WO2018180291A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2018180291A1
WO2018180291A1 PCT/JP2018/008677 JP2018008677W WO2018180291A1 WO 2018180291 A1 WO2018180291 A1 WO 2018180291A1 JP 2018008677 W JP2018008677 W JP 2018008677W WO 2018180291 A1 WO2018180291 A1 WO 2018180291A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
air
outside air
compressor
Prior art date
Application number
PCT/JP2018/008677
Other languages
French (fr)
Japanese (ja)
Inventor
宏已 太田
寛幸 小林
伊藤 誠司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018180291A1 publication Critical patent/WO2018180291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus configured to be able to switch a refrigerant circuit.
  • Patent Document 1 discloses a vapor compression refrigeration cycle apparatus configured to be able to switch a refrigerant circuit.
  • the refrigeration cycle apparatus disclosed in Patent Document 1 is applied to a vehicle air conditioner, and switches between a cooling mode refrigerant circuit for cooling the vehicle interior, a heating mode refrigerant circuit for heating the vehicle interior, and the like. be able to.
  • the refrigeration cycle apparatus of Patent Document 1 includes an indoor condenser, an outdoor heat exchanger, an indoor evaporator, an accumulator, and the like.
  • the accumulator is disposed on the suction side of the compressor, separates the gas-liquid of the low-pressure refrigerant flowing out from the heat exchanger functioning as an evaporator, stores the separated low-pressure liquid-phase refrigerant as a surplus refrigerant in the cycle, The separated gas-phase refrigerant is caused to flow out to the suction side of the compressor.
  • the cooling circuit is switched to a cooling mode refrigerant circuit in which the refrigerant is circulated in the order of compressor ⁇ outdoor heat exchanger ⁇ cooling decompression device ⁇ indoor evaporator ⁇ accumulator ⁇ compressor.
  • cooling of the vehicle interior is realized by dissipating the heat absorbed from the blown air from which the refrigerant is blown into the vehicle interior by the indoor evaporator to the outside air by the outdoor heat exchanger. .
  • the refrigerant circuit when heating the passenger compartment, the refrigerant circuit is switched to the heating mode refrigerant circuit in which the refrigerant is circulated in the order of the compressor ⁇ the indoor condenser ⁇ the pressure reducing device for heating ⁇ the outdoor heat exchanger ⁇ the accumulator ⁇ the compressor.
  • heating of the vehicle interior is realized by dissipating the heat absorbed by the refrigerant from the outside air in the outdoor heat exchanger to the blown air in the indoor condenser.
  • the refrigerant in order to sufficiently improve the cooling capacity of the blown air, the refrigerant is completely evaporated by the heat exchanger functioning as an evaporator (the indoor evaporator in Patent Document 1). It is desirable to make it. More specifically, the cooling capacity of the blown air and the coefficient of performance of the cycle are obtained by evaporating the refrigerant flowing out of the indoor evaporator into a gas phase refrigerant having a certain degree of superheat (for example, about 5 ° C.). (COP) can be improved.
  • COP degree of superheat
  • the refrigeration cycle apparatus of Patent Document 1 constitutes a so-called accumulator cycle in which surplus refrigerant in a cycle is stored in an accumulator disposed on the suction side of the compressor when switching to a cooling mode refrigerant circuit. For this reason, it may be difficult for the refrigerant flowing out of the indoor evaporator in the cooling mode to be a gas phase refrigerant having a superheat degree.
  • Patent Document 1 As a heat exchanger that functions as a radiator in the cooling mode (Patent Document 1, an outdoor heat exchanger), a so-called subcool condenser can be used.
  • the subcool condenser is a heat exchanger that has a condensing unit, a receiver unit, a supercooling unit, and the like, and radiates heat until the refrigerant reaches a supercooled liquid phase state.
  • the condensing unit is a heat exchanging unit that condenses the refrigerant by exchanging heat between the refrigerant and the outside air.
  • the receiver unit is a liquid receiving unit that stores the liquid phase refrigerant that has flowed out of the condensing unit.
  • the supercooling unit is a heat exchange unit that supercools the liquid-phase refrigerant by exchanging heat between the liquid-phase refrigerant flowing out from the receiver unit and the outside air.
  • the refrigerant flowing out from the indoor evaporator can be evaporated until it becomes a gas phase refrigerant having a superheat degree.
  • the enthalpy difference between the enthalpy of the outlet side refrigerant of the indoor evaporator and the enthalpy of the inlet side refrigerant can be increased by supercooling the refrigerant in the supercooling section.
  • the pressure of the refrigerant flowing out of the outdoor heat exchanger functioning as an evaporator is reduced due to the pressure loss, the density of the refrigerant sucked into the compressor may be reduced. As a result, the flow rate of the circulating refrigerant that circulates in the cycle during the heating mode decreases, and the heating capacity of the blown air and the COP of the cycle may decrease.
  • an object of the present disclosure is to provide a refrigeration cycle apparatus that is configured to be capable of switching a refrigerant circuit and that can sufficiently cool or heat a heat exchange target fluid.
  • a refrigeration cycle apparatus includes a compressor, a heating unit, an outside air heat exchange unit, a liquid receiving unit, a supercooling heat exchange unit, an evaporation unit, a first decompression unit, and a second decompression unit. Part, a detour passage, and a refrigerant circuit switching device.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the heat exchange target fluid using the refrigerant discharged from the compressor as a heat source.
  • the outside air heat exchange unit exchanges heat between the refrigerant and the outside air.
  • the liquid receiver stores the liquid-phase refrigerant that has flowed out of the outside air heat exchanger.
  • the supercooling heat exchanger exchanges heat between the refrigerant flowing out of the liquid receiver and the outside air.
  • the evaporating unit evaporates the refrigerant by exchanging heat with the heat exchange target fluid.
  • the first decompression unit decompresses the refrigerant flowing into the outside air heat exchange unit.
  • the second decompression unit decompresses the refrigerant flowing into the evaporation unit.
  • the bypass passage guides the refrigerant flowing out from the liquid receiving part to the suction side of the compressor.
  • the refrigerant circuit switching device switches the refrigerant circuit.
  • the refrigerant circuit switching device closes the bypass passage during an operating condition in which the refrigerant is condensed in the outside air heat exchanging unit, and the compressor, the outside air heat exchanging unit, the liquid receiving unit, the supercooling heat exchanging unit, the second pressure reducing unit, and the evaporation unit. Then, the refrigerant circuit is switched in order of the compressor.
  • the refrigerant circuit switching device opens a bypass passage during an operating condition in which the refrigerant is evaporated in the outside air heat exchange section, and the compressor, the heating section, the first decompression section, the outside air heat exchange section, the liquid receiving section, the bypass passage, and the compressor It switches to the refrigerant circuit which circulates a refrigerant
  • the heat exchange target fluid is obtained by evaporating the refrigerant depressurized in the second decompression unit in the evaporating unit and exerting an endothermic action at the operating condition for condensing the refrigerant in the outside heat exchange unit. Can be cooled. Furthermore, it is possible to configure a receiver cycle in which the high-pressure liquid-phase refrigerant that has flowed out of the outside air heat exchange unit is stored in the liquid-receiving unit as a surplus refrigerant of the cycle.
  • the receiver cycle can be configured as a refrigerant circuit in an operation mode for cooling the heat exchange target fluid, and the heat exchange target fluid can be sufficiently cooled. Furthermore, since the outside air heat exchanging section, the liquid receiving section, and the supercooling heat exchanging section are provided, the coefficient of performance (COP) of the cycle can be improved similarly to the subcool type condenser.
  • the heat exchange target fluid can be heated by the heating unit using the high-temperature and high-pressure refrigerant discharged from the compressor as a heat source during the operating condition in which the refrigerant is evaporated in the outside air heat exchange unit.
  • an accumulator cycle can be configured in which the liquid-phase refrigerant that has flowed out of the outside air heat exchanging section is stored in a liquid receiving section that is disposed on the suction side of the compressor.
  • an accumulator cycle can be configured as a refrigerant circuit in an operation mode in which the heat exchange target fluid is heated, and the heat exchange target fluid can be sufficiently heated. That is, according to this one aspect, it is possible to provide a refrigeration cycle apparatus that is configured to be able to switch the refrigerant circuit and that can sufficiently cool or heat the heat exchange target fluid.
  • the refrigerant circuit switching device opens a bypass passage during an operating condition in which the refrigerant is evaporated in the outside air heat exchange unit, the supercooling heat exchange unit, and the evaporation unit, and the compressor ⁇ the heating unit ⁇ the first pressure reducing unit ⁇ the outside air heat.
  • Switch to refrigerant circuit that circulates refrigerant in the order of exchange part ⁇ liquid receiving part ⁇ supercooling heat exchange part ⁇ second decompression part ⁇ evaporation part ⁇ compressor, and circulates refrigerant in order of liquid receiving part ⁇ bypass path ⁇ compressor It may be like this.
  • the heat exchange target fluid can be heated by the heating unit, and at the same time, the heat exchange target fluid can be cooled by the evaporation unit.
  • the refrigeration cycle apparatus 10 is applied to a vehicle air conditioner 1 mounted on a hybrid vehicle that obtains a driving force for traveling from an internal combustion engine and a traveling electric motor.
  • the vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, an air conditioning control device 40, and the like.
  • the refrigeration cycle apparatus 10 fulfills a function of cooling or heating the air blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner 1. Accordingly, the heat exchange target fluid of this embodiment is blown air.
  • the refrigeration cycle apparatus 10 can switch the refrigerant circuit in order to perform air conditioning in the passenger compartment.
  • the refrigeration cycle apparatus 10 includes a refrigerant circuit in a cooling mode (see FIG. 1), a refrigerant circuit in a first dehumidifying and heating mode (see FIG. 1), a refrigerant circuit in a second dehumidifying and heating mode (see FIG. 2), The refrigerant circuit (see FIG. 3) in the third dehumidifying and heating mode and the refrigerant circuit (see FIG. 4) in the heating mode can be switched.
  • FIGS. 1 to 4 the refrigerant flow in each operation mode is indicated by thick solid arrows.
  • the cooling mode is an operation mode in which cooling of the vehicle interior is performed by blowing out the cooled blown air into the vehicle interior.
  • the first to third dehumidifying and heating modes are operation modes for performing dehumidifying heating in the vehicle interior by reheating the cooled and dehumidified blown air and blowing it out into the vehicle interior.
  • the heating capability for heating the blown air during the dehumidifying heating increases in the order from the first dehumidifying heating mode to the third dehumidifying heating mode.
  • the heating mode is an operation mode in which the vehicle interior is heated by blowing heated air into the vehicle interior.
  • the refrigeration cycle apparatus 10 employs an HFC-based refrigerant (specifically, R134a), and a vapor compression subcriticality in which the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. It constitutes the refrigeration cycle. Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • HFC-based refrigerant specifically, R134a
  • a vapor compression subcriticality in which the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. It constitutes the refrigeration cycle.
  • Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks, compresses and discharges the refrigerant in the refrigeration cycle apparatus 10.
  • the compressor 11 is an electric compressor that rotationally drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor.
  • the compressor 11 has its rotational speed (that is, refrigerant discharge capacity) controlled by a control signal output from an air conditioning control device 40 described later.
  • the discharge port of the compressor 11 is connected to the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12a.
  • the water-refrigerant heat exchanger 12a heats the heat medium by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the heat medium (in this embodiment, an ethylene glycol aqueous solution) that circulates in the heat medium circuit 12. Heat exchanger.
  • the heat medium circulation circuit 12 is a heat medium circuit that circulates the heat medium between the water-refrigerant heat exchanger 12a and the heater core 12b.
  • the heater core 12b is disposed in a casing 31 of an indoor air conditioning unit 30 described later.
  • the heater core 12b is a heating heat exchanger that heats the blown air by exchanging heat between the heat medium heated by the water-refrigerant heat exchanger 12a and blown air after passing through the indoor evaporator 18 described later.
  • the heat medium circulation circuit 12 is provided with a water pump 12c that pumps the heat medium flowing out from the heater core 12b toward the water-refrigerant heat exchanger 12a.
  • the water pump 12c is an electric water pump whose rotational speed (water pressure feeding capacity) is controlled by a control voltage output from the air conditioning control device 40.
  • the air conditioning controller 40 operates the water pump 12c, as shown by the thick broken line arrows in FIGS. 1 to 4, in the heat medium circulation circuit 12, the water path of the water pump 12c ⁇ water-refrigerant heat exchanger 12a.
  • the heat medium circulates in the order of the heater core 12b ⁇ water pump 12c. Thereby, the heat medium heated by the water-refrigerant heat exchanger 12a can be caused to flow into the heater core 12b to heat the blown air.
  • the heat medium circulation circuit 12, the water-refrigerant heat exchanger 12a, the heater core 12b, and the water pump 12c constitute a heating unit that heats the blown air using the refrigerant discharged from the compressor 11 as a heat source. is doing.
  • the inlet of the first three-way joint 13a having three inlets and outlets communicating with each other is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12a.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle apparatus 10 includes second and third three-way joints 13b and 13c, as will be described later.
  • the basic configuration of the second and third three-way joints 13b and 13c is the same as that of the first three-way joint 13a.
  • the inlet side of the first expansion valve 14a is connected to one outlet of the first three-way joint 13a.
  • One inlet of the second three-way joint 13b is connected to the other outlet of the first three-way joint 13a.
  • An on-off valve 15 is disposed in the refrigerant passage connecting the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b.
  • the on-off valve 15 is an electromagnetic valve that opens and closes a refrigerant passage that connects the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b.
  • the on-off valve 15 can switch the refrigerant circuit in each operation mode by opening and closing the refrigerant passage. Therefore, the on-off valve 15 constitutes a refrigerant circuit switching device.
  • the operation of the on-off valve 15 is controlled by a control voltage output from the air conditioning controller 40.
  • the first expansion valve 14a is a first depressurization that depressurizes the refrigerant that flows out of the refrigerant passage of the water-refrigerant heat exchanger 12a and flows into the outdoor heat exchanger 16a of the outdoor heat exchanger 16, which will be described later, at least in the heating mode. Part.
  • the first expansion valve 14a is an electric variable throttle mechanism having a valve body that changes the throttle opening and an electric actuator (specifically, a stepping motor) that displaces the valve body. Therefore, the first expansion valve 14a functions as a refrigerant pressure reducing device that depressurizes the refrigerant flowing out to the downstream side, and also functions as a flow rate adjusting device that adjusts the flow rate of the refrigerant flowing out to the downstream side.
  • the refrigeration cycle apparatus 10 includes second and third expansion valves 14b and 14c, as will be described later.
  • the basic configuration of the second and third expansion valves 14b and 14c is the same as that of the first expansion valve 14a.
  • the first to third expansion valves 14a, 14b, and 14c have a fully open function that functions as a simple refrigerant passage without substantially exhibiting a flow rate adjusting action and a refrigerant pressure reducing action by fully opening the valve opening degree, and a valve opening degree. Is fully closed to close the refrigerant passage.
  • the first to third expansion valves 14a, 14b, and 14c can switch the refrigerant circuit in each operation mode described above by the fully open function and the fully closed function. Therefore, the first to third expansion valves 14a, 14b, and 14c also have a function as a refrigerant circuit switching device.
  • the operations of the first to third expansion valves 14a, 14b, 14c are controlled by a control signal (control pulse) output from the air conditioning control device 40.
  • the refrigerant inlet 16e side of the outdoor heat exchanger 16 is connected to the outlet of the first expansion valve 14a.
  • the outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the outside air blown by the outside air fan 16d.
  • the outdoor heat exchanger 16 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode, and functions as an evaporator that evaporates low-pressure refrigerant at least in the heating mode.
  • the outdoor heat exchanger 16 includes an outdoor air heat exchange unit 16a, a receiver tank 16b, and a supercooling heat exchange unit 16c.
  • the outside air heat exchanging part 16a is a heat exchanging part that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the outside air.
  • the receiver tank 16b is a liquid receiver that stores the liquid-phase refrigerant that has flowed out of the outside air heat exchanger 16a.
  • the supercooling heat exchange unit 16c is a heat exchange unit that exchanges heat between the refrigerant flowing out of the receiver tank 16b and the outside air.
  • the outdoor heat exchanger 16 can be used as a subcool type condenser that dissipates heat until the refrigerant is in a supercooled state under the operating conditions in which the refrigerant is condensed in the outdoor air heat exchanger 16a.
  • the outside air fan 16d is an electric blower in which the rotation speed (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
  • the up and down arrows in FIG. 5 indicate the up and down directions in a state where the outdoor heat exchanger 16 is mounted on the vehicle.
  • the outdoor heat exchanger 16 includes, in addition to the receiver tank 16b, a plurality of tubes 161, an inlet side tank 162, an outlet side tank 163, and the like for forming the outdoor air heat exchange unit 16a and the supercooling heat exchange unit 16c. Yes. All of the constituent members of the outdoor heat exchanger 16 are formed of a metal (aluminum in the present embodiment) having excellent heat conductivity, and are integrated by brazing.
  • the tube 161 forms a refrigerant passage through which the refrigerant flows.
  • the tube 161 has a flat cross section perpendicular to the flow direction of the refrigerant flowing inside.
  • a multi-hole tube in which a plurality of refrigerant passages are formed is adopted as the tube 161.
  • the plurality of tubes 161 are stacked in a certain direction (in this embodiment, the vertical direction). More specifically, the plurality of tubes 161 are stacked in a vertical direction with a certain interval so that the flat surfaces (that is, flat surfaces) of the outer surfaces of adjacent tubes 161 are parallel to each other. Yes.
  • an air passage is formed between the adjacent tubes 161 through which the blown air that exchanges heat with the refrigerant flows. That is, in the outdoor heat exchanger 16, a plurality of tubes 161 are stacked and arranged at intervals, thereby forming a heat exchange unit that exchanges heat between the refrigerant and the outside air.
  • Fins 164 that promote heat exchange between the refrigerant and the blown air are arranged in an air passage formed between adjacent tubes 161.
  • the fin 164 is a corrugated fin formed by bending a thin plate material made of the same material as the tube 161 or the like into a wave shape. In FIG. 5, only a part of the fins 164 is shown for clarity of illustration, but the fins 164 are arranged over the entire heat exchange section.
  • the inlet side tank 162 and the outlet side tank 163 are connected to the end portions of the plurality of tubes 161 to collect or distribute the refrigerant flowing through the tubes 161.
  • Each of the inlet side tank 162 and the outlet side tank 163 is formed of a bottomed cylindrical member extending in the stacking direction of the tubes 161 (the vertical direction in this embodiment).
  • the inlet side tank 162 and the outlet side tank 163 a plurality of separators 165 for partitioning the internal space are arranged.
  • the internal space of the inlet side tank 162 is partitioned into first to third inlet side spaces 162a, 162b, and 162c sequentially from above, and the internal space of the outlet side tank 163 is divided into the first and second outlets sequentially from above. It is divided into side spaces 163a and 163b.
  • the refrigerant inlet 16e of the outdoor heat exchanger 16 is provided so as to communicate with the first inlet side space 162a of the inlet side tank 162.
  • the refrigerant outlet 16 f of the outdoor heat exchanger 16 is provided so as to communicate with the second outlet side space 163 b of the outlet side tank 163.
  • the receiver tank 16b is formed of a bottomed cylindrical member extending in the stacking direction of the tubes 161.
  • the receiver tank 16b is brazed to the inlet side tank 162.
  • an inlet side communication path 16i that connects the inner space of the receiver tank 16b and the second inlet side space 162b, and the inner space of the receiver tank 16b and the third inlet side
  • An outlet side communication path 16j that communicates with the space 162c is formed.
  • the inlet side communication path 16i is disposed above the outlet side communication path 16j.
  • the refrigerant flowing from the refrigerant inlet 16e into the first inlet side space 162a of the inlet side tank 162 flows through the upper tube 161 group, and the outlet side tank 163 It flows into the first outlet side space 163a. Then, the refrigerant that has flowed into the first outlet side space 163a flows through another tube 161 group in the middle portion in the vertical direction and flows into the second inlet side space 162b of the inlet side tank 162.
  • the refrigerant flowing into the second inlet side space 162b flows into the third inlet side space 162c of the inlet side tank 162 via the receiver tank 16b.
  • the refrigerant that has flowed into the third inlet-side space 162c flows through another group of tubes 161 on the lower side and flows into the second outlet-side space 163b of the outlet-side tank 163.
  • the refrigerant flowing into the second outlet side space 163b flows out from the refrigerant outlet 16f.
  • the outdoor air heat exchange section 16a is configured by a heat exchange section formed on the upstream side of the refrigerant flow with respect to the receiver tank 16b. Furthermore, the subcooling heat exchange part 16c is comprised by the heat exchange part formed in a refrigerant
  • the number of the upper tubes 161 connecting the first inlet side space 162a and the first outlet side space 163a is equal to the number of the first outlet side space 163a and the second inlet. It is larger than the number of intermediate tube 161 groups connecting the side spaces 162b. Therefore, the total passage sectional area of the intermediate tube 161 group is smaller than the total passage sectional area of the upper tube 161 group.
  • the number of intermediate tubes 161 connecting the first outlet side space 163a and the second inlet side space 162b is the lower tube connecting the third inlet side space 162c and the second outlet side space 163b. It is more than the number of 161 groups. Therefore, the total passage sectional area of the lower tube 161 group is smaller than the total passage sectional area of the middle tube 161 group.
  • the passage cross-sectional area of the refrigerant flow path is reduced in the refrigerant flow direction.
  • the cross-sectional area of the passage can be reduced as the volume of the refrigerant is reduced due to condensation, so that the heat exchanging portion is effective without increasing the pressure loss of the refrigerant. It can be used for.
  • a gas phase refrigerant outlet 16g and a liquid phase refrigerant outlet 16h are formed in the receiver tank 16b.
  • the gas-phase refrigerant outlet 16g is formed above the receiver tank 16b in order to cause the gas-phase refrigerant in the receiver tank 16b to flow out preferentially over the liquid-phase refrigerant.
  • a bypass passage 21 for guiding the refrigerant flowing out from the receiver tank 16b to the suction side of the compressor 11 is connected to the gas phase refrigerant outlet 16g.
  • the bypass passage 21 is a refrigerant passage that connects the gas-phase refrigerant outlet 16g side of the receiver tank 16b and one inlet side of the third three-way joint 13c.
  • a third expansion valve 14 c is disposed in the bypass passage 21.
  • the third expansion valve 14 c is a flow rate adjusting device that functions as a refrigerant pressure reducing device that depressurizes the refrigerant flowing out from the receiver tank 16 b and adjusts the flow rate of the refrigerant flowing through the bypass passage 21.
  • the liquid-phase refrigerant outlet 16h is formed on the bottom surface of the receiver tank 16b so that the liquid-phase refrigerant mixed with the refrigerating machine oil in the receiver tank 16b flows out preferentially over the gas-phase refrigerant.
  • An oil return passage 21a that guides the liquid-phase refrigerant mixed with refrigerating machine oil to the bypass passage 21 side is connected to the liquid-phase refrigerant outlet 16h.
  • a capillary tube having a relatively small passage cross-sectional area can be employed as the oil return passage 21a.
  • the other inflow side of the second three-way joint 13 b is connected to the refrigerant outlet of the outdoor heat exchanger 16 through a check valve 17.
  • the check valve 17 allows the refrigerant to flow from the outdoor heat exchanger 16 side to the second three-way joint 13b side (that is, the second expansion valve 14b side), and from the second three-way joint 13b side to the outdoor heat exchanger 16. It functions to prevent the refrigerant from flowing to the side.
  • the inlet side of the second expansion valve 14b is connected to the outlet of the second three-way joint 13b.
  • the second expansion valve 14b is a second decompression unit that decompresses the refrigerant flowing out of the outdoor heat exchanger 16 at least in the cooling mode.
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the second expansion valve 14b.
  • the indoor evaporator 18 is disposed in the casing 31 of the indoor air conditioning unit 30.
  • the indoor evaporator 18 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air blown from the blower 32 at least in the cooling mode. And it is a heat exchanger for cooling which cools blowing air by evaporating a low-pressure refrigerant and exhibiting an endothermic effect.
  • the inlet side of the evaporation pressure adjusting valve 19 is connected to the refrigerant outlet of the indoor evaporator 18.
  • the evaporation pressure regulating valve 19 functions to maintain the refrigerant evaporation pressure in the indoor evaporator 18 at a predetermined reference pressure or higher in order to suppress frost formation in the indoor evaporator 18.
  • the evaporation pressure regulating valve 19 fulfills the function of maintaining the refrigerant evaporation temperature in the indoor evaporator 18 at or above the reference temperature (1 ° C. in this embodiment) that can suppress frost formation in the indoor evaporator 18.
  • the evaporation pressure adjusting valve 19 is composed of a mechanical variable throttle mechanism that increases the valve opening as the refrigerant pressure on the outlet side of the indoor evaporator 18 increases.
  • the other inlet side of the third three-way joint 13c is connected to the outlet of the evaporation pressure adjusting valve 19.
  • the inlet side of the accumulator 20 is connected to the outlet of the third three-way joint 13c.
  • the accumulator 20 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess liquid-phase refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 20.
  • the indoor air conditioning unit 30 is for blowing out the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 includes a blower 32, an indoor evaporator 18, a heater core 12 b and the like in an air passage formed in a casing 31 that forms an outer shell thereof. .
  • the casing 31 forms an air passage for the blown air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • An inside / outside air switching device 33 for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed on the most upstream side of the blast air flow in the casing 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air, by the inside / outside air switching door, The introduction ratio with the introduction air volume is changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
  • a blower 32 for blowing the air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the blown air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan with an electric motor.
  • the number of rotations (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the air conditioning control device 40.
  • the indoor evaporator 18 and the heater core 12b are arranged in this order with respect to the blown air flow. That is, the indoor evaporator 18 is arrange
  • a bypass passage 35 through which the blown air after passing through the indoor evaporator 18 flows around the heater core 12b.
  • An air mix door 34 is arranged on the downstream side of the blower air flow of the indoor evaporator 18 in the casing 31 and on the upstream side of the blower air flow of the heater core 12b.
  • the air mix door 34 is an air volume ratio adjustment unit that adjusts an air volume ratio between the air volume of the blown air that passes through the heater core 12 b and the air volume of the blown air that passes through the bypass passage 35 among the blown air after passing through the indoor evaporator 18. It is.
  • the air mix door 34 is driven by an electric actuator for the air mix door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
  • a mixing space for mixing the blown air heated by exchanging heat with the refrigerant in the heater core 12b and the blown air not heated through the bypass passage 35 is mixed.
  • an opening hole for blowing the blown air mixed in the mixing space (that is, conditioned air) into the vehicle interior, which is the air-conditioning target space, is disposed in the most downstream portion of the blast air flow of the casing 31.
  • the opening hole As the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided.
  • the face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior.
  • the foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger.
  • the defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
  • These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space is adjusted by the air mix door 34 adjusting the air volume ratio between the air volume passing through the heater core 12b and the air volume passing through the cold air bypass passage 35. Thereby, the temperature of the blast air (air conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
  • a face door for adjusting the opening area of the face opening hole a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively.
