暖房運転での運転を実行する。また、冷房スイッチが投入されていない場合には、暖房運転での運転を実行する。 Further, when the cooling switch of the operation panel 50 is turned on and the target blowing temperature TAO is lower than the predetermined cooling reference temperature KT, the operation in the cooling operation is executed. When the cooling switch is turned on and the target blowing temperature TAO is equal to or higher than the cooling reference temperature KT, the dehumidifying heating operation is performed. When the cooling switch is not turned on, the heating operation is performed.
 これにより、本実施形態のヒートポンプシステム1では、主に夏季のように比較的外気温が高い場合に、冷房運転を実行し、主に早春季あるいは初冬季等に、除湿暖房運転を実行し、主に冬季のように比較的外気温が低い場合に、暖房運転を実行するようにしている。さらに、本実施形態のヒートポンプシステム1では、室外熱交換器14に着霜が生じた際に、これを取り除くための除霜運転を行う。以下に各運転モードにおける作動を説明する。 Thereby, in the heat pump system 1 of this embodiment, when the outside air temperature is relatively high mainly in summer, the cooling operation is performed, and the dehumidification heating operation is performed mainly in early spring or early winter. Heating operation is performed mainly when the outside air temperature is relatively low, such as in winter. Furthermore, in the heat pump system 1 of the present embodiment, when frost is generated in the outdoor heat exchanger 14, a defrosting operation for removing the frost is performed. The operation in each operation mode will be described below.
 (a)冷房運転
 冷房運転では、空調制御装置40の圧送能力制御部40cが、水ポンプ21を予め定めた圧送能力を発揮するように作動させる。また、空調制御装置40の絞り開度制御部40bが、暖房用膨張弁13を全開とする。さらに、空調制御装置40は、開閉弁18aを閉じ、冷房用膨張弁16を減圧作用を発揮する絞り状態とする。
(A) Air-cooling operation In air-cooling operation, the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 operates the water pump 21 so as to exhibit a predetermined pressure-feeding capacity. Further, the throttle opening degree control unit 40b of the air conditioning control device 40 opens the heating expansion valve 13 fully. Further, the air conditioning control device 40 closes the on-off valve 18a and puts the cooling expansion valve 16 into a throttled state that exerts a pressure reducing action.
 これにより、冷房運転時のヒートポンプサイクル10では、図1の白抜き矢印に示すように、圧縮機11→水-冷媒熱交換器12(→暖房用膨張弁13)→室外熱交換器14→冷房用膨張弁16→室内蒸発器17→アキュムレータ19→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thus, in the heat pump cycle 10 during the cooling operation, as indicated by the white arrow in FIG. 1, the compressor 11 → the water-refrigerant heat exchanger 12 (→ the heating expansion valve 13) → the outdoor heat exchanger 14 → the cooling. A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the expansion valve 16 → the indoor evaporator 17 → the accumulator 19 → the compressor 11 is configured.
 さらに、この冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 Furthermore, with the configuration of this refrigerant circuit, the air conditioning control device 40 indicates the operating states of the various control target devices (control signals output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like. decide.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器17の目標蒸発器吹出温度TEOを決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 17 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
 具体的には、この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器吹出温度TEOが低下するように決定する。さらに、目標蒸発器吹出温度TEOは、室内蒸発器17の着霜を抑制可能に決定された基準着霜防止温度(例えば、1℃)以上となるように決定される。 Specifically, in this control map, the target evaporator blowout temperature TEO is determined to decrease as the target blowout temperature TAO decreases. Further, the target evaporator blowout temperature TEO is determined to be equal to or higher than a reference frost prevention temperature (for example, 1 ° C.) determined to be able to suppress frost formation in the indoor evaporator 17.
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサ47によって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Then, based on the deviation between the target evaporator outlet temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 47, the evaporator temperature Tefin approaches the target evaporator outlet temperature TEO using a feedback control method. In addition, a control signal output to the electric motor of the compressor 11 is determined.
 また、送風機32へ出力される制御電圧については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、この制御マップでは、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で送風機32の送風量を最大風量とする。 Further, the control voltage output to the blower 32 is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Specifically, in this control map, the air volume of the blower 32 is set to the maximum air volume in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO.
 さらに、目標吹出温度TAOが極低温域から中間温度域に向かって上昇するに伴って、目標吹出温度TAOの上昇に応じて送風量を減少させ、目標吹出温度TAOが極高温域から中間温度域に向かって低下するに伴って、目標吹出温度TAOの低下に応じて送風量を減少させる。また、目標吹出温度TAOが所定の中間温度域内に入ると、送風量を最小風量とする。 Further, as the target blowing temperature TAO increases from the extremely low temperature range toward the intermediate temperature range, the air blowing amount is decreased according to the increase in the target blowing temperature TAO, and the target blowing temperature TAO is changed from the extremely high temperature range to the intermediate temperature range. As the air pressure decreases, the air flow rate is decreased according to the decrease in the target air temperature TAO. In addition, when the target blowing temperature TAO enters a predetermined intermediate temperature range, the blowing amount is set as the minimum blowing amount.
 また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34がヒータコア23側の空気通路を閉塞し、室内蒸発器17通過後の送風空気の全風量がヒータコア23を迂回して流れるように決定される。 Regarding the control signal output to the electric actuator that drives the air mix door 34, the air mix door 34 closes the air passage on the heater core 23 side, and the total air volume of the blown air after passing through the indoor evaporator 17 is the heater core 23. Is determined to flow around.
 また、冷房用膨張弁16へ出力される制御信号については、予め空調制御装置40に記憶された制御マップを参照して、冷房用膨張弁16へ流入する冷媒の過冷却度が、冷房時目標過冷却度に近づくように決定される。冷房時目標過冷却度は、冷房運転時にヒートポンプサイクル10の成績係数(COP)が略最大値となるように設定された目標値である。 For the control signal output to the cooling expansion valve 16, the degree of supercooling of the refrigerant flowing into the cooling expansion valve 16 is determined by referring to a control map stored in the air conditioning control device 40 in advance. It is determined to approach the degree of supercooling. The target supercooling degree during cooling is a target value that is set so that the coefficient of performance (COP) of the heat pump cycle 10 becomes a substantially maximum value during cooling operation.
 また、送風ファン14aへ出力される制御電圧については、送風ファン14aが運転モードに応じて予め定めた送風能力を発揮するように決定される。 Further, the control voltage output to the blower fan 14a is determined so that the blower fan 14a exhibits a predetermined blowing ability according to the operation mode.
 そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control signals determined as described above are output to various control target devices. After that, until the operation stop of the vehicle air conditioner is requested, reading the above detection signal and operation signal at every predetermined control cycle → calculating the target blowing temperature TAO → determining the operating state of various control target devices → control voltage And the control routine such as the output of the control signal is repeated. Such a control routine is repeated in the other operation modes.
 従って、冷房運転時のヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12の冷媒通路へ流入する。この際、水-冷媒熱交換器12の水通路へ流入する冷却水の温度が、水-冷媒熱交換器12へ流入した高圧冷媒の温度よりも低い場合には、高圧冷媒の有する熱が冷却水へ放熱されて、熱媒体循環回路20を循環する冷却水が加熱される。 Therefore, in the heat pump cycle 10 during the cooling operation, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12. At this time, if the temperature of the cooling water flowing into the water passage of the water-refrigerant heat exchanger 12 is lower than the temperature of the high-pressure refrigerant flowing into the water-refrigerant heat exchanger 12, the heat of the high-pressure refrigerant is cooled. The cooling water radiated to the water and circulated through the heat medium circulation circuit 20 is heated.
 冷房運転では、エアミックスドア34がヒータコア23側の空気通路を閉塞しているので、熱媒体循環回路20を循環する冷却水は、ヒータコア23へ流入しても、殆ど送風空気と熱交換することなく、ヒータコア23から流出する。 In the cooling operation, since the air mix door 34 closes the air passage on the heater core 23 side, the cooling water circulating in the heat medium circuit 20 almost exchanges heat with the blown air even if it flows into the heater core 23. It flows out from the heater core 23.
 従って、熱媒体循環回路20を循環する冷却水の温度は、冷房運転の開始後、高圧冷媒の温度と同等となるまで上昇する。そして、熱媒体循環回路20を循環する冷却水の温度が、高圧冷媒の温度と同等となるまで上昇すると、高圧冷媒は、水-冷媒熱交換器12へ流入しても、殆ど冷却水と熱交換することなく、水-冷媒熱交換器12から流出する。 Therefore, the temperature of the cooling water circulating in the heat medium circulation circuit 20 rises until it becomes equal to the temperature of the high-pressure refrigerant after the start of the cooling operation. Then, when the temperature of the cooling water circulating in the heat medium circuit 20 rises to be equal to the temperature of the high-pressure refrigerant, even if the high-pressure refrigerant flows into the water-refrigerant heat exchanger 12, the cooling water and heat It flows out of the water-refrigerant heat exchanger 12 without replacement.
 水-冷媒熱交換器12の冷媒通路から流出した冷媒は、全開となっている暖房用膨張弁13を介して、室外熱交換器14へ流入する。室外熱交換器14へ流入した冷媒は、室外熱交換器14にて、送風ファン14aから送風された外気と熱交換して放熱する。 The refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12 flows into the outdoor heat exchanger 14 through the heating expansion valve 13 that is fully open. The refrigerant flowing into the outdoor heat exchanger 14 exchanges heat with the outside air blown from the blower fan 14a in the outdoor heat exchanger 14 to radiate heat.
 室外熱交換器14から流出した冷媒は、開閉弁18aが閉じているので、分岐部15aを介して、冷房用膨張弁16へ流入する。冷房用膨張弁16へ流入した冷媒は、低圧冷媒となるまで減圧される。冷房用膨張弁16にて減圧された冷媒は、室内蒸発器17へ流入し、送風機32から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the cooling expansion valve 16 through the branch portion 15a because the on-off valve 18a is closed. The refrigerant flowing into the cooling expansion valve 16 is decompressed until it becomes a low-pressure refrigerant. The refrigerant decompressed by the cooling expansion valve 16 flows into the indoor evaporator 17, absorbs heat from the blown air blown from the blower 32, and evaporates. Thereby, blowing air is cooled.
 室内蒸発器17から流出した冷媒は、合流部15bを介してアキュムレータ19へ流入する。アキュムレータ19へ流入にて分離された気相冷媒は、圧縮機11へ吸入されて再び圧縮される。 The refrigerant that has flowed out of the indoor evaporator 17 flows into the accumulator 19 through the junction 15b. The gas-phase refrigerant separated by flowing into the accumulator 19 is sucked into the compressor 11 and compressed again.
 以上の如く、冷房運転のヒートポンプシステム1では、室内蒸発器17にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 As described above, in the heat pump system 1 for cooling operation, the vehicle interior can be cooled by blowing the blown air cooled by the indoor evaporator 17 into the vehicle interior.
 なお、冷房運転時には、熱媒体循環回路20を循環する冷却水の温度が高圧冷媒の温度と同等となるまで上昇してしまうと、水-冷媒熱交換器12にて冷媒と冷却水との熱交換が行われない。従って、冷房運転時には、空調制御装置40の圧送能力制御部40cが、水ポンプ21の作動を停止させてもよい。 During the cooling operation, if the temperature of the cooling water circulating in the heat medium circuit 20 rises to be equal to the temperature of the high-pressure refrigerant, the water-refrigerant heat exchanger 12 heats the refrigerant and the cooling water. There is no exchange. Accordingly, during the cooling operation, the pumping capacity control unit 40c of the air conditioning control device 40 may stop the operation of the water pump 21.
