WO2018088019A1 - 湿度センサおよびその製造方法 - Google Patents

湿度センサおよびその製造方法 Download PDF

Info

Publication number
WO2018088019A1
WO2018088019A1 PCT/JP2017/032773 JP2017032773W WO2018088019A1 WO 2018088019 A1 WO2018088019 A1 WO 2018088019A1 JP 2017032773 W JP2017032773 W JP 2017032773W WO 2018088019 A1 WO2018088019 A1 WO 2018088019A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
humidity sensor
uniform layer
heat
insulating film
Prior art date
Application number
PCT/JP2017/032773
Other languages
English (en)
French (fr)
Inventor
佐久間 憲之
中野 洋
保夫 小野瀬
太田 和宏
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018088019A1 publication Critical patent/WO2018088019A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Definitions

  • the present invention relates to a humidity sensor and a manufacturing method thereof.
  • Patent Document 1 Japanese Patent No. 5406664 (Patent Document 1) is known as a technique for forming a sensor on a substrate such as a semiconductor substrate.
  • a heating resistor for detecting an air flow rate, a resistance temperature detector for heating resistor, a resistance temperature detector, and a heating resistor for humidity detection are arranged in a diaphragm formed on a semiconductor substrate.
  • a thermal fluid flow sensor is described in which a cavity layer and a protective film on the cavity layer are formed on the heat generating resistor for humidity detection, and a plurality of holes reaching the cavity layer are provided in the protective film.
  • the air flow rate detection and the humidity detection can be formed on one substrate, and the cost can be reduced.
  • Patent Document 2 discloses that when the heater part is heated suddenly, a large temperature difference occurs between the heater part and the insulating layer, and the heater part is peeled or cracked by local thermal stress. And issues that lead to a decrease in reliability are described.
  • Patent Document 2 Japanese Patent Laid-Open No. 2014-16177
  • a thermal resistance type humidity sensor element having a heater manufactured by MEMS (Micro Electro Mechanical Systems) technology using a semiconductor can detect humidity with high accuracy in a high temperature environment, and It is attracting attention because it can reduce costs.
  • the temperature distribution of the heater at the time of humidity detection is not taken into consideration, and in Patent Document 1, the heater is covered with an insulating film, and the heater is heated. The central portion of the heater region becomes high temperature, and the temperature decreases as the distance from the central portion of the heater increases, and the temperature distribution in the heater region increases. As a result, there is a problem that the difference in the amount of water evaporation in the heater region increases, and the variation in detection sensitivity increases. Note that the temperature distribution in the heater region is easily affected by changes in ambient temperature, so that even a slight flow of air in which the intake air is replaced causes a greater variation in the detected value.
  • An object of the present invention is to provide a technique capable of reducing power consumption by reducing a difference between a temperature distribution in a heater region and a set temperature in a humidity sensor and making it less susceptible to changes in ambient temperature. It is in.
  • the humidity sensor is provided on a support substrate having a cavity portion, a first heater disposed on the support substrate, and an upper surface side or a lower surface side of the first heater.
  • a thermal uniform layer having a thermal conductivity equal to or higher than the thermal conductivity; and an insulating layer disposed between the first heater and the thermal uniform layer.
  • the first heater and the heat uniform layer are disposed in a region of the insulating film on the cavity, and the heat uniform layer is disposed to overlap the first heater in a plan view. The humidity is measured using a change in voltage output from one heater.
  • the method of manufacturing a humidity sensor includes (a) a step of providing an insulating film on a support substrate, (b) a step of forming a heater made of a metal film on the insulating film, and a wiring connected to the heater, (C) forming a thermal uniform layer on the heater via an insulating layer and a wiring connected to the thermal uniform layer. And (d) a step of forming another insulating film on the heat uniform layer, and (e) a step of forming a cavity in a region below the heater in the support substrate.
  • the thermal uniform layer has a thermal conductivity equal to or higher than the thermal conductivity of the heater, and the first heater and the thermal uniform layer are disposed in the region of the insulating film on the cavity, c) In the step, the heat uniform layer is disposed so as to overlap the heater in plan view.
  • the temperature difference in the temperature distribution within the heater humidity detection can be reduced, and a highly accurate and reliable humidity sensor can be realized.
  • FIG. 2 is a cross-sectional view of the structure taken along line AA in FIG. It is principal part sectional drawing which shows the manufacturing process of the sensor chip in the thermal resistance type
  • FIG. 1 is a schematic layout diagram showing a partially broken structure of a thermal air flow meter mounted with a thermal fluid flow sensor attached to an intake passage of an internal combustion engine of an automobile in Embodiment 1 of the present invention. It is sectional drawing of the sensor module cut
  • the thermal resistance type humidity sensor according to the first embodiment is a humidity sensor that detects absolute humidity using a heating resistor, and applies a constant voltage to the heat-generating low antibody and outputs a voltage output from the heat-generating low antibody. Humidity is measured using the change. ⁇ Structure of thermal resistance type humidity sensor>
  • FIG. 1 is a plan view showing a sensor chip of a thermal resistance type humidity sensor having a heater (first heater) 3 and a heat uniform layer 5 according to the first embodiment.