  • a defroster door (both not shown) for adjusting the opening area of the hole is disposed.
  • blower outlet mode switching device that switches the blower outlet mode, and are linked to and linked to an electric actuator for driving the blower outlet mode door via a link mechanism or the like. And rotated.
  • the operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
  • outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
  • the face mode is a blowout mode that blows out air from the face blowout toward the upper body of the passenger in the passenger compartment with the face blowout opening fully open.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blowout port mode in which the foot blowout port is fully opened and the defroster blowout port is opened by a small opening so that air is mainly blown out from the foot blowout port.
  • the defroster mode can be set, in which the defroster blowout port is fully opened and air is blown from the defroster blowout port to the inner surface of the vehicle windshield.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 12c, 14a, 14b, 14c, 15, 32, and other various types connected to the output side. Controls the operation of the electric actuator.
  • the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the water temperature sensor 44, the discharge temperature sensor 45a, the outdoor unit temperature sensor 45b, and the evaporation A temperature sensor 45c, a suction temperature sensor 45d, a discharge pressure sensor 46a, a tank pressure sensor 46b, an outdoor unit pressure sensor 46c, a suction pressure sensor 46d, an air conditioning air temperature sensor 47, and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40.
  • the inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr.
  • the outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior.
  • the water temperature sensor 44 is a heat medium temperature detector that detects the heat medium temperature Tw of the heat medium that flows out of the water passage of the water-refrigerant heat exchanger 12a and flows into the heater core 12b.
  • the discharge temperature sensor 45 a is a discharge temperature detection unit that detects the discharge temperature Td of the refrigerant discharged from the compressor 11.
  • the outdoor unit temperature sensor 45b is an outdoor unit outlet temperature detection unit that detects the outdoor unit outlet temperature Tout of the refrigerant that has flowed out of the outdoor heat exchanger 16 (specifically, the supercooling heat exchange unit 16c).
  • the evaporator temperature sensor 45c is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18.
  • the suction temperature sensor 45 d is a suction temperature detection unit that detects the suction temperature Ts of the refrigerant sucked into the compressor 11.
  • the discharge pressure sensor 46a is a discharge pressure detection unit that detects the discharge pressure Pd of the refrigerant flowing through the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a.
  • the tank pressure sensor 46b is a tank pressure detection unit that detects the tank internal pressure Ptk of the refrigerant in the receiver tank 16b.
  • the outdoor unit pressure sensor 46c is an outdoor unit outlet temperature detection unit that detects the outdoor unit outlet pressure Pout of the refrigerant that has flowed out of the outdoor heat exchanger 16 (specifically, the supercooling heat exchange unit 16c).
  • the suction pressure sensor 46 d is a suction pressure detection unit that detects the suction pressure Ps of the refrigerant sucked into the compressor 11.
  • the air-conditioning air temperature sensor 47 is an air-conditioning air temperature detector that detects the temperature TAV of the air blown from the mixed space into the passenger compartment.
  • an operation panel 50 disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected.
  • the operation signal is input.
  • an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner 1 a cooling switch for requesting cooling of the vehicle interior
  • an air volume setting switch for manually setting the air volume
  • a temperature setting switch for setting the target temperature Tset in the passenger compartment
  • a blow mode switching switch for manually setting the blow mode.
  • the air-conditioning control device 40 is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 constitutes a discharge capacity control unit 40a.
  • operation of the 3rd expansion valve 14c which is a flow volume adjustment apparatus comprises the flow volume adjustment control part 40b.
  • the refrigeration cycle apparatus 10 can switch between the cooling mode, the first to third dehumidifying heating modes, and the heating mode in order to perform air conditioning in the vehicle interior. Switching between these operation modes is performed by executing an air conditioning control program.
  • the air conditioning control program is executed when the auto switch of the operation panel 50 is turned on (ON).
  • the detection signals of the above-described sensor group for air conditioning control and operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇
  • Tset is a target temperature in the vehicle interior (set temperature in the vehicle interior) set by the temperature setting switch
  • Tr is the internal air temperature detected by the internal air temperature sensor 41
  • Tam is the external air temperature detected by the external air temperature sensor 42
  • I the amount of solar radiation detected by the solar radiation sensor 43.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the operation mode is switched to the cooling mode.
  • the target blowing temperature TAO is equal to or higher than the cooling reference temperature ⁇
  • the outside air temperature Tam is higher than the predetermined dehumidifying heating reference temperature ⁇ .
  • the operation mode is switched to the first dehumidifying and heating mode.
  • the operation mode is changed to the second dehumidifying and heating mode.
  • the pressure loss ⁇ P a value obtained by subtracting the outdoor unit outlet pressure Pout detected by the outdoor unit pressure sensor 46c from the tank internal pressure Ptk detected by the tank pressure sensor 46b can be used.
  • the first reference pressure loss K ⁇ P1 is the lowest value of the pressure loss that occurs when the refrigerant flowing from the receiver tank 16b to the supercooling heat exchange unit 16c during the normal operation is a gas-liquid two-phase refrigerant or a gas-phase refrigerant. Is set to a value corresponding to. For this reason, when the pressure loss ⁇ P is equal to or greater than the first reference pressure loss K ⁇ P1, the refrigerant flowing into the supercooling heat exchange unit 16c is a gas-liquid two-phase refrigerant or a gas-phase refrigerant.
  • the operation mode is switched to the heating mode.
  • the cooling mode is executed mainly when the outside air temperature is relatively high, such as in summer.
  • the first to third dehumidifying heating modes are executed mainly in spring or autumn.
  • the heating mode is executed mainly at the low outdoor temperature in winter. The operation in each operation mode will be described below.
  • (A) Cooling mode In the cooling mode, the air-conditioning control device 40 sets the first expansion valve 14a to a fully open state, the second expansion valve 14b to a throttled state that exerts a pressure reducing action, and sets the third expansion valve 14c to a fully closed state. The on-off valve 15 is closed. Furthermore, the air conditioning control device 40 stops the water pump 12c.
  • the compressor 11 ( ⁇ water-refrigerant heat exchanger 12a ⁇ first expansion valve 14a) ⁇ outside air of the outdoor heat exchanger 16 Heat exchanger 16a ⁇ Receiver tank 16b of outdoor heat exchanger 16 ⁇ Supercooling heat exchanger 16c of outdoor heat exchanger 16 ⁇ Check valve 17 ⁇ Second expansion valve 14b ⁇ Indoor evaporator 18 ( ⁇ Evaporation pressure adjusting valve 19 ⁇ Accumulator 20) ⁇ Vapor compression type refrigeration cycle in which refrigerant circulates in the order of compressor 11.
  • the air conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 18 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
  • the target evaporator blowout temperature TEO is determined to decrease as the target blowout temperature TAO decreases. Furthermore, the target evaporator outlet temperature TEO is determined to be equal to or higher than a reference frost prevention temperature Tdef (for example, 1 ° C.) determined to be able to suppress frost formation in the indoor evaporator 18.
  • a reference frost prevention temperature Tdef for example, 1 ° C.
  • the evaporator temperature Tefin approaches the target evaporator outlet temperature TEO using a feedback control method.
  • the control signal output to the electric motor of the compressor 11 is determined.
  • the compressor 11 intake refrigerant is overheated from the intake temperature Ts detected by the intake temperature sensor 45d and the intake pressure Ps detected by the intake pressure sensor 46d.
  • the degree SH is determined so as to approach a predetermined reference superheat degree KSH (5 ° C. in the present embodiment).
  • control voltage output to the outside air fan 16d is determined so that the outside air fan 16d exhibits a predetermined blowing capacity according to the operation mode.
  • control voltage output to the blower 32 is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Specifically, in this control map, the air volume of the blower 32 is set to the maximum air volume in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO.
  • the air blowing amount is decreased according to the increase in the target blowing temperature TAO, and the target blowing temperature TAO is changed from the extremely high temperature range to the intermediate temperature range.
  • the air pressure decreases, the air flow rate is decreased according to the decrease in the target air temperature TAO.
  • the blowing amount is set as the minimum blowing amount.
  • control signal output to the electric actuator for driving the air mix door is determined so that the air mix door 34 fully opens the cold air bypass passage 35 and the air passage on the heater core 12b side is fully closed.
  • control signals determined as described above are output to various control target devices.
  • the above detection signal and operation signal are read at every predetermined control cycle ⁇ the target blowing temperature TAO is calculated ⁇ the operating states of various control target devices are determined ⁇ control Control routines such as voltage and control signal output are repeated. Such a control routine is repeated in the other operation modes.
  • the refrigerant discharged from the compressor 11 flows to the refrigerant passage of the water-refrigerant heat exchanger 12a. Inflow.
  • the refrigerant that has flowed into the refrigerant passage of the water-refrigerant heat exchanger 12a flows out of the water-refrigerant heat exchanger 12a with little heat dissipation.
  • the refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12a flows into the outdoor air heat exchanger 16a of the outdoor heat exchanger 16 through the first expansion valve 14a that is fully open.
  • the refrigerant flowing into the outdoor heat exchanger 16a of the outdoor heat exchanger 16 exchanges heat with the external air blown from the outdoor air fan 16d, dissipates heat, and condenses (point a7 ⁇ d7 in FIG. 7).
  • the refrigerant condensed in the outside air heat exchanger 16a flows into the receiver tank 16b and is separated into gas and liquid.
  • the liquid-phase refrigerant stored in the lower side of the receiver tank 16b flows into the supercooling heat exchange unit 16c through the outlet side communication passage 16j. To do.
  • the liquid phase refrigerant flowing into the supercooling heat exchange unit 16c exchanges heat with the outside air blown from the outside air fan 16d, and further dissipates heat to become a supercooled liquid phase refrigerant (point d7 ⁇ e7 in FIG. 7).
  • the throttle opening degree of the second expansion valve 14b is adjusted so that the superheat degree SH of the refrigerant sucked by the compressor 11 (point g7 in FIG. 7) approaches the reference superheat degree KSH.
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 18.
  • the low-pressure refrigerant flowing into the indoor evaporator 18 absorbs heat from the blown air blown from the blower 32 and evaporates (f7 point ⁇ g7 point in FIG. 7). Thereby, blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 18 is sucked into the compressor 11 via the evaporation pressure adjusting valve 19 and the accumulator 20.
  • the refrigerant sucked into the compressor 11 is compressed again (point g7 ⁇ point a7 in FIG. 7).
  • a refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as a radiator and the indoor evaporator 18 functions as an evaporator. And the ventilation of a vehicle interior is realizable by blowing the ventilation air cooled with the indoor evaporator 18 in the vehicle interior.
  • the cooling mode is an operating condition in which the refrigerant is condensed in the outside air heat exchange section 16a. Furthermore, in the cooling mode, as a refrigerant circuit in the operation mode for cooling the blown air, a receiver cycle that stores the high-pressure liquid-phase refrigerant that has flowed out of the outside air heat exchange unit 16a in the receiver tank 16b as a surplus refrigerant in the cycle can be configured. .
  • the refrigerant can be completely evaporated by the indoor evaporator 18, and the blown air can be sufficiently cooled as compared with the case where an accumulator cycle in which the surplus refrigerant is stored in the accumulator 20 is configured.
  • the coefficient of performance (COP) of the cycle is improved by expanding the enthalpy difference between the enthalpy of the outlet side refrigerant and the enthalpy of the inlet side refrigerant as in the case where a so-called subcool type condenser is employed. Can be made.
  • (B) 1st dehumidification heating mode In 1st dehumidification heating mode, the air-conditioning control apparatus 40 makes the 1st expansion valve 14a a throttle state, makes the 2nd expansion valve 14b a throttle state, and makes the 3rd expansion valve 14c a fully closed state. Then, the on-off valve 15 is closed. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. Thereby, in the heat medium circulation circuit 12 in the first dehumidifying and heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
  • the outside air of the compressor 11 ⁇ the water-refrigerant heat exchanger 12 a ⁇ the first expansion valve 14 a ⁇ the outdoor heat exchanger 16.
  • Heat exchanger 16a Receiver tank 16b of outdoor heat exchanger 16 ⁇ Supercooling heat exchanger 16c of outdoor heat exchanger 16 ⁇
  • Check valve 17 ⁇ Second expansion valve 14b ⁇ Indoor evaporator 18 ( ⁇ Evaporation pressure adjusting valve 19 ⁇ Accumulator 20) ⁇ Vapor compression type refrigeration cycle in which refrigerant circulates in the order of compressor 11.
  • the air conditioning control device 40 controls the operations of the compressor 11, the outside air fan 16d, the blower 32, and the like, similarly to the cooling mode.
  • control signals output to the first expansion valve 14a and the second expansion valve 14b refer to the control map previously stored in the air conditioning control device 40 based on the superheat degree SH of the suction refrigerant and the target blowing temperature TAO. To be determined.
  • the total pressure reduction amount of the first expansion valve 14a and the second expansion valve 14b is determined so that the superheat degree SH of the refrigerant sucked by the compressor 11 approaches a predetermined reference superheat degree KSH.
  • the first expansion valve 14a and the second expansion valve are so configured that the throttle opening of the first expansion valve 14a is decreased and the throttle opening of the second expansion valve 14b is increased as the target blowing temperature TAO increases.
  • the control signal output to 14b is determined.
  • control signal output to the electric actuator for driving the air mix door is determined so that the air mix door 34 fully closes the cold air bypass passage 35 and fully opens the air passage on the heater core 12b side.
  • the state of the refrigerant changes as shown in the Mollier diagram of FIG.
  • the state of the refrigerant at the same location in the cycle configuration as the Mollier diagram of FIG. 7 described in the cooling mode is indicated by the same reference numeral (alphabet) as in FIG. 7, and only the suffix (number) is changed. ing.
  • the refrigerant discharged from the compressor 11 flows into the refrigerant passage of the water-refrigerant heat exchanger 12a.
  • the refrigerant flowing into the water-refrigerant heat exchanger 12a exchanges heat with the heat medium flowing through the water passage of the water-refrigerant heat exchanger 12a to radiate heat (point a8 ⁇ b8 in FIG. 8).
  • the heat medium circulating in the heat medium circuit 12 is heated.
  • the heat medium heated by the water-refrigerant heat exchanger 12a flows into the heater core 12b.
  • the air mix door 34 opens the ventilation path on the heater core 12b side, the heat medium flowing into the heater core 12b and the blown air after passing through the indoor evaporator 18 exchange heat.
  • the temperature of the blown air cooled and dehumidified by the indoor evaporator 18 is reheated so as to approach the target blowing temperature TAO.
  • the refrigerant flowing out of the water-refrigerant heat exchanger 12a flows into the first expansion valve 14a and is depressurized until it becomes an intermediate pressure refrigerant (b8 point ⁇ c8 point in FIG. 8).
  • the intermediate pressure refrigerant decompressed by the first expansion valve 14 a flows into the outdoor air heat exchange unit 16 a of the outdoor heat exchanger 16.
  • the operation mode is switched to the second dehumidifying heating mode.
  • the refrigerant that has flowed into the outside air heat exchanging portion 16a exchanges heat with the outside air blown from the outside air fan 16d, dissipates heat, and condenses (point c8 ⁇ d8 in FIG. 8).
  • the refrigerant condensed in the outside air heat exchanging portion 16a flows into the receiver tank 16b and is separated into gas and liquid as in the cooling mode.
  • the liquid-phase refrigerant stored on the lower side of the receiver tank 16b flows into the subcooling heat exchange unit 16c through the outlet side communication path 16j.
  • the liquid phase refrigerant flowing into the supercooling heat exchange unit 16c exchanges heat with the outside air blown from the outside air fan 16d, and further dissipates heat to become a supercooled liquid phase refrigerant (point d8 ⁇ e8 point in FIG. 8).
  • the subsequent operation is the same as in the cooling mode.
  • the refrigeration cycle apparatus 10 in the first dehumidifying and heating mode has a refrigeration cycle in which the water-refrigerant heat exchanger 12a and the outdoor heat exchanger 16 function as radiators and the indoor evaporator 18 functions as an evaporator. Is done. And the dehumidification heating of a vehicle interior is realizable by reheating the ventilation air cooled with the interior evaporator 18 by the heater core 12b, and blowing it out into a vehicle interior.
  • the temperature of the refrigerant (point c8 in FIG. 8) flowing into the outdoor heat exchanger 16a of the outdoor heat exchanger 16 is lower than that in the cooling mode due to the pressure reducing action of the first expansion valve 14a. . For this reason, the heat release amount of the refrigerant in the outside air heat exchanging portion 16a can be reduced and the heat release amount of the refrigerant in the water-refrigerant heat exchanger 12a can be increased.
  • the water pump 12c is operated with the same refrigerant circuit configuration as in the cooling mode, and the blown air is reheated by adjusting the opening degree of the air mix door 34, thereby dehumidifying and heating the vehicle interior.
  • the heating capability of the blown air in the heater core 12b can be improved as compared with the case.
  • a receiver cycle can be configured as in the cooling mode. Therefore, similarly to the cooling mode, the cooling capacity of the blown air (dehumidifying capacity in the first dehumidifying and heating mode) can be improved. Furthermore, COP can be improved similarly to the case where a subcool condenser is employed.
  • (C) Second Dehumidification Heating Mode In the second dehumidification heating mode, the air conditioning control device 40 places the first to third expansion valves 14a, 14b, and 14c in the throttle state and closes the on-off valve 15. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. As a result, in the heat medium circulation circuit 12 in the second dehumidifying and heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
  • the compressor 11 ⁇ the water-refrigerant heat exchanger 12a ⁇ the first expansion valve 14a ⁇ the outside air heat exchanging portion 16a ⁇ the receiver.
  • the refrigerant circulates in the order of the tank 16b ⁇ the supercooling heat exchanging portion 16c ⁇ the check valve 17 ⁇ the second expansion valve 14b ⁇ the indoor evaporator 18 ( ⁇ the evaporation pressure adjusting valve 19 ⁇ the accumulator 20) ⁇ the compressor 11 and the receiver tank.
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of 16b ⁇ the bypass passage 21 in which the third expansion valve 14c is arranged ( ⁇ accumulator 20) ⁇ the compressor 11 is configured.
  • the air-conditioning control device 40 is electrically driven for driving the compressor 11, the first expansion valve 14a, the second expansion valve 14b, the outside air fan 16d, the blower 32, and the air mix door, as in the first dehumidifying and heating mode. Control the operation of actuators.
  • the pressure loss ⁇ P obtained by subtracting the outdoor unit outlet pressure Pout from the tank internal pressure Ptk is set to be equal to or smaller than a predetermined second reference pressure loss K ⁇ P2.
  • the second reference pressure loss K ⁇ P2 is larger than the first reference pressure loss K ⁇ P1
  • the second reference pressure loss K ⁇ P2 is set to a relatively small value that can suppress the decrease in the COP of the cycle in the second dehumidifying heating mode. .
  • the refrigerant discharged from the compressor 11 (point a9 in FIG. 9) is supplied to the water-refrigerant heat exchanger 12a. It flows into the refrigerant passage. Thereby, the heat medium which circulates through the heat medium circulation circuit 12 is heated similarly to 1st dehumidification heating mode (a9 point-> b9 point of FIG. 9). The blown air after passing through the indoor evaporator 18 is heated by the heater core 12b using the heated heat medium as a heat source.
  • the refrigerant flowing out of the water-refrigerant heat exchanger 12a flows into the first expansion valve 14a and is depressurized until it becomes an intermediate pressure refrigerant (b9 point ⁇ c9 point in FIG. 9).
  • the intermediate pressure refrigerant decompressed by the first expansion valve 14 a flows into the outdoor air heat exchange unit 16 a of the outdoor heat exchanger 16.
  • the temperature of the intermediate pressure refrigerant is lower than the outside air temperature Tam.
  • the operating condition in which the second dehumidifying and heating mode is executed is an operating condition in which the pressure loss ⁇ P in the supercooling heat exchange unit 16c is equal to or greater than the first reference pressure loss K ⁇ P1, so This is because the refrigerant that functions and flows from the receiver tank 16b to the supercooling heat exchange unit 16c is a gas-liquid two-phase refrigerant or a gas-phase refrigerant.
  • the refrigerant that has flowed into the outside air heat exchanging portion 16a evaporates by absorbing heat from outside air blown from the outside air fan 16d (point c9 ⁇ d9 in FIG. 9).
  • the refrigerant that has flowed out of the outside air heat exchange unit 16a flows into the receiver tank 16b and is separated into gas and liquid.
  • the gas-phase refrigerant (dG9 point in FIG. 9) separated in the receiver tank 16b flows into the bypass passage 21 via the gas-phase refrigerant outlet 16g.
  • the refrigerant flowing through the bypass passage 21 is decompressed by adjusting the flow rate by the third expansion valve 14c (point dG9 ⁇ point g9 in FIG. 9).
  • the throttle opening degree of the third expansion valve 14c is determined so that the temperature difference ⁇ T1 is equal to or less than the reference temperature difference K ⁇ T1.
  • the refrigerant flowing out from the third expansion valve 14c is guided to the accumulator 20 side.
  • a small amount of liquid-phase refrigerant mixed with refrigerating machine oil also flows from the liquid-phase refrigerant outlet 16h via the oil return passage 21a to the bypass passage 21 and is guided to the accumulator 20 side.
  • the gas-liquid two-phase refrigerant or the liquid-phase refrigerant flowing out from the outlet side communication passage 16j of the receiver tank 16b and having a relatively low dryness flows into the supercooling heat exchange section 16c.
  • the refrigerant that has flowed into the supercooling heat exchanger 16c absorbs heat from the outside air and evaporates (dL9 point ⁇ e9 point in FIG. 9).
  • the refrigerant that has flowed out of the supercooling heat exchanger 16c of the outdoor heat exchanger 16 flows into the second expansion valve 14b via the check valve 17 and is depressurized (point e9 ⁇ point f9 in FIG. 9).
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 18.
  • the low-pressure refrigerant flowing into the indoor evaporator 18 absorbs heat from the blown air blown from the blower 32 and evaporates (point f9 ⁇ point g9 in FIG. 9).
  • the refrigerant that has flowed out of the indoor evaporator 18 merges with the gas-phase refrigerant that has flowed out of the bypass passage 21 and is sucked into the compressor 11.
  • the refrigerant sucked into the compressor 11 is compressed again (point g9 ⁇ point a9 in FIG. 9).
  • the refrigeration cycle apparatus 10 in the second dehumidifying and heating mode has a refrigeration cycle in which the water-refrigerant heat exchanger 12a functions as a radiator and the outdoor heat exchanger 16 and the indoor evaporator 18 function as an evaporator. Is done. And the dehumidification heating of a vehicle interior is realizable by reheating the ventilation air cooled with the interior evaporator 18 by the heater core 12b, and blowing it out into a vehicle interior.
  • the outdoor heat exchanger 16 functions as an evaporator, so that the heat absorbed by the refrigerant in the outdoor heat exchanger 16 is dissipated to the heat medium in water-refrigerant heat exchange 12a. Can do.
  • the heating capability of the blowing air in the heater core 12b can be improved rather than the 1st dehumidification heating mode.
  • the second dehumidifying heating mode is an operating condition in which the refrigerant is evaporated in the outside air heat exchanging portion 16a, the supercooling heat exchanging portion 16c, and the indoor evaporator 18.
  • the passage cross-sectional area of the refrigerant flow path is reduced in the refrigerant flow direction. For this reason, if a refrigerant is evaporated in the supercooling heat exchange part 16c, there exists a possibility that the pressure loss at the time of a refrigerant
  • the third expansion valve 14c is operated so that the temperature difference ⁇ T is equal to or less than the reference temperature difference K ⁇ T, so that the pressure loss ⁇ P can be equal to or less than the reference pressure loss K ⁇ P2. .
  • the 2nd dehumidification heating mode it can control that the COP of a cycle falls greatly.
  • (D) Third Dehumidification Heating Mode In the third dehumidification heating mode, the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the throttle state, and sets the third expansion valve 14c to the fully open state. Then, the on-off valve 15 is opened. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. Thereby, in the heat medium circulation circuit 12 in the third dehumidifying and heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
  • the compressor 11 ⁇ the water-refrigerant heat exchanger 12a ⁇ the first expansion valve 14a ⁇ the outside air heat exchanging portion 16a ⁇ the receiver.
  • the refrigerant circulates in the order of the tank 16b ⁇ the bypass passage 21 where the third expansion valve 14c is arranged ⁇ the accumulator 20 ⁇ the compressor, and the water-refrigerant heat exchanger 12a ( ⁇ the open / close valve 15) ⁇ the second expansion valve 14b ⁇ the indoor
  • a vapor compression refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 ⁇ the evaporation pressure adjusting valve 19 ⁇ the accumulator 20 ⁇ the compressor 11 is configured.
  • the air conditioning control device 40 controls the operation of the compressor 11, the outside air fan 16d, the blower 32, the electric actuator for driving the air mix door, and the like, as in the first dehumidifying and heating mode.
  • the COP is determined so as to approach the maximum value.
  • the throttle opening of the second expansion valve 14b is determined so as to be a predetermined reference opening. Furthermore, it determines so that the throttle opening degree of the 1st expansion valve 14a may be decreased with the raise of the target blowing temperature TAO.
  • the refrigerant discharged from the compressor 11 (point a10 in FIG. 10) is transferred to the water-refrigerant heat exchanger 12a. It flows into the refrigerant passage.
  • the heat carrier which circulates through the heat carrier circuit 12 is heated (point a10 ⁇ b10 in FIG. 10).
  • the blown air after passing through the indoor evaporator 18 is heated by the heater core 12b using the heated heat medium as a heat source.
  • the flow of the refrigerant flowing out of the water-refrigerant heat exchanger 12a is branched at the first three-way joint 13a because the on-off valve 15 is open.
  • One refrigerant branched by the first three-way joint 13a flows into the first expansion valve 14a and is decompressed until it becomes a low-pressure refrigerant (b10 point ⁇ c10 point in FIG. 10).
  • the low-pressure refrigerant decompressed by the first expansion valve 14a flows into the outside air heat exchange unit 16a, absorbs heat from the outside air blown from the blower fan, and evaporates (point c10 ⁇ d10 in FIG. 10).
  • the refrigerant that has flowed out of the outside air heat exchange unit 16a flows into the receiver tank 16b and is separated into gas and liquid.
  • the gas-phase refrigerant (dG10 point in FIG. 10) separated by the receiver tank 16b flows into the bypass passage 21 through the gas-phase refrigerant outlet 16g.
  • the third expansion valve 14c is fully opened, so that the refrigerant flowing through the bypass passage 21 is led to the accumulator 20 side with almost no pressure reduction.
  • the liquid-phase refrigerant separated in the receiver tank 16b does not flow out to the supercooling heat exchange unit 16c side due to the action of the check valve 17.
  • the other refrigerant branched at the first three-way joint 13a flows into the second expansion valve 14b via the on-off valve 15 and the second three-way joint 13b and is decompressed until it becomes a low-pressure refrigerant (FIG. 10).