 (b)除湿暖房運転
 除湿暖房運転では、空調制御装置40の圧送能力制御部40cが、水ポンプ21を予め定めた圧送能力を発揮するように作動させる。また、空調制御装置40の絞り開度制御部40bが、暖房用膨張弁13を絞り状態とする。さらに、空調制御装置40は、開閉弁18aを閉じ、冷房用膨張弁16を減圧作用を発揮する絞り状態とする。
(B) Dehumidifying heating operation In the dehumidifying heating operation, the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 operates the water pump 21 so as to exhibit a predetermined pressure-feeding capacity. Moreover, the throttle opening degree control part 40b of the air-conditioning control apparatus 40 makes the expansion valve 13 for heating into a throttle state. Further, the air conditioning control device 40 closes the on-off valve 18a and puts the cooling expansion valve 16 into a throttled state that exerts a pressure reducing action.
 これにより、除湿暖房運転時のヒートポンプサイクル10では、図1の斜線ハッチング付き矢印に示すように、圧縮機11→水-冷媒熱交換器12→暖房用膨張弁13→室外熱交換器14(→冷房用膨張弁16)→室内蒸発器17→アキュムレータ19→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。つまり、除湿暖房運転では、実質的に冷房運転と同様の順で冷媒が循環する冷凍サイクルが構成される。 Thus, in the heat pump cycle 10 during the dehumidifying heating operation, as indicated by the hatched arrows in FIG. 1, the compressor 11 → the water-refrigerant heat exchanger 12 → the heating expansion valve 13 → the outdoor heat exchanger 14 (→ A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the cooling expansion valve 16) → the indoor evaporator 17 → the accumulator 19 → the compressor 11 is configured. That is, in the dehumidifying and heating operation, a refrigeration cycle in which the refrigerant circulates in the same order as in the cooling operation is configured.
 さらに、この熱媒体循環回路および冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 Further, with the configuration of the heat medium circulation circuit and the refrigerant circuit, the air-conditioning control device 40 operates the operation states of the various control target devices (output to the various control target devices based on the target blowing temperature TAO and the detection signal of the sensor group). Control signal) to be determined.
 例えば、圧縮機11の電動モータに出力される制御信号、送風機32へ出力される制御電圧、および送風ファン14aへ出力される制御電圧については、冷房運転と同様に決定される。 For example, the control signal output to the electric motor of the compressor 11, the control voltage output to the blower 32, and the control voltage output to the blower fan 14a are determined in the same manner as in the cooling operation.
 また、暖房用膨張弁13へ出力される制御信号については、予め空調制御装置40に記憶された制御マップを参照して、暖房用膨張弁13へ流入する冷媒の過冷却度が、暖房時目標過冷却度に近づくように決定される。暖房時目標過冷却度は、除湿暖房運転時あるいは暖房運転時にヒートポンプサイクル10の成績係数(COP)が略最大値となるように設定された目標値である。 For the control signal output to the heating expansion valve 13, the degree of supercooling of the refrigerant flowing into the heating expansion valve 13 is determined by referring to a control map stored in the air conditioning control device 40 in advance. It is determined to approach the degree of supercooling. The target supercooling degree during heating is a target value that is set so that the coefficient of performance (COP) of the heat pump cycle 10 becomes a substantially maximum value during dehumidifying heating operation or during heating operation.
 また、エアミックスドア34の電動アクチュエータへ出力される制御信号については、空調風温度センサ48によって検出された送風空気温度TAVが、目標吹出温度TAOに近づくように決定される。 Also, the control signal output to the electric actuator of the air mix door 34 is determined so that the blown air temperature TAV detected by the conditioned air temperature sensor 48 approaches the target blowing temperature TAO.
 従って、除湿暖房運転時のヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12の冷媒通路へ流入する。水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、水-冷媒熱交換器12の水通路を流通する冷却水と熱交換する。これにより、熱媒体循環回路20を循環する冷却水が加熱される。 Therefore, in the heat pump cycle 10 during the dehumidifying heating operation, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12. The refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the cooling water flowing through the water passage of the water-refrigerant heat exchanger 12. Thereby, the cooling water circulating through the heat medium circulation circuit 20 is heated.
 水-冷媒熱交換器12にて加熱された冷却水は、ヒータコア23へ流入する。除湿暖房運転では、エアミックスドア34がヒータコア23側の空気通路を開いているので、ヒータコア23へ流入した冷却水と室内蒸発器17通過後の送風空気が熱交換する。これにより、室内蒸発器17通過後の送風空気の一部が加熱される。そして、室内空調ユニット30の混合空間から車室内へ送風される送風空気の温度が目標吹出温度TAOに近づく。 The cooling water heated by the water-refrigerant heat exchanger 12 flows into the heater core 23. In the dehumidifying heating operation, since the air mix door 34 opens the air passage on the heater core 23 side, the cooling water flowing into the heater core 23 and the blown air after passing through the indoor evaporator 17 exchange heat. Thereby, a part of blowing air after passing through the indoor evaporator 17 is heated. Then, the temperature of the blown air blown from the mixed space of the indoor air conditioning unit 30 into the vehicle interior approaches the target blowing temperature TAO.
 水-冷媒熱交換器12から流出した冷媒は、暖房用膨張弁13へ流入して低圧冷媒となるまで減圧される。暖房用膨張弁13にて減圧された低圧冷媒は、室外熱交換器14へ流入する。室外熱交換器14へ流入した冷媒は、送風ファン14aから送風された外気から吸熱して蒸発する。 The refrigerant that has flowed out of the water-refrigerant heat exchanger 12 flows into the heating expansion valve 13 and is decompressed until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the heating expansion valve 13 flows into the outdoor heat exchanger 14. The refrigerant flowing into the outdoor heat exchanger 14 absorbs heat from the outside air blown from the blower fan 14a and evaporates.
 室外熱交換器14から流出した冷媒は、開閉弁18aが閉じているので、分岐部15aおよび全開となっている冷房用膨張弁16へ介して、室内蒸発器17へ流入する。室内蒸発器17へ流入した冷媒は、送風機32から送風された送風空気から、さらに吸熱して蒸発する。これにより、送風空気が冷却されて送風空気の除湿がなされる。以降の作動は冷房運転と同様である。 The refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the indoor evaporator 17 through the branching portion 15a and the cooling expansion valve 16 that is fully open because the on-off valve 18a is closed. The refrigerant flowing into the indoor evaporator 17 further absorbs heat and evaporates from the blown air blown from the blower 32. Thereby, blowing air is cooled and dehumidification of blowing air is made. The subsequent operation is the same as in the cooling operation.
 以上の如く、除湿暖房運転のヒートポンプシステム1では、室内蒸発器17にて冷却されて除湿された送風空気をヒータコア23にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。また、除湿暖房運転時には、ヒートポンプサイクル10によって冷却水を加熱することができるので、加熱部としてのエンジン60が作動していなくても車室内の除湿暖房を行うことができる。 As described above, in the heat pump system 1 in the dehumidifying and heating operation, the blown air cooled and dehumidified by the indoor evaporator 17 is reheated by the heater core 23 and blown out into the vehicle interior, thereby performing dehumidification heating in the vehicle interior. be able to. Further, during the dehumidifying and heating operation, the cooling water can be heated by the heat pump cycle 10, so that the vehicle room can be dehumidified and heated even if the engine 60 as the heating unit is not operating.
 (c)暖房運転
 暖房運転では、空調制御装置40の圧送能力制御部40cが、水ポンプ21を予め定めた圧送能力を発揮するように作動させる。また、空調制御装置40の絞り開度制御部40bが、暖房用膨張弁13を絞り状態とする。さらに、空調制御装置40は、開閉弁18aを開き、冷房用膨張弁16を全閉状態とする。
(C) Heating operation In the heating operation, the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 operates the water pump 21 so as to exhibit a predetermined pressure-feeding capacity. Moreover, the throttle opening degree control part 40b of the air-conditioning control apparatus 40 makes the expansion valve 13 for heating into a throttle state. Furthermore, the air conditioning control device 40 opens the on-off valve 18a and fully closes the cooling expansion valve 16.
 これにより、暖房運転時のヒートポンプサイクル10では、図1の黒塗り矢印に示すように、圧縮機11→水-冷媒熱交換器12→暖房用膨張弁13→室外熱交換器14→迂回通路18→アキュムレータ19→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the heat pump cycle 10 during heating operation, as indicated by the black arrows in FIG. 1, the compressor 11 → the water-refrigerant heat exchanger 12 → the heating expansion valve 13 → the outdoor heat exchanger 14 → the bypass passage 18 A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the accumulator 19 and the compressor 11 is configured.
 さらに、この熱媒体循環回路および冷媒回路の構成で、空調制御装置40が、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 Further, with the configuration of the heat medium circulation circuit and the refrigerant circuit, the air-conditioning control device 40 operates the operation states of the various control target devices (output to the various control target devices based on the target blowing temperature TAO and the detection signal of the sensor group). Control signal) to be determined.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、水-冷媒熱交換器12における目標凝縮温度TCOを決定する。具体的には、この制御マップでは、目標吹出温度TAOの上昇に伴って、目標凝縮温度TCOが上昇するように決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target condensing temperature TCO in the water-refrigerant heat exchanger 12 is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance. Specifically, in this control map, the target condensing temperature TCO is determined to increase as the target blowing temperature TAO increases.
 そして、この目標凝縮温度TCOと第1冷媒温度センサ45aによって検出された入口側冷媒温度TD1との偏差に基づいて、フィードバック制御手法を用いて入口側冷媒温度TD1が目標凝縮温度TCOに近づくように、かつ、高圧側冷媒圧力PDの異常上昇が抑制されるように、圧縮機11の電動モータに出力される制御信号が決定される。 Based on the deviation between the target condensation temperature TCO and the inlet refrigerant temperature TD1 detected by the first refrigerant temperature sensor 45a, the inlet refrigerant temperature TD1 approaches the target condensation temperature TCO using a feedback control method. And the control signal output to the electric motor of the compressor 11 is determined so that the abnormal rise of the high-pressure side refrigerant pressure PD is suppressed.
 また、送風機32へ出力される制御電圧、および送風ファン14aへ出力される制御電圧については、冷房運転と同様に決定される。暖房用膨張弁13へ出力される制御信号については、除湿暖房運転と同様に決定される。 Further, the control voltage output to the blower 32 and the control voltage output to the blower fan 14a are determined in the same manner as in the cooling operation. The control signal output to the heating expansion valve 13 is determined in the same manner as in the dehumidifying heating operation.
 また、エアミックスドア34の電動アクチュエータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を閉塞し、室内蒸発器17通過後の送風空気の全風量がヒータコア23側の空気通路を通過するように決定される。 As for the control signal output to the electric actuator of the air mix door 34, the air mix door 34 closes the cold air bypass passage 35, and the total air volume of the blown air after passing through the indoor evaporator 17 is the air passage on the heater core 23 side. Is determined to pass.
 従って、暖房運転時のヒートポンプサイクル10では、除湿暖房運転と同様に、圧縮機11から吐出された高圧冷媒が、水-冷媒熱交換器12の冷媒通路へ流入する。水-冷媒熱交換器12の冷媒通路へ流入した冷媒は、水-冷媒熱交換器12の水通路を流通する冷却水と熱交換する。これにより、熱媒体循環回路20を循環する冷却水が加熱される。 Therefore, in the heat pump cycle 10 during the heating operation, the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12 as in the dehumidifying heating operation. The refrigerant flowing into the refrigerant passage of the water-refrigerant heat exchanger 12 exchanges heat with the cooling water flowing through the water passage of the water-refrigerant heat exchanger 12. Thereby, the cooling water circulating through the heat medium circulation circuit 20 is heated.