  • B10 point ⁇ f10 point B10 point ⁇ f10 point.
  • the refrigerant evaporating temperature is maintained at a reference temperature (1 ° C. in the present embodiment) or higher by the throttle opening degree of the evaporating pressure adjusting valve 19 so that frosting of the indoor evaporator 18 can be suppressed.
  • the low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 18 and absorbs heat from the blown air blown from the blower 32 to evaporate (f10 point ⁇ g10 point in FIG. 10). Thereby, blowing air is cooled.
  • the refrigerant flowing out of the indoor evaporator 18 is decompressed when passing through the evaporation pressure adjusting valve 19 (g10 point ⁇ dG10 point in FIG. 10), and is equivalent to the refrigerant flowing out from the receiver tank 16b of the outdoor heat exchanger 16. It becomes pressure.
  • the refrigerant decompressed by the evaporation pressure adjusting valve 19 joins the refrigerant that has flowed out of the receiver tank 16b of the outdoor heat exchanger 16 and flows into the accumulator 20.
  • the gas-phase refrigerant flowing out of the accumulator 20 is sucked into the compressor 11 and compressed again (dG10 point ⁇ a10 point in FIG. 10).
  • the water-refrigerant heat exchanger 12a functions as a radiator, and the outdoor heat exchanger 16a and the indoor evaporator 18 of the outdoor heat exchanger 16 are used as evaporators.
  • a functioning refrigeration cycle is configured.
  • the dehumidification heating of a vehicle interior is realizable by reheating the ventilation air cooled with the interior evaporator 18 by the heater core 12b, and blowing it out into a vehicle interior.
  • the refrigerant evaporation temperature in the outdoor air heat exchange unit 16a can be made lower than the refrigerant evaporation temperature of the indoor evaporator 18. Accordingly, the amount of heat absorbed by the refrigerant from the outside air can be increased in the outside air heat exchanging portion 16a, and the heating capacity of the blown air in the heater core 12b can be improved as compared with the second dehumidifying heating mode.
  • (E) Heating mode In the heating mode, the air-conditioning control device 40 sets the first expansion valve 14a to the throttle state, the second expansion valve 14b to the fully closed state, the third expansion valve 14c to the fully open state, and the on-off valve 15 to close. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. Thereby, in the heat medium circulation circuit 12 in the heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
  • the compressor 11 ⁇ the water-refrigerant heat exchanger 12a ⁇ the first expansion valve 14a ⁇ the outside air heat exchanger 16a ⁇ the receiver tank 16b ⁇
  • a vapor compression refrigeration cycle is configured in which the refrigerant circulates in the order of the bypass passage 21 where the third expansion valve 14c is arranged, the accumulator 20, and the compressor.
  • the air conditioning control device 40 determines the operating states of the various control target devices (control signals output to the various control target devices).
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target condensing pressure PDO in the water-refrigerant heat exchanger 12a is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
  • the target condensing pressure PDO is determined to increase as the target blowing temperature TAO increases. Then, based on the deviation between the target condensing pressure PDO and the discharge pressure Pd detected by the discharge pressure sensor 46a, the feedback control method is used so that the discharge pressure Pd approaches the target condensing pressure PDO. A control signal output to the electric motor is determined.
  • control signal output to the first expansion valve 14b is determined so that the supercooling degree SC of the refrigerant flowing into the first expansion valve 14b becomes the target supercooling degree SCO.
  • the target supercooling degree SCO is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the discharge pressure Pd. Specifically, in this control map, the target supercooling degree SCO for heating is determined so that the COP of the cycle approaches the maximum value.
  • control signal output to the electric actuator for driving the air mix door is determined so that the air mix door 34 fully closes the cold air bypass passage 35 and fully opens the air passage on the heater core 12b side.
  • the refrigerant discharged from the compressor 11 flows to the refrigerant passage of the water-refrigerant heat exchanger 12a. Inflow.
  • the heat medium circulating in the heat medium circuit 12 is heated (point a11 ⁇ b11 in FIG. 11).
  • the blown air after passing through the indoor evaporator 18 is heated by the heater core 12b using the heated heat medium as a heat source.
  • the refrigerant flowing out of the water-refrigerant heat exchanger 12a flows into the first expansion valve 14a and is depressurized until it becomes a low-pressure refrigerant (b11 point ⁇ c11 point in FIG. 11).
  • the low-pressure refrigerant decompressed by the first expansion valve 14a flows into the outside air heat exchange unit 16a, absorbs heat from the outside air blown from the blower fan, and evaporates (point c11 ⁇ d11 in FIG. 11).
  • the refrigerant that has flowed out of the outside air heat exchange unit 16a flows into the receiver tank 16b and is separated into gas and liquid.
  • the gas-phase refrigerant (dG11 point in FIG. 11) separated in the receiver tank 16b flows into the bypass passage 21 via the gas-phase refrigerant outlet 16g.
  • the third expansion valve 14c is fully opened, so that the refrigerant flowing through the bypass passage 21 is led to the accumulator 20 side with almost no pressure reduction. Since the second expansion valve 14b is fully closed, the liquid phase refrigerant separated in the receiver tank 16b does not flow out to the supercooling heat exchange unit 16c side.
  • the gas-phase refrigerant that has flowed out of the accumulator 20 is sucked into the compressor 11 and compressed again (dG11 point ⁇ a11 point in FIG. 11).
  • a refrigeration cycle is configured in which the water-refrigerant heat exchanger 12a functions as a radiator and the outdoor heat exchanger 16a of the outdoor heat exchanger 16 functions as an evaporator. . And the heating of a vehicle interior is realizable by blowing the ventilation air heated with the heater core 12b into the vehicle interior.
  • the heating mode is an operating condition in which the refrigerant is evaporated in the outside air heat exchanger 16a. Furthermore, in the heating mode, as a refrigerant circuit in the operation mode for heating the blown air, the liquid phase refrigerant that has flowed out of the outside air heat exchanging portion 16a is used as a surplus refrigerant in the cycle, and the receiver tank 16b disposed on the suction side of the compressor 11 and An accumulator cycle stored in the accumulator 20 can be configured. Accordingly, the blown air can be sufficiently heated.
  • the refrigerant pressure in the receiver tank 16b and the refrigerant pressure in the accumulator 20 are substantially equal, and both the receiver tank 16b and the accumulator 20 store the excess refrigerant in the cycle. ing.
  • the volume in the refrigeration cycle apparatus when switched to the refrigerant circuit in the heating mode is smaller than the volume when switched to the refrigerant circuit in another operation mode, and the amount of surplus refrigerant in the heating mode is This is because the amount of surplus refrigerant in the other operation modes becomes larger. Therefore, the accumulator 20 may be abolished if it is possible to store surplus refrigerant only with the receiver tank 16b when the refrigerant circuit is switched to the heating mode.
  • the receiver cycle can be configured as a cooling mode refrigerant circuit for cooling the blown air, and the blown air can be sufficiently cooled.
  • the outdoor heat exchanger 16 can be made to function as a subcool type heat exchanger, and the COP of a cycle can be improved.
  • an accumulator cycle can be configured as a refrigerant circuit in a heating mode for heating the blown air, and the blown air can be sufficiently heated. That is, according to the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant circuit is configured to be switchable, and the blown air that is the heat exchange target fluid can be sufficiently cooled or heated.
  • the refrigerant circuit that evaporates the refrigerant in the outdoor air heat exchange unit 16a, the supercooling heat exchange unit 16c, and the indoor evaporator 18 as in the second dehumidifying heating mode. can be configured. According to this, the blown air can be heated by the heater core 12b, and at the same time, the blown air can be cooled by the indoor evaporator 18.
  • the operation of the third expansion valve 14c is controlled so that the pressure loss ⁇ P of the refrigerant in the supercooling heat exchange unit 16c is equal to or less than the reference pressure loss K ⁇ P2.
  • a decrease in the COP of the cycle can be suppressed.
  • the operation of the third expansion valve 14c is controlled so that the temperature difference ⁇ T is equal to or less than the reference temperature difference K ⁇ T, a refrigeration cycle apparatus that does not have a relatively expensive tank pressure sensor 46b with respect to the temperature sensor. Even so, it is possible to easily suppress a decrease in the COP of the cycle.
  • the present embodiment eliminates the heat medium circulation circuit 12, the water-refrigerant heat exchanger 12a, the heater core 12b, and the water pump 12c, as shown in the overall configuration diagram of FIG. The example which employ
  • the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals.
  • the indoor condenser 12d is a heating unit that heats the blown air by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air that has passed through the indoor evaporator 18.
  • the indoor condenser 12d is disposed in the casing 31 of the indoor air conditioning unit 30 in the same manner as the heater core 12b described in the first embodiment.
  • Other configurations and operations of the refrigeration cycle apparatus 10 are the same as those in the first embodiment.
  • the blown air that is the heat exchange target fluid is directly heated by the high-pressure refrigerant without interposing a heat medium, the same as in the first embodiment.
  • the blown air can be sufficiently cooled or heated even when the refrigerant circuit is switched.
  • the refrigeration cycle apparatus 10 is applied to a hybrid vehicle
  • application of the refrigeration cycle apparatus 10 according to the present disclosure is not limited to this.
  • the engine coolant may be allowed to flow into the heat medium circulation circuit 12 described in the first embodiment.
  • the present invention is not limited to a vehicle and may be applied to a stationary air conditioner or the like.
  • the control mode of the air conditioning control device 40 in each operation mode is not limited to that disclosed in the above-described embodiment.
  • the mode is switched to the second dehumidifying and heating mode. May be. According to this, even in a refrigeration cycle apparatus that does not have a tank pressure sensor 46b that is relatively expensive with respect to the temperature sensor, switching between the first dehumidifying heating mode and the second dehumidifying heating mode can be performed. .
  • the air conditioning control device 40 stops the water pump 12c in the cooling mode
  • the water pump 12c may be operated in the same manner as in other operation modes.
  • the air mix door 34 fully closes the ventilation path on the heater core 12b side, so that the blown air is not heated even when the water pump 12c is operated.
  • the blown air can be quickly heated when switching from the cooling mode to another operation mode. .
  • the example in which the reference superheat degree KSH in the cooling mode is set to 5 ° C. has been described.
  • the cooling capacity in the cooling mode and the COP of the cycle are improved. It is known that the reference superheat degree KSH should be set to about 5 ° C. to 15 ° C.
  • the operation of the third expansion valve 14c is controlled such that the temperature difference ⁇ T obtained by subtracting the outdoor unit outlet temperature Tout from the outside air temperature Tam is equal to or less than the reference temperature difference K ⁇ T.
  • the control mode of the third expansion valve 14c in the second dehumidifying and heating mode is not limited to this.
  • the operation of the third expansion valve 14c may be controlled using the detected values of the tank internal pressure Ptk and the outdoor unit outlet pressure Pout so that the pressure loss ⁇ P is equal to or less than the second reference pressure loss K ⁇ P2.
  • a tank temperature sensor that detects the tank internal temperature Ttk of the refrigerant in the receiver tank 16b is provided, and the tank internal pressure Ptk is estimated and used from the tank internal temperature Ttk. Also good.
  • the air-conditioning wind temperature sensor 47 detects the air mix door 34. You may adjust the opening degree of the air mix door 34 so that the ventilation air temperature TAV approaches the target blowing temperature TAO.
  • Each configuration of the refrigeration cycle apparatus 10 is not limited to that disclosed in the above-described embodiment.
  • an electric compressor is employed as the compressor 11
  • an engine-driven compressor may be employed.
  • a variable capacity compressor configured to be able to adjust the refrigerant discharge capacity by changing the discharge capacity may be adopted.
  • R134a is adopted as the refrigerant of the refrigeration cycle apparatus 10
  • the refrigerant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The purpose of the present disclosure is to provide a refrigeration cycle apparatus that is configured to be able to switch a refrigerant circuit and that is able to sufficiently cool or heat a fluid subjected to heat exchange. This refrigeration cycle apparatus is provided with a compressor (11), heating parts (12, 12a, 12b, 12c, 12d), an outside air heat exchange part (16a), a fluid reception part (16b), a supercooled heat exchange part (16c), an evaporation part (18), a first decompression part (14a), a second decompression part (14b), a bypass passage (21), and refrigerant circuit switching devices (14c, 15). The evaporation part performs heat exchange between a refrigerant and a fluid subjected to heat exchange and evaporates the refrigerant. The bypass passage guides the refrigerant flowing out of the fluid reception part, to the suction side of the compressor. The refrigerant circuit switching devices close the bypass passage at the time of operation condition for condensing the refrigerant at the outside air heat exchange part, and switch to a refrigerant circuit that circulates the refrigerant in order of the compressor, the outside air heat exchange part, the fluid reception part, the supercooled heat exchange part, the second decompression part, the evaporation part, and the compressor. The refrigerant circuit switching devices open the bypass passage at the time of operation condition for evaporating the refrigerant at the outside air heat exchange part, and switch to a refrigerant circuit that circulates the refrigerant in order of the compressor, the heating parts, the first decompression part, the outside air heat exchange part, the fluid reception part, the bypass passage, and the compressor.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月28日に出願された日本特許出願番号2017-063531号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-063531, filed on Mar. 28, 2017, the contents of which are incorporated herein by reference.
 本開示は、冷媒回路を切替可能に構成された冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle apparatus configured to be able to switch a refrigerant circuit.
 従来、特許文献1に、冷媒回路を切替可能に構成された蒸気圧縮式の冷凍サイクル装置が開示されている。この特許文献1の冷凍サイクル装置は、車両用空調装置に適用されており、車室内の冷房を行うための冷房モードの冷媒回路、車室内の暖房を行うための暖房モードの冷媒回路等を切り替えることができる。 Conventionally, Patent Document 1 discloses a vapor compression refrigeration cycle apparatus configured to be able to switch a refrigerant circuit. The refrigeration cycle apparatus disclosed in Patent Document 1 is applied to a vehicle air conditioner, and switches between a cooling mode refrigerant circuit for cooling the vehicle interior, a heating mode refrigerant circuit for heating the vehicle interior, and the like. be able to.
 より具体的には、特許文献1の冷凍サイクル装置は、室内凝縮器、室外熱交換器、室内蒸発器、アキュムレータ等を備えている。アキュムレータは、圧縮機の吸入側に配置されており、蒸発器として機能する熱交換器から流出した低圧冷媒の気液を分離し、分離された低圧液相冷媒をサイクルの余剰冷媒として蓄えるとともに、分離された気相冷媒を圧縮機の吸入側へ流出させるものである。 More specifically, the refrigeration cycle apparatus of Patent Document 1 includes an indoor condenser, an outdoor heat exchanger, an indoor evaporator, an accumulator, and the like. The accumulator is disposed on the suction side of the compressor, separates the gas-liquid of the low-pressure refrigerant flowing out from the heat exchanger functioning as an evaporator, stores the separated low-pressure liquid-phase refrigerant as a surplus refrigerant in the cycle, The separated gas-phase refrigerant is caused to flow out to the suction side of the compressor.
 そして、車室内の冷房を行う際には、圧縮機→室外熱交換器→冷房用の減圧装置→室内蒸発器→アキュムレータ→圧縮機の順に冷媒を循環させる冷房モードの冷媒回路に切り替える。冷房モードの冷媒回路では、室内蒸発器にて冷媒が車室内へ送風される送風空気から吸熱した熱を、室外熱交換器にて外気へ放熱させることによって、車室内の冷房を実現している。 Then, when cooling the passenger compartment, the cooling circuit is switched to a cooling mode refrigerant circuit in which the refrigerant is circulated in the order of compressor → outdoor heat exchanger → cooling decompression device → indoor evaporator → accumulator → compressor. In the refrigerant circuit in the cooling mode, cooling of the vehicle interior is realized by dissipating the heat absorbed from the blown air from which the refrigerant is blown into the vehicle interior by the indoor evaporator to the outside air by the outdoor heat exchanger. .
 一方、車室内の暖房を行う際には、圧縮機→室内凝縮器→暖房用の減圧装置→室外熱交換器→アキュムレータ→圧縮機の順に冷媒を循環させる暖房モードの冷媒回路に切り替える。暖房モードの冷媒回路では、室外熱交換器にて冷媒が外気から吸熱した熱を室内凝縮器にて送風空気に放熱させることによって、車室内の暖房を実現している。 On the other hand, when heating the passenger compartment, the refrigerant circuit is switched to the heating mode refrigerant circuit in which the refrigerant is circulated in the order of the compressor → the indoor condenser → the pressure reducing device for heating → the outdoor heat exchanger → the accumulator → the compressor. In the refrigerant circuit in the heating mode, heating of the vehicle interior is realized by dissipating the heat absorbed by the refrigerant from the outside air in the outdoor heat exchanger to the blown air in the indoor condenser.
特開2012-225637号公報JP 2012-225637 A
 ところで、冷房モードの冷凍サイクル装置にて、送風空気の冷却能力を充分に向上させるためには、蒸発器として機能する熱交換器(特許文献1では、室内蒸発器)にて冷媒を完全に蒸発させることが望ましい。より具体的には、室内蒸発器から流出する冷媒が、ある程度(例えば、5℃程度)の過熱度を有する気相冷媒となるように蒸発させることで、送風空気の冷却能力およびサイクルの成績係数(COP)を向上させることができる。 By the way, in the refrigeration cycle apparatus in the cooling mode, in order to sufficiently improve the cooling capacity of the blown air, the refrigerant is completely evaporated by the heat exchanger functioning as an evaporator (the indoor evaporator in Patent Document 1). It is desirable to make it. More specifically, the cooling capacity of the blown air and the coefficient of performance of the cycle are obtained by evaporating the refrigerant flowing out of the indoor evaporator into a gas phase refrigerant having a certain degree of superheat (for example, about 5 ° C.). (COP) can be improved.
 特許文献1の冷凍サイクル装置では、冷房モードの冷媒回路に切り替えた際に、サイクルの余剰冷媒を圧縮機の吸入側に配置されたアキュムレータに蓄える、いわゆるアキュムレータサイクルが構成される。このため、冷房モード時に室内蒸発器から流出する冷媒を過熱度を有する気相冷媒とすることが難しい場合がある。 The refrigeration cycle apparatus of Patent Document 1 constitutes a so-called accumulator cycle in which surplus refrigerant in a cycle is stored in an accumulator disposed on the suction side of the compressor when switching to a cooling mode refrigerant circuit. For this reason, it may be difficult for the refrigerant flowing out of the indoor evaporator in the cooling mode to be a gas phase refrigerant having a superheat degree.
 これに対して、冷房モード時に、放熱器として機能する熱交換器(特許文献1では、室外熱交換器)として、いわゆるサブクール型の凝縮器を採用する手段が考えられる。 On the other hand, as a heat exchanger that functions as a radiator in the cooling mode (Patent Document 1, an outdoor heat exchanger), a so-called subcool condenser can be used.
 ここで、サブクール型の凝縮器とは、凝縮部、レシーバ部、過冷却部等を有し、冷媒を過冷却液相状態となるまで放熱させる熱交換器である。凝縮部は、冷媒と外気とを熱交換させて冷媒を凝縮させる熱交換部である。レシーバ部は、凝縮部から流出した液相冷媒を蓄える受液部である。過冷却部は、レシーバ部から流出した液相冷媒と外気とを熱交換させて液相冷媒を過冷却する熱交換部である。 Here, the subcool condenser is a heat exchanger that has a condensing unit, a receiver unit, a supercooling unit, and the like, and radiates heat until the refrigerant reaches a supercooled liquid phase state. The condensing unit is a heat exchanging unit that condenses the refrigerant by exchanging heat between the refrigerant and the outside air. The receiver unit is a liquid receiving unit that stores the liquid phase refrigerant that has flowed out of the condensing unit. The supercooling unit is a heat exchange unit that supercools the liquid-phase refrigerant by exchanging heat between the liquid-phase refrigerant flowing out from the receiver unit and the outside air.
 これによれば、凝縮部にて凝縮させた高圧液相冷媒をサイクルの余剰冷媒としてレシーバ部に蓄える、いわゆるレシーバサイクルを構成することができる。従って、室内蒸発器から流出する冷媒を過熱度を有する気相冷媒となるまで蒸発させることができる。さらに、過冷却部にて冷媒を過冷却させることで、室内蒸発器の出口側冷媒のエンタルピと入口側冷媒のエンタルピとのエンタルピ差を拡大させることができる。 According to this, it is possible to configure a so-called receiver cycle in which the high-pressure liquid refrigerant condensed in the condensing unit is stored in the receiver unit as a surplus refrigerant in the cycle. Therefore, the refrigerant flowing out from the indoor evaporator can be evaporated until it becomes a gas phase refrigerant having a superheat degree. Furthermore, the enthalpy difference between the enthalpy of the outlet side refrigerant of the indoor evaporator and the enthalpy of the inlet side refrigerant can be increased by supercooling the refrigerant in the supercooling section.
 従って、特許文献1の冷凍サイクル装置の室外熱交換器として、サブクール型の凝縮器を採用することで、冷房モードの冷媒回路に切り替えた際に、送風空気の冷却能力およびサイクルのCOPの向上を狙うことができる。 Therefore, by adopting a subcool type condenser as the outdoor heat exchanger of the refrigeration cycle apparatus of Patent Document 1, when switching to the cooling mode refrigerant circuit, the cooling capacity of the blown air and the COP of the cycle are improved. You can aim.
 しかしながら、特許文献1の冷凍サイクル装置の室外熱交換器として、サブクール型の凝縮器を採用すると、暖房モードの冷媒回路に切り替えた際に、室外熱交換器における冷媒の圧力損失が増大してしまうおそれがある。その理由は、サブクール型の凝縮器では、過冷却部に液相冷媒を流通させることを前提としているので、過冷却部の冷媒通路断面積が比較的小さく設定されているからである。 However, if a subcool condenser is used as the outdoor heat exchanger of the refrigeration cycle apparatus of Patent Document 1, the pressure loss of the refrigerant in the outdoor heat exchanger increases when switching to the heating mode refrigerant circuit. There is a fear. The reason for this is that the subcool type condenser is based on the premise that liquid-phase refrigerant is circulated through the supercooling section, so that the refrigerant passage cross-sectional area of the supercooling section is set to be relatively small.
 そして、この圧力損失によって、蒸発器として機能する室外熱交換器から流出する冷媒の圧力が低下してしまうと、圧縮機へ吸入される冷媒の密度が低下してしまうおそれがある。その結果、暖房モード時にサイクルを循環する循環冷媒流量が減少してしまい、送風空気の加熱能力およびサイクルのCOPが低下してしまうおそれがある。 If the pressure of the refrigerant flowing out of the outdoor heat exchanger functioning as an evaporator is reduced due to the pressure loss, the density of the refrigerant sucked into the compressor may be reduced. As a result, the flow rate of the circulating refrigerant that circulates in the cycle during the heating mode decreases, and the heating capacity of the blown air and the COP of the cycle may decrease.
 本開示は、上記点に鑑み、冷媒回路を切替可能に構成されて、熱交換対象流体を充分に冷却あるいは加熱することのできる冷凍サイクル装置を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a refrigeration cycle apparatus that is configured to be capable of switching a refrigerant circuit and that can sufficiently cool or heat a heat exchange target fluid.
 本開示の一態様による冷凍サイクル装置は、圧縮機と、加熱部と、外気熱交換部と、受液部と、過冷却熱交換部と、蒸発部と、第1減圧部と、第2減圧部と、迂回通路と、冷媒回路切替装置と、を備える。圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された冷媒を熱源として熱交換対象流体を加熱する。外気熱交換部は、冷媒と外気とを熱交換させる。受液部は、外気熱交換部から流出した液相冷媒を蓄える。過冷却熱交換部は、受液部から流出した冷媒と外気とを熱交換させる。蒸発部は、冷媒を熱交換対象流体と熱交換させて蒸発させる。第1減圧部は、外気熱交換部へ流入する冷媒を減圧させる。第2減圧部は、蒸発部へ流入する冷媒を減圧させる。迂回通路は、受液部から流出した冷媒を圧縮機の吸入側へ導く。冷媒回路切替装置は、冷媒回路を切り替える。冷媒回路切替装置は、外気熱交換部にて冷媒を凝縮させる運転条件時に、迂回通路を閉じ、圧縮機、外気熱交換部、受液部、過冷却熱交換部、第2減圧部、蒸発部、圧縮機の順に冷媒を循環させる冷媒回路に切り替える。冷媒回路切替装置は、外気熱交換部にて冷媒を蒸発させる運転条件時に、迂回通路を開き、圧縮機、加熱部、第1減圧部、外気熱交換部、受液部、迂回通路、圧縮機の順に冷媒を循環させる冷媒回路に切り替えるものである。 A refrigeration cycle apparatus according to an aspect of the present disclosure includes a compressor, a heating unit, an outside air heat exchange unit, a liquid receiving unit, a supercooling heat exchange unit, an evaporation unit, a first decompression unit, and a second decompression unit. Part, a detour passage, and a refrigerant circuit switching device. The compressor compresses and discharges the refrigerant. The heating unit heats the heat exchange target fluid using the refrigerant discharged from the compressor as a heat source. The outside air heat exchange unit exchanges heat between the refrigerant and the outside air. The liquid receiver stores the liquid-phase refrigerant that has flowed out of the outside air heat exchanger. The supercooling heat exchanger exchanges heat between the refrigerant flowing out of the liquid receiver and the outside air. The evaporating unit evaporates the refrigerant by exchanging heat with the heat exchange target fluid. The first decompression unit decompresses the refrigerant flowing into the outside air heat exchange unit. The second decompression unit decompresses the refrigerant flowing into the evaporation unit. The bypass passage guides the refrigerant flowing out from the liquid receiving part to the suction side of the compressor. The refrigerant circuit switching device switches the refrigerant circuit. The refrigerant circuit switching device closes the bypass passage during an operating condition in which the refrigerant is condensed in the outside air heat exchanging unit, and the compressor, the outside air heat exchanging unit, the liquid receiving unit, the supercooling heat exchanging unit, the second pressure reducing unit, and the evaporation unit. Then, the refrigerant circuit is switched in order of the compressor. The refrigerant circuit switching device opens a bypass passage during an operating condition in which the refrigerant is evaporated in the outside air heat exchange section, and the compressor, the heating section, the first decompression section, the outside air heat exchange section, the liquid receiving section, the bypass passage, and the compressor It switches to the refrigerant circuit which circulates a refrigerant | coolant in this order.
 これによれば、外気熱交換部にて冷媒を凝縮させる運転条件時に、第2減圧部にて減圧された冷媒を、蒸発部にて蒸発させて吸熱作用を発揮させることによって、熱交換対象流体を冷却することができる。さらに、外気熱交換部から流出した高圧液相冷媒を、サイクルの余剰冷媒として受液部に蓄えるレシーバサイクルを構成することができる。 According to this, the heat exchange target fluid is obtained by evaporating the refrigerant depressurized in the second decompression unit in the evaporating unit and exerting an endothermic action at the operating condition for condensing the refrigerant in the outside heat exchange unit. Can be cooled. Furthermore, it is possible to configure a receiver cycle in which the high-pressure liquid-phase refrigerant that has flowed out of the outside air heat exchange unit is stored in the liquid-receiving unit as a surplus refrigerant of the cycle.
 従って、熱交換対象流体を冷却する運転モードの冷媒回路として、レシーバサイクルを構成することができ、熱交換対象流体を充分に冷却することができる。さらに、外気熱交換部、受液部、および過冷却熱交換部を備えているので、サブクール型の凝縮器と同様に、サイクルの成績係数(COP)を向上させることができる。 Therefore, the receiver cycle can be configured as a refrigerant circuit in an operation mode for cooling the heat exchange target fluid, and the heat exchange target fluid can be sufficiently cooled. Furthermore, since the outside air heat exchanging section, the liquid receiving section, and the supercooling heat exchanging section are provided, the coefficient of performance (COP) of the cycle can be improved similarly to the subcool type condenser.
 また、外気熱交換部にて冷媒を蒸発させる運転条件時に、圧縮機から吐出された高温高圧冷媒を熱源として加熱部にて熱交換対象流体を加熱することができる。さらに、外気熱交換部から流出した液相冷媒を圧縮機の吸入側に配置された受液部に蓄えるアキュムレータサイクルを構成することができる。 Also, the heat exchange target fluid can be heated by the heating unit using the high-temperature and high-pressure refrigerant discharged from the compressor as a heat source during the operating condition in which the refrigerant is evaporated in the outside air heat exchange unit. Furthermore, an accumulator cycle can be configured in which the liquid-phase refrigerant that has flowed out of the outside air heat exchanging section is stored in a liquid receiving section that is disposed on the suction side of the compressor.
 従って、熱交換対象流体を加熱する運転モードの冷媒回路として、アキュムレータサイクルを構成することができ、熱交換対象流体を充分に加熱することができる。すなわち、この一態様によれば、冷媒回路を切替可能に構成されて、熱交換対象流体を充分に冷却あるいは加熱することのできる冷凍サイクル装置を提供することができる。 Therefore, an accumulator cycle can be configured as a refrigerant circuit in an operation mode in which the heat exchange target fluid is heated, and the heat exchange target fluid can be sufficiently heated. That is, according to this one aspect, it is possible to provide a refrigeration cycle apparatus that is configured to be able to switch the refrigerant circuit and that can sufficiently cool or heat the heat exchange target fluid.
 さらに、冷媒回路切替装置は、外気熱交換部、過冷却熱交換部、および蒸発部にて冷媒を蒸発させる運転条件時に、迂回通路を開き、圧縮機→加熱部→第1減圧部→外気熱交換部→受液部→過冷却熱交換部→第2減圧部→蒸発部→圧縮機の順に冷媒を循環させるとともに、受液部→迂回通路→圧縮機の順に冷媒を循環させる冷媒回路に切り替えるようになっていてもよい。 Further, the refrigerant circuit switching device opens a bypass passage during an operating condition in which the refrigerant is evaporated in the outside air heat exchange unit, the supercooling heat exchange unit, and the evaporation unit, and the compressor → the heating unit → the first pressure reducing unit → the outside air heat. Switch to refrigerant circuit that circulates refrigerant in the order of exchange part → liquid receiving part → supercooling heat exchange part → second decompression part → evaporation part → compressor, and circulates refrigerant in order of liquid receiving part → bypass path → compressor It may be like this.
 これによれば、加熱部にて熱交換対象流体を加熱することができると同時に、蒸発部にて熱交換対象流体を冷却することができる。 According to this, the heat exchange target fluid can be heated by the heating unit, and at the same time, the heat exchange target fluid can be cooled by the evaporation unit.
少なくともひとつの実施形態に係る冷凍サイクル装置の冷房モードおよび第1除湿暖房モードにおける冷媒流れを示す全体構成図である。It is a whole lineblock diagram showing the refrigerant flow in the air conditioning mode and the 1st dehumidification heating mode of the refrigerating cycle device concerning at least one embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の第2除湿暖房モードにおける冷媒流れを示す全体構成図である。It is a whole lineblock diagram showing the refrigerant flow in the 2nd dehumidification heating mode of the refrigerating cycle device concerning at least one embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の第3除湿暖房モードにおける冷媒流れを示す全体構成図である。It is a whole lineblock diagram showing the refrigerant flow in the 3rd dehumidification heating mode of the refrigerating cycle device concerning at least one embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の暖房モードにおける冷媒流れを示す全体構成図である。It is a whole lineblock diagram showing the refrigerant flow in the heating mode of the refrigerating cycle device concerning at least one embodiment. 少なくともひとつの実施形態に係る室外熱交換器の模式的な断面図である。It is a typical sectional view of the outdoor heat exchanger concerning at least one embodiment. 少なくともひとつの実施形態に係る車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner which concerns on at least 1 embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の冷房モードにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the air_conditioning | cooling mode of the refrigerating-cycle apparatus which concerns on at least 1 embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の第1除湿暖房モードにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the 1st dehumidification heating mode of the refrigerating-cycle apparatus which concerns on at least 1 embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の第2除湿暖房モードにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the 2nd dehumidification heating mode of the refrigerating-cycle apparatus which concerns on at least 1 embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の第3除湿暖房モードにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the 3rd dehumidification heating mode of the refrigerating-cycle apparatus which concerns on at least 1 embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の暖房モードにおける冷媒の状態の変化を示すモリエル線図である。It is a Mollier diagram which shows the change of the state of the refrigerant | coolant in the heating mode of the refrigerating-cycle apparatus which concerns on at least 1 embodiment. 少なくともひとつの実施形態に係る冷凍サイクル装置の全体構成図である。It is a whole lineblock diagram of the refrigerating cycle device concerning at least one embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1~図11を用いて、本開示の第1実施形態について説明する。本実施形態では、本開示に係る冷凍サイクル装置10を、内燃機関および走行用電動モータから走行用の駆動力を得るハイブリッド車両に搭載される車両用空調装置1に適用している。この車両用空調装置1は、冷凍サイクル装置10、室内空調ユニット30、空調制御装置40等を備えている。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. In the present embodiment, the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner 1 mounted on a hybrid vehicle that obtains a driving force for traveling from an internal combustion engine and a traveling electric motor. The vehicle air conditioner 1 includes a refrigeration cycle device 10, an indoor air conditioning unit 30, an air conditioning control device 40, and the like.
 冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を冷却あるいは加熱する機能を果たす。従って、本実施形態の熱交換対象流体は、送風空気である。 The refrigeration cycle apparatus 10 fulfills a function of cooling or heating the air blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner 1. Accordingly, the heat exchange target fluid of this embodiment is blown air.
 さらに、冷凍サイクル装置10は、車室内の空調を行うために、冷媒回路を切り替えることができる。具体的には、冷凍サイクル装置10は、冷房モードの冷媒回路(図1参照)、第1除湿暖房モードの冷媒回路(図1参照)、第2除湿暖房モードの冷媒回路(図2参照)、第3除湿暖房モードの冷媒回路(図3参照)、暖房モードの冷媒回路(図4参照)を切り替えることができる。なお、図1~図4では、各運転モードにおける冷媒の流れを太実線矢印で示している。 Furthermore, the refrigeration cycle apparatus 10 can switch the refrigerant circuit in order to perform air conditioning in the passenger compartment. Specifically, the refrigeration cycle apparatus 10 includes a refrigerant circuit in a cooling mode (see FIG. 1), a refrigerant circuit in a first dehumidifying and heating mode (see FIG. 1), a refrigerant circuit in a second dehumidifying and heating mode (see FIG. 2), The refrigerant circuit (see FIG. 3) in the third dehumidifying and heating mode and the refrigerant circuit (see FIG. 4) in the heating mode can be switched. In FIGS. 1 to 4, the refrigerant flow in each operation mode is indicated by thick solid arrows.
 冷房モードは、冷却された送風空気を車室内へ吹き出すことによって車室内の冷房を行う運転モードである。第1~第3除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。本実施形態では、第1除湿暖房モードから第3除湿暖房モードの順で、除湿暖房時に送風空気を加熱する加熱能力が高くなる。暖房モードは、加熱された送風空気を車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 The cooling mode is an operation mode in which cooling of the vehicle interior is performed by blowing out the cooled blown air into the vehicle interior. The first to third dehumidifying and heating modes are operation modes for performing dehumidifying heating in the vehicle interior by reheating the cooled and dehumidified blown air and blowing it out into the vehicle interior. In the present embodiment, the heating capability for heating the blown air during the dehumidifying heating increases in the order from the first dehumidifying heating mode to the third dehumidifying heating mode. The heating mode is an operation mode in which the vehicle interior is heated by blowing heated air into the vehicle interior.
 また、冷凍サイクル装置10では、HFC系冷媒(具体的には、R134a)を採用しており、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Further, the refrigeration cycle apparatus 10 employs an HFC-based refrigerant (specifically, R134a), and a vapor compression subcriticality in which the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant. It constitutes the refrigeration cycle. Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、後述する空調制御装置40から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 Among the components of the refrigeration cycle apparatus 10, the compressor 11 sucks, compresses and discharges the refrigerant in the refrigeration cycle apparatus 10. The compressor 11 is an electric compressor that rotationally drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor. The compressor 11 has its rotational speed (that is, refrigerant discharge capacity) controlled by a control signal output from an air conditioning control device 40 described later.
 圧縮機11の吐出口には、水-冷媒熱交換器12aの冷媒通路の入口側が接続されている。水-冷媒熱交換器12aは、圧縮機11から吐出された高圧冷媒と熱媒体循環回路12を循環する熱媒体(本実施形態では、エチレングリコール水溶液)とを熱交換させて、熱媒体を加熱する熱交換器である。 The discharge port of the compressor 11 is connected to the inlet side of the refrigerant passage of the water-refrigerant heat exchanger 12a. The water-refrigerant heat exchanger 12a heats the heat medium by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the heat medium (in this embodiment, an ethylene glycol aqueous solution) that circulates in the heat medium circuit 12. Heat exchanger.
 熱媒体循環回路12は、水-冷媒熱交換器12aとヒータコア12bとの間で熱媒体を循環させる熱媒体回路である。ヒータコア12bは、後述する室内空調ユニット30のケーシング31内に配置されている。ヒータコア12bは、水-冷媒熱交換器12aにて加熱された熱媒体と後述する室内蒸発器18通過後の送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。 The heat medium circulation circuit 12 is a heat medium circuit that circulates the heat medium between the water-refrigerant heat exchanger 12a and the heater core 12b. The heater core 12b is disposed in a casing 31 of an indoor air conditioning unit 30 described later. The heater core 12b is a heating heat exchanger that heats the blown air by exchanging heat between the heat medium heated by the water-refrigerant heat exchanger 12a and blown air after passing through the indoor evaporator 18 described later.
 熱媒体循環回路12には、ヒータコア12bから流出した熱媒体を水-冷媒熱交換器12aに向けて圧送する水ポンプ12cが配置されている。水ポンプ12cは、空調制御装置40から出力される制御電圧によって、その回転数(水圧送能力)が制御される電動式の水ポンプである。 The heat medium circulation circuit 12 is provided with a water pump 12c that pumps the heat medium flowing out from the heater core 12b toward the water-refrigerant heat exchanger 12a. The water pump 12c is an electric water pump whose rotational speed (water pressure feeding capacity) is controlled by a control voltage output from the air conditioning control device 40.
 そして、空調制御装置40が水ポンプ12cを作動させると、図1~図4の太破線矢印に示すように、熱媒体循環回路12では、水ポンプ12c→水-冷媒熱交換器12aの水通路→ヒータコア12b→水ポンプ12cの順で熱媒体が循環する。これにより、水-冷媒熱交換器12aにて加熱された熱媒体をヒータコア12bへ流入させて、送風空気を加熱することができる。 When the air conditioning controller 40 operates the water pump 12c, as shown by the thick broken line arrows in FIGS. 1 to 4, in the heat medium circulation circuit 12, the water path of the water pump 12c → water-refrigerant heat exchanger 12a. The heat medium circulates in the order of the heater core 12b → water pump 12c. Thereby, the heat medium heated by the water-refrigerant heat exchanger 12a can be caused to flow into the heater core 12b to heat the blown air.
 従って、本実施形態では、熱媒体循環回路12、水-冷媒熱交換器12a、ヒータコア12b、および水ポンプ12cが、圧縮機11から吐出された冷媒を熱源として送風空気を加熱する加熱部を構成している。 Therefore, in the present embodiment, the heat medium circulation circuit 12, the water-refrigerant heat exchanger 12a, the heater core 12b, and the water pump 12c constitute a heating unit that heats the blown air using the refrigerant discharged from the compressor 11 as a heat source. is doing.
 水-冷媒熱交換器12aの冷媒通路の出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet of the first three-way joint 13a having three inlets and outlets communicating with each other is connected to the outlet of the refrigerant passage of the water-refrigerant heat exchanger 12a. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 さらに、冷凍サイクル装置10は、後述するように、第2、第3三方継手13b、13cを備えている。第2、第3三方継手13b、13cの基本的構成は、第1三方継手13aと同様である。 Furthermore, the refrigeration cycle apparatus 10 includes second and third three- way joints 13b and 13c, as will be described later. The basic configuration of the second and third three- way joints 13b and 13c is the same as that of the first three-way joint 13a.
 第1三方継手13aの一方の流出口には、第1膨張弁14aの入口側が接続されている。第1三方継手13aの他方の流出口には、第2三方継手13bの一方の流入口側が接続されている。第1三方継手13aの他方の流出口側と第2三方継手13bの一方の流入口側とを接続する冷媒通路には、開閉弁15が配置されている。 The inlet side of the first expansion valve 14a is connected to one outlet of the first three-way joint 13a. One inlet of the second three-way joint 13b is connected to the other outlet of the first three-way joint 13a. An on-off valve 15 is disposed in the refrigerant passage connecting the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b.
 開閉弁15は、第1三方継手13aの他方の流出口側と第2三方継手13bの一方の流入口側とを接続する冷媒通路を開閉する電磁弁である。開閉弁15は、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。従って、開閉弁15は、冷媒回路切替装置を構成している。開閉弁15は、空調制御装置40から出力される制御電圧によって、その作動が制御される。 The on-off valve 15 is an electromagnetic valve that opens and closes a refrigerant passage that connects the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b. The on-off valve 15 can switch the refrigerant circuit in each operation mode by opening and closing the refrigerant passage. Therefore, the on-off valve 15 constitutes a refrigerant circuit switching device. The operation of the on-off valve 15 is controlled by a control voltage output from the air conditioning controller 40.
 第1膨張弁14aは、少なくとも暖房モード時に、水-冷媒熱交換器12aの冷媒通路から流出して、後述する室外熱交換器16の外気熱交換部16aへ流入する冷媒を減圧させる第1減圧部である。 The first expansion valve 14a is a first depressurization that depressurizes the refrigerant that flows out of the refrigerant passage of the water-refrigerant heat exchanger 12a and flows into the outdoor heat exchanger 16a of the outdoor heat exchanger 16, which will be described later, at least in the heating mode. Part.
 第1膨張弁14aは、絞り開度を変化させる弁体、および弁体を変位させる電動アクチュエータ(具体的には、ステッピングモータ)を有する電気式の可変絞り機構である。従って、第1膨張弁14aは、下流側に流出させる冷媒を減圧させる冷媒減圧装置としての機能を果たすとともに、下流側へ流出させる冷媒の流量を調整する流量調整装置としての機能を果たす。 The first expansion valve 14a is an electric variable throttle mechanism having a valve body that changes the throttle opening and an electric actuator (specifically, a stepping motor) that displaces the valve body. Therefore, the first expansion valve 14a functions as a refrigerant pressure reducing device that depressurizes the refrigerant flowing out to the downstream side, and also functions as a flow rate adjusting device that adjusts the flow rate of the refrigerant flowing out to the downstream side.
 さらに、冷凍サイクル装置10では、後述するように、第2、第3膨張弁14b、14cを備えている。第2、第3膨張弁14b、14cの基本的構成は、第1膨張弁14aと同様である。第1~第3膨張弁14a、14b、14cは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、並びに、弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 Furthermore, the refrigeration cycle apparatus 10 includes second and third expansion valves 14b and 14c, as will be described later. The basic configuration of the second and third expansion valves 14b and 14c is the same as that of the first expansion valve 14a. The first to third expansion valves 14a, 14b, and 14c have a fully open function that functions as a simple refrigerant passage without substantially exhibiting a flow rate adjusting action and a refrigerant pressure reducing action by fully opening the valve opening degree, and a valve opening degree. Is fully closed to close the refrigerant passage.
 そして、この全開機能および全閉機能によって、第1~第3膨張弁14a、14b、14cは、上述した各運転モードの冷媒回路を切り替えることができる。従って、第1~第3膨張弁14a、14b、14cは、冷媒回路切替装置としての機能も兼ね備えている。第1~第3膨張弁14a、14b、14cは、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。 The first to third expansion valves 14a, 14b, and 14c can switch the refrigerant circuit in each operation mode described above by the fully open function and the fully closed function. Therefore, the first to third expansion valves 14a, 14b, and 14c also have a function as a refrigerant circuit switching device. The operations of the first to third expansion valves 14a, 14b, 14c are controlled by a control signal (control pulse) output from the air conditioning control device 40.
 第1膨張弁14aの出口には、室外熱交換器16の冷媒入口16e側が接続されている。室外熱交換器16は、第1膨張弁14aから流出した冷媒と、外気ファン16dにより送風された外気とを熱交換させる熱交換器である。室外熱交換器16は、少なくとも冷房モード時には、高圧冷媒を放熱させる放熱器として機能し、少なくとも暖房モード時には、低圧冷媒を蒸発させる蒸発器として機能する。 The refrigerant inlet 16e side of the outdoor heat exchanger 16 is connected to the outlet of the first expansion valve 14a. The outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the outside air blown by the outside air fan 16d. The outdoor heat exchanger 16 functions as a radiator that radiates high-pressure refrigerant at least in the cooling mode, and functions as an evaporator that evaporates low-pressure refrigerant at least in the heating mode.
 室外熱交換器16は、外気熱交換部16a、レシーバタンク16b、過冷却熱交換部16cを有している。外気熱交換部16aは、第1膨張弁14aから流出した冷媒と外気とを熱交換させる熱交換部である。レシーバタンク16bは、外気熱交換部16aから流出した液相冷媒を蓄える受液部である。過冷却熱交換部16cは、レシーバタンク16bから流出した冷媒と外気とを熱交換させる熱交換部である。 The outdoor heat exchanger 16 includes an outdoor air heat exchange unit 16a, a receiver tank 16b, and a supercooling heat exchange unit 16c. The outside air heat exchanging part 16a is a heat exchanging part that exchanges heat between the refrigerant flowing out of the first expansion valve 14a and the outside air. The receiver tank 16b is a liquid receiver that stores the liquid-phase refrigerant that has flowed out of the outside air heat exchanger 16a. The supercooling heat exchange unit 16c is a heat exchange unit that exchanges heat between the refrigerant flowing out of the receiver tank 16b and the outside air.
 従って、室外熱交換器16は、外気熱交換部16aにて冷媒を凝縮させる運転条件時に、冷媒を過冷却状態となるまで放熱させるサブクール型の凝縮器として用いることができる。また、外気ファン16dは、空調制御装置40から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動式の送風機である。 Therefore, the outdoor heat exchanger 16 can be used as a subcool type condenser that dissipates heat until the refrigerant is in a supercooled state under the operating conditions in which the refrigerant is condensed in the outdoor air heat exchanger 16a. The outside air fan 16d is an electric blower in which the rotation speed (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
 室外熱交換器16の詳細構成については、図5を用いて説明する。なお、図5における上下の各矢印は、室外熱交換器16を車両に搭載した状態における上下の各方向を示している。 The detailed configuration of the outdoor heat exchanger 16 will be described with reference to FIG. In addition, the up and down arrows in FIG. 5 indicate the up and down directions in a state where the outdoor heat exchanger 16 is mounted on the vehicle.
 室外熱交換器16は、レシーバタンク16bに加えて、外気熱交換部16aおよび過冷却熱交換部16cを形成するための複数のチューブ161、入口側タンク162、出口側タンク163等を有している。これらの室外熱交換器16の構成部材は、いずれも伝熱性に優れる金属(本実施形態では、アルミニウム)で形成されており、ろう付け接合により一体化されている。 The outdoor heat exchanger 16 includes, in addition to the receiver tank 16b, a plurality of tubes 161, an inlet side tank 162, an outlet side tank 163, and the like for forming the outdoor air heat exchange unit 16a and the supercooling heat exchange unit 16c. Yes. All of the constituent members of the outdoor heat exchanger 16 are formed of a metal (aluminum in the present embodiment) having excellent heat conductivity, and are integrated by brazing.
 チューブ161は、内部に冷媒を流通させる冷媒通路を形成するものである。チューブ161は、内部を流通する冷媒の流れ方向に垂直な断面が扁平形状に形成されている。本実施形態では、チューブ161として、内部に複数の冷媒通路が形成された多穴管を採用している。 The tube 161 forms a refrigerant passage through which the refrigerant flows. The tube 161 has a flat cross section perpendicular to the flow direction of the refrigerant flowing inside. In the present embodiment, a multi-hole tube in which a plurality of refrigerant passages are formed is adopted as the tube 161.
 複数のチューブ161は、一定の方向(本実施形態では、上下方向)に積層配置されている。より具体的には、複数のチューブ161は、隣り合うチューブ161の外表面の平坦面(すなわち、扁平面)同士が互いに平行となるように、一定の間隔を開けて上下方向に積層配置されている。 The plurality of tubes 161 are stacked in a certain direction (in this embodiment, the vertical direction). More specifically, the plurality of tubes 161 are stacked in a vertical direction with a certain interval so that the flat surfaces (that is, flat surfaces) of the outer surfaces of adjacent tubes 161 are parallel to each other. Yes.
 これにより、隣り合うチューブ161同士の間に、冷媒と熱交換する送風空気が流通する空気通路が形成される。つまり、室外熱交換器16では、複数のチューブ161が間隔を開けて積層配置されていることによって、冷媒と外気とを熱交換させる熱交換部が形成されている。 Thereby, an air passage is formed between the adjacent tubes 161 through which the blown air that exchanges heat with the refrigerant flows. That is, in the outdoor heat exchanger 16, a plurality of tubes 161 are stacked and arranged at intervals, thereby forming a heat exchange unit that exchanges heat between the refrigerant and the outside air.
 隣り合うチューブ161同士の間に形成される空気通路には、冷媒と送風空気との熱交換を促進するフィン164が配置されている。フィン164は、チューブ161等と同じ材質の薄板材を波状に曲げ成形することによって形成されたコルゲートフィンである。なお、図5では、図示の明確化のため、フィン164の一部のみを図示しているが、フィン164は熱交換部の全域に亘って配置されている。 Fins 164 that promote heat exchange between the refrigerant and the blown air are arranged in an air passage formed between adjacent tubes 161. The fin 164 is a corrugated fin formed by bending a thin plate material made of the same material as the tube 161 or the like into a wave shape. In FIG. 5, only a part of the fins 164 is shown for clarity of illustration, but the fins 164 are arranged over the entire heat exchange section.
 入口側タンク162および出口側タンク163は、複数のチューブ161の端部に接続されて、チューブ161を流通する冷媒の集合あるいは分配を行うものである。入口側タンク162および出口側タンク163は、いずれもチューブ161の積層方向(本実施形態では、上下方向)に延びる有底筒状部材で形成されている。 The inlet side tank 162 and the outlet side tank 163 are connected to the end portions of the plurality of tubes 161 to collect or distribute the refrigerant flowing through the tubes 161. Each of the inlet side tank 162 and the outlet side tank 163 is formed of a bottomed cylindrical member extending in the stacking direction of the tubes 161 (the vertical direction in this embodiment).
 入口側タンク162および出口側タンク163の内部には、内部空間を区画する複数のセパレータ165が配置されている。これにより、入口側タンク162の内部空間は、上方から順に第1~第3入口側空間162a、162b、162cに区画され、出口側タンク163の内部空間は、上方から順に第1、第2出口側空間163a、163bに区画されている。 In the inlet side tank 162 and the outlet side tank 163, a plurality of separators 165 for partitioning the internal space are arranged. As a result, the internal space of the inlet side tank 162 is partitioned into first to third inlet side spaces 162a, 162b, and 162c sequentially from above, and the internal space of the outlet side tank 163 is divided into the first and second outlets sequentially from above. It is divided into side spaces 163a and 163b.
 室外熱交換器16の冷媒入口16eは、入口側タンク162の第1入口側空間162aに連通するように設けられている。室外熱交換器16の冷媒出口16fは、出口側タンク163の第2出口側空間163bに連通するように設けられている。 The refrigerant inlet 16e of the outdoor heat exchanger 16 is provided so as to communicate with the first inlet side space 162a of the inlet side tank 162. The refrigerant outlet 16 f of the outdoor heat exchanger 16 is provided so as to communicate with the second outlet side space 163 b of the outlet side tank 163.
 レシーバタンク16bは、チューブ161の積層方向に延びる有底筒状部材で形成されている。レシーバタンク16bは、入口側タンク162に、ろう付け接合されている。 The receiver tank 16b is formed of a bottomed cylindrical member extending in the stacking direction of the tubes 161. The receiver tank 16b is brazed to the inlet side tank 162.
 レシーバタンク16bと入口側タンク162との接合部には、レシーバタンク16bの内部空間と第2入口側空間162bとを連通させる入口側連通路16i、およびレシーバタンク16bの内部空間と第3入口側空間162cとを連通させる出口側連通路16jが形成されている。入口側連通路16iは、出口側連通路16jよりも上方側に配置されている。 At the joint between the receiver tank 16b and the inlet side tank 162, an inlet side communication path 16i that connects the inner space of the receiver tank 16b and the second inlet side space 162b, and the inner space of the receiver tank 16b and the third inlet side An outlet side communication path 16j that communicates with the space 162c is formed. The inlet side communication path 16i is disposed above the outlet side communication path 16j.
 このため、本実施形態の室外熱交換器16では、冷媒入口16eから入口側タンク162の第1入口側空間162aへ流入した冷媒が、上方側のチューブ161群を流通して出口側タンク163の第1出口側空間163aへ流入する。そして、第1出口側空間163aへ流入した冷媒は、上下方向中間部の別のチューブ161群を流通して入口側タンク162の第2入口側空間162bへ流入する。 For this reason, in the outdoor heat exchanger 16 of the present embodiment, the refrigerant flowing from the refrigerant inlet 16e into the first inlet side space 162a of the inlet side tank 162 flows through the upper tube 161 group, and the outlet side tank 163 It flows into the first outlet side space 163a. Then, the refrigerant that has flowed into the first outlet side space 163a flows through another tube 161 group in the middle portion in the vertical direction and flows into the second inlet side space 162b of the inlet side tank 162.