 水-冷媒熱交換器12にて加熱された冷却水は、ヒータコア23へ流入する。暖房運転では、エアミックスドア34がヒータコア23側の空気通路を全開にしているので、ヒータコア23へ流入した冷却水と室内蒸発器17通過後の送風空気が熱交換する。これにより、室内蒸発器17通過後の送風空気が加熱される。 The cooling water heated by the water-refrigerant heat exchanger 12 flows into the heater core 23. In the heating operation, since the air mix door 34 fully opens the air passage on the heater core 23 side, the cooling water flowing into the heater core 23 and the blown air after passing through the indoor evaporator 17 exchange heat. Thereby, the blown air after passing through the indoor evaporator 17 is heated.
 水-冷媒熱交換器12から流出した冷媒は、暖房用膨張弁13へ流入して低圧冷媒となるまで減圧される。暖房用膨張弁13にて減圧された低圧冷媒は、室外熱交換器14へ流入する。室外熱交換器14へ流入した冷媒は、除湿暖房運転と同様に、送風ファン14aから送風されてラジエータ26通過後の外気から吸熱して蒸発する。 The refrigerant that has flowed out of the water-refrigerant heat exchanger 12 flows into the heating expansion valve 13 and is decompressed until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the heating expansion valve 13 flows into the outdoor heat exchanger 14. The refrigerant that has flowed into the outdoor heat exchanger 14 is blown from the blower fan 14a and absorbs heat from the outside air after passing through the radiator 26 and evaporates, as in the dehumidifying and heating operation.
 室外熱交換器14から流出した冷媒は、開閉弁18aが閉じ、かつ、冷房用膨張弁16が全閉状態となっているので、分岐部15aおよび迂回通路18を介して、アキュムレータ19へ流入して気液分離される。アキュムレータ19にて分離された気相冷媒は、冷房運転および除湿暖房運転と同様に、圧縮機11へ吸入されて再び圧縮される。 The refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the accumulator 19 through the branch portion 15a and the bypass passage 18 because the on-off valve 18a is closed and the cooling expansion valve 16 is fully closed. Gas-liquid separation. The gas-phase refrigerant separated by the accumulator 19 is sucked into the compressor 11 and compressed again as in the cooling operation and the dehumidifying heating operation.
 以上の如く、暖房運転のヒートポンプシステム1では、ヒータコア23にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。また、暖房運転時には、除湿暖房運転時と同様に、ヒートポンプサイクル10によって冷却水を加熱することができるので、エンジン60が作動していなくても車室内の除湿暖房を行うことができる。 As described above, in the heat pump system 1 for heating operation, the vehicle interior can be heated by blowing the blown air heated by the heater core 23 into the vehicle interior. Further, during the heating operation, the cooling water can be heated by the heat pump cycle 10 as in the dehumidifying heating operation, so that the vehicle compartment can be dehumidified and heated even when the engine 60 is not operating.
 ここで、ヒートポンプシステム1の除湿暖房運転や暖房運転のように、ヒートポンプサイクル10の室外熱交換器14を蒸発器として機能させる構成では、室外熱交換器14の冷媒蒸発温度が氷点下(0℃以下)になってしまうと、室外熱交換器14に着霜が生じてしまうことがある。 Here, in the configuration in which the outdoor heat exchanger 14 of the heat pump cycle 10 functions as an evaporator as in the dehumidifying heating operation or heating operation of the heat pump system 1, the refrigerant evaporation temperature of the outdoor heat exchanger 14 is below freezing (0 ° C. or lower). ), Frost formation may occur in the outdoor heat exchanger 14.
 このような着霜が生じると室外熱交換器14の外気通路が霜によって閉塞されてしまうので、室外熱交換器14の熱交換性能が低下してしまう。従って、室外熱交換器14にて冷媒が外気から吸熱する吸熱量が著しく低下して、ヒートポンプサイクル10が、冷却水を充分に加熱できなくなってしまう。その結果、乗員の暖房感が悪化してしまう。 When such frost formation occurs, the outdoor air passage of the outdoor heat exchanger 14 is blocked by frost, so that the heat exchange performance of the outdoor heat exchanger 14 is deteriorated. Accordingly, the amount of heat absorbed by the refrigerant from the outside air in the outdoor heat exchanger 14 is significantly reduced, and the heat pump cycle 10 cannot sufficiently heat the cooling water. As a result, the passenger's feeling of heating deteriorates.
 これに対して、本実施形態のヒートポンプシステム1では、室外熱交換器14に着霜が生じた際に、これを取り除くための除霜運転を実行することができる。以下に除霜運転について説明する。 In contrast, in the heat pump system 1 of the present embodiment, when frost formation occurs in the outdoor heat exchanger 14, a defrosting operation for removing the frost can be performed. The defrosting operation will be described below.
 (d)除霜運転
 除霜運転については、図3のフローチャートを用いて説明する。図3に示すフローチャートは、空調制御プログラムのメインルーチンに対するサブルーチンとして、所定の周期毎に実行される制御処理である。また、図3のフローチャートの各制御ステップは、空調制御装置40が有する機能実現装置(機能実現部)を構成している。
(D) Defrosting operation Defrosting operation is demonstrated using the flowchart of FIG. The flowchart shown in FIG. 3 is a control process executed at predetermined intervals as a subroutine for the main routine of the air conditioning control program. Moreover, each control step of the flowchart of FIG. 3 comprises the function implementation apparatus (function implementation part) which the air-conditioning control apparatus 40 has.
 まず、ステップS1では、室外熱交換器14に着霜が生じているか否かを判定する。具体的には、本実施形態のステップS1では、外気温Tamから第3冷媒温度センサ45cによって検出された室外熱交換器温度TD3を減算した値(Tam-TD3)が予め定めた基準温度差以上となっている際に、室外熱交換器14に着霜が生じていると判定する。従って、制御ステップS1は、着霜判定部を構成している。 First, in step S1, it is determined whether or not frost formation has occurred in the outdoor heat exchanger. Specifically, in step S1 of the present embodiment, a value (Tam−TD3) obtained by subtracting the outdoor heat exchanger temperature TD3 detected by the third refrigerant temperature sensor 45c from the outside air temperature Tam is equal to or larger than a predetermined reference temperature difference. It is determined that frost formation has occurred in the outdoor heat exchanger 14. Therefore, control step S1 comprises the frost determination part.
 さらに、この本実施形態のステップS1では、実際に室外熱交換器14に着霜が生じているか否かを判定するために、室外熱交換器(空気熱交換器)14に着霜が生じ得る運転条件になっているか否かを判定している。つまり、ステップS1では、室外熱交換器14に着霜が生じている可能性があるか否かを判定している。 Furthermore, in step S1 of this embodiment, in order to determine whether or not frost formation has actually occurred in the outdoor heat exchanger 14, frost formation can occur in the outdoor heat exchanger (air heat exchanger) 14. It is determined whether or not the operating condition is met. That is, in step S1, it is determined whether there is a possibility that frost formation has occurred in the outdoor heat exchanger 14.
 そして、ステップS1にて、室外熱交換器14に着霜が生じていると判定された際には、ステップS2へ進む。一方、ステップS1にて、室外熱交換器14に着霜が生じていると判定されなかった際には、メインルーチンへ戻る。 And when it determines with the frost formation having arisen in the outdoor heat exchanger 14 in step S1, it progresses to step S2. On the other hand, if it is not determined in step S1 that frost formation has occurred in the outdoor heat exchanger 14, the process returns to the main routine.
 ステップS2では、除霜運転を実行する際の各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)が決定されて、ステップS3へ進む。 In step S2, the operating states of the various control target devices (control signals output to the various control target devices) when executing the defrosting operation are determined, and the process proceeds to step S3.
 より具体的には、除霜運転では、空調制御装置40の絞り開度制御部40bが、暖房用膨張弁13を絞り状態とする。この際、絞り開度制御部40bは、第2冷媒温度センサ45bによって検出された出口側冷媒温度TD2が、第2水温センサ44bによって検出された出口側水温度TW2に近づくように、暖房運転時よりも絞り開度を増加させる。 More specifically, in the defrosting operation, the throttle opening degree control unit 40b of the air conditioning control device 40 brings the heating expansion valve 13 into a throttled state. At this time, the throttle opening control unit 40b performs the heating operation so that the outlet side refrigerant temperature TD2 detected by the second refrigerant temperature sensor 45b approaches the outlet side water temperature TW2 detected by the second water temperature sensor 44b. Increase the throttle opening more than.
 さらに、空調制御装置40は、開閉弁18aを開き、冷房用膨張弁16を全閉状態とし、室外熱交換器14へ向けて外気を送風する送風ファン14aの作動を停止させる。 Furthermore, the air conditioning control device 40 opens the opening / closing valve 18a, fully closes the cooling expansion valve 16, and stops the operation of the blower fan 14a that blows outside air toward the outdoor heat exchanger 14.
 ステップS3では、外気温Tamと出口側水温度TW2とを比較する。具体的には、ステップS3において、出口側水温度TW2が外気温Tamに第1基準温度α(本実施形態では、40℃)を加算した値(Tam+α)よりも低いと判定された場合は、ステップS4へ進む。ステップS4では、空調制御装置40の圧送能力制御部40cが水ポンプ21の流量(すなわち、圧送能力)を予め定めた所定量分減少させて、ステップS7へ進む。 In step S3, the outside air temperature Tam is compared with the outlet side water temperature TW2. Specifically, when it is determined in step S3 that the outlet side water temperature TW2 is lower than the value (Tam + α) obtained by adding the first reference temperature α (40 ° C. in the present embodiment) to the outside air temperature Tam, Proceed to step S4. In step S4, the pumping capacity control unit 40c of the air conditioning control device 40 decreases the flow rate of the water pump 21 (that is, the pumping capacity) by a predetermined amount, and proceeds to step S7.
 また、ステップS3において、出口側水温度TW2が外気温Tamに第1基準温度αを加算した値(Tam+α)に等しいと判定された場合は、ステップS5へ進む。ステップS5では、圧送能力制御部40cが水ポンプ21の流量を変更することなく維持して、ステップS7へ進む。 In Step S3, when it is determined that the outlet side water temperature TW2 is equal to the value (Tam + α) obtained by adding the first reference temperature α to the outside air temperature Tam, the process proceeds to Step S5. In step S5, the pumping capacity control unit 40c maintains the flow rate of the water pump 21 without changing it, and proceeds to step S7.
 また、ステップS3において、出口側水温度TW2が外気温Tamに第1基準温度αを加算した値(Tam+α)よりも高いと判定された場合は、ステップS6へ進む。ステップS6では、圧送能力制御部40cが水ポンプ21の流量を予め定めた所定量分増加させて、ステップS7へ進む。 In Step S3, when it is determined that the outlet water temperature TW2 is higher than the value obtained by adding the first reference temperature α to the outside air temperature Tam (Tam + α), the process proceeds to Step S6. In step S6, the pumping capacity control unit 40c increases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
 なお、ステップS3は、実際の出口側水温度TW2と実際の外気温Tamに第1基準温度αを加算した値(Tam+α)が完全に一致している際に、TW2がTam+αに等しいと判定するものに限定されない。各温度検出部には検出誤差等が存在するので、TW2とTam+αとの差(絶対値)が予め定めた微少値以下となっている際に、TW2がTam+αに等しいと判定するものを採用してもよい。 Note that step S3 determines that TW2 is equal to Tam + α when the value (Tam + α) obtained by adding the first reference temperature α to the actual outlet water temperature TW2 and the actual outside air temperature Tam completely coincides with each other. It is not limited to things. Since each temperature detector has a detection error, etc., when the difference (absolute value) between TW2 and Tam + α is equal to or less than a predetermined minute value, it is determined that TW2 is equal to Tam + α. May be.