 さらに、第2入口側空間162bへ流入した冷媒は、レシーバタンク16bを介して、入口側タンク162の第3入口側空間162cへ流入する。第3入口側空間162cへ流入した冷媒は、下方側のさらに別のチューブ161群を流通して出口側タンク163の第2出口側空間163bへ流入する。第2出口側空間163bへ流入した冷媒は、冷媒出口16fから流出する。 Furthermore, the refrigerant flowing into the second inlet side space 162b flows into the third inlet side space 162c of the inlet side tank 162 via the receiver tank 16b. The refrigerant that has flowed into the third inlet-side space 162c flows through another group of tubes 161 on the lower side and flows into the second outlet-side space 163b of the outlet-side tank 163. The refrigerant flowing into the second outlet side space 163b flows out from the refrigerant outlet 16f.
 以上の説明から明らかなように、室外熱交換器16では、レシーバタンク16bよりも冷媒流れ上流側に形成される熱交換部によって、外気熱交換部16aが構成されている。さらに、レシーバタンク16bよりも冷媒流れ下流側に形成される熱交換部によって、過冷却熱交換部16cが構成されている。 As is clear from the above description, in the outdoor heat exchanger 16, the outdoor air heat exchange section 16a is configured by a heat exchange section formed on the upstream side of the refrigerant flow with respect to the receiver tank 16b. Furthermore, the subcooling heat exchange part 16c is comprised by the heat exchange part formed in a refrigerant | coolant flow downstream rather than the receiver tank 16b.
 また、本実施形態の室外熱交換器16では、第1入口側空間162aと第1出口側空間163aとを接続する上方側のチューブ161群の本数が、第1出口側空間163aと第2入口側空間162bとを接続する中間部のチューブ161群の本数よりも多くなっている。従って、中間部のチューブ161群の合計通路断面積は、上方側のチューブ161群の合計通路断面積よりも小さくなる。 Further, in the outdoor heat exchanger 16 of the present embodiment, the number of the upper tubes 161 connecting the first inlet side space 162a and the first outlet side space 163a is equal to the number of the first outlet side space 163a and the second inlet. It is larger than the number of intermediate tube 161 groups connecting the side spaces 162b. Therefore, the total passage sectional area of the intermediate tube 161 group is smaller than the total passage sectional area of the upper tube 161 group.
 さらに、第1出口側空間163aと第2入口側空間162bとを接続する中間部のチューブ161群の本数が、第3入口側空間162cと第2出口側空間163bとを接続する下方側のチューブ161群の本数よりも多くなっている。従って、下方側のチューブ161群の合計通路断面積は、中間部のチューブ161群の合計通路断面積よりも小さくなる。 Further, the number of intermediate tubes 161 connecting the first outlet side space 163a and the second inlet side space 162b is the lower tube connecting the third inlet side space 162c and the second outlet side space 163b. It is more than the number of 161 groups. Therefore, the total passage sectional area of the lower tube 161 group is smaller than the total passage sectional area of the middle tube 161 group.
 つまり、本実施形態の室外熱交換器16の内部では、冷媒流れ方向に向かって、冷媒流路の通路断面積が縮小している。これによれば、サブクール型の凝縮器として用いた際に、凝縮による冷媒の体積縮小に伴って通路断面積を縮小させることができるので、冷媒の圧力損失を増大させることなく熱交換部を有効に活用することができる。 That is, in the outdoor heat exchanger 16 of the present embodiment, the passage cross-sectional area of the refrigerant flow path is reduced in the refrigerant flow direction. According to this, when used as a subcool type condenser, the cross-sectional area of the passage can be reduced as the volume of the refrigerant is reduced due to condensation, so that the heat exchanging portion is effective without increasing the pressure loss of the refrigerant. It can be used for.
 また、レシーバタンク16bには、気相冷媒出口16gおよび液相冷媒出口16hが形成されている。 Further, a gas phase refrigerant outlet 16g and a liquid phase refrigerant outlet 16h are formed in the receiver tank 16b.
 気相冷媒出口16gは、レシーバタンク16b内の気相冷媒を液相冷媒よりも優先的に流出させるために、レシーバタンク16bの上方側に形成されている。気相冷媒出口16gには、レシーバタンク16bから流出した冷媒を、圧縮機11の吸入側へ導くための迂回通路21が接続されている。 The gas-phase refrigerant outlet 16g is formed above the receiver tank 16b in order to cause the gas-phase refrigerant in the receiver tank 16b to flow out preferentially over the liquid-phase refrigerant. A bypass passage 21 for guiding the refrigerant flowing out from the receiver tank 16b to the suction side of the compressor 11 is connected to the gas phase refrigerant outlet 16g.
 迂回通路21は、レシーバタンク16bの気相冷媒出口16g側と第3三方継手13cの一方の流入口側とを接続する冷媒通路である。迂回通路21には、第3膨張弁14cが配置されている。第3膨張弁14cは、レシーバタンク16bから流出した冷媒を減圧させる冷媒減圧装置としての機能を果たすとともに、迂回通路21を流通する冷媒の流量を調整する流量調整装置である。 The bypass passage 21 is a refrigerant passage that connects the gas-phase refrigerant outlet 16g side of the receiver tank 16b and one inlet side of the third three-way joint 13c. A third expansion valve 14 c is disposed in the bypass passage 21. The third expansion valve 14 c is a flow rate adjusting device that functions as a refrigerant pressure reducing device that depressurizes the refrigerant flowing out from the receiver tank 16 b and adjusts the flow rate of the refrigerant flowing through the bypass passage 21.
 液相冷媒出口16hは、レシーバタンク16b内の冷凍機油が混入した液相冷媒を気相冷媒よりも優先的に流出させるために、レシーバタンク16bの底面に形成されている。液相冷媒出口16hには、冷凍機油が混入した液相冷媒を迂回通路21側へ導くオイル戻し通路21aが接続されている。オイル戻し通路21aとしては、比較的通路断面積の小さいキャピラリチューブを採用することができる。 The liquid-phase refrigerant outlet 16h is formed on the bottom surface of the receiver tank 16b so that the liquid-phase refrigerant mixed with the refrigerating machine oil in the receiver tank 16b flows out preferentially over the gas-phase refrigerant. An oil return passage 21a that guides the liquid-phase refrigerant mixed with refrigerating machine oil to the bypass passage 21 side is connected to the liquid-phase refrigerant outlet 16h. As the oil return passage 21a, a capillary tube having a relatively small passage cross-sectional area can be employed.
 室外熱交換器16の冷媒出口には、図1~図4に示すように、逆止弁17を介して、第2三方継手13bの他方の流入口側が接続されている。逆止弁17は、室外熱交換器16側から第2三方継手13b側(すなわち、第2膨張弁14b側)へ冷媒が流れることを許容し、第2三方継手13b側から室外熱交換器16側へ冷媒が流れることを禁止する機能を果たす。 As shown in FIGS. 1 to 4, the other inflow side of the second three-way joint 13 b is connected to the refrigerant outlet of the outdoor heat exchanger 16 through a check valve 17. The check valve 17 allows the refrigerant to flow from the outdoor heat exchanger 16 side to the second three-way joint 13b side (that is, the second expansion valve 14b side), and from the second three-way joint 13b side to the outdoor heat exchanger 16. It functions to prevent the refrigerant from flowing to the side.
 第2三方継手13bの流出口には、第2膨張弁14bの入口側が接続されている。第2膨張弁14bは、少なくとも冷房モード時に、室外熱交換器16から流出した冷媒を減圧させる第2減圧部である。第2膨張弁14bの出口には、室内蒸発器18の冷媒入口側が接続されている。 The inlet side of the second expansion valve 14b is connected to the outlet of the second three-way joint 13b. The second expansion valve 14b is a second decompression unit that decompresses the refrigerant flowing out of the outdoor heat exchanger 16 at least in the cooling mode. The refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the second expansion valve 14b.
 室内蒸発器18は、室内空調ユニット30のケーシング31内に配置されている。室内蒸発器18は、少なくとも冷房モード時に、第2膨張弁14bにて減圧された低圧冷媒と送風機32から送風された送風空気とを熱交換させて低圧冷媒を蒸発させる蒸発部である。そして、低圧冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する冷却用熱交換器である。 The indoor evaporator 18 is disposed in the casing 31 of the indoor air conditioning unit 30. The indoor evaporator 18 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed by the second expansion valve 14b and the blown air blown from the blower 32 at least in the cooling mode. And it is a heat exchanger for cooling which cools blowing air by evaporating a low-pressure refrigerant and exhibiting an endothermic effect.
 室内蒸発器18の冷媒出口には、蒸発圧力調整弁19の入口側が接続されている。蒸発圧力調整弁19は、室内蒸発器18の着霜を抑制するために、室内蒸発器18における冷媒蒸発圧力を、予め定めた基準圧力以上に維持する機能を果たす。これにより、蒸発圧力調整弁19は、室内蒸発器18における冷媒蒸発温度を、室内蒸発器18の着霜を抑制可能な基準温度(本実施形態では、1℃)以上に維持する機能を果たす。 The inlet side of the evaporation pressure adjusting valve 19 is connected to the refrigerant outlet of the indoor evaporator 18. The evaporation pressure regulating valve 19 functions to maintain the refrigerant evaporation pressure in the indoor evaporator 18 at a predetermined reference pressure or higher in order to suppress frost formation in the indoor evaporator 18. Thereby, the evaporation pressure regulating valve 19 fulfills the function of maintaining the refrigerant evaporation temperature in the indoor evaporator 18 at or above the reference temperature (1 ° C. in this embodiment) that can suppress frost formation in the indoor evaporator 18.
 より具体的には、蒸発圧力調整弁19は、室内蒸発器18出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構で構成されている。 More specifically, the evaporation pressure adjusting valve 19 is composed of a mechanical variable throttle mechanism that increases the valve opening as the refrigerant pressure on the outlet side of the indoor evaporator 18 increases.
 蒸発圧力調整弁19の出口には、第3三方継手13cの他方の流入口側が接続されている。第3三方継手13cの流出口には、アキュムレータ20の入口側が接続されている。アキュムレータ20は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離器である。アキュムレータ20の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The other inlet side of the third three-way joint 13c is connected to the outlet of the evaporation pressure adjusting valve 19. The inlet side of the accumulator 20 is connected to the outlet of the third three-way joint 13c. The accumulator 20 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess liquid-phase refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 20.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのものである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is for blowing out the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior. The indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
 室内空調ユニット30は、図1~図4に示すように、その外殻を形成するケーシング31内に形成された空気通路内に送風機32、室内蒸発器18、ヒータコア12b等を収容したものである。 As shown in FIGS. 1 to 4, the indoor air conditioning unit 30 includes a blower 32, an indoor evaporator 18, a heater core 12 b and the like in an air passage formed in a casing 31 that forms an outer shell thereof. .
 ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替装置33が配置されている。 The casing 31 forms an air passage for the blown air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength. An inside / outside air switching device 33 for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed on the most upstream side of the blast air flow in the casing 31.
 内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air, by the inside / outside air switching door, The introduction ratio with the introduction air volume is changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
 内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機32は、空調制御装置40から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 32 for blowing the air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the blown air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan with an electric motor. The number of rotations (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the air conditioning control device 40.
 送風機32の送風空気流れ下流側には、室内蒸発器18とヒータコア12bが、送風空気流れに対して、この順に配置されている。つまり、室内蒸発器18は、ヒータコア12bよりも、送風空気流れ上流側に配置されている。 On the downstream side of the blower air flow of the blower 32, the indoor evaporator 18 and the heater core 12b are arranged in this order with respect to the blown air flow. That is, the indoor evaporator 18 is arrange | positioned rather than the heater core 12b at the blowing air flow upstream.
 ケーシング31内には、室内蒸発器18通過後の送風空気を、ヒータコア12bを迂回して流すバイパス通路35が設けられている。ケーシング31内の室内蒸発器18の送風空気流れ下流側であって、かつ、ヒータコア12bの送風空気流れ上流側には、エアミックスドア34が配置されている。 In the casing 31, there is provided a bypass passage 35 through which the blown air after passing through the indoor evaporator 18 flows around the heater core 12b. An air mix door 34 is arranged on the downstream side of the blower air flow of the indoor evaporator 18 in the casing 31 and on the upstream side of the blower air flow of the heater core 12b.
 エアミックスドア34は、室内蒸発器18通過後の送風空気のうち、ヒータコア12b側を通過させる送風空気の風量とバイパス通路35を通過させる送風空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The air mix door 34 is an air volume ratio adjustment unit that adjusts an air volume ratio between the air volume of the blown air that passes through the heater core 12 b and the air volume of the blown air that passes through the bypass passage 35 among the blown air after passing through the indoor evaporator 18. It is. The air mix door 34 is driven by an electric actuator for the air mix door. The operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
 ヒータコア12bおよびバイパス通路35の送風空気流れ下流側には、ヒータコア12bにて冷媒と熱交換して加熱された送風空気とバイパス通路35を通過して加熱されていない送風空気とを混合させる混合空間が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間にて混合された送風空気(すなわち、空調風)を、空調対象空間である車室内へ吹き出すための開口穴が配置されている。 On the downstream side of the blower air flow of the heater core 12b and the bypass passage 35, a mixing space for mixing the blown air heated by exchanging heat with the refrigerant in the heater core 12b and the blown air not heated through the bypass passage 35 is mixed. Is provided. Furthermore, an opening hole for blowing the blown air mixed in the mixing space (that is, conditioned air) into the vehicle interior, which is the air-conditioning target space, is disposed in the most downstream portion of the blast air flow of the casing 31.
 この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As the opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (all not shown) are provided. The face opening hole is an opening hole for blowing conditioned air toward the upper body of the passenger in the vehicle interior. The foot opening hole is an opening hole for blowing conditioned air toward the feet of the passenger. The defroster opening hole is an opening hole for blowing out conditioned air toward the inner side surface of the vehicle front window glass.
 これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening hole, foot opening hole, and defroster opening hole are respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet (not shown) through a duct that forms an air passage. )It is connected to the.
 従って、エアミックスドア34が、ヒータコア12bを通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整されることになる。 Therefore, the temperature of the conditioned air mixed in the mixing space is adjusted by the air mix door 34 adjusting the air volume ratio between the air volume passing through the heater core 12b and the air volume passing through the cold air bypass passage 35. Thereby, the temperature of the blast air (air conditioned air) blown out from each outlet into the vehicle compartment is adjusted.
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 Further, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively. A defroster door (both not shown) for adjusting the opening area of the hole is disposed.
 これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替装置を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置40から出力される制御信号によって、その作動が制御される。 These face doors, foot doors, and defroster doors constitute a blower outlet mode switching device that switches the blower outlet mode, and are linked to and linked to an electric actuator for driving the blower outlet mode door via a link mechanism or the like. And rotated. The operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode switched by the outlet mode switching device include a face mode, a bi-level mode, and a foot mode.
 フェイスモードは、フェイス吹出口を全開としてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開とするとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。 The face mode is a blowout mode that blows out air from the face blowout toward the upper body of the passenger in the passenger compartment with the face blowout opening fully open. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment. The foot mode is a blowout port mode in which the foot blowout port is fully opened and the defroster blowout port is opened by a small opening so that air is mainly blown out from the foot blowout port.
 さらに、乗員が操作パネル50に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開としてデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。 Furthermore, when the occupant manually operates a blow mode switching switch provided on the operation panel 50, the defroster mode can be set, in which the defroster blowout port is fully opened and air is blown from the defroster blowout port to the inner surface of the vehicle windshield.
 次に、本実施形態の電気制御部の概要について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、12c、14a、14b、14c、15、32、その他の各種電動アクチュエータの作動を制御する。 Next, an outline of the electric control unit of this embodiment will be described. The air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and various control target devices 11, 12c, 14a, 14b, 14c, 15, 32, and other various types connected to the output side. Controls the operation of the electric actuator.
 空調制御装置40の入力側には、図6のブロック図に示すように、内気温センサ41、外気温センサ42、日射センサ43、水温センサ44、吐出温度センサ45a、室外器温度センサ45b、蒸発器温度センサ45c、吸入温度センサ45d、吐出圧力センサ46a、タンク圧力センサ46b、室外器圧力センサ46c、吸入圧力センサ46d、空調風温度センサ47等が接続されている。そして、空調制御装置40には、これらのセンサ群の検出信号が入力される。 On the input side of the air conditioning controller 40, as shown in the block diagram of FIG. 6, the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the water temperature sensor 44, the discharge temperature sensor 45a, the outdoor unit temperature sensor 45b, and the evaporation A temperature sensor 45c, a suction temperature sensor 45d, a discharge pressure sensor 46a, a tank pressure sensor 46b, an outdoor unit pressure sensor 46c, a suction pressure sensor 46d, an air conditioning air temperature sensor 47, and the like are connected. And the detection signal of these sensor groups is input into the air-conditioning control apparatus 40. FIG.
 内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。水温センサ44は、水-冷媒熱交換器12aの水通路から流出してヒータコア12bへ流入する熱媒体の熱媒体温度Twを検出する熱媒体温度検出部である。 The inside air temperature sensor 41 is an inside air temperature detecting unit that detects a vehicle interior temperature (inside air temperature) Tr. The outside air temperature sensor 42 is an outside air temperature detecting unit that detects a vehicle compartment outside temperature (outside air temperature) Tam. The solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated into the vehicle interior. The water temperature sensor 44 is a heat medium temperature detector that detects the heat medium temperature Tw of the heat medium that flows out of the water passage of the water-refrigerant heat exchanger 12a and flows into the heater core 12b.
 吐出温度センサ45aは、圧縮機11から吐出された冷媒の吐出温度Tdを検出する吐出温度検出部である。室外器温度センサ45bは、室外熱交換器16(具体的には、過冷却熱交換部16c)から流出した冷媒の室外器出口温度Toutを検出する室外器出口温度検出部である。蒸発器温度センサ45cは、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。吸入温度センサ45dは、圧縮機11へ吸入される冷媒の吸入温度Tsを検出する吸入温度検出部である。 The discharge temperature sensor 45 a is a discharge temperature detection unit that detects the discharge temperature Td of the refrigerant discharged from the compressor 11. The outdoor unit temperature sensor 45b is an outdoor unit outlet temperature detection unit that detects the outdoor unit outlet temperature Tout of the refrigerant that has flowed out of the outdoor heat exchanger 16 (specifically, the supercooling heat exchange unit 16c). The evaporator temperature sensor 45c is an evaporator temperature detector that detects the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18. The suction temperature sensor 45 d is a suction temperature detection unit that detects the suction temperature Ts of the refrigerant sucked into the compressor 11.
 吐出圧力センサ46aは、圧縮機11の吐出口側から第1膨張弁14aの入口側へ至る冷媒流路を流通する冷媒の吐出圧力Pdを検出する吐出圧力検出部である。タンク圧力センサ46bは、レシーバタンク16b内の冷媒のタンク内圧力Ptkを検出するタンク圧力検出部である。室外器圧力センサ46cは、室外熱交換器16(具体的には、過冷却熱交換部16c)から流出した冷媒の室外器出口圧力Poutを検出する室外器出口温度検出部である。吸入圧力センサ46dは、圧縮機11へ吸入される冷媒の吸入圧力Psを検出する吸入圧力検出部である。 The discharge pressure sensor 46a is a discharge pressure detection unit that detects the discharge pressure Pd of the refrigerant flowing through the refrigerant flow path from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 14a. The tank pressure sensor 46b is a tank pressure detection unit that detects the tank internal pressure Ptk of the refrigerant in the receiver tank 16b. The outdoor unit pressure sensor 46c is an outdoor unit outlet temperature detection unit that detects the outdoor unit outlet pressure Pout of the refrigerant that has flowed out of the outdoor heat exchanger 16 (specifically, the supercooling heat exchange unit 16c). The suction pressure sensor 46 d is a suction pressure detection unit that detects the suction pressure Ps of the refrigerant sucked into the compressor 11.
 空調風温度センサ47は、混合空間から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。 The air-conditioning air temperature sensor 47 is an air-conditioning air temperature detector that detects the temperature TAV of the air blown from the mixed space into the passenger compartment.
 さらに、空調制御装置40の入力側には、図6に示すように、車室内前部の計器盤付近に配置された操作パネル50が接続され、この操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。 Further, as shown in FIG. 6, an operation panel 50 disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 are connected. The operation signal is input.
 操作パネル50に設けられた各種操作スイッチとしては、具体的に、車両用空調装置1の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。 As various operation switches provided on the operation panel 50, specifically, an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner 1, a cooling switch for requesting cooling of the vehicle interior, There are an air volume setting switch for manually setting the air volume, a temperature setting switch for setting the target temperature Tset in the passenger compartment, and a blow mode switching switch for manually setting the blow mode.
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The air-conditioning control device 40 according to the present embodiment is configured such that a control unit that controls various control target devices connected to the output side thereof is integrally configured. However, the configuration controls the operation of each control target device. (Hardware and Software) constitutes a control unit that controls the operation of each control target device.
 例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、吐出能力制御部40aを構成している。また、流量調整装置である第3膨張弁14cの作動を制御する構成は、流量調整制御部40bを構成している。 For example, in the air-conditioning control device 40, the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotational speed of the compressor 11) constitutes a discharge capacity control unit 40a. Moreover, the structure which controls the action | operation of the 3rd expansion valve 14c which is a flow volume adjustment apparatus comprises the flow volume adjustment control part 40b.
 次に、上記構成における本実施形態の作動について説明する。上記の如く、本実施形態の冷凍サイクル装置10は、車室内の空調を行うために、冷房モード、第1~第3除湿暖房モード、暖房モードの運転を切り替えることができる。これらの運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)された際に実行される。 Next, the operation of this embodiment in the above configuration will be described. As described above, the refrigeration cycle apparatus 10 according to the present embodiment can switch between the cooling mode, the first to third dehumidifying heating modes, and the heating mode in order to perform air conditioning in the vehicle interior. Switching between these operation modes is performed by executing an air conditioning control program. The air conditioning control program is executed when the auto switch of the operation panel 50 is turned on (ON).
 より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内の目標温度(車室内設定温度)、Trは内気温センサ41によって検出された内気温、Tamは外気温センサ42によって検出された外気温、Asは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
More specifically, in the main routine of the air conditioning control program, the detection signals of the above-described sensor group for air conditioning control and operation signals from various air conditioning operation switches are read. And based on the value of the read detection signal and operation signal, the target blowing temperature TAO which is the target temperature of the blowing air which blows off into the vehicle interior is calculated based on the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F1)
Tset is a target temperature in the vehicle interior (set temperature in the vehicle interior) set by the temperature setting switch, Tr is the internal air temperature detected by the internal air temperature sensor 41, Tam is the external air temperature detected by the external air temperature sensor 42, As Is the amount of solar radiation detected by the solar radiation sensor 43. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 そして、操作パネル50の冷房スイッチが投入された状態で、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、運転モードが冷房モードに切り替えられる。 Then, when the cooling switch of the operation panel 50 is turned on and the target blowing temperature TAO is lower than the predetermined cooling reference temperature α, the operation mode is switched to the cooling mode.
 また、操作パネル50の冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっている場合には、運転モードが第1除湿暖房モードに切り替えられる。 In addition, in a state where the cooling switch of the operation panel 50 is turned on, the target blowing temperature TAO is equal to or higher than the cooling reference temperature α, and the outside air temperature Tam is higher than the predetermined dehumidifying heating reference temperature β. In the case, the operation mode is switched to the first dehumidifying and heating mode.
 また、第1除湿暖房モードでの運転中に、過冷却熱交換部16cにおける圧力損失ΔPが予め定めた第1基準圧力損失KΔP1以上となった際には、運転モードが第2除湿暖房モードに切り替えられる。圧力損失ΔPとしては、タンク圧力センサ46bによって検出されたタンク内圧力Ptkから室外器圧力センサ46cによって検出された室外器出口圧力Poutを減算した値を用いることができる。 Further, during operation in the first dehumidifying and heating mode, when the pressure loss ΔP in the supercooling heat exchanging portion 16c becomes equal to or higher than a predetermined first reference pressure loss KΔP1, the operation mode is changed to the second dehumidifying and heating mode. Can be switched. As the pressure loss ΔP, a value obtained by subtracting the outdoor unit outlet pressure Pout detected by the outdoor unit pressure sensor 46c from the tank internal pressure Ptk detected by the tank pressure sensor 46b can be used.
 ここで、第1基準圧力損失KΔP1は、通常運転時にレシーバタンク16bから過冷却熱交換部16cへ流入する冷媒が気液二相冷媒あるいは気相冷媒となっている際に生じる圧力損失の最低値に相当する値に設定されている。このため、圧力損失ΔPが第1基準圧力損失KΔP1以上となっている際には、過冷却熱交換部16cへ流入する冷媒が気液二相冷媒あるいは気相冷媒となっている。 Here, the first reference pressure loss KΔP1 is the lowest value of the pressure loss that occurs when the refrigerant flowing from the receiver tank 16b to the supercooling heat exchange unit 16c during the normal operation is a gas-liquid two-phase refrigerant or a gas-phase refrigerant. Is set to a value corresponding to. For this reason, when the pressure loss ΔP is equal to or greater than the first reference pressure loss KΔP1, the refrigerant flowing into the supercooling heat exchange unit 16c is a gas-liquid two-phase refrigerant or a gas-phase refrigerant.
 また、操作パネル50の冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、運転モードが第3除湿暖房モードに切り替えられる。 In the state where the cooling switch of the operation panel 50 is turned on, when the target blowing temperature TAO is equal to or higher than the cooling reference temperature α and the outside air temperature Tam is equal to or lower than the dehumidifying heating reference temperature β, The operation mode is switched to the third dehumidifying and heating mode.
 また、操作パネル50の冷房スイッチが投入されていない場合には、運転モードが暖房モードに切り替えられる。 Further, when the cooling switch of the operation panel 50 is not turned on, the operation mode is switched to the heating mode.
 このため、冷房モードは、主に夏季のように比較的外気温が高い場合に実行される。第1~第3除湿暖房モードは、主に春季あるいは秋季に実行される。暖房モードは、主に冬季の低外気温時に実行される。以下に各運転モードにおける作動を説明する。 For this reason, the cooling mode is executed mainly when the outside air temperature is relatively high, such as in summer. The first to third dehumidifying heating modes are executed mainly in spring or autumn. The heating mode is executed mainly at the low outdoor temperature in winter. The operation in each operation mode will be described below.
 (a)冷房モード
 冷房モードでは、空調制御装置40が、第1膨張弁14aを全開状態とし、第2膨張弁14bを減圧作用を発揮する絞り状態とし、第3膨張弁14cを全閉状態とし、開閉弁15を閉じる。さらに、空調制御装置40は、水ポンプ12cを停止させる。
(A) Cooling mode In the cooling mode, the air-conditioning control device 40 sets the first expansion valve 14a to a fully open state, the second expansion valve 14b to a throttled state that exerts a pressure reducing action, and sets the third expansion valve 14c to a fully closed state. The on-off valve 15 is closed. Furthermore, the air conditioning control device 40 stops the water pump 12c.