 ここで、ステップS3~S6では、TW2からTamを減算した温度差(TW2-Tam)が拡大するに伴って、水ポンプ21の圧送能力を段階的に増加させている。さらに、一般的な車両では、ラジエータ26へ流通させる冷却水量を調整することによって、冷却水温度が大きく変動してしまうことを抑制している。 Here, in steps S3 to S6, as the temperature difference obtained by subtracting Tam from TW2 (TW2-Tam) increases, the pumping capacity of the water pump 21 is increased stepwise. Furthermore, in a general vehicle, by adjusting the amount of cooling water to be circulated to the radiator 26, the cooling water temperature is prevented from greatly fluctuating.
 従って、本実施形態のステップS3~S7では、主に外気温Tamの低下に伴って、水ポンプ21の圧送能力を増加させている。さらに、外気温Tamが低下するに伴って、車室内を暖房するためにヒートポンプシステム1に要求される要求暖房能力(すなわち、送風空気を加熱するために要求される要求加熱能力)も増加する。 Therefore, in steps S3 to S7 of the present embodiment, the pumping capacity of the water pump 21 is increased mainly as the outside air temperature Tam decreases. Further, as the outside air temperature Tam decreases, the required heating capacity required for the heat pump system 1 to heat the passenger compartment (that is, the required heating capacity required for heating the blown air) also increases.
 そのため、本実施形態の圧送能力制御部40cは、除霜運転時に、要求加熱能力の増加に伴って、水ポンプ21の圧送能力を増加させている。より詳細には、圧送能力制御部40cは、除霜運転時に、出口側水温度TW2から外気温Tamを減算した温度差(TW2-Tam)が拡大するに伴って、要求加熱能力が増加するものとして、水ポンプ21の圧送能力が増加させている。 Therefore, the pressure-feeding capacity control unit 40c of the present embodiment increases the pressure-feeding capacity of the water pump 21 as the required heating capacity increases during the defrosting operation. More specifically, the pumping capacity control unit 40c increases the required heating capacity as the temperature difference (TW2-Tam) obtained by subtracting the outside air temperature Tam from the outlet side water temperature TW2 increases during the defrosting operation. As a result, the pumping capacity of the water pump 21 is increased.
 さらに、圧送能力制御部40cは、出口側冷媒温度TD2が、予め定めた基準冷媒温度KTH以上となる範囲で、圧送能力を変化させている。基準冷媒温度KTHは、室外熱交換器14の除霜を確実に行うことができる温度として、実験的あるいは試験的に決定された値である。 Further, the pressure-feeding capacity control unit 40c changes the pressure-feeding capacity in a range where the outlet side refrigerant temperature TD2 is equal to or higher than a predetermined reference refrigerant temperature KTH. The reference refrigerant temperature KTH is a value determined experimentally or experimentally as a temperature at which the outdoor heat exchanger 14 can be reliably defrosted.
 ステップS7では、室外熱交換器14の除霜が完了したか否かが判定される。ステップS7にて、室外熱交換器14の除霜が完了したと判定された際には、ステップS8へ進む。一方、ステップS7にて、室外熱交換器14の除霜が完了していないと判定された際には、ステップS3へ戻る。 In step S7, it is determined whether or not the defrosting of the outdoor heat exchanger 14 is completed. When it is determined in step S7 that the defrosting of the outdoor heat exchanger 14 has been completed, the process proceeds to step S8. On the other hand, when it is determined in step S7 that the defrosting of the outdoor heat exchanger 14 has not been completed, the process returns to step S3.
 ステップS8では、除霜運転完了処理を行う。除霜運転完了処理は、除霜運転から除湿暖房運転あるいは暖房運転へ以降した際に、水ポンプ21の圧送能力が急変して出口側水温度TW2が急変してしまうことを抑制するための制御処理である。 In step S8, a defrosting operation completion process is performed. In the defrosting operation completion process, when the defrosting operation is switched to the dehumidifying heating operation or the heating operation, a control for suppressing a sudden change in the pumping capacity of the water pump 21 and a sudden change in the outlet water temperature TW2 is performed. It is processing.
 具体的には、このステップS8では、予め定めた待機時間が経過するまで水ポンプ21の圧送能力の変化量を制限して、圧送能力を急変させないようにしている。そして、除霜運転完了処理の終了後、メインルーチンへ戻る。 Specifically, in this step S8, the amount of change in the pumping capacity of the water pump 21 is limited until a predetermined waiting time elapses so that the pumping capacity is not suddenly changed. And after completion | finish of a defrost operation completion process, it returns to a main routine.
 従って、本実施形態のヒートポンプシステム1によれば、室外熱交換器14に着霜が生じていると判定された際に、暖房運転時と同様の冷媒回路に切り替えて、空調制御装置40の絞り開度制御部40bが、暖房用膨張弁13の絞り開度を増加させる。これにより、室外熱交換器14へ流入する冷媒の温度を上昇させて室外熱交換器14の除霜を行う、いわゆるホットガス除霜を実行することができる。 Therefore, according to the heat pump system 1 of the present embodiment, when it is determined that frost formation has occurred in the outdoor heat exchanger 14, the refrigerant circuit is switched to the same refrigerant circuit as in the heating operation, and the throttle of the air conditioning control device 40 is switched. The opening degree control part 40b increases the throttle opening degree of the expansion valve 13 for heating. Thereby, what is called a hot gas defrost which performs the defrost of the outdoor heat exchanger 14 by raising the temperature of the refrigerant | coolant which flows in into the outdoor heat exchanger 14 can be performed.
 この際、空調制御装置40の圧送能力制御部40cが、温度差(TW2-Tam)の拡大に伴って、水ポンプ21の圧送能力を増加させる。従って、冷媒が水-冷媒熱交換器12にて除霜に必要な熱を放熱して失ってしまうことを抑制することができる。さらに、水-冷媒熱交換器12から流出する冷却水の温度低下を抑制して、比較的高い温度の冷却水をヒータコア22へ供給することができる。 At this time, the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 as the temperature difference (TW2-Tam) increases. Therefore, it is possible to prevent the refrigerant from radiating and losing heat necessary for defrosting in the water-refrigerant heat exchanger 12. Further, it is possible to suppress the temperature drop of the cooling water flowing out from the water-refrigerant heat exchanger 12 and supply the cooling water having a relatively high temperature to the heater core 22.
 このことを図4~図6を用いて詳細に説明する。なお、図4は、除霜運転時のヒートポンプサイクル10における冷媒の状態の変化を示すモリエル線図である。図5は、本実施形態のヒートポンプサイクル10と同等のサイクルにおいて、除霜運転時に水ポンプ21の圧送能力を比較的大きくした際の比較例のモリエル線図である。図6は、本実施形態のヒートポンプサイクル10と同等のサイクルにおいて、除霜運転時に水ポンプ21を停止させた際の比較例のモリエル線図である。 This will be described in detail with reference to FIGS. FIG. 4 is a Mollier diagram showing a change in the state of the refrigerant in the heat pump cycle 10 during the defrosting operation. FIG. 5 is a Mollier diagram of a comparative example when the pumping capacity of the water pump 21 is relatively increased during the defrosting operation in a cycle equivalent to the heat pump cycle 10 of the present embodiment. FIG. 6 is a Mollier diagram of a comparative example when the water pump 21 is stopped during the defrosting operation in a cycle equivalent to the heat pump cycle 10 of the present embodiment.
 また、図5、図6のモリエル線図における各符号は、図4のモリエル線図に対して、サイクル構成上同等あるいは対応する箇所の冷媒の状態を示すものについては、同一のアルファベットを用い、添字(数字)を変更して示している。 In addition, each symbol in the Mollier diagram of FIG. 5 and FIG. 6 uses the same alphabet for those indicating the state of the refrigerant in the same or corresponding part in the cycle configuration as compared to the Mollier diagram of FIG. The subscripts (numbers) are changed.
 まず、本開示の比較例のように、暖房運転時の動作から水ポンプ21の圧送能力を変化させず、比較的大きな圧送能力となっていると、図5のモリエル線図に示すように、圧縮機11から吐出された冷媒(図5のa5点)の有する熱の殆どが冷却水に放熱されてしまうおそれがある(図5のa5点→b5点)。従って、室外熱交換器14へ流入した冷媒(図5のc5点)の有する熱を室外熱交換器14にて非常に限られた量(図5のc5点→d5点)しか放熱させることができず、室外熱交換器14の除霜を実現できなくなってしまうおそれがある。 First, as in the comparative example of the present disclosure, if the pumping capacity of the water pump 21 is not changed from the operation during heating operation, and the pumping capacity is relatively large, as shown in the Mollier diagram of FIG. There is a risk that most of the heat of the refrigerant discharged from the compressor 11 (point a5 in FIG. 5) is radiated to the cooling water (point a5 → b5 in FIG. 5). Therefore, only a very limited amount (c5 point → d5 point in FIG. 5) of the heat of the refrigerant (point c5 in FIG. 5) flowing into the outdoor heat exchanger 14 is radiated by the outdoor heat exchanger 14. There is a risk that the outdoor heat exchanger 14 cannot be defrosted.
 一方、除霜運転時に水ポンプ21を停止させてしまうと、図6のモリエル線図に示すように、圧縮機11から吐出された冷媒(図6のa6点)の有する熱を冷却水に放熱させることなく、暖房用膨張弁13にて減圧させてしまうおそれがある(図6のa6点→c6点)。さらに、冷却水がヒータコア22へ供給されないので、送風空気を加熱することができないおそれがある。 On the other hand, if the water pump 21 is stopped during the defrosting operation, the heat of the refrigerant (point a6 in FIG. 6) discharged from the compressor 11 is dissipated to the cooling water as shown in the Mollier diagram of FIG. There is a risk that the pressure will be reduced by the heating expansion valve 13 (point a6 → c6 in FIG. 6). Furthermore, since cooling water is not supplied to the heater core 22, there is a possibility that the blown air cannot be heated.
 これに対して、本実施形態のヒートポンプシステム1の除霜運転では、水ポンプ21の圧送能力を変化させることによって、図4のモリエル線図に示すように、圧縮機11から吐出された冷媒(図4のa4点)の有する熱を冷却水に放熱させる(図4のa4点→b4点)。従って、水-冷媒熱交換器12から流出する冷却水の温度低下を抑制することができる。すなわち、送風空気を加熱することができる。 In contrast, in the defrosting operation of the heat pump system 1 of the present embodiment, the refrigerant discharged from the compressor 11 (see the Mollier diagram of FIG. 4) by changing the pumping capacity of the water pump 21 ( The heat of point a4 in FIG. 4 is radiated to the cooling water (point a4 → point b4 in FIG. 4). Accordingly, it is possible to suppress the temperature drop of the cooling water flowing out from the water-refrigerant heat exchanger 12. That is, the blown air can be heated.
 さらに、水-冷媒熱交換器12から流出した冷媒の出口側冷媒温度TD2が、基準冷媒温度KTH以上となる範囲で、圧送能力を変化させる。従って、室外熱交換器14へ流入した冷媒(図4のc4点)の有する熱を室外熱交換器14にて放熱させて(図4のc4点→d4点)、室外熱交換器14の除霜を実現することができる。 Further, the pumping capacity is changed in a range where the outlet side refrigerant temperature TD2 of the refrigerant flowing out of the water-refrigerant heat exchanger 12 is equal to or higher than the reference refrigerant temperature KTH. Therefore, the heat of the refrigerant (point c4 in FIG. 4) flowing into the outdoor heat exchanger 14 is dissipated by the outdoor heat exchanger 14 (point c4 → d4 in FIG. 4), and the outdoor heat exchanger 14 is removed. Frost can be realized.
 その結果、本実施形態のヒートポンプシステム1の除霜運転では、図7のタイムチャートに示すように、安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制することができる。 As a result, in the defrosting operation of the heat pump system 1 of the present embodiment, as shown in the time chart of FIG. 7, it is possible to suppress a decrease in the heating capacity of the heating target fluid while exhibiting a stable defrosting capacity. .
 なお、図7では、本実施形態のヒートポンプシステム1における水ポンプ21の流量(すなわち、圧送能力)の変化、出口側水温度TW2の変化、およびヒータコア22における送風空気の加熱能力の変化を太実線で示している。また、比較例のヒートポンプシステム1における水ポンプの流量の変化、出口側水温度TW2の変化、および送風空気の加熱能力の変化を太破線で示している。 In FIG. 7, the change in the flow rate (that is, the pumping capacity) of the water pump 21 in the heat pump system 1 of the present embodiment, the change in the outlet water temperature TW2, and the change in the heating capacity of the blown air in the heater core 22 are shown by bold lines. Is shown. Moreover, the change of the flow volume of the water pump in the heat pump system 1 of a comparative example, the change of outlet side water temperature TW2, and the change of the heating capability of blowing air are shown with the thick broken line.
 つまり、図7の太破線に示す比較例の如く除霜運転時に水ポンプ21の流量を変化させないと、除霜運転時の出口側水温度TW2の低下量が大きくなってしまうおそれがある。このため、ヒータコア22における送風空気の加熱能力(すなわち、暖房能力)が要求加熱能力よりも低下してしまうおそれがある。 That is, if the flow rate of the water pump 21 is not changed during the defrosting operation as in the comparative example shown by the thick broken line in FIG. 7, the amount of decrease in the outlet side water temperature TW2 during the defrosting operation may increase. For this reason, there exists a possibility that the heating capability (namely, heating capability) of the ventilation air in the heater core 22 may fall rather than a request | requirement heating capability.
 これに対して、図7の太実線に示すように、本実施形態のヒートポンプシステム1では、除霜運転時に水ポンプ21の流量を変化させるので、除霜運転時の出口側水温度TW2の低下を抑制することができる。従って、ヒータコア22における送風空気の加熱能力が、要求加熱能力よりも下回ってしまうことを抑制することができ、乗員の暖房感が大きく悪化してしまうことを回避できる。 On the other hand, as shown by the thick solid line in FIG. 7, in the heat pump system 1 of the present embodiment, the flow rate of the water pump 21 is changed during the defrosting operation, so that the outlet side water temperature TW2 decreases during the defrosting operation. Can be suppressed. Therefore, it can suppress that the heating capability of the blowing air in the heater core 22 falls below required heating capability, and it can avoid that a passenger | crew's feeling of heating deteriorates greatly.
 すなわち、本実施形態のヒートポンプシステム1によれば、除霜運転時に、安定した除霜能力を発揮しつつ、加熱対象流体(本実施形態では、送風空気)の加熱能力の低下を抑制することができる。 That is, according to the heat pump system 1 of the present embodiment, it is possible to suppress a decrease in the heating capacity of the fluid to be heated (in this embodiment, blown air) while exhibiting a stable defrosting capacity during the defrosting operation. it can.
 また、本実施形態のヒートポンプシステム1によれば、除霜運転時に、除霜を行うために必要な熱エネルギ、および車室内の暖房を行うために必要な熱エネルギを確保するために、加熱部としてのエンジン60をさせる必要がない。従って、不必要なエネルギ消費を抑制し、車両燃費の向上を図ることができる。 Moreover, according to the heat pump system 1 of this embodiment, in order to ensure the thermal energy necessary for performing defrosting and the thermal energy necessary for heating the vehicle interior during the defrosting operation, It is not necessary to make the engine 60 as. Therefore, unnecessary energy consumption can be suppressed and vehicle fuel consumption can be improved.
 また、本実施形態のヒートポンプシステム1の圧送能力制御部40cは、出口側冷媒温度TD2が、基準冷媒温度KTH以上となる範囲で、圧送能力を変化させている。従って、除霜運転時に、より一層確実に、安定した除霜能力を発揮させることができる。 In addition, the pressure-feeding capacity control unit 40c of the heat pump system 1 of the present embodiment changes the pressure-feeding capacity in a range where the outlet side refrigerant temperature TD2 is equal to or higher than the reference refrigerant temperature KTH. Therefore, the stable defrosting capability can be exhibited more reliably during the defrosting operation.
 本実施形態では、制御ステップS3にて、外気温Tamと出口側水温度TW2とを比較した例を説明したが、外気温Tamと他の冷却水温度とを比較してもよい。例えば、出口側水温度TW2に代えて、第1水温センサ44aによって検出された入口側水温度TW1を採用してもよい。 In the present embodiment, the example in which the outside air temperature Tam and the outlet side water temperature TW2 are compared in the control step S3 has been described. However, the outside air temperature Tam may be compared with other cooling water temperatures. For example, instead of the outlet side water temperature TW2, the inlet side water temperature TW1 detected by the first water temperature sensor 44a may be adopted.
 (第2実施形態)
 本実施形態では、図8の全体構成図に示すように、第1実施形態に対して、シャッター27を追加した例を説明する。なお、図8では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
In the present embodiment, an example in which a shutter 27 is added to the first embodiment will be described as shown in the overall configuration diagram of FIG. In FIG. 8, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 シャッター27は、ラジエータ26へ流入する外気の流入経路を開閉するものである。このようなシャッター27としては、複数の片持ち式の板ドア、および板ドアを駆動するサーボモータを有するもの等を採用することができる。シャッター27は、空調制御装置40から出力される制御信号によってその作動が制御される。従って、本実施形態の空調制御装置40のうち、シャッター27の作動を制御する構成は、放熱能力制御部40dを構成している。 The shutter 27 opens and closes an inflow path of outside air that flows into the radiator 26. As such a shutter 27, a shutter having a plurality of cantilevered plate doors and a servo motor for driving the plate doors can be adopted. The operation of the shutter 27 is controlled by a control signal output from the air conditioning controller 40. Therefore, in the air conditioning control device 40 of the present embodiment, the configuration that controls the operation of the shutter 27 constitutes the heat dissipation capability control unit 40d.
 ここで、ラジエータ26は、冷却水と外気とを熱交換させて、冷却水の有する熱を外気へ放熱させる機能を果たす。従って、シャッター27が、外気の流入経路を開いている際には、冷却水はラジエータ26にて冷却される。一方、シャッター27が、外気の流入経路を閉じている際には、冷却水はラジエータ26にて冷却されない。 Here, the radiator 26 performs a function of exchanging heat between the cooling water and the outside air to dissipate the heat of the cooling water to the outside air. Therefore, the cooling water is cooled by the radiator 26 when the shutter 27 opens the outside air inflow path. On the other hand, when the shutter 27 closes the inflow path of the outside air, the cooling water is not cooled by the radiator 26.
 従って、ラジエータ26およびシャッター27は、水-冷媒熱交換器12へ流入する冷却水の温度を調整する温度調整部を構成している。その他のヒートポンプシステム1の構成は、第1実施形態と同様である。 Therefore, the radiator 26 and the shutter 27 constitute a temperature adjusting unit that adjusts the temperature of the cooling water flowing into the water-refrigerant heat exchanger 12. The structure of the other heat pump system 1 is the same as that of 1st Embodiment.
 次に、本実施形態のヒートポンプシステム1の作動について説明する。本実施形態では、冷房運転時、除湿暖房運転時、および暖房運転時に、空調制御装置40の放熱能力制御部40dが、外気の流入経路を開くようにシャッター27の作動を制御する。また、除霜運転時に、空調制御装置40の放熱能力制御部40dが、外気の流入経路を閉じるようにシャッター27の作動を制御する。 Next, the operation of the heat pump system 1 of the present embodiment will be described. In the present embodiment, during the cooling operation, the dehumidifying heating operation, and the heating operation, the heat dissipation capability control unit 40d of the air conditioning control device 40 controls the operation of the shutter 27 so as to open the inflow path of the outside air. Further, during the defrosting operation, the heat dissipation capacity control unit 40d of the air conditioning control device 40 controls the operation of the shutter 27 so as to close the inflow path of the outside air.
 その他のヒートポンプシステム1の作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプシステム1の冷房運転、除湿暖房運転、および暖房運転では、第1実施形態と同様に、車室内の冷房、除湿暖房、および暖房を行うことができる。 Other operations of the heat pump system 1 are the same as those in the first embodiment. Therefore, in the cooling operation, the dehumidifying heating operation, and the heating operation of the heat pump system 1 of the present embodiment, the cooling, the dehumidifying heating, and the heating of the vehicle interior can be performed as in the first embodiment.
 さらに、除霜運転時には、シャッター27が外気の流入経路を閉じるので、ラジエータ26における冷却水の放熱を抑制して、水-冷媒熱交換器12へ流入する冷却水の温度を上昇させることができる。従って、除霜運転時に、除霜を行うために必要な熱、および車室内の暖房を行うために必要な熱を冷却水から吸熱しやすい。 Further, during the defrosting operation, since the shutter 27 closes the inflow path of the outside air, the heat dissipation of the cooling water in the radiator 26 can be suppressed, and the temperature of the cooling water flowing into the water-refrigerant heat exchanger 12 can be raised. . Therefore, during the defrosting operation, heat necessary for performing defrosting and heat necessary for heating the passenger compartment are easily absorbed from the cooling water.
 その結果、本実施形態のヒートポンプシステム1によれば、除霜運転時に除霜能力および加熱対象流体(本実施形態では、送風空気)の加熱能力が不足してしまうことがなく、より一層安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制することができる。 As a result, according to the heat pump system 1 of the present embodiment, the defrosting capability and the heating capability of the fluid to be heated (in this embodiment, blown air) are not deficient during the defrosting operation, and are more stable. While exhibiting the defrosting capability, it is possible to suppress a decrease in the heating capability of the heating target fluid.
 (第3実施形態)
 本実施形態では、図9の全体構成図に示すように、第1実施形態に対して、水迂回通路28、および三方弁28aを追加した例を説明する。
(Third embodiment)
In the present embodiment, an example in which a water bypass passage 28 and a three-way valve 28a are added to the first embodiment will be described as shown in the overall configuration diagram of FIG.
 水迂回通路28は、水ポンプ21から圧送された冷却水をエンジン60を迂回させて、三方弁28a側へ導く冷却水配管である。 The water bypass passage 28 is a coolant pipe that bypasses the engine 60 and pumps the coolant fed from the water pump 21 to the three-way valve 28a side.
 三方弁28aは、水迂回通路28の出口側に配置されている。三方弁28aは、水迂回通路28から流出した冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路と、放熱用循環回路25を循環する冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路とを切り替える電気式の三方弁である。 The three-way valve 28a is disposed on the outlet side of the water bypass passage 28. The three-way valve 28a includes a heat medium circuit that guides the cooling water flowing out from the water bypass passage 28 to the water passage inlet side of the water-refrigerant heat exchanger 12, and water-refrigerant heat exchange between the cooling water circulating through the heat radiation circuit 25. It is an electric three-way valve that switches between the heat medium circuit that leads to the water passage inlet side of the vessel 12.
 さらに、三方弁28aは、空調制御装置40から出力される制御電圧によってその作動が制御される。従って、本実施形態の空調制御装置40のうち、三方弁28aの作動を制御する構成は、熱媒体回路制御部40eを構成している。 Furthermore, the operation of the three-way valve 28a is controlled by a control voltage output from the air conditioning control device 40. Therefore, the structure which controls the action | operation of the three-way valve 28a among the air-conditioning control apparatuses 40 of this embodiment comprises the heat medium circuit control part 40e.