 これにより、冷房モードの冷凍サイクル装置10では、図1の太実線矢印に示すように、圧縮機11(→水-冷媒熱交換器12a→第1膨張弁14a)→室外熱交換器16の外気熱交換部16a→室外熱交換器16のレシーバタンク16b→室外熱交換器16の過冷却熱交換部16c→逆止弁17→第2膨張弁14b→室内蒸発器18(→蒸発圧力調整弁19→アキュムレータ20)→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Thereby, in the refrigeration cycle apparatus 10 in the cooling mode, as indicated by the thick solid line arrow in FIG. 1, the compressor 11 (→ water-refrigerant heat exchanger 12a → first expansion valve 14a) → outside air of the outdoor heat exchanger 16 Heat exchanger 16a → Receiver tank 16b of outdoor heat exchanger 16 → Supercooling heat exchanger 16c of outdoor heat exchanger 16 → Check valve 17 → Second expansion valve 14b → Indoor evaporator 18 (→ Evaporation pressure adjusting valve 19 → Accumulator 20) → Vapor compression type refrigeration cycle in which refrigerant circulates in the order of compressor 11.
 このサイクル構成で、空調制御装置40は、目標吹出温度TAO、およびセンサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 In this cycle configuration, the air conditioning control device 40 determines the operating states of the various control target devices (control signals to be output to the various control target devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータへ出力される制御信号については次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器18の目標蒸発器吹出温度TEOを決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 18 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
 具体的には、この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器吹出温度TEOが低下するように決定する。さらに、目標蒸発器吹出温度TEOは、室内蒸発器18の着霜を抑制可能に決定された基準着霜防止温度Tdef(例えば、1℃)以上となるように決定される。 Specifically, in this control map, the target evaporator blowout temperature TEO is determined to decrease as the target blowout temperature TAO decreases. Furthermore, the target evaporator outlet temperature TEO is determined to be equal to or higher than a reference frost prevention temperature Tdef (for example, 1 ° C.) determined to be able to suppress frost formation in the indoor evaporator 18.
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサ45cによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて、蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Then, based on the deviation between the target evaporator outlet temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 45c, the evaporator temperature Tefin approaches the target evaporator outlet temperature TEO using a feedback control method. Thus, the control signal output to the electric motor of the compressor 11 is determined.
 また、第2膨張弁14bへ出力される制御信号については、吸入温度センサ45dによって検出された吸入温度Tsおよび吸入圧力センサ46dによって検出された吸入圧力Psから算定された圧縮機11吸入冷媒の過熱度SHが、予め定めた基準過熱度KSH(本実施形態では、5℃)に近づくように決定される。 As for the control signal output to the second expansion valve 14b, the compressor 11 intake refrigerant is overheated from the intake temperature Ts detected by the intake temperature sensor 45d and the intake pressure Ps detected by the intake pressure sensor 46d. The degree SH is determined so as to approach a predetermined reference superheat degree KSH (5 ° C. in the present embodiment).
 また、外気ファン16dへ出力される制御電圧については、外気ファン16dが運転モードに応じて予め定めた送風能力を発揮するように決定される。 Further, the control voltage output to the outside air fan 16d is determined so that the outside air fan 16d exhibits a predetermined blowing capacity according to the operation mode.
 また、送風機32へ出力される制御電圧については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、この制御マップでは、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で送風機32の送風量を最大風量とする。 Further, the control voltage output to the blower 32 is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO. Specifically, in this control map, the air volume of the blower 32 is set to the maximum air volume in the extremely low temperature region (maximum cooling region) and the extremely high temperature region (maximum heating region) of the target blowing temperature TAO.
 さらに、目標吹出温度TAOが極低温域から中間温度域に向かって上昇するに伴って、目標吹出温度TAOの上昇に応じて送風量を減少させ、目標吹出温度TAOが極高温域から中間温度域に向かって低下するに伴って、目標吹出温度TAOの低下に応じて送風量を減少させる。また、目標吹出温度TAOが所定の中間温度域内に入ると、送風量を最小風量とする。 Further, as the target blowing temperature TAO increases from the extremely low temperature range toward the intermediate temperature range, the air blowing amount is decreased according to the increase in the target blowing temperature TAO, and the target blowing temperature TAO is changed from the extremely high temperature range to the intermediate temperature range. As the air pressure decreases, the air flow rate is decreased according to the decrease in the target air temperature TAO. In addition, when the target blowing temperature TAO enters a predetermined intermediate temperature range, the blowing amount is set as the minimum blowing amount.
 また、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を全開とし、ヒータコア12b側の通風路が全閉となるように決定される。 Also, the control signal output to the electric actuator for driving the air mix door is determined so that the air mix door 34 fully opens the cold air bypass passage 35 and the air passage on the heater core 12b side is fully closed.
 そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control signals determined as described above are output to various control target devices. After that, until the operation stop of the vehicle air conditioner 1 is requested, the above detection signal and operation signal are read at every predetermined control cycle → the target blowing temperature TAO is calculated → the operating states of various control target devices are determined → control Control routines such as voltage and control signal output are repeated. Such a control routine is repeated in the other operation modes.
 従って、冷房モードの冷凍サイクル装置10では、図7のモリエル線図に示すように、圧縮機11から吐出された冷媒(図7のa7点)が、水-冷媒熱交換器12aの冷媒通路へ流入する。冷房モードでは、水ポンプ12cが停止しているので、水-冷媒熱交換器12aの冷媒通路へ流入した冷媒は殆ど放熱することなく、水-冷媒熱交換器12aから流出する。 Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, as shown in the Mollier diagram of FIG. 7, the refrigerant discharged from the compressor 11 (point a7 in FIG. 7) flows to the refrigerant passage of the water-refrigerant heat exchanger 12a. Inflow. In the cooling mode, since the water pump 12c is stopped, the refrigerant that has flowed into the refrigerant passage of the water-refrigerant heat exchanger 12a flows out of the water-refrigerant heat exchanger 12a with little heat dissipation.
 水-冷媒熱交換器12aの冷媒通路から流出した冷媒は、全開状態となっている第1膨張弁14aを介して、室外熱交換器16の外気熱交換部16aへ流入する。室外熱交換器16の外気熱交換部16aへ流入した冷媒は、外気ファン16dから送風された外気と熱交換し、放熱して凝縮する(図7のa7点→d7点)。 The refrigerant that has flowed out of the refrigerant passage of the water-refrigerant heat exchanger 12a flows into the outdoor air heat exchanger 16a of the outdoor heat exchanger 16 through the first expansion valve 14a that is fully open. The refrigerant flowing into the outdoor heat exchanger 16a of the outdoor heat exchanger 16 exchanges heat with the external air blown from the outdoor air fan 16d, dissipates heat, and condenses (point a7 → d7 in FIG. 7).
 外気熱交換部16aにて凝縮した冷媒は、レシーバタンク16bへ流入して気液分離される。冷房モードでは、第3膨張弁14cが全閉状態となっているので、レシーバタンク16bの下方側に蓄えられた液相冷媒が、出口側連通路16jを介して過冷却熱交換部16cへ流入する。過冷却熱交換部16cへ流入した液相冷媒は、外気ファン16dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図7のd7点→e7点)。 The refrigerant condensed in the outside air heat exchanger 16a flows into the receiver tank 16b and is separated into gas and liquid. In the cooling mode, since the third expansion valve 14c is fully closed, the liquid-phase refrigerant stored in the lower side of the receiver tank 16b flows into the supercooling heat exchange unit 16c through the outlet side communication passage 16j. To do. The liquid phase refrigerant flowing into the supercooling heat exchange unit 16c exchanges heat with the outside air blown from the outside air fan 16d, and further dissipates heat to become a supercooled liquid phase refrigerant (point d7 → e7 in FIG. 7).
 室外熱交換器16の過冷却熱交換部16cから流出した冷媒は、逆止弁17を介して、第2膨張弁14bへ流入して減圧される(図7のe7点→f7点)。この際、第2膨張弁14bの絞り開度は、圧縮機11吸入冷媒(図7のg7点)の過熱度SHが、基準過熱度KSHに近づくように調整される。第2膨張弁14bにて減圧された低圧冷媒は、室内蒸発器18へ流入する。 The refrigerant that has flowed out of the subcooling heat exchanger 16c of the outdoor heat exchanger 16 flows into the second expansion valve 14b through the check valve 17 and is depressurized (point e7 → point f7 in FIG. 7). At this time, the throttle opening degree of the second expansion valve 14b is adjusted so that the superheat degree SH of the refrigerant sucked by the compressor 11 (point g7 in FIG. 7) approaches the reference superheat degree KSH. The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 18.
 室内蒸発器18へ流入した低圧冷媒は、送風機32から送風された送風空気から吸熱して蒸発する(図7のf7点→g7点)。これにより、送風空気が冷却される。室内蒸発器18から流出した冷媒は、蒸発圧力調整弁19、およびアキュムレータ20を介して、圧縮機11に吸入される。圧縮機11に吸入された冷媒は再び圧縮される(図7のg7点→a7点)。 The low-pressure refrigerant flowing into the indoor evaporator 18 absorbs heat from the blown air blown from the blower 32 and evaporates (f7 point → g7 point in FIG. 7). Thereby, blowing air is cooled. The refrigerant that has flowed out of the indoor evaporator 18 is sucked into the compressor 11 via the evaporation pressure adjusting valve 19 and the accumulator 20. The refrigerant sucked into the compressor 11 is compressed again (point g7 → point a7 in FIG. 7).
 以上の如く、冷房モードの冷凍サイクル装置10では、室外熱交換器16を放熱器として機能させ、室内蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。そして、室内蒸発器18にて冷却された送風空気を車室内に吹き出すことによって、車室内の冷房を実現することができる。 As described above, in the refrigeration cycle apparatus 10 in the cooling mode, a refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as a radiator and the indoor evaporator 18 functions as an evaporator. And the ventilation of a vehicle interior is realizable by blowing the ventilation air cooled with the indoor evaporator 18 in the vehicle interior.
 ここで、冷房モードは、外気熱交換部16aにて冷媒を凝縮させる運転条件時である。さらに、冷房モードでは、送風空気を冷却する運転モードの冷媒回路として、外気熱交換部16aから流出した高圧液相冷媒を、サイクルの余剰冷媒としてレシーバタンク16bに蓄えるレシーバサイクルを構成することができる。 Here, the cooling mode is an operating condition in which the refrigerant is condensed in the outside air heat exchange section 16a. Furthermore, in the cooling mode, as a refrigerant circuit in the operation mode for cooling the blown air, a receiver cycle that stores the high-pressure liquid-phase refrigerant that has flowed out of the outside air heat exchange unit 16a in the receiver tank 16b as a surplus refrigerant in the cycle can be configured. .
 従って、室内蒸発器18にて冷媒を完全に蒸発させることができ、アキュムレータ20に余剰冷媒を蓄えるアキュムレータサイクルを構成する場合と比較して、送風空気を充分に冷却することができる。 Therefore, the refrigerant can be completely evaporated by the indoor evaporator 18, and the blown air can be sufficiently cooled as compared with the case where an accumulator cycle in which the surplus refrigerant is stored in the accumulator 20 is configured.
 また、冷房モードの冷媒回路では、レシーバタンク16bから流出した高圧液相冷媒を過冷却熱交換部16cにて過冷却している。従って、いわゆるサブクール型の凝縮器を採用した場合と同様に、室内蒸発器18の出口側冷媒のエンタルピと入口側冷媒のエンタルピとのエンタルピ差を拡大させて、サイクルの成績係数(COP)を向上させることができる。 In the cooling mode refrigerant circuit, the high-pressure liquid-phase refrigerant flowing out from the receiver tank 16b is supercooled by the supercooling heat exchange unit 16c. Accordingly, the coefficient of performance (COP) of the cycle is improved by expanding the enthalpy difference between the enthalpy of the outlet side refrigerant and the enthalpy of the inlet side refrigerant as in the case where a so-called subcool type condenser is employed. Can be made.
 (b)第1除湿暖房モード
 第1除湿暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とし、第2膨張弁14bを絞り状態とし、第3膨張弁14cを全閉状態とし、開閉弁15を閉じる。さらに、空調制御装置40は、予め定めた基準圧送能力を発揮するように水ポンプ12cを作動させる。これにより、第1除湿暖房モードの熱媒体循環回路12では、図1の太破線矢印に示すように、熱媒体が循環する。
(B) 1st dehumidification heating mode In 1st dehumidification heating mode, the air-conditioning control apparatus 40 makes the 1st expansion valve 14a a throttle state, makes the 2nd expansion valve 14b a throttle state, and makes the 3rd expansion valve 14c a fully closed state. Then, the on-off valve 15 is closed. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. Thereby, in the heat medium circulation circuit 12 in the first dehumidifying and heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
 さらに、第1除湿暖房モードの冷凍サイクル装置10では、図1の太実線矢印に示すように、圧縮機11→水-冷媒熱交換器12a→第1膨張弁14a→室外熱交換器16の外気熱交換部16a→室外熱交換器16のレシーバタンク16b→室外熱交換器16の過冷却熱交換部16c→逆止弁17→第2膨張弁14b→室内蒸発器18(→蒸発圧力調整弁19→アキュムレータ20)→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Further, in the refrigeration cycle apparatus 10 in the first dehumidifying and heating mode, as indicated by the thick solid line arrow in FIG. 1, the outside air of the compressor 11 → the water-refrigerant heat exchanger 12 a → the first expansion valve 14 a → the outdoor heat exchanger 16. Heat exchanger 16a → Receiver tank 16b of outdoor heat exchanger 16 → Supercooling heat exchanger 16c of outdoor heat exchanger 16 → Check valve 17 → Second expansion valve 14b → Indoor evaporator 18 (→ Evaporation pressure adjusting valve 19 → Accumulator 20) → Vapor compression type refrigeration cycle in which refrigerant circulates in the order of compressor 11.
 このサイクル構成で、空調制御装置40は、冷房モードと同様に、圧縮機11、外気ファン16d、送風機32等の作動を制御する。 In this cycle configuration, the air conditioning control device 40 controls the operations of the compressor 11, the outside air fan 16d, the blower 32, and the like, similarly to the cooling mode.
 また、第1膨張弁14aおよび第2膨張弁14bへ出力される制御信号については、吸入冷媒の過熱度SHおよび目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。 For the control signals output to the first expansion valve 14a and the second expansion valve 14b, refer to the control map previously stored in the air conditioning control device 40 based on the superheat degree SH of the suction refrigerant and the target blowing temperature TAO. To be determined.
 この制御マップでは、圧縮機11吸入冷媒の過熱度SHが、予め定めた基準過熱度KSHに近づくように、第1膨張弁14aおよび第2膨張弁14bの合計減圧量を決定する。そして、目標吹出温度TAOの上昇に伴って、第1膨張弁14aの絞り開度を減少させ、第2膨張弁14bの絞り開度を増加させるように、第1膨張弁14aおよび第2膨張弁14bへ出力される制御信号が決定される。 In this control map, the total pressure reduction amount of the first expansion valve 14a and the second expansion valve 14b is determined so that the superheat degree SH of the refrigerant sucked by the compressor 11 approaches a predetermined reference superheat degree KSH. The first expansion valve 14a and the second expansion valve are so configured that the throttle opening of the first expansion valve 14a is decreased and the throttle opening of the second expansion valve 14b is increased as the target blowing temperature TAO increases. The control signal output to 14b is determined.
 また、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を全閉とし、ヒータコア12b側の通風路を全開とするように決定される。 Also, the control signal output to the electric actuator for driving the air mix door is determined so that the air mix door 34 fully closes the cold air bypass passage 35 and fully opens the air passage on the heater core 12b side.
 従って、第1除湿暖房モードの冷凍サイクル装置10では、図8のモリエル線図に示すように、冷媒の状態が変化する。なお、図8では、冷房モードで説明した図7のモリエル線図とサイクル構成上同等の箇所の冷媒の状態を、図7と同一の符号(アルファベット)で示し、添字(数字)のみを変更している。このことは、以下で説明する他のモリエル線図においても同様である。 Therefore, in the refrigeration cycle apparatus 10 in the first dehumidifying and heating mode, the state of the refrigerant changes as shown in the Mollier diagram of FIG. In FIG. 8, the state of the refrigerant at the same location in the cycle configuration as the Mollier diagram of FIG. 7 described in the cooling mode is indicated by the same reference numeral (alphabet) as in FIG. 7, and only the suffix (number) is changed. ing. The same applies to other Mollier diagrams described below.
 以上の如く、第1除湿暖房モードの冷凍サイクル装置10では、圧縮機11から吐出された冷媒(図8のa8点)が、水-冷媒熱交換器12aの冷媒通路へ流入する。水-冷媒熱交換器12aへ流入した冷媒は、水-冷媒熱交換器12aの水通路を流通する熱媒体と熱交換して放熱する(図8のa8点→b8点)。これにより、熱媒体循環回路12を循環する熱媒体が加熱される。 As described above, in the refrigeration cycle apparatus 10 in the first dehumidifying and heating mode, the refrigerant discharged from the compressor 11 (point a8 in FIG. 8) flows into the refrigerant passage of the water-refrigerant heat exchanger 12a. The refrigerant flowing into the water-refrigerant heat exchanger 12a exchanges heat with the heat medium flowing through the water passage of the water-refrigerant heat exchanger 12a to radiate heat (point a8 → b8 in FIG. 8). As a result, the heat medium circulating in the heat medium circuit 12 is heated.
 水-冷媒熱交換器12aにて加熱された熱媒体は、ヒータコア12bへ流入する。第1除湿暖房モードでは、エアミックスドア34がヒータコア12b側の通風路を開いているので、ヒータコア12bへ流入した熱媒体と室内蒸発器18通過後の送風空気が熱交換する。これにより、室内蒸発器18にて冷却されて除湿された送風空気の温度が、目標吹出温度TAOに近づくように再加熱される。 The heat medium heated by the water-refrigerant heat exchanger 12a flows into the heater core 12b. In the first dehumidifying and heating mode, since the air mix door 34 opens the ventilation path on the heater core 12b side, the heat medium flowing into the heater core 12b and the blown air after passing through the indoor evaporator 18 exchange heat. Thereby, the temperature of the blown air cooled and dehumidified by the indoor evaporator 18 is reheated so as to approach the target blowing temperature TAO.
 水-冷媒熱交換器12aから流出した冷媒は、第1膨張弁14aへ流入して中間圧冷媒となるまで減圧される(図8のb8点→c8点)。第1膨張弁14aにて減圧された中間圧冷媒は、室外熱交換器16の外気熱交換部16aへ流入する。 The refrigerant flowing out of the water-refrigerant heat exchanger 12a flows into the first expansion valve 14a and is depressurized until it becomes an intermediate pressure refrigerant (b8 point → c8 point in FIG. 8). The intermediate pressure refrigerant decompressed by the first expansion valve 14 a flows into the outdoor air heat exchange unit 16 a of the outdoor heat exchanger 16.
 ここで、第1除湿暖房モードでは、中間圧冷媒の温度が外気温Tamよりも高くなる。その理由は、中間圧冷媒の温度が外気温Tamよりも低くなっていると、運転モードが第2除湿暖房モードへ切り替えられるからである。 Here, in the first dehumidifying heating mode, the temperature of the intermediate pressure refrigerant is higher than the outside air temperature Tam. The reason is that if the temperature of the intermediate pressure refrigerant is lower than the outside air temperature Tam, the operation mode is switched to the second dehumidifying heating mode.
 このため、外気熱交換部16aへ流入した冷媒は、外気ファン16dから送風された外気と熱交換し、放熱して凝縮する(図8のc8点→d8点)。外気熱交換部16aにて凝縮した冷媒は、冷房モードと同様に、レシーバタンク16bへ流入して気液分離される。レシーバタンク16bの下方側に蓄えられた液相冷媒は、出口側連通路16jを介して過冷却熱交換部16cへ流入する。 For this reason, the refrigerant that has flowed into the outside air heat exchanging portion 16a exchanges heat with the outside air blown from the outside air fan 16d, dissipates heat, and condenses (point c8 → d8 in FIG. 8). The refrigerant condensed in the outside air heat exchanging portion 16a flows into the receiver tank 16b and is separated into gas and liquid as in the cooling mode. The liquid-phase refrigerant stored on the lower side of the receiver tank 16b flows into the subcooling heat exchange unit 16c through the outlet side communication path 16j.
 過冷却熱交換部16cへ流入した液相冷媒は、外気ファン16dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図8のd8点→e8点)。以降の作動は、冷房モードと同様である。 The liquid phase refrigerant flowing into the supercooling heat exchange unit 16c exchanges heat with the outside air blown from the outside air fan 16d, and further dissipates heat to become a supercooled liquid phase refrigerant (point d8 → e8 point in FIG. 8). The subsequent operation is the same as in the cooling mode.
 以上の如く、第1除湿暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12aおよび室外熱交換器16を放熱器として機能させ、室内蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。そして、室内蒸発器18にて冷却された送風空気をヒータコア12bにて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を実現することができる。 As described above, the refrigeration cycle apparatus 10 in the first dehumidifying and heating mode has a refrigeration cycle in which the water-refrigerant heat exchanger 12a and the outdoor heat exchanger 16 function as radiators and the indoor evaporator 18 functions as an evaporator. Is done. And the dehumidification heating of a vehicle interior is realizable by reheating the ventilation air cooled with the interior evaporator 18 by the heater core 12b, and blowing it out into a vehicle interior.
 さらに、第1除湿暖房モードでは、第1膨張弁14aの減圧作用により、冷房モードよりも室外熱交換器16の外気熱交換部16aへ流入する冷媒(図8のc8点)の温度が低くなる。このため、外気熱交換部16aにおける冷媒の放熱量を減少させて、水-冷媒熱交換器12aにおける冷媒の放熱量を増加させることができる。 Further, in the first dehumidifying and heating mode, the temperature of the refrigerant (point c8 in FIG. 8) flowing into the outdoor heat exchanger 16a of the outdoor heat exchanger 16 is lower than that in the cooling mode due to the pressure reducing action of the first expansion valve 14a. . For this reason, the heat release amount of the refrigerant in the outside air heat exchanging portion 16a can be reduced and the heat release amount of the refrigerant in the water-refrigerant heat exchanger 12a can be increased.
 従って、第1除湿暖房モードでは、冷房モードと同様の冷媒回路構成で水ポンプ12cを作動させ、エアミックスドア34の開度調整によって送風空気を再加熱することによって、車室内の除湿暖房を行う場合よりも、ヒータコア12bにおける送風空気の加熱能力を向上させることができる。 Therefore, in the first dehumidifying and heating mode, the water pump 12c is operated with the same refrigerant circuit configuration as in the cooling mode, and the blown air is reheated by adjusting the opening degree of the air mix door 34, thereby dehumidifying and heating the vehicle interior. The heating capability of the blown air in the heater core 12b can be improved as compared with the case.
 また、第1除湿暖房モードでは、冷房モードと同様に、レシーバサイクルを構成することができる。従って、冷房モードと同様に、送風空気の冷却能力(第1除湿暖房モードでは、除湿能力)を向上させることができる。さらに、サブクール型の凝縮器を採用した場合と同様に、COPを向上させることができる。 In the first dehumidifying and heating mode, a receiver cycle can be configured as in the cooling mode. Therefore, similarly to the cooling mode, the cooling capacity of the blown air (dehumidifying capacity in the first dehumidifying and heating mode) can be improved. Furthermore, COP can be improved similarly to the case where a subcool condenser is employed.
 (c)第2除湿暖房モード
 第2除湿暖房モードでは、空調制御装置40が、第1~第3膨張弁14a、14b、14cを絞り状態とし、開閉弁15を閉じる。さらに、空調制御装置40は、予め定めた基準圧送能力を発揮するように水ポンプ12cを作動させる。これにより、第2除湿暖房モードの熱媒体循環回路12では、図2の太破線矢印に示すように、熱媒体が循環する。
(C) Second Dehumidification Heating Mode In the second dehumidification heating mode, the air conditioning control device 40 places the first to third expansion valves 14a, 14b, and 14c in the throttle state and closes the on-off valve 15. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. As a result, in the heat medium circulation circuit 12 in the second dehumidifying and heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
 さらに、第2除湿暖房モードの冷凍サイクル装置10では、図2の太実線矢印に示すように、圧縮機11→水-冷媒熱交換器12a→第1膨張弁14a→外気熱交換部16a→レシーバタンク16b→過冷却熱交換部16c→逆止弁17→第2膨張弁14b→室内蒸発器18(→蒸発圧力調整弁19→アキュムレータ20)→圧縮機11の順に冷媒が循環するとともに、レシーバタンク16b→第3膨張弁14cが配置された迂回通路21(→アキュムレータ20)→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Further, in the refrigeration cycle apparatus 10 in the second dehumidifying and heating mode, as indicated by the thick solid arrow in FIG. 2, the compressor 11 → the water-refrigerant heat exchanger 12a → the first expansion valve 14a → the outside air heat exchanging portion 16a → the receiver. The refrigerant circulates in the order of the tank 16b → the supercooling heat exchanging portion 16c → the check valve 17 → the second expansion valve 14b → the indoor evaporator 18 (→ the evaporation pressure adjusting valve 19 → the accumulator 20) → the compressor 11 and the receiver tank. A vapor compression refrigeration cycle in which the refrigerant circulates in the order of 16b → the bypass passage 21 in which the third expansion valve 14c is arranged (→ accumulator 20) → the compressor 11 is configured.
 このサイクル構成で、空調制御装置40は、第1除湿暖房モードと同様に、圧縮機11、第1膨張弁14a、第2膨張弁14b、外気ファン16d、送風機32、エアミックスドア駆動用の電動アクチュエータ等の作動を制御する。 In this cycle configuration, the air-conditioning control device 40 is electrically driven for driving the compressor 11, the first expansion valve 14a, the second expansion valve 14b, the outside air fan 16d, the blower 32, and the air mix door, as in the first dehumidifying and heating mode. Control the operation of actuators.
 また、第3膨張弁14cへ出力される制御信号については、外気温Tamから室外器温度センサ45bによって検出された室外器出口温度Toutを減算した温度差ΔT(=Tam-Tout)が予め定めた基準温度差KΔT以下となるように決定される。 As for the control signal output to the third expansion valve 14c, a temperature difference ΔT (= Tam−Tout) obtained by subtracting the outdoor unit outlet temperature Tout detected by the outdoor unit temperature sensor 45b from the outdoor temperature Tam is determined in advance. It is determined to be equal to or less than the reference temperature difference KΔT.
 これにより、本実施形態では、タンク内圧力Ptkから室外器出口圧力Poutを減算した圧力損失ΔPが、予め定めた第2基準圧力損失KΔP2以下となるようにしている。ここで、第2基準圧力損失KΔP2は、第1基準圧力損失KΔP1よりも大きい値となるものの、第2除湿暖房モード時にサイクルのCOPの低下を抑制できる程度に比較的小さな値に設定されている。 Thus, in this embodiment, the pressure loss ΔP obtained by subtracting the outdoor unit outlet pressure Pout from the tank internal pressure Ptk is set to be equal to or smaller than a predetermined second reference pressure loss KΔP2. Here, although the second reference pressure loss KΔP2 is larger than the first reference pressure loss KΔP1, the second reference pressure loss KΔP2 is set to a relatively small value that can suppress the decrease in the COP of the cycle in the second dehumidifying heating mode. .