 ここで、三方弁28aが、放熱用循環回路25を循環する冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路に切り替えている際には、熱媒体循環回路20を循環する冷却水はエンジン60によって加熱される。一方、水迂回通路28へ流入した冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路に切り替えている際には、熱媒体循環回路20を循環する冷却水はエンジン60によって加熱されない。 Here, when the three-way valve 28a is switched to the heat medium circuit that guides the cooling water circulating through the heat radiation circuit 25 to the water passage inlet side of the water-refrigerant heat exchanger 12, the heat medium circuit 20 is turned on. The circulating cooling water is heated by the engine 60. On the other hand, when the cooling water flowing into the water bypass passage 28 is switched to the heat medium circuit that guides the cooling water flowing to the water passage inlet side of the water-refrigerant heat exchanger 12, the cooling water circulating in the heat medium circulation circuit 20 is the engine 60. Not heated by.
 従って、本実施形態の三方弁28aは、水-冷媒熱交換器12へ流入する冷却水の温度を調整する温度調整部を構成している。その他のヒートポンプシステム1の構成は、第1実施形態と同様である。 Therefore, the three-way valve 28a of the present embodiment constitutes a temperature adjusting unit that adjusts the temperature of the cooling water flowing into the water-refrigerant heat exchanger 12. The structure of the other heat pump system 1 is the same as that of 1st Embodiment.
 次に、本実施形態のヒートポンプシステム1の作動について説明する。本実施形態では、冷房運転時、除湿暖房運転時、および暖房運転時に、空調制御装置40の熱媒体回路制御部40eが、水迂回通路28へ流入した冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路となるように三方弁28aの作動を制御する。 Next, the operation of the heat pump system 1 of the present embodiment will be described. In the present embodiment, during the cooling operation, the dehumidifying heating operation, and the heating operation, the heat medium circuit control unit 40e of the air conditioning control device 40 converts the cooling water flowing into the water bypass passage 28 into the water-refrigerant heat exchanger 12. The operation of the three-way valve 28a is controlled so as to form a heat medium circuit that leads to the water passage inlet side.
 また、除霜運転時に、空調制御装置40の熱媒体回路制御部40eが、放熱用循環回路25を循環する冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路となるように三方弁28aの作動を制御する。 Further, during the defrosting operation, the heat medium circuit control unit 40e of the air conditioning control device 40 serves as a heat medium circuit that guides the cooling water circulating in the heat radiation circuit 25 to the water passage inlet side of the water-refrigerant heat exchanger 12. Thus, the operation of the three-way valve 28a is controlled.
 その他のヒートポンプシステム1の作動は、第1実施形態と同様である。従って、本実施形態のヒートポンプシステム1の冷房運転、除湿暖房運転、および暖房運転では、第1実施形態と同様に、車室内の冷房、除湿暖房、および暖房を行うことができる。 Other operations of the heat pump system 1 are the same as those in the first embodiment. Therefore, in the cooling operation, the dehumidifying heating operation, and the heating operation of the heat pump system 1 of the present embodiment, the cooling, the dehumidifying heating, and the heating of the vehicle interior can be performed as in the first embodiment.
 さらに、除霜運転時には、三方弁28aが放熱用循環回路25を循環する冷却水を水-冷媒熱交換器12の水通路入口側へ導く熱媒体回路に切り替えるので、エンジン60で加熱された冷却水を水-冷媒熱交換器12へ流入させることができる。従って、除霜運転時に、除霜を行うために必要な熱、および車室内の暖房を行うために必要な熱を冷却水から吸熱しやすい。 Further, during the defrosting operation, the three-way valve 28a switches the cooling water circulating through the heat radiation circuit 25 to the heat medium circuit that leads to the water passage inlet side of the water-refrigerant heat exchanger 12, so that the cooling heated by the engine 60 is performed. Water can flow into the water-refrigerant heat exchanger 12. Therefore, during the defrosting operation, heat necessary for performing defrosting and heat necessary for heating the passenger compartment are easily absorbed from the cooling water.
 その結果、本実施形態のヒートポンプシステム1によれば、除霜運転時に除霜能力および加熱対象流体(本実施形態では、送風空気)の加熱能力が不足してしまうことがなく、より一層安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制することができる。 As a result, according to the heat pump system 1 of the present embodiment, the defrosting capability and the heating capability of the fluid to be heated (in this embodiment, blown air) are not deficient during the defrosting operation, and are more stable. While exhibiting the defrosting capability, it is possible to suppress a decrease in the heating capability of the heating target fluid.
 (第4実施形態)
 本実施形態では、第1実施形態に対して、除霜運転時の制御態様を変更した例を説明する。具体的には、本実施形態では、第1実施形態で説明した制御ステップS3を、図10のフローチャートに示すように制御ステップS31に変更している。
(Fourth embodiment)
This embodiment demonstrates the example which changed the control aspect at the time of a defrost operation with respect to 1st Embodiment. Specifically, in this embodiment, the control step S3 described in the first embodiment is changed to a control step S31 as shown in the flowchart of FIG.
 このステップS31では、第2冷媒温度センサ45bによって検出された出口側冷媒温度TD2と予め定めた第2基準温度β(本実施形態では、50℃)とを比較する。第2基準温度βは、室外熱交換器14に流入させることで室外熱交換器14の除霜を確実に行うことができる冷媒の温度として、実験的あるいは試験的に決定された値である。 In this step S31, the outlet side refrigerant temperature TD2 detected by the second refrigerant temperature sensor 45b is compared with a predetermined second reference temperature β (50 ° C. in the present embodiment). The second reference temperature β is a value experimentally or experimentally determined as the temperature of the refrigerant that can reliably defrost the outdoor heat exchanger 14 by flowing into the outdoor heat exchanger 14.
 ステップS31において、出口側冷媒温度TD2が第2基準温度βよりも低いと判定された場合は、ステップS4へ進む。ステップS4では、空調制御装置40の圧送能力制御部40cが水ポンプ21の流量を予め定めた所定量分減少させて、ステップS7へ進む。 If it is determined in step S31 that the outlet-side refrigerant temperature TD2 is lower than the second reference temperature β, the process proceeds to step S4. In step S4, the pumping capacity control unit 40c of the air conditioning control device 40 decreases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
 また、ステップS31において、出口側冷媒温度TD2が第2基準温度βに等しいと判定された場合は、ステップS5へ進む。ステップS5では、圧送能力制御部40cが水ポンプ21の流量を変更することなく維持して、ステップS7へ進む。 If it is determined in step S31 that the outlet side refrigerant temperature TD2 is equal to the second reference temperature β, the process proceeds to step S5. In step S5, the pumping capacity control unit 40c maintains the flow rate of the water pump 21 without changing it, and proceeds to step S7.
 また、ステップS31において、出口側冷媒温度TD2が第2基準温度βよりも高いと判定された場合は、ステップS6へ進む。ステップS6では、圧送能力制御部40cが水ポンプ21の流量を予め定めた所定量分増加させて、ステップS7へ進む。 If it is determined in step S31 that the outlet-side refrigerant temperature TD2 is higher than the second reference temperature β, the process proceeds to step S6. In step S6, the pumping capacity control unit 40c increases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
 なお、ステップS31では、実際の出口側冷媒温度TD2と第2基準温度βが完全に一致している際に、TD2がβに等しいと判定するものに限定されない。各温度検出部には検出誤差等が存在するので、TD2とβとの差(絶対値)が予め定めた微少値以下となっている際に、TD2がβに等しいと判定するものを採用してもよい。 In step S31, when the actual outlet-side refrigerant temperature TD2 and the second reference temperature β completely coincide with each other, it is not limited to the one that determines that TD2 is equal to β. Since there is a detection error, etc., in each temperature detection unit, when the difference (absolute value) between TD2 and β is equal to or less than a predetermined minute value, one that determines that TD2 is equal to β is adopted. May be.
 ここで、ステップS31~S6では、TD2が上昇するに伴って、水ポンプ21の圧送能力を段階的に増加させている。さらに、車両用空調装置では、ヒータコア22へ流入する冷却水の温度を上昇させて送風空気の温度を上昇させるために、出口側冷媒温度TD2を上昇させる。従って、出口側冷媒温度TD2が上昇するに伴って、車室内を暖房するためにヒートポンプシステム1に要求される要求暖房能力(すなわち、送風空気を加熱するために要求される要求加熱能力)も増加する。 Here, in steps S31 to S6, as TD2 rises, the pumping capacity of the water pump 21 is increased stepwise. Furthermore, in the vehicle air conditioner, the outlet-side refrigerant temperature TD2 is raised in order to raise the temperature of the cooling water flowing into the heater core 22 and raise the temperature of the blown air. Therefore, as the outlet side refrigerant temperature TD2 rises, the required heating capacity required for the heat pump system 1 to heat the passenger compartment (that is, the required heating capacity required to heat the blown air) also increases. To do.
 そのため、本実施形態の圧送能力制御部40cは、除霜運転時に、要求加熱能力の増加に伴って、水ポンプ21の圧送能力を増加させている。より詳細には、圧送能力制御部40cは、除霜運転時に、TD2が上昇するに伴って、要求加熱能力が増加するものとして、水ポンプ21の圧送能力が増加させている。その他の作動は、第1実施形態と同様である。 Therefore, the pressure-feeding capacity control unit 40c of the present embodiment increases the pressure-feeding capacity of the water pump 21 as the required heating capacity increases during the defrosting operation. More specifically, the pumping capacity control unit 40c increases the pumping capacity of the water pump 21 on the assumption that the required heating capacity increases as TD2 increases during the defrosting operation. Other operations are the same as those in the first embodiment.
 従って、本実施形態のヒートポンプシステム1の冷房運転、除湿暖房運転、および暖房運転では、第1実施形態と全く同様に、車室内の冷房、除湿暖房、および暖房を行うことができる。 Therefore, in the cooling operation, the dehumidifying and heating operation, and the heating operation of the heat pump system 1 of the present embodiment, the cooling, the dehumidifying heating, and the heating in the vehicle compartment can be performed just like the first embodiment.
 さらに、除霜運転時には、空調制御装置40の圧送能力制御部40cが、出口側冷媒温度TD2の上昇に伴って、水ポンプ21の圧送能力を増加させる。従って、本実施形態のヒートポンプシステム1によれば、第1実施形態と同様に、除霜運転時に、安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制することができる。 Furthermore, during the defrosting operation, the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 as the outlet side refrigerant temperature TD2 rises. Therefore, according to the heat pump system 1 of the present embodiment, similarly to the first embodiment, it is possible to suppress a decrease in the heating capacity of the heating target fluid while exhibiting a stable defrosting capacity during the defrosting operation. .
 (第5実施形態)
 本実施形態では、第1実施形態に対して、除霜運転時の制御態様を変更した例を説明する。具体的には、本実施形態では、第1実施形態で説明した制御ステップS3を、図11のフローチャートに示すように制御ステップS32に変更している。
(Fifth embodiment)
This embodiment demonstrates the example which changed the control aspect at the time of a defrost operation with respect to 1st Embodiment. Specifically, in this embodiment, the control step S3 described in the first embodiment is changed to a control step S32 as shown in the flowchart of FIG.
 このステップS32では、流入風温度センサ49によって検出された流入空気温度TA1と予め定めた第3基準温度γ(本実施形態では、10℃)とを比較する。 In this step S32, the inflow air temperature TA1 detected by the inflow air temperature sensor 49 is compared with a predetermined third reference temperature γ (10 ° C. in the present embodiment).
 ステップS32において、流入空気温度TA1が第3基準温度γよりも高いと判定された場合は、ステップS4へ進む。ステップS4では、空調制御装置40の圧送能力制御部40cが水ポンプ21の流量を予め定めた所定量分減少させて、ステップS7へ進む。 If it is determined in step S32 that the inflow air temperature TA1 is higher than the third reference temperature γ, the process proceeds to step S4. In step S4, the pumping capacity control unit 40c of the air conditioning control device 40 decreases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
 また、ステップS32において、流入空気温度TA1が第3基準温度γに等しいと判定された場合は、ステップS5へ進む。ステップS5では、圧送能力制御部40cが水ポンプ21の流量を変更することなく維持して、ステップS7へ進む。 In step S32, if it is determined that the inflow air temperature TA1 is equal to the third reference temperature γ, the process proceeds to step S5. In step S5, the pumping capacity control unit 40c maintains the flow rate of the water pump 21 without changing it, and proceeds to step S7.
 また、ステップS32において、流入空気温度TA1が第3基準温度γよりも低いと判定された場合は、ステップS6へ進む。ステップS6では、圧送能力制御部40cが水ポンプ21の流量を予め定めた所定量分増加させて、ステップS7へ進む。 If it is determined in step S32 that the inflow air temperature TA1 is lower than the third reference temperature γ, the process proceeds to step S6. In step S6, the pumping capacity control unit 40c increases the flow rate of the water pump 21 by a predetermined amount, and proceeds to step S7.
 なお、ステップS32では、実際の流入空気温度TA1と第3基準温度γが完全に一致している際に、TA1がγに等しいと判定するものに限定されない。各温度検出部には検出誤差等が存在するので、TA2との差(絶対値)が予め定めた微少値以下となっている際に、TA1がγに等しいと判定するものを採用してもよい。 Note that the step S32 is not limited to the case where it is determined that TA1 is equal to γ when the actual inflow air temperature TA1 completely matches the third reference temperature γ. Since there is a detection error, etc., in each temperature detection unit, it is possible to adopt one that determines that TA1 is equal to γ when the difference (absolute value) from TA2 is less than or equal to a predetermined minute value. Good.
 ここで、ステップS31~S6では、TA1が低下するに伴って、水ポンプ21の圧送能力を段階的に増加させている。さらに、車両用空調装置では、暖房運転時あるいは除湿暖房運転時に流入空気温度TA1が低くなるに伴って、車室内を暖房するためにヒートポンプシステム1に要求される要求暖房能力が増加する。 Here, in steps S31 to S6, as TA1 decreases, the pumping capacity of the water pump 21 is increased stepwise. Further, in the vehicle air conditioner, the required heating capacity required for the heat pump system 1 to heat the passenger compartment increases as the inflow air temperature TA1 decreases during the heating operation or the dehumidifying heating operation.
 そのため、本実施形態の圧送能力制御部40cは、除霜運転時に、要求加熱能力の増加に伴って、水ポンプ21の圧送能力を増加させている。より詳細には、圧送能力制御部40cは、除霜運転時に、TA1が低下するに伴って、要求加熱能力が増加するものとして、水ポンプ21の圧送能力が増加させている。その他の作動は、第1実施形態と同様である。 Therefore, the pressure-feeding capacity control unit 40c of the present embodiment increases the pressure-feeding capacity of the water pump 21 as the required heating capacity increases during the defrosting operation. More specifically, the pumping capacity control unit 40c increases the pumping capacity of the water pump 21 on the assumption that the required heating capacity increases as TA1 decreases during the defrosting operation. Other operations are the same as those in the first embodiment.
 従って、本実施形態のヒートポンプシステム1の冷房運転、除湿暖房運転、および暖房運転では、第1実施形態と全く同様に、車室内の冷房、除湿暖房、および暖房を行うことができる。 Therefore, in the cooling operation, the dehumidifying and heating operation, and the heating operation of the heat pump system 1 of the present embodiment, the cooling, the dehumidifying heating, and the heating in the vehicle compartment can be performed just like the first embodiment.
 さらに、除霜運転時には、空調制御装置40の圧送能力制御部40cが、流入空気温度TA1の低下に伴って、水ポンプ21の圧送能力を増加させる。従って、本実施形態のヒートポンプシステム1によれば、第1実施形態と同様に、除霜運転時に、安定した除霜能力を発揮しつつ、加熱対象流体の加熱能力の低下を抑制することができる。 Furthermore, during the defrosting operation, the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 as the incoming air temperature TA1 decreases. Therefore, according to the heat pump system 1 of the present embodiment, similarly to the first embodiment, it is possible to suppress a decrease in the heating capacity of the heating target fluid while exhibiting a stable defrosting capacity during the defrosting operation. .
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係るヒートポンプシステム1をハイブリッド車両の車両用空調装置に適用した例を説明したが、ヒートポンプシステム1の適用はこれに限定されない。例えば、車両走行用電動モータから車両走行用の駆動力を得る電気自動車(燃料電池車両を含む)や、エンジンから車両走行用の駆動力を得る通常の車両の空調装置に適用してもよい。 In the above-described embodiment, an example in which the heat pump system 1 according to the present disclosure is applied to a vehicle air conditioner for a hybrid vehicle has been described, but application of the heat pump system 1 is not limited to this. For example, the present invention may be applied to an electric vehicle (including a fuel cell vehicle) that obtains driving force for driving a vehicle from an electric motor for driving the vehicle, or an air conditioner for a normal vehicle that obtains driving force for driving the vehicle from an engine.
 さらに、本開示に係るヒートポンプシステム1は、車両用空調装置に限定されることなく、定置型空調装置、冷温保存庫、給湯装置等に適用してもよい。したがって、空調制御装置40は、冷凍サイクル装置であってもよい。 Furthermore, the heat pump system 1 according to the present disclosure is not limited to a vehicle air conditioner, and may be applied to a stationary air conditioner, a cold / hot storage, a hot water supply device, and the like. Therefore, the air conditioning control device 40 may be a refrigeration cycle device.
 上述の実施形態では、熱媒体としてエンジンの冷却水を採用した例を説明したが、熱媒体はこれに限定されない。例えば、走行用電動モータへ電力を供給するインバータを冷却するための冷却水であってもよい。この場合は、インバータが熱媒体を加熱する加熱部となる。 In the above-described embodiment, an example in which engine cooling water is used as the heat medium has been described, but the heat medium is not limited to this. For example, it may be cooling water for cooling an inverter that supplies electric power to the traveling electric motor. In this case, the inverter serves as a heating unit that heats the heat medium.
 さらに、加熱部として、他の電気機器や電気ヒータ等を採用してもよい。さらに、加熱部として高温の熱媒体を保温貯留するタンクを採用してもよい。そして、除霜運転時に、タンク内に貯留された高温の熱媒体を熱媒体循環回路内に流入させるようにしてもよい。なお、本開示に係るヒートポンプシステムにおいて、加熱部は必須の構成ではない。 Furthermore, you may employ | adopt other electric equipment, an electric heater, etc. as a heating part. Furthermore, you may employ | adopt the tank which heat-retains a high-temperature heat medium as a heating part. Then, during the defrosting operation, the high-temperature heat medium stored in the tank may be allowed to flow into the heat medium circulation circuit. In the heat pump system according to the present disclosure, the heating unit is not an essential configuration.
 上述の実施形態では、空調制御装置40の圧送能力制御部40cが、要求加熱能力の増加に伴って、水ポンプ21の圧送能力を段階的に増加させる例を説明したが、もちろん連続的に増加させるようにしてもよい。この場合は、例えば、温度差(TW2-Tam)、出口側冷媒温度TD2、流入空気温度TA1等に基づいて、予め空調制御装置40に記憶された制御マップを参照して、水ポンプ21の圧送能力を決定すればよい。 In the above-described embodiment, the example in which the pressure-feeding capacity control unit 40c of the air-conditioning control device 40 increases the pressure-feeding capacity of the water pump 21 stepwise as the required heating capacity increases has been described. You may make it make it. In this case, for example, based on the temperature difference (TW2−Tam), the outlet side refrigerant temperature TD2, the inflow air temperature TA1, and the like, referring to the control map stored in the air conditioning controller 40 in advance, the pressure pumping of the water pump 21 is performed. You just have to decide your ability.
 上述の実施形態のヒートポンプサイクル10において、吐出能力制御部40aは、除霜運転時に、水-冷媒熱交換器12へ流入する冷媒の温度(すなわち、入口側冷媒温度TD1)が、予め定めた基準温度KTL以下となるように、圧縮機11の作動を制御するものであってもよい。これによれば、除霜運転時に、過度に圧縮機11吐出冷媒の温度を上昇させることがなく、不必要なエネルギ消費を抑制することができる。 In the heat pump cycle 10 of the above-described embodiment, the discharge capacity control unit 40a determines that the temperature of the refrigerant flowing into the water-refrigerant heat exchanger 12 (that is, the inlet-side refrigerant temperature TD1) is a predetermined reference during the defrosting operation. The operation of the compressor 11 may be controlled so as to be equal to or lower than the temperature KTL. According to this, during the defrosting operation, the temperature of the refrigerant discharged from the compressor 11 is not excessively increased, and unnecessary energy consumption can be suppressed.
 上述の実施形態では、冷媒回路を切替可能に構成されたヒートポンプサイクル10を採用した例を説明したが、ヒートポンプサイクルはこれに限定されない。少なくとも、上述の実施形態の暖房運転と同様の順で冷媒を流すことのできるサイクルを構成可能なものであればよい。 In the above-described embodiment, the example in which the heat pump cycle 10 configured to be able to switch the refrigerant circuit has been described, but the heat pump cycle is not limited thereto. It is sufficient that at least a cycle capable of flowing the refrigerant in the same order as in the heating operation of the above-described embodiment can be configured.
 また、ヒートポンプサイクル10の各種構成機器は、上述の実施形態に開示されたものに限定されない。 Further, various components of the heat pump cycle 10 are not limited to those disclosed in the above-described embodiment.
 例えば、上述の実施形態では、ヒートポンプサイクル10の圧縮機11として電動圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。例えば、圧縮機として、プーリ、ベルト等を介して内燃機関(エンジン)から伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。 For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 of the heat pump cycle 10 has been described, but the compressor 11 is not limited thereto. For example, an engine-driven compressor driven by a rotational driving force transmitted from an internal combustion engine (engine) via a pulley, a belt, or the like may be employed as the compressor.
 さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整することのできる可変容量型圧縮機、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機等を採用することができる。 Furthermore, as an engine-driven compressor, a variable displacement compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, and adjusting the refrigerant discharge capacity by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed capacity compressor or the like can be employed.
 また、上述の実施形態では、ヒートポンプサイクル10の冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、HFO系冷媒(R1234yf、HFO-1234ze、HFO-1234zd)、R600a、R410A、R404A、R32、R407C、等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 In the above-described embodiment, the example in which R134a is adopted as the refrigerant of the heat pump cycle 10 has been described, but the refrigerant is not limited to this. For example, HFO refrigerants (R1234yf, HFO-1234ze, HFO-1234zd), R600a, R410A, R404A, R32, R407C, etc. can be employed. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants.
 さらに、冷媒として二酸化炭素を採用し、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成するヒートポンプサイクルを採用してもよい。 Furthermore, carbon dioxide may be adopted as the refrigerant, and a heat pump cycle constituting a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be adopted.