 従って、第2除湿暖房モードの冷凍サイクル装置10では、図9のモリエル線図に示すように、圧縮機11から吐出された冷媒(図9のa9点)が、水-冷媒熱交換器12aの冷媒通路へ流入する。これにより、第1除湿暖房モードと同様に、熱媒体循環回路12を循環する熱媒体が加熱される(図9のa9点→b9点)。そして、加熱された熱媒体を熱源としてヒータコア12bにて室内蒸発器18通過後の送風空気が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the second dehumidifying and heating mode, as shown in the Mollier diagram of FIG. 9, the refrigerant discharged from the compressor 11 (point a9 in FIG. 9) is supplied to the water-refrigerant heat exchanger 12a. It flows into the refrigerant passage. Thereby, the heat medium which circulates through the heat medium circulation circuit 12 is heated similarly to 1st dehumidification heating mode (a9 point-> b9 point of FIG. 9). The blown air after passing through the indoor evaporator 18 is heated by the heater core 12b using the heated heat medium as a heat source.
 水-冷媒熱交換器12aから流出した冷媒は、第1膨張弁14aへ流入して中間圧冷媒となるまで減圧される(図9のb9点→c9点)。第1膨張弁14aにて減圧された中間圧冷媒は、室外熱交換器16の外気熱交換部16aへ流入する。 The refrigerant flowing out of the water-refrigerant heat exchanger 12a flows into the first expansion valve 14a and is depressurized until it becomes an intermediate pressure refrigerant (b9 point → c9 point in FIG. 9). The intermediate pressure refrigerant decompressed by the first expansion valve 14 a flows into the outdoor air heat exchange unit 16 a of the outdoor heat exchanger 16.
 ここで、第2除湿暖房モードでは、中間圧冷媒の温度が外気温Tamよりも低い温度となる。その理由は、第2除湿暖房モードが実行される運転条件は、過冷却熱交換部16cにおける圧力損失ΔPが第1基準圧力損失KΔP1以上となる運転条件なので、外気熱交換部16aが蒸発器として機能して、レシーバタンク16bから過冷却熱交換部16cへ流入する冷媒が気液二相冷媒あるいは気相冷媒となっているからである。 Here, in the second dehumidifying and heating mode, the temperature of the intermediate pressure refrigerant is lower than the outside air temperature Tam. The reason is that the operating condition in which the second dehumidifying and heating mode is executed is an operating condition in which the pressure loss ΔP in the supercooling heat exchange unit 16c is equal to or greater than the first reference pressure loss KΔP1, so This is because the refrigerant that functions and flows from the receiver tank 16b to the supercooling heat exchange unit 16c is a gas-liquid two-phase refrigerant or a gas-phase refrigerant.
 このため、外気熱交換部16aへ流入した冷媒は、外気ファン16dから送風された外気から吸熱して蒸発する(図9のc9点→d9点)。外気熱交換部16aから流出した冷媒は、レシーバタンク16bへ流入して気液分離される。 For this reason, the refrigerant that has flowed into the outside air heat exchanging portion 16a evaporates by absorbing heat from outside air blown from the outside air fan 16d (point c9 → d9 in FIG. 9). The refrigerant that has flowed out of the outside air heat exchange unit 16a flows into the receiver tank 16b and is separated into gas and liquid.
 レシーバタンク16bにて分離された気相冷媒(図9のdG9点)は、気相冷媒出口16gを介して迂回通路21へ流入する。迂回通路21を流通する冷媒は、第3膨張弁14cによって流量調整されて減圧される(図9のdG9点→g9点)。この際、第3膨張弁14cの絞り開度は、温度差ΔT1が基準温度差KΔT1以下となるように決定される。第3膨張弁14cから流出した冷媒は、アキュムレータ20側へ導かれる。 The gas-phase refrigerant (dG9 point in FIG. 9) separated in the receiver tank 16b flows into the bypass passage 21 via the gas-phase refrigerant outlet 16g. The refrigerant flowing through the bypass passage 21 is decompressed by adjusting the flow rate by the third expansion valve 14c (point dG9 → point g9 in FIG. 9). At this time, the throttle opening degree of the third expansion valve 14c is determined so that the temperature difference ΔT1 is equal to or less than the reference temperature difference KΔT1. The refrigerant flowing out from the third expansion valve 14c is guided to the accumulator 20 side.
 なお、液相冷媒出口16hからオイル戻し通路21aを経由して冷凍機油が混入した少量の液相冷媒も迂回通路21側に合流してアキュムレータ20側へ導かれる。このことは、後述する第3除湿暖房モード、暖房モードにおいても同様である。 A small amount of liquid-phase refrigerant mixed with refrigerating machine oil also flows from the liquid-phase refrigerant outlet 16h via the oil return passage 21a to the bypass passage 21 and is guided to the accumulator 20 side. The same applies to the third dehumidifying heating mode and the heating mode described later.
 また、レシーバタンク16bの出口側連通路16jから流出した比較的乾き度の低い気液二相冷媒あるいは液相冷媒(図9のdL9点)は、過冷却熱交換部16cへ流入する。過冷却熱交換部16cへ流入した冷媒は、外気から吸熱して蒸発する(図9のdL9点→e9点)。 Further, the gas-liquid two-phase refrigerant or the liquid-phase refrigerant (point dL9 in FIG. 9) flowing out from the outlet side communication passage 16j of the receiver tank 16b and having a relatively low dryness flows into the supercooling heat exchange section 16c. The refrigerant that has flowed into the supercooling heat exchanger 16c absorbs heat from the outside air and evaporates (dL9 point → e9 point in FIG. 9).
 室外熱交換器16の過冷却熱交換部16cから流出した冷媒は、逆止弁17を介して、第2膨張弁14bへ流入して減圧される(図9のe9点→f9点)。第2膨張弁14bにて減圧された低圧冷媒は、室内蒸発器18へ流入する。室内蒸発器18へ流入した低圧冷媒は、送風機32から送風された送風空気から吸熱して蒸発する(図9のf9点→g9点)。 The refrigerant that has flowed out of the supercooling heat exchanger 16c of the outdoor heat exchanger 16 flows into the second expansion valve 14b via the check valve 17 and is depressurized (point e9 → point f9 in FIG. 9). The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 18. The low-pressure refrigerant flowing into the indoor evaporator 18 absorbs heat from the blown air blown from the blower 32 and evaporates (point f9 → point g9 in FIG. 9).
 室内蒸発器18から流出した冷媒は、迂回通路21から流出した気相冷媒と合流して、圧縮機11に吸入される。圧縮機11に吸入された冷媒は再び圧縮される(図9のg9点→a9点)。 The refrigerant that has flowed out of the indoor evaporator 18 merges with the gas-phase refrigerant that has flowed out of the bypass passage 21 and is sucked into the compressor 11. The refrigerant sucked into the compressor 11 is compressed again (point g9 → point a9 in FIG. 9).
 以上の如く、第2除湿暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12aを放熱器として機能させ、室外熱交換器16および室内蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。そして、室内蒸発器18にて冷却された送風空気をヒータコア12bにて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を実現することができる。 As described above, the refrigeration cycle apparatus 10 in the second dehumidifying and heating mode has a refrigeration cycle in which the water-refrigerant heat exchanger 12a functions as a radiator and the outdoor heat exchanger 16 and the indoor evaporator 18 function as an evaporator. Is done. And the dehumidification heating of a vehicle interior is realizable by reheating the ventilation air cooled with the interior evaporator 18 by the heater core 12b, and blowing it out into a vehicle interior.
 さらに、第2除湿暖房モードでは、室外熱交換器16を蒸発器として機能させるので、冷媒が室外熱交換器16にて吸熱した熱を水-冷媒熱交換に12aにて熱媒体に放熱させることができる。その結果、第2除湿暖房モードでは、第1除湿暖房モードよりもヒータコア12bにおける送風空気の加熱能力を向上させることができる。 Furthermore, in the second dehumidifying and heating mode, the outdoor heat exchanger 16 functions as an evaporator, so that the heat absorbed by the refrigerant in the outdoor heat exchanger 16 is dissipated to the heat medium in water-refrigerant heat exchange 12a. Can do. As a result, in the 2nd dehumidification heating mode, the heating capability of the blowing air in the heater core 12b can be improved rather than the 1st dehumidification heating mode.
 ここで、第2除湿暖房モードは、外気熱交換部16a、過冷却熱交換部16c、および室内蒸発器18にて冷媒を蒸発させる運転条件時である。前述の如く、室外熱交換器16では、冷媒流れ方向に向かって、冷媒流路の通路断面積が縮小している。このため、過冷却熱交換部16cにて冷媒を蒸発させると、冷媒が過冷却熱交換部16cを流通する際の圧力損失が増大して、COPを低下させてしまうおそれがある。 Here, the second dehumidifying heating mode is an operating condition in which the refrigerant is evaporated in the outside air heat exchanging portion 16a, the supercooling heat exchanging portion 16c, and the indoor evaporator 18. As described above, in the outdoor heat exchanger 16, the passage cross-sectional area of the refrigerant flow path is reduced in the refrigerant flow direction. For this reason, if a refrigerant is evaporated in the supercooling heat exchange part 16c, there exists a possibility that the pressure loss at the time of a refrigerant | coolant distribute | circulating the supercooling heat exchange part 16c may increase, and COP may be reduced.
 これに対して、第2除湿暖房モードでは、温度差ΔTが基準温度差KΔT以下となるように、第3膨張弁14cを作動させるので、圧力損失ΔPを基準圧力損失KΔP2以下とすることができる。その結果、第2除湿暖房モードでは、サイクルのCOPが大きく低下してしまうことを抑制することができる。 On the other hand, in the second dehumidifying heating mode, the third expansion valve 14c is operated so that the temperature difference ΔT is equal to or less than the reference temperature difference KΔT, so that the pressure loss ΔP can be equal to or less than the reference pressure loss KΔP2. . As a result, in the 2nd dehumidification heating mode, it can control that the COP of a cycle falls greatly.
 (d)第3除湿暖房モード
 第3除湿暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とし、第2膨張弁14bを絞り状態とし、第3膨張弁14cを全開状態とし、開閉弁15を開く。さらに、空調制御装置40は、予め定めた基準圧送能力を発揮するように水ポンプ12cを作動させる。これにより、第3除湿暖房モードの熱媒体循環回路12では、図3の太破線矢印に示すように、熱媒体が循環する。
(D) Third Dehumidification Heating Mode In the third dehumidification heating mode, the air conditioning control device 40 sets the first expansion valve 14a to the throttle state, sets the second expansion valve 14b to the throttle state, and sets the third expansion valve 14c to the fully open state. Then, the on-off valve 15 is opened. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. Thereby, in the heat medium circulation circuit 12 in the third dehumidifying and heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
 さらに、第3除湿暖房モードの冷凍サイクル装置10では、図3の太実線矢印に示すように、圧縮機11→水-冷媒熱交換器12a→第1膨張弁14a→外気熱交換部16a→レシーバタンク16b→第3膨張弁14cが配置された迂回通路21→アキュムレータ20→圧縮機の順に冷媒が循環するとともに、水-冷媒熱交換器12a(→開閉弁15)→第2膨張弁14b→室内蒸発器18→蒸発圧力調整弁19→アキュムレータ20→圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Furthermore, in the refrigeration cycle apparatus 10 in the third dehumidifying and heating mode, as indicated by the thick solid arrow in FIG. 3, the compressor 11 → the water-refrigerant heat exchanger 12a → the first expansion valve 14a → the outside air heat exchanging portion 16a → the receiver. The refrigerant circulates in the order of the tank 16b → the bypass passage 21 where the third expansion valve 14c is arranged → the accumulator 20 → the compressor, and the water-refrigerant heat exchanger 12a (→ the open / close valve 15) → the second expansion valve 14b → the indoor A vapor compression refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 → the evaporation pressure adjusting valve 19 → the accumulator 20 → the compressor 11 is configured.
 このサイクル構成で、空調制御装置40は、第1除湿暖房モードと同様に、圧縮機11、外気ファン16d、送風機32、エアミックスドア駆動用の電動アクチュエータ等の作動を制御する。 In this cycle configuration, the air conditioning control device 40 controls the operation of the compressor 11, the outside air fan 16d, the blower 32, the electric actuator for driving the air mix door, and the like, as in the first dehumidifying and heating mode.
 また、第1膨張弁14aおよび第2膨張弁14bへ出力される制御信号については、目標吹出温度TAO等に基づいて、予め空調制御装置40に記憶されている制御マップを参照して、サイクルのCOPが極大値に近づくように決定される。具体的には、この制御マップでは、予め定めた基準開度となるように、第2膨張弁14bの絞り開度を決定する。さらに、目標吹出温度TAOの上昇に伴って、第1膨張弁14aの絞り開度を減少させるように決定する。 For the control signals output to the first expansion valve 14a and the second expansion valve 14b, referring to a control map stored in advance in the air conditioning control device 40 based on the target blowing temperature TAO and the like, The COP is determined so as to approach the maximum value. Specifically, in this control map, the throttle opening of the second expansion valve 14b is determined so as to be a predetermined reference opening. Furthermore, it determines so that the throttle opening degree of the 1st expansion valve 14a may be decreased with the raise of the target blowing temperature TAO.
 従って、第3除湿暖房モードの冷凍サイクル装置10では、図10のモリエル線図に示すように、圧縮機11から吐出された冷媒(図10のa10点)が、水-冷媒熱交換器12aの冷媒通路へ流入する。これにより、第1、第2除湿暖房モードと同様に、熱媒体循環回路12を循環する熱媒体が加熱される(図10のa10点→b10点)。そして、加熱された熱媒体を熱源としてヒータコア12bにて室内蒸発器18通過後の送風空気が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the third dehumidifying and heating mode, as shown in the Mollier diagram of FIG. 10, the refrigerant discharged from the compressor 11 (point a10 in FIG. 10) is transferred to the water-refrigerant heat exchanger 12a. It flows into the refrigerant passage. Thereby, similarly to the 1st and 2nd dehumidification heating modes, the heat carrier which circulates through the heat carrier circuit 12 is heated (point a10 → b10 in FIG. 10). The blown air after passing through the indoor evaporator 18 is heated by the heater core 12b using the heated heat medium as a heat source.
 水-冷媒熱交換器12aから流出した冷媒の流れは、開閉弁15が開いているので、第1三方継手13aにて分岐される。 The flow of the refrigerant flowing out of the water-refrigerant heat exchanger 12a is branched at the first three-way joint 13a because the on-off valve 15 is open.
 第1三方継手13aにて分岐された一方の冷媒は、第1膨張弁14aへ流入して低圧冷媒となるまで減圧される(図10のb10点→c10点)。第1膨張弁14aにて減圧された低圧冷媒は、外気熱交換部16aへ流入して、送風ファンから送風された外気から吸熱して蒸発する(図10のc10点→d10点)。外気熱交換部16aから流出した冷媒は、レシーバタンク16bへ流入して気液分離される。 One refrigerant branched by the first three-way joint 13a flows into the first expansion valve 14a and is decompressed until it becomes a low-pressure refrigerant (b10 point → c10 point in FIG. 10). The low-pressure refrigerant decompressed by the first expansion valve 14a flows into the outside air heat exchange unit 16a, absorbs heat from the outside air blown from the blower fan, and evaporates (point c10 → d10 in FIG. 10). The refrigerant that has flowed out of the outside air heat exchange unit 16a flows into the receiver tank 16b and is separated into gas and liquid.
 レシーバタンク16bにて分離された気相冷媒(図10のdG10点)は、気相冷媒出口16gを介して迂回通路21へ流入する。第3除湿暖房モードでは、第3膨張弁14cが全開となっているので、迂回通路21を流通する冷媒は殆ど減圧することなく、アキュムレータ20側へ導かれる。レシーバタンク16bにて分離された液相冷媒は、逆止弁17の作用によって過冷却熱交換部16c側へ流出することはない。 The gas-phase refrigerant (dG10 point in FIG. 10) separated by the receiver tank 16b flows into the bypass passage 21 through the gas-phase refrigerant outlet 16g. In the third dehumidifying heating mode, the third expansion valve 14c is fully opened, so that the refrigerant flowing through the bypass passage 21 is led to the accumulator 20 side with almost no pressure reduction. The liquid-phase refrigerant separated in the receiver tank 16b does not flow out to the supercooling heat exchange unit 16c side due to the action of the check valve 17.
 一方、第1三方継手13aにて分岐された他方の冷媒は、開閉弁15および第2三方継手13bを介して、第2膨張弁14bへ流入して低圧冷媒となるまで減圧される(図10のb10点→f10点)。この際、室内蒸発器18の着霜を抑制することができるように、蒸発圧力調整弁19の絞り開度により冷媒蒸発温度を、基準温度(本実施形態では、1℃)以上に維持する。 On the other hand, the other refrigerant branched at the first three-way joint 13a flows into the second expansion valve 14b via the on-off valve 15 and the second three-way joint 13b and is decompressed until it becomes a low-pressure refrigerant (FIG. 10). B10 point → f10 point). At this time, the refrigerant evaporating temperature is maintained at a reference temperature (1 ° C. in the present embodiment) or higher by the throttle opening degree of the evaporating pressure adjusting valve 19 so that frosting of the indoor evaporator 18 can be suppressed.
 第2膨張弁14bにて減圧された低圧冷媒は、室内蒸発器18へ流入して、送風機32から送風された送風空気から吸熱して蒸発する(図10のf10点→g10点)。これにより、送風空気が冷却される。室内蒸発器18から流出した冷媒は、蒸発圧力調整弁19を通過する際に減圧されて(図10のg10点→dG10点)、室外熱交換器16のレシーバタンク16bから流出した冷媒と同等の圧力となる。 The low-pressure refrigerant decompressed by the second expansion valve 14b flows into the indoor evaporator 18 and absorbs heat from the blown air blown from the blower 32 to evaporate (f10 point → g10 point in FIG. 10). Thereby, blowing air is cooled. The refrigerant flowing out of the indoor evaporator 18 is decompressed when passing through the evaporation pressure adjusting valve 19 (g10 point → dG10 point in FIG. 10), and is equivalent to the refrigerant flowing out from the receiver tank 16b of the outdoor heat exchanger 16. It becomes pressure.
 蒸発圧力調整弁19にて減圧された冷媒は、室外熱交換器16のレシーバタンク16bから流出した冷媒と合流してアキュムレータ20へ流入する。アキュムレータ20から流出した気相冷媒は圧縮機11へ吸入されて再び圧縮される(図10のdG10点→a10点)。 The refrigerant decompressed by the evaporation pressure adjusting valve 19 joins the refrigerant that has flowed out of the receiver tank 16b of the outdoor heat exchanger 16 and flows into the accumulator 20. The gas-phase refrigerant flowing out of the accumulator 20 is sucked into the compressor 11 and compressed again (dG10 point → a10 point in FIG. 10).
 以上の如く、第3除湿暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12aを放熱器として機能させ、室外熱交換器16の外気熱交換部16aおよび室内蒸発器18を蒸発器として機能させる冷凍サイクルが構成される。そして、室内蒸発器18にて冷却された送風空気をヒータコア12bにて再加熱して車室内に吹き出すことによって、車室内の除湿暖房を実現することができる。 As described above, in the refrigeration cycle apparatus 10 in the third dehumidifying and heating mode, the water-refrigerant heat exchanger 12a functions as a radiator, and the outdoor heat exchanger 16a and the indoor evaporator 18 of the outdoor heat exchanger 16 are used as evaporators. A functioning refrigeration cycle is configured. And the dehumidification heating of a vehicle interior is realizable by reheating the ventilation air cooled with the interior evaporator 18 by the heater core 12b, and blowing it out into a vehicle interior.
 さらに、第3除湿暖房モードでは、外気熱交換部16aにおける冷媒蒸発温度を室内蒸発器18の冷媒蒸発温度よりも低下させることができる。従って、外気熱交換部16aにて冷媒が外気から吸熱する吸熱量を増加させることができ、第2除湿暖房モードよりもヒータコア12bにおける送風空気の加熱能力を向上させることができる。 Furthermore, in the third dehumidifying and heating mode, the refrigerant evaporation temperature in the outdoor air heat exchange unit 16a can be made lower than the refrigerant evaporation temperature of the indoor evaporator 18. Accordingly, the amount of heat absorbed by the refrigerant from the outside air can be increased in the outside air heat exchanging portion 16a, and the heating capacity of the blown air in the heater core 12b can be improved as compared with the second dehumidifying heating mode.
 (e)暖房モード
 暖房モードでは、空調制御装置40が、第1膨張弁14aを絞り状態とし、第2膨張弁14bを全閉状態とし、第3膨張弁14cを全開状態とし、開閉弁15を閉じる。さらに、空調制御装置40は、予め定めた基準圧送能力を発揮するように水ポンプ12cを作動させる。これにより、暖房モードの熱媒体循環回路12では、図4の太破線矢印に示すように、熱媒体が循環する。
(E) Heating mode In the heating mode, the air-conditioning control device 40 sets the first expansion valve 14a to the throttle state, the second expansion valve 14b to the fully closed state, the third expansion valve 14c to the fully open state, and the on-off valve 15 to close. Furthermore, the air-conditioning control device 40 operates the water pump 12c so as to exhibit a predetermined reference pumping capacity. Thereby, in the heat medium circulation circuit 12 in the heating mode, the heat medium circulates as shown by the thick broken line arrows in FIG.
 さらに、暖房モードの冷凍サイクル装置10では、図4の太実線矢印に示すように、圧縮機11→水-冷媒熱交換器12a→第1膨張弁14a→外気熱交換部16a→レシーバタンク16b→第3膨張弁14cが配置された迂回通路21→アキュムレータ20→圧縮機の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Furthermore, in the refrigeration cycle apparatus 10 in the heating mode, as indicated by a thick solid line arrow in FIG. 4, the compressor 11 → the water-refrigerant heat exchanger 12a → the first expansion valve 14a → the outside air heat exchanger 16a → the receiver tank 16b → A vapor compression refrigeration cycle is configured in which the refrigerant circulates in the order of the bypass passage 21 where the third expansion valve 14c is arranged, the accumulator 20, and the compressor.
 このサイクル構成で、空調制御装置40は、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。 In this cycle configuration, the air conditioning control device 40 determines the operating states of the various control target devices (control signals output to the various control target devices).
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータへ出力される制御信号については次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、水-冷媒熱交換器12aにおける目標凝縮圧力PDOを決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target condensing pressure PDO in the water-refrigerant heat exchanger 12a is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
 具体的には、この制御マップでは、目標吹出温度TAOの上昇に伴って目標凝縮圧力PDOが上昇するように決定する。そして、この目標凝縮圧力PDOと吐出圧力センサ46aによって検出された吐出圧力Pdとの偏差に基づいて、フィードバック制御手法を用いて、吐出圧力Pdが目標凝縮圧力PDOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Specifically, in this control map, the target condensing pressure PDO is determined to increase as the target blowing temperature TAO increases. Then, based on the deviation between the target condensing pressure PDO and the discharge pressure Pd detected by the discharge pressure sensor 46a, the feedback control method is used so that the discharge pressure Pd approaches the target condensing pressure PDO. A control signal output to the electric motor is determined.
 また、第1膨張弁14bへ出力される制御信号については、第1膨張弁14bへ流入する冷媒の過冷却度SCが目標過冷却度SCOとなるように決定される。目標過冷却度SCOは、吐出圧力Pdに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、この制御マップでは、サイクルのCOPが極大値に近づくように暖房用の目標過冷却度SCOを決定する。 Further, the control signal output to the first expansion valve 14b is determined so that the supercooling degree SC of the refrigerant flowing into the first expansion valve 14b becomes the target supercooling degree SCO. The target supercooling degree SCO is determined with reference to a control map stored in advance in the air conditioning control device 40 based on the discharge pressure Pd. Specifically, in this control map, the target supercooling degree SCO for heating is determined so that the COP of the cycle approaches the maximum value.
 また、エアミックスドア駆動用の電動アクチュエータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を全閉とし、ヒータコア12b側の通風路を全開とするように決定される。 Also, the control signal output to the electric actuator for driving the air mix door is determined so that the air mix door 34 fully closes the cold air bypass passage 35 and fully opens the air passage on the heater core 12b side.
 従って、暖房モードの冷凍サイクル装置10では、図11のモリエル線図に示すように、圧縮機11から吐出された冷媒(図11のa11点)が、水-冷媒熱交換器12aの冷媒通路へ流入する。これにより、熱媒体循環回路12を循環する熱媒体が加熱される(図11のa11点→b11点)。そして、加熱された熱媒体を熱源としてヒータコア12bにて室内蒸発器18通過後の送風空気が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the heating mode, as shown in the Mollier diagram of FIG. 11, the refrigerant discharged from the compressor 11 (point a11 in FIG. 11) flows to the refrigerant passage of the water-refrigerant heat exchanger 12a. Inflow. As a result, the heat medium circulating in the heat medium circuit 12 is heated (point a11 → b11 in FIG. 11). The blown air after passing through the indoor evaporator 18 is heated by the heater core 12b using the heated heat medium as a heat source.
 水-冷媒熱交換器12aから流出した冷媒は、第1膨張弁14aへ流入して低圧冷媒となるまで減圧される(図11のb11点→c11点)。第1膨張弁14aにて減圧された低圧冷媒は、外気熱交換部16aへ流入して、送風ファンから送風された外気から吸熱して蒸発する(図11のc11点→d11点)。外気熱交換部16aから流出した冷媒は、レシーバタンク16bへ流入して気液分離される。 The refrigerant flowing out of the water-refrigerant heat exchanger 12a flows into the first expansion valve 14a and is depressurized until it becomes a low-pressure refrigerant (b11 point → c11 point in FIG. 11). The low-pressure refrigerant decompressed by the first expansion valve 14a flows into the outside air heat exchange unit 16a, absorbs heat from the outside air blown from the blower fan, and evaporates (point c11 → d11 in FIG. 11). The refrigerant that has flowed out of the outside air heat exchange unit 16a flows into the receiver tank 16b and is separated into gas and liquid.
 レシーバタンク16bにて分離された気相冷媒(図11のdG11点)は、気相冷媒出口16gを介して迂回通路21へ流入する。第3除湿暖房モードでは、第3膨張弁14cが全開となっているので、迂回通路21を流通する冷媒は殆ど減圧することなく、アキュムレータ20側へ導かれる。レシーバタンク16bにて分離された液相冷媒は、第2膨張弁14bが全閉状態となっているので、過冷却熱交換部16c側へ流出することはない。 The gas-phase refrigerant (dG11 point in FIG. 11) separated in the receiver tank 16b flows into the bypass passage 21 via the gas-phase refrigerant outlet 16g. In the third dehumidifying heating mode, the third expansion valve 14c is fully opened, so that the refrigerant flowing through the bypass passage 21 is led to the accumulator 20 side with almost no pressure reduction. Since the second expansion valve 14b is fully closed, the liquid phase refrigerant separated in the receiver tank 16b does not flow out to the supercooling heat exchange unit 16c side.
 アキュムレータ20から流出した気相冷媒は圧縮機11へ吸入されて再び圧縮される(図11のdG11点→a11点)。 The gas-phase refrigerant that has flowed out of the accumulator 20 is sucked into the compressor 11 and compressed again (dG11 point → a11 point in FIG. 11).
 以上の如く、暖房モードの冷凍サイクル装置10では、水-冷媒熱交換器12aを放熱器として機能させ、室外熱交換器16の外気熱交換部16aを蒸発器として機能させる冷凍サイクルが構成される。そして、ヒータコア12bにて加熱された送風空気を車室内に吹き出すことによって、車室内の暖房を実現することができる。 As described above, in the refrigeration cycle apparatus 10 in the heating mode, a refrigeration cycle is configured in which the water-refrigerant heat exchanger 12a functions as a radiator and the outdoor heat exchanger 16a of the outdoor heat exchanger 16 functions as an evaporator. . And the heating of a vehicle interior is realizable by blowing the ventilation air heated with the heater core 12b into the vehicle interior.
 ここで、暖房モードは、外気熱交換部16aにて冷媒を蒸発させる運転条件時である。さらに、暖房モードでは、送風空気を加熱する運転モードの冷媒回路として、外気熱交換部16aから流出した液相冷媒を、サイクルの余剰冷媒として圧縮機11の吸入側に配置されたレシーバタンク16bおよびアキュムレータ20に蓄えるアキュムレータサイクルを構成することができる。従って、送風空気を充分に加熱することができる。 Here, the heating mode is an operating condition in which the refrigerant is evaporated in the outside air heat exchanger 16a. Furthermore, in the heating mode, as a refrigerant circuit in the operation mode for heating the blown air, the liquid phase refrigerant that has flowed out of the outside air heat exchanging portion 16a is used as a surplus refrigerant in the cycle, and the receiver tank 16b disposed on the suction side of the compressor 11 and An accumulator cycle stored in the accumulator 20 can be configured. Accordingly, the blown air can be sufficiently heated.
 また、本実施形態の暖房モードの冷媒回路では、レシーバタンク16b内の冷媒圧力とアキュムレータ20内の冷媒圧力がほぼ同等となり、レシーバタンク16bおよびアキュムレータ20の双方で、サイクルの余剰冷媒を蓄えるようにしている。 In the heating mode refrigerant circuit of the present embodiment, the refrigerant pressure in the receiver tank 16b and the refrigerant pressure in the accumulator 20 are substantially equal, and both the receiver tank 16b and the accumulator 20 store the excess refrigerant in the cycle. ing.
 その理由は、暖房モードの冷媒回路に切り替えられた際の冷凍サイクル装置内の容積が、他の運転モードの冷媒回路に切り替えられた際の容積よりも小さくなり、暖房モードにおける余剰冷媒の量が、他の運転モードにおける余剰冷媒の量よりも多くなるからである。従って、暖房モードの冷媒回路に切り替えられた際に、レシーバタンク16bのみで余剰冷媒を蓄えることが可能であれば、アキュムレータ20を廃止してもよい。 The reason is that the volume in the refrigeration cycle apparatus when switched to the refrigerant circuit in the heating mode is smaller than the volume when switched to the refrigerant circuit in another operation mode, and the amount of surplus refrigerant in the heating mode is This is because the amount of surplus refrigerant in the other operation modes becomes larger. Therefore, the accumulator 20 may be abolished if it is possible to store surplus refrigerant only with the receiver tank 16b when the refrigerant circuit is switched to the heating mode.
 従って、本実施形態の冷凍サイクル装置10では、送風空気を冷却する冷房モードの冷媒回路として、レシーバサイクルを構成することができ、送風空気を充分に冷却することができる。さらに、室外熱交換器16を、サブクール型の熱交換器として機能させて、サイクルのCOPを向上させることができる。 Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, the receiver cycle can be configured as a cooling mode refrigerant circuit for cooling the blown air, and the blown air can be sufficiently cooled. Furthermore, the outdoor heat exchanger 16 can be made to function as a subcool type heat exchanger, and the COP of a cycle can be improved.
 また、送風空気を加熱する暖房モードの冷媒回路として、アキュムレータサイクルを構成することができ、送風空気を充分に加熱することができる。すなわち、本実施形態の冷凍サイクル装置10によれば、冷媒回路を切替可能に構成されて、熱交換対象流体である送風空気を充分に冷却あるいは加熱することができる。 Further, an accumulator cycle can be configured as a refrigerant circuit in a heating mode for heating the blown air, and the blown air can be sufficiently heated. That is, according to the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant circuit is configured to be switchable, and the blown air that is the heat exchange target fluid can be sufficiently cooled or heated.
 また、本実施形態の冷凍サイクル装置10によれば、第2除湿暖房モード時のように、外気熱交換部16a、過冷却熱交換部16c、および室内蒸発器18にて冷媒を蒸発させる冷媒回路を構成することができる。これによれば、ヒータコア12bにて送風空気を加熱することができると同時に、室内蒸発器18にて送風空気を冷却することができる。 Further, according to the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant circuit that evaporates the refrigerant in the outdoor air heat exchange unit 16a, the supercooling heat exchange unit 16c, and the indoor evaporator 18 as in the second dehumidifying heating mode. Can be configured. According to this, the blown air can be heated by the heater core 12b, and at the same time, the blown air can be cooled by the indoor evaporator 18.
 この際、本実施形態の冷凍サイクル装置10では、過冷却熱交換部16cにおける冷媒の圧力損失ΔPが基準圧力損失KΔP2以下となるように、第3膨張弁14cの作動を制御しているので、サイクルのCOPの低下を抑制することができる。さらに、温度差ΔTが基準温度差KΔT以下となるように第3膨張弁14cの作動を制御しているので、温度センサに対して比較的高価なタンク圧力センサ46bを有していない冷凍サイクル装置であっても、容易にサイクルのCOPの低下を抑制することができる。 At this time, in the refrigeration cycle apparatus 10 of the present embodiment, the operation of the third expansion valve 14c is controlled so that the pressure loss ΔP of the refrigerant in the supercooling heat exchange unit 16c is equal to or less than the reference pressure loss KΔP2. A decrease in the COP of the cycle can be suppressed. Further, since the operation of the third expansion valve 14c is controlled so that the temperature difference ΔT is equal to or less than the reference temperature difference KΔT, a refrigeration cycle apparatus that does not have a relatively expensive tank pressure sensor 46b with respect to the temperature sensor. Even so, it is possible to easily suppress a decrease in the COP of the cycle.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図12の全体構成図に示すように、熱媒体循環回路12、水-冷媒熱交換器12a、ヒータコア12b、および水ポンプ12cを廃止し、室内凝縮器12dを採用した例を説明する。なお、図12では、第1実施形態と同一もしくは均等部分には同一の符号を付している。
(Second Embodiment)
Compared with the first embodiment, the present embodiment eliminates the heat medium circulation circuit 12, the water-refrigerant heat exchanger 12a, the heater core 12b, and the water pump 12c, as shown in the overall configuration diagram of FIG. The example which employ | adopted the condenser 12d is demonstrated. In FIG. 12, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals.
 室内凝縮器12dは、圧縮機11から吐出された高圧冷媒と室内蒸発器18通過後の送風空気とを熱交換させて、送風空気を加熱する加熱部である。室内凝縮器12dは、第1実施形態で説明したヒータコア12bと同様に、室内空調ユニット30のケーシング31に配置されている。その他の冷凍サイクル装置10の構成および作動は、第1実施形態と同様である。 The indoor condenser 12d is a heating unit that heats the blown air by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the blown air that has passed through the indoor evaporator 18. The indoor condenser 12d is disposed in the casing 31 of the indoor air conditioning unit 30 in the same manner as the heater core 12b described in the first embodiment. Other configurations and operations of the refrigeration cycle apparatus 10 are the same as those in the first embodiment.
 本実施形態の冷凍サイクル装置10のように、熱媒体を介在させることなく、高圧冷媒にて直接的に熱交換対象流体である送風空気を加熱する構成であっても、第1実施形態と同様に、冷媒回路を切り替えても送風空気を充分に冷却あるいは加熱することができる。 As in the refrigeration cycle apparatus 10 of the present embodiment, even if the configuration is such that the blown air that is the heat exchange target fluid is directly heated by the high-pressure refrigerant without interposing a heat medium, the same as in the first embodiment. In addition, the blown air can be sufficiently cooled or heated even when the refrigerant circuit is switched.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、冷凍サイクル装置10をバイブリッド車両に適用した例を説明したが、本開示に係る冷凍サイクル装置10の適用はこれに限定されない。例えば、内燃機関から走行用の駆動力を得る通常の車両に適用してもよい。内燃機関を有する車両に適用する場合には、第1実施形態で説明した熱媒体循環回路12にエンジン冷却水を流入させるようにしてもよい。さらに、車両用に限定されることなく、定置型の空調装置等に適用してもよい。 In the above-described embodiment, an example in which the refrigeration cycle apparatus 10 is applied to a hybrid vehicle has been described, but application of the refrigeration cycle apparatus 10 according to the present disclosure is not limited to this. For example, you may apply to the normal vehicle which obtains the driving force for driving | running | working from an internal combustion engine. When applied to a vehicle having an internal combustion engine, the engine coolant may be allowed to flow into the heat medium circulation circuit 12 described in the first embodiment. Further, the present invention is not limited to a vehicle and may be applied to a stationary air conditioner or the like.
 各運転モードにおける空調制御装置40の制御態様は、上述の実施形態に開示されたものに限定されない。 The control mode of the air conditioning control device 40 in each operation mode is not limited to that disclosed in the above-described embodiment.
 上述の実施形態では、第1除湿暖房モードでの運転中に、過冷却熱交換部16cにおける圧力損失ΔPが第1基準圧力損失KΔP1以上となった際に第2除湿暖房モードに切り替える例を説明したが、運転モードの切り替えはこれに限定されない。 In the above-described embodiment, an example of switching to the second dehumidifying heating mode when the pressure loss ΔP in the supercooling heat exchange unit 16c becomes equal to or higher than the first reference pressure loss KΔP1 during the operation in the first dehumidifying heating mode will be described. However, the switching of the operation mode is not limited to this.
 例えば、第1除湿暖房モードでの運転中に、室外熱交換器16の外気熱交換部16aへ流入する冷媒の温度が外気温Tamよりも低くなった際に第2除湿暖房モードに切り替えるようにしてもよい。これによれば、温度センサに対して比較的高価なタンク圧力センサ46bを有していない冷凍サイクル装置であっても、第1除湿暖房モードと第2除湿暖房モードとの切り替えを行うことができる。 For example, during operation in the first dehumidifying and heating mode, when the temperature of the refrigerant flowing into the outside air heat exchanging portion 16a of the outdoor heat exchanger 16 becomes lower than the outside air temperature Tam, the mode is switched to the second dehumidifying and heating mode. May be. According to this, even in a refrigeration cycle apparatus that does not have a tank pressure sensor 46b that is relatively expensive with respect to the temperature sensor, switching between the first dehumidifying heating mode and the second dehumidifying heating mode can be performed. .
 また、第1実施形態では、冷房モード時に空調制御装置40が水ポンプ12cを停止させた例を説明したが、他の運転モードと同様に水ポンプ12cを作動させてもよい。冷房モード時には、エアミックスドア34がヒータコア12b側の通風路を全閉とするので、水ポンプ12cを作動させても送風空気が加熱されてしまうことはない。さらに、水ポンプ12cを作動させて、熱媒体循環回路12内の熱媒体を加熱しておくことで、冷房モードから他の運転モードに切り替えた際に、速やかに送風空気を加熱することができる。 In the first embodiment, the example in which the air conditioning control device 40 stops the water pump 12c in the cooling mode has been described, but the water pump 12c may be operated in the same manner as in other operation modes. In the cooling mode, the air mix door 34 fully closes the ventilation path on the heater core 12b side, so that the blown air is not heated even when the water pump 12c is operated. Furthermore, by operating the water pump 12c and heating the heat medium in the heat medium circuit 12, the blown air can be quickly heated when switching from the cooling mode to another operation mode. .
 また、上述の実施形態では、冷房モードの基準過熱度KSHを5℃とした例を説明したが、本発明者等の検討によれば、冷房モード時の冷却能力およびサイクルのCOPを向上させるためには、基準過熱度KSHを5℃~15℃程度に設定すればよいことが判っている。 In the above-described embodiment, the example in which the reference superheat degree KSH in the cooling mode is set to 5 ° C. has been described. However, according to the study by the present inventors, the cooling capacity in the cooling mode and the COP of the cycle are improved. It is known that the reference superheat degree KSH should be set to about 5 ° C. to 15 ° C.
 また、上述の実施形態の第2除湿暖房モードでは、外気温Tamから室外器出口温度Toutを減算した温度差ΔTが基準温度差KΔT以下となるように第3膨張弁14cの作動を制御した例を説明したが、第2除湿暖房モード時の第3膨張弁14cの制御態様はこれに限定されない。 In the second dehumidifying and heating mode of the above-described embodiment, the operation of the third expansion valve 14c is controlled such that the temperature difference ΔT obtained by subtracting the outdoor unit outlet temperature Tout from the outside air temperature Tam is equal to or less than the reference temperature difference KΔT. However, the control mode of the third expansion valve 14c in the second dehumidifying and heating mode is not limited to this.
 例えば、タンク内圧力Ptkおよび室外器出口圧力Poutの検出値を用いて、圧力損失ΔPが第2基準圧力損失KΔP2以下となるように第3膨張弁14cの作動を制御してもよい。タンク圧力センサ46bを備えていない冷凍サイクル装置10では、レシーバタンク16b内の冷媒のタンク内温度Ttkを検出するタンク温度センサを設けて、タンク内温度Ttkからタンク内圧力Ptkを推定して用いてもよい。 For example, the operation of the third expansion valve 14c may be controlled using the detected values of the tank internal pressure Ptk and the outdoor unit outlet pressure Pout so that the pressure loss ΔP is equal to or less than the second reference pressure loss KΔP2. In the refrigeration cycle apparatus 10 that does not include the tank pressure sensor 46b, a tank temperature sensor that detects the tank internal temperature Ttk of the refrigerant in the receiver tank 16b is provided, and the tank internal pressure Ptk is estimated and used from the tank internal temperature Ttk. Also good.
 また、上述の実施形態の各運転モードでは、エアミックスドア34の開度を調整しない例を説明したが、冷房モード、第1~第3除湿暖房モードでは、空調風温度センサ47によって検出された送風空気温度TAVが目標吹出温度TAOに近づくように、エアミックスドア34の開度を調整してもよい。 Further, in each operation mode of the above-described embodiment, an example in which the opening degree of the air mix door 34 is not adjusted has been described. However, in the cooling mode and the first to third dehumidifying heating modes, the air-conditioning wind temperature sensor 47 detects the air mix door 34. You may adjust the opening degree of the air mix door 34 so that the ventilation air temperature TAV approaches the target blowing temperature TAO.
 冷凍サイクル装置10の各構成は、上述の実施形態に開示されたものに限定されない。 Each configuration of the refrigeration cycle apparatus 10 is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、内燃機関を有する車両に適用する場合等には、エンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用してもよい。 For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 has been described. However, when applied to a vehicle having an internal combustion engine, an engine-driven compressor may be employed. . Furthermore, as the engine-driven compressor, a variable capacity compressor configured to be able to adjust the refrigerant discharge capacity by changing the discharge capacity may be adopted.
 また、上述の実施形態では、外気熱交換部16a、レシーバタンク16b、および過冷却熱交換部16cを一体的に構成した室外熱交換器16を採用した例を説明したが、もちろん、外気熱交換部16a、レシーバタンク16b、および過冷却熱交換部16cを別体で構成してもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted the outdoor heat exchanger 16 which comprised the outdoor air heat exchange part 16a, the receiver tank 16b, and the subcooling heat exchange part 16c integrally, of course, outdoor air heat exchange is carried out. The unit 16a, the receiver tank 16b, and the supercooling heat exchange unit 16c may be configured separately.
 また、上述の実施形態では、冷凍サイクル装置10として、冷媒回路を切替可能に構成されたものを採用した例を説明したが、本開示に係る温度調整装置の効果を得るために、冷媒回路の切り替えは必須ではない。 In the above-described embodiment, the example in which the refrigerant circuit is configured to be switchable as the refrigeration cycle apparatus 10 has been described. However, in order to obtain the effect of the temperature adjustment apparatus according to the present disclosure, Switching is not mandatory.
 また、上述の実施形態では、冷凍サイクル装置10の冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 In the above-described embodiment, the example in which R134a is adopted as the refrigerant of the refrigeration cycle apparatus 10 has been described, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more or less than them are also included in the scope and concept of the present disclosure. Is.

Claims (5)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を熱源として熱交換対象流体を加熱する加熱部(12、12a、12b、12c、12d)と、
     冷媒と外気とを熱交換させる外気熱交換部(16a)と、
     前記外気熱交換部から流出した液相冷媒を蓄える受液部(16b)と、
     前記受液部から流出した冷媒と外気とを熱交換させる過冷却熱交換部(16c)と、
     冷媒を前記熱交換対象流体と熱交換させて蒸発させる蒸発部(18)と、
     前記外気熱交換部へ流入する冷媒を減圧させる第1減圧部(14a)と、
     前記蒸発部へ流入する冷媒を減圧させる第2減圧部(14b)と、
     前記受液部から流出した冷媒を前記圧縮機の吸入側へ導く迂回通路(21)と、
     冷媒回路を切り替える冷媒回路切替装置(14c、15)と、を備え、
     前記冷媒回路切替装置は、
      前記外気熱交換部にて冷媒を凝縮させる運転条件時に、前記迂回通路を閉じ、前記圧縮機、前記外気熱交換部、前記受液部、前記過冷却熱交換部、前記第2減圧部、前記蒸発部、前記圧縮機の順に冷媒を循環させる冷媒回路に切り替え、
      前記外気熱交換部にて冷媒を蒸発させる運転条件時に、前記迂回通路を開き、前記圧縮機、前記加熱部、前記第1減圧部、前記外気熱交換部、前記受液部、前記迂回通路、前記圧縮機の順に冷媒を循環させる冷媒回路に切り替えるものである冷凍サイクル装置。
    A compressor (11) for compressing and discharging the refrigerant;
    A heating unit (12, 12a, 12b, 12c, 12d) for heating the fluid to be heat exchanged using the refrigerant discharged from the compressor as a heat source;
    An outside air heat exchanging section (16a) for exchanging heat between the refrigerant and the outside air;
    A liquid receiving part (16b) for storing the liquid phase refrigerant flowing out of the outside air heat exchange part;
    A supercooling heat exchange section (16c) for exchanging heat between the refrigerant flowing out of the liquid receiving section and the outside air;
    An evaporating section (18) for evaporating the refrigerant by exchanging heat with the heat exchange target fluid;
    A first decompression section (14a) for decompressing the refrigerant flowing into the outside air heat exchange section;
    A second decompression section (14b) for decompressing the refrigerant flowing into the evaporation section;
    A bypass path (21) for guiding the refrigerant flowing out from the liquid receiving section to the suction side of the compressor;
    A refrigerant circuit switching device (14c, 15) for switching the refrigerant circuit,
    The refrigerant circuit switching device is
    During an operating condition for condensing the refrigerant in the outside air heat exchange section, the bypass passage is closed, the compressor, the outside air heat exchange section, the liquid receiving section, the supercooling heat exchange section, the second decompression section, the Switch to the refrigerant circuit that circulates the refrigerant in the order of the evaporator, the compressor,
    During the operating conditions for evaporating the refrigerant in the outside air heat exchanging section, the bypass path is opened, the compressor, the heating section, the first pressure reducing section, the outside air heat exchanging section, the liquid receiving section, the bypass path, A refrigeration cycle apparatus that switches to a refrigerant circuit that circulates refrigerant in the order of the compressor.
  2.  さらに、前記冷媒回路切替装置は、
      前記外気熱交換部、および前記過冷却熱交換部にて冷媒を蒸発させる運転条件時に、前記迂回通路を開き、前記圧縮機、前記加熱部、前記第1減圧部、前記外気熱交換部、前記受液部、前記過冷却熱交換部、第2減圧部、前記蒸発部、前記圧縮機の順に冷媒を循環させるとともに、前記受液部、前記迂回通路、前記圧縮機の順に冷媒を循環させる冷媒回路に切り替えるものである請求項1に記載の冷凍サイクル装置。
    Furthermore, the refrigerant circuit switching device includes:
    During the operating conditions for evaporating the refrigerant in the outside air heat exchange unit and the supercooling heat exchange unit, the bypass passage is opened, the compressor, the heating unit, the first decompression unit, the outside air heat exchange unit, A refrigerant that circulates the refrigerant in the order of the liquid receiver, the subcooling heat exchanger, the second decompression unit, the evaporator, and the compressor, and that circulates the refrigerant in the order of the liquid receiver, the bypass passage, and the compressor The refrigeration cycle apparatus according to claim 1, which is switched to a circuit.
  3.  前記冷媒回路切替装置として、前記迂回通路を流通する冷媒の流量を調整する流量調整装置(14c)が含まれている請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the refrigerant circuit switching device includes a flow rate adjusting device (14c) for adjusting a flow rate of the refrigerant flowing through the bypass passage.
  4.  前記流量調整装置の作動を制御する流量調整制御部(40b)を備え、
     前記流量調整制御部は、前記外気熱交換部、および前記過冷却熱交換部にて冷媒を蒸発させる運転条件時に、前記受液部内の冷媒のタンク内圧力(Ptk)から前記過冷却熱交換部から流出した冷媒の室外器出口圧力(Pout)を減算した圧力損失(ΔP)が予め定めた基準圧力損失(KΔP2)以下となるように、前記流量調整装置の作動を制御するものである請求項3に記載の冷凍サイクル装置。
    A flow rate adjustment control unit (40b) for controlling the operation of the flow rate adjustment device;
    The flow rate adjustment control unit is configured to calculate the supercooling heat exchange unit from the tank pressure (Ptk) of the refrigerant in the liquid receiving unit during an operating condition in which the refrigerant is evaporated in the outside air heat exchange unit and the supercooling heat exchange unit. The operation of the flow rate adjusting device is controlled so that the pressure loss (ΔP) obtained by subtracting the outdoor unit outlet pressure (Pout) of the refrigerant flowing out from the refrigerant becomes equal to or less than a predetermined reference pressure loss (KΔP2). 3. The refrigeration cycle apparatus according to 3.
  5.  前記流量調整制御部は、外気温(Tam)から前記過冷却熱交換部から流出した冷媒の室外器出口温度(Tout)を減算した温度差(ΔT)が予め定めた基準温度差(KΔT)以下とすることによって、前記圧力損失(ΔP)が前記基準圧力損失(KΔP2)以下となるように、前記流量調整装置の作動を制御するものである請求項4に記載の冷凍サイクル装置。 In the flow rate adjustment control unit, a temperature difference (ΔT) obtained by subtracting an outdoor unit outlet temperature (Tout) of the refrigerant flowing out from the supercooling heat exchange unit from an outside air temperature (Tam) is equal to or less than a predetermined reference temperature difference (KΔT). Thus, the operation of the flow rate adjusting device is controlled so that the pressure loss (ΔP) is equal to or less than the reference pressure loss (KΔP2).
PCT/JP2018/008677 2017-03-28 2018-03-07 Refrigeration cycle apparatus WO2018180291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-063531 2017-03-28
JP2017063531A JP2018165604A (en) 2017-03-28 2017-03-28 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018180291A1 true WO2018180291A1 (en) 2018-10-04

Family

ID=63677010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008677 WO2018180291A1 (en) 2017-03-28 2018-03-07 Refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP2018165604A (en)
WO (1) WO2018180291A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071097A1 (en) * 2018-10-05 2020-04-09 株式会社デンソー Refrigeration cycle device
CN113710519A (en) * 2019-04-19 2021-11-26 株式会社电装 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117511B2 (en) * 2019-01-23 2022-08-15 パナソニックIpマネジメント株式会社 condensing unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297270A (en) * 1997-02-28 1998-11-10 Denso Corp Air conditioner for vehicle
JP2009236404A (en) * 2008-03-27 2009-10-15 Denso Corp Refrigeration cycle device
JP2013121763A (en) * 2011-12-09 2013-06-20 Sanden Corp Air conditioning device for vehicle
JP2014077552A (en) * 2012-10-08 2014-05-01 Denso Corp Refrigeration cycle device
JP2014149123A (en) * 2013-02-01 2014-08-21 Denso Corp Refrigeration cycle device
JP2015209036A (en) * 2014-04-24 2015-11-24 本田技研工業株式会社 Air conditioner for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297270A (en) * 1997-02-28 1998-11-10 Denso Corp Air conditioner for vehicle
JP2009236404A (en) * 2008-03-27 2009-10-15 Denso Corp Refrigeration cycle device
JP2013121763A (en) * 2011-12-09 2013-06-20 Sanden Corp Air conditioning device for vehicle
JP2014077552A (en) * 2012-10-08 2014-05-01 Denso Corp Refrigeration cycle device
JP2014149123A (en) * 2013-02-01 2014-08-21 Denso Corp Refrigeration cycle device
JP2015209036A (en) * 2014-04-24 2015-11-24 本田技研工業株式会社 Air conditioner for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071097A1 (en) * 2018-10-05 2020-04-09 株式会社デンソー Refrigeration cycle device
JP2020060304A (en) * 2018-10-05 2020-04-16 株式会社デンソー Refrigeration cycle device
JP7263727B2 (en) 2018-10-05 2023-04-25 株式会社デンソー refrigeration cycle equipment
CN113710519A (en) * 2019-04-19 2021-11-26 株式会社电装 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2018165604A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6794964B2 (en) Refrigeration cycle equipment
JP6015636B2 (en) Heat pump system
US10889163B2 (en) Heat pump system
US11718156B2 (en) Refrigeration cycle device
JP6277888B2 (en) Refrigeration cycle equipment
WO2018142911A1 (en) Heat exchange module, and temperature regulating device
WO2014171107A1 (en) Refrigeration cycle device
JP6011375B2 (en) Refrigeration cycle equipment
CN111278670B (en) Thermal management system for vehicle
US20150292820A1 (en) Heat exchanger
CN109642756B (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
CN109890636B (en) Refrigeration cycle device
CN113423596A (en) Refrigeration cycle device
US20210101451A1 (en) Refrigeration cycle device
WO2018180291A1 (en) Refrigeration cycle apparatus
JP6225709B2 (en) Air conditioner
JP2019105422A (en) Joint block for vehicle
WO2021095338A1 (en) Refrigeration cycle device
WO2020235250A1 (en) Air-conditioning device
WO2021157286A1 (en) Refrigeration cycle device
JP6891711B2 (en) Combined heat exchanger
WO2024053334A1 (en) Refrigeration cycle device
WO2022030182A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778231

Country of ref document: EP

Kind code of ref document: A1