 また、上述の実施形態では、第2冷媒温度センサ45bとして、暖房用膨張弁13の出口側で、かつ、室外熱交換器14の入口側の冷媒の温度を検出するものを採用した例を説明したが、第2冷媒温度センサ45bはこれに限定されない。 Moreover, in the above-mentioned embodiment, the example which employ | adopted what detects the temperature of the refrigerant | coolant of the exit side of the heating expansion valve 13 and the entrance side of the outdoor heat exchanger 14 as the 2nd refrigerant | coolant temperature sensor 45b is demonstrated. However, the second refrigerant temperature sensor 45b is not limited to this.
 例えば、第2冷媒温度センサ45bは、室外熱交換器14へ流入した直後の冷媒の温度を検出するものであってもよい。さらに、第2冷媒温度センサ45bは、暖房用膨張弁13の入口側の冷媒の温度を検出するものであってもよい。この場合は、暖房用膨張弁13の絞り開度、および第2冷媒温度センサ45bの検出値に基づいて、室外熱交換器14へ流入する冷媒温度を推定してもよい。さらに、圧縮機11の吐出口から水-冷媒熱交換器12へ至る冷媒流路を流通する冷媒の温度、水-冷媒熱交換器12にて放熱する熱量、および暖房用膨張弁13の絞り開度に基づいて、室外熱交換器14へ流入する冷媒温度を推定してもよい。 For example, the second refrigerant temperature sensor 45b may detect the temperature of the refrigerant immediately after flowing into the outdoor heat exchanger 14. Further, the second refrigerant temperature sensor 45b may detect the temperature of the refrigerant on the inlet side of the heating expansion valve 13. In this case, the refrigerant temperature flowing into the outdoor heat exchanger 14 may be estimated based on the throttle opening of the heating expansion valve 13 and the detection value of the second refrigerant temperature sensor 45b. Further, the temperature of the refrigerant flowing through the refrigerant flow path from the discharge port of the compressor 11 to the water-refrigerant heat exchanger 12, the amount of heat radiated by the water-refrigerant heat exchanger 12, and the opening of the expansion valve 13 for heating are opened. Based on the degree, the temperature of the refrigerant flowing into the outdoor heat exchanger 14 may be estimated.
 上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2、第3実施形態で説明したヒートポンプシステム1において、第4、第5実施形態で説明した除霜運転時の制御態様を適用してもよい。 The means disclosed in each of the above embodiments may be appropriately combined within a practicable range. For example, in the heat pump system 1 described in the second and third embodiments, the control mode during the defrosting operation described in the fourth and fifth embodiments may be applied.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  冷媒を圧縮して吐出する圧縮機(11)、前記圧縮機から吐出された高圧冷媒と熱媒体とを熱交換させる第1熱交換器(12)、前記第1熱交換器から流出した冷媒を減圧させる減圧装置(13)、および前記減圧装置にて減圧された低圧冷媒と外気とを熱交換させる室外熱交換器(14)を有するヒートポンプサイクル(10)と、
     前記熱媒体を圧送する圧送装置(21)、および前記第1熱交換器から流出した熱媒体と加熱対象流体とを熱交換させて前記加熱対象流体を加熱する第2熱交換器(22)を有する熱媒体循環回路(20)と、
     冷凍サイクル装置と、を備え、
     前記冷凍サイクル装置は、
      前記減圧装置の絞り開度を制御する絞り開度制御部(40b)と、
      前記圧送装置の圧送能力を制御する圧送能力制御部(40c)と、
      前記室外熱交換器に着霜が生じていることを判定する着霜判定部(S1)と、を備え、
      前記着霜判定部によって前記室外熱交換器に着霜が生じていると判定された際に、前記室外熱交換器を除霜する除霜運転を行い、
     前記絞り開度制御部は、前記除霜運転時に、前記絞り開度を拡大させるものであり、
     前記圧送能力制御部は、前記除霜運転時に、前記室外熱交換器へ流入する冷媒の温度が前記室外熱交換器に生じた霜を融解できる温度となる範囲で、前記加熱対象流体を加熱するために要求される要求加熱能力の増加に伴って、前記圧送能力を増加させるものであるヒートポンプシステム。
    A compressor (11) that compresses and discharges the refrigerant, a first heat exchanger (12) that exchanges heat between the high-pressure refrigerant discharged from the compressor and the heat medium, and refrigerant that flows out of the first heat exchanger A heat pump cycle (10) having a decompression device (13) for decompressing, and an outdoor heat exchanger (14) for exchanging heat between the low-pressure refrigerant decompressed by the decompression device and the outside air;
    A pressure feeding device (21) for pumping the heat medium, and a second heat exchanger (22) for heating the fluid to be heated by exchanging heat between the heat medium flowing out from the first heat exchanger and the fluid to be heated. A heat medium circuit (20) having;
    A refrigeration cycle apparatus,
    The refrigeration cycle apparatus includes:
    A throttle opening control unit (40b) for controlling the throttle opening of the pressure reducing device;
    A pumping capacity controller (40c) for controlling the pumping capacity of the pumping device;
    A frost determination unit (S1) for determining that frost is generated in the outdoor heat exchanger,
    When it is determined by the frost determination unit that frost is generated in the outdoor heat exchanger, a defrosting operation is performed to defrost the outdoor heat exchanger,
    The throttle opening control unit is for expanding the throttle opening during the defrosting operation,
    The pressure-feeding capacity control unit heats the heating target fluid in a range where the temperature of the refrigerant flowing into the outdoor heat exchanger becomes a temperature at which frost generated in the outdoor heat exchanger can be melted during the defrosting operation. A heat pump system that increases the pumping capacity as the required heating capacity increases.
  2.  前記圧送能力制御部は、前記除霜運転時に、前記熱媒体循環回路を循環する熱媒体の温度(TW2)と外気温(Tam)との差が拡大するに伴って、前記圧送能力を増加させるものである請求項1に記載のヒートポンプシステム。 The pressure-feeding capacity control unit increases the pressure-feeding capacity as the difference between the temperature (TW2) of the heat medium circulating in the heat medium circulation circuit and the outside air temperature (Tam) increases during the defrosting operation. The heat pump system according to claim 1, which is a thing.
  3.  前記圧送能力制御部(40c)は、前記除霜運転時に、前記第1熱交換器から流出した冷媒の出口側冷媒温度(TD2)が上昇するに伴って、前記圧送能力を増加させるものである請求項1に記載のヒートポンプシステム。 The pressure-feeding capacity control unit (40c) increases the pressure-feeding capacity as the outlet-side refrigerant temperature (TD2) of the refrigerant flowing out from the first heat exchanger rises during the defrosting operation. The heat pump system according to claim 1.
  4.  前記圧送能力制御部(40c)は、前記除霜運転時に、前記第2熱交換器(22)へ流入する加熱対象流体の流入空気温度(TA1)が低下するに伴って、前記圧送能力を増加させるものである請求項1に記載のヒートポンプシステム。 The pressure-feeding capacity control unit (40c) increases the pressure-feeding capacity as the inflow air temperature (TA1) of the heating target fluid flowing into the second heat exchanger (22) decreases during the defrosting operation. The heat pump system according to claim 1, wherein
  5.  さらに、前記第1熱交換器へ流入する前記熱媒体の温度を調整する温度調整部(26、27、28a)と、を備え、
     前記温度調整部は、前記除霜運転時に、前記熱媒体の温度を上昇させるものである請求項1ないし4のいずれか1つに記載のヒートポンプシステム。
    And a temperature adjusting unit (26, 27, 28a) for adjusting the temperature of the heat medium flowing into the first heat exchanger,
    The heat pump system according to any one of claims 1 to 4, wherein the temperature adjustment unit increases the temperature of the heat medium during the defrosting operation.
  6.  前記圧送能力制御部(40c)は、前記除霜運転時に、前記第1熱交換器から流出した冷媒の出口側冷媒温度(TD2)が予め定めた基準冷媒温度(KTH)以上となるように、前記圧送能力を調整するものである請求項1ないし5のいずれか1つに記載のヒートポンプシステム。 The pressure-feeding capacity control unit (40c) is configured so that, during the defrosting operation, the outlet-side refrigerant temperature (TD2) of the refrigerant flowing out from the first heat exchanger is equal to or higher than a predetermined reference refrigerant temperature (KTH). The heat pump system according to any one of claims 1 to 5, wherein the pumping capacity is adjusted.
PCT/JP2017/001836 2016-01-25 2017-01-20 Heat pump system WO2017130845A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017000488.8T DE112017000488T5 (en) 2016-01-25 2017-01-20 HEAT PUMP SYSTEM
US16/071,917 US10889163B2 (en) 2016-01-25 2017-01-20 Heat pump system
CN201780007407.9A CN108474603B (en) 2016-01-25 2017-01-20 Heat pump system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016011531 2016-01-25
JP2016-011531 2016-01-25
JP2016-236054 2016-12-05
JP2016236054A JP6493370B2 (en) 2016-01-25 2016-12-05 Heat pump system

Publications (1)

Publication Number Publication Date
WO2017130845A1 true WO2017130845A1 (en) 2017-08-03

Family

ID=59397671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001836 WO2017130845A1 (en) 2016-01-25 2017-01-20 Heat pump system

Country Status (1)

Country Link
WO (1) WO2017130845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044353A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Refrigeration cycle
CN111425992A (en) * 2020-04-13 2020-07-17 珠海格力电器股份有限公司 Air conditioner defrosting control method and device, storage medium and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017092A (en) * 2010-06-10 2012-01-26 Denso Corp Heat pump cycle
JP2014228261A (en) * 2013-05-27 2014-12-08 リンナイ株式会社 Heating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017092A (en) * 2010-06-10 2012-01-26 Denso Corp Heat pump cycle
JP2014228261A (en) * 2013-05-27 2014-12-08 リンナイ株式会社 Heating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044353A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Refrigeration cycle
JP2019045034A (en) * 2017-08-31 2019-03-22 株式会社デンソー Refrigeration cycle device
CN111425992A (en) * 2020-04-13 2020-07-17 珠海格力电器股份有限公司 Air conditioner defrosting control method and device, storage medium and air conditioner
CN111425992B (en) * 2020-04-13 2021-03-26 珠海格力电器股份有限公司 Air conditioner defrosting control method and device, storage medium and air conditioner
WO2021208660A1 (en) * 2020-04-13 2021-10-21 珠海格力电器股份有限公司 Air conditioner defrosting control method and device, and non-transitory storage medium and air conditioner

Similar Documents

Publication Publication Date Title
JP6493370B2 (en) Heat pump system
JP6015636B2 (en) Heat pump system
JP6794964B2 (en) Refrigeration cycle equipment
US10493818B2 (en) Refrigeration cycle device
JP6332193B2 (en) Air conditioner for vehicles
US11718156B2 (en) Refrigeration cycle device
JP7230642B2 (en) refrigeration cycle equipment
CN109642756B (en) Refrigeration cycle device
CN113423596B (en) Refrigeration cycle device
JP6669042B2 (en) Vehicle air conditioner
JP2019209938A (en) Refrigeration cycle device for vehicle
JP6702146B2 (en) Vehicle refrigeration cycle device
JP6075058B2 (en) Refrigeration cycle equipment
JP2018091536A (en) Refrigeration cycle device
JP6711258B2 (en) Refrigeration cycle equipment
JP2019006330A (en) Air conditioner
US20210101451A1 (en) Refrigeration cycle device
JP6225709B2 (en) Air conditioner
JP7159712B2 (en) refrigeration cycle equipment
WO2017130845A1 (en) Heat pump system
JP2014034301A (en) Refrigeration cycle device
JP5935714B2 (en) Refrigeration cycle equipment
WO2022181110A1 (en) Air conditioning device
WO2022024721A1 (en) Refrigeration cycle device
CN115461236A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000488

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744075

Country of ref document: EP

Kind code of ref document: A1