  • a sensor chip 1 includes a semiconductor substrate (support substrate) 2 made of single crystal silicon (Si), an insulating film (not shown) formed on the semiconductor substrate 2, and the above-described insulating film.
  • the heater 3 that is a heat-generating low antibody formed on the wiring 3 and wirings 4 a and 4 b that supply power to the heater 3 are provided.
  • the heat uniform layer 5 that averages the temperature distribution on the heater 3, the wiring 6 that prevents the heat uniform layer 5 from being charged up, and the electrodes 7a, 7b, and 7c that connect the wirings 4a, 4b, and 6 to the outside, respectively. And have.
  • the heater 3 and the heat uniform layer 5 are disposed inside the diaphragm 8 which is a region of the insulating film formed by removing the semiconductor substrate 2 and at a certain distance from the semiconductor substrate 2. And it is in a thermally insulated state.
  • the region of the thin portion of the insulating film on the cavity 2 a formed by partially removing the semiconductor substrate 2 is referred to as a diaphragm 8.
  • FIG. 2 is a cross-sectional view taken along line AA of the sensor chip 1 of FIG.
  • the configuration of the main part of the sensor chip 1 that is a humidity sensor will be described with reference to FIGS. 1 and 2.
  • the semiconductor substrate 2 having the cavity 2 a, the heater 3 disposed on the semiconductor substrate 2, and the heater 3 It has a heat uniform layer 5 provided on the upper surface side and having a thermal conductivity equal to or higher than that of the heater 3, and an insulating layer 12 a disposed between the heater 3 and the heat uniform layer 5.
  • the heater 3 and the heat uniform layer 5 are disposed in the region of the insulating film on the cavity 2a.
  • the heat uniform layer 5 is arrange
  • the center NC of the heat uniform layer 5 and the center HC of the heater 3 are arranged. Both are arranged so as to match.
  • the heat uniform layer 5 is a layer having a thermal conductivity equal to or higher than that of the heater 3 and is also a thermal equilibrium layer. That is, the heat distribution of the layer on the heater 3 is made uniform.
  • the heat uniform layer 5 is a layer made of an insulating film such as a metal film or a resin film, and is preferably made of a metal film.
  • the heat uniform layer 5 is preferably made of a metal film having a thermal conductivity larger than that of the insulating layer 12 a interposed between the heat uniform layer 5 and the heater 3.
  • the heat uniform layer 5 is preferably made of a metal film having a thermal conductivity larger than that of the heater 3, whereby the heat distribution of the layer on the heater 3 can be further uniformed.
  • the heat uniform layer 5 is preferably made of the same material as the heater 3.
  • the heat uniform layer 5 and the heater 3 are made of molybdenum (Mo).
  • Mo molybdenum
  • the thickness of the heat uniform layer 5 is preferably equal to or greater than the thickness of the heater 3.
  • the heat uniform layer 5 has a size in plan view equivalent to or less than that of the heater 3.
  • the heat uniform layer 5 is electrically connected to a ground electrode to which a ground potential is supplied. That is, the electrode 7c electrically connected to the heat uniform layer 5 and the wiring 6 shown in FIG. 1 is a ground electrode to which a ground potential is supplied.
  • the first insulating film 9, the second insulating film 10, the third insulating film 11, the fourth insulating film 12, and the fifth insulating film 13 are formed on the semiconductor substrate 2.
  • the sixth insulating film 14 and the seventh insulating film 15 are sequentially formed upward. That is, each insulating film is laminated upward.
  • the heater 3 is embedded in the fourth insulating film 12 on the third insulating film 11, while the heat uniform layer 5 is embedded in the fifth insulating film 13 on the fourth insulating film 12.
  • the insulating layer 12 a in the fourth insulating film 12 is disposed between the heater 3 and the heat uniform layer 5. That is, the heat uniform layer 5 is disposed on the heater 3 via the insulating layer 12a. In other words, the heat uniform layer 5 is disposed in another insulating layer (fourth insulating film 12) made of the same material as the insulating layer 12a.
  • the insulating film in which the heater 3 and the heat uniform layer 5 are embedded may be another insulating film on the semiconductor substrate 2 and is not limited to the insulating film or the other insulating film.
  • wirings 4a and 4b shown in FIG. 1 for supplying power to the heater 3 are arranged on the third insulating film 11 on the semiconductor substrate 2, and a fourth insulating film is provided thereon as shown in FIG. Thermal uniform layer 5 and wiring 6 are formed through 12. Further, a fifth insulating film 13, a sixth insulating film 14, and a seventh insulating film 15 are sequentially stacked thereon, and the wiring 4b is electrically connected to the electrode 7b through a connection portion (contact portion) 16. It is connected.
  • the heater 3 and the heat uniform layer 5 are located in the diaphragm 8 which is the region of the insulating film above the cavity 2 a formed by removing the semiconductor substrate 2, and from the semiconductor substrate 2. It is arranged at a distance.
  • the distance L between the semiconductor substrate 2 and the heat uniform layer 5 in plan view is longer than the width W of the heat uniform layer 5 or the heater 3 in plan view (L> W).
  • both the heat uniform layer 5 and the heater 3 are made of a material having a higher thermal conductivity than the insulating film (the first insulating film 9 to the seventh insulating film 15) including the insulating layer 12a.
  • the sensor chip 1 is formed by fixing the said chip
  • the pedestal 17 is provided with a ventilation hole 18 so that the diaphragm 8 is not sealed, and the adhesive 19 is formed so as not to block the ventilation hole 18.
  • the ventilation hole 18 may be formed in the horizontal direction by the groove
  • FIGS. 3 to 7 are cross-sectional views showing the main part of the manufacturing process of the sensor chip in the thermal resistance type humidity sensor according to the first embodiment of the present invention.
  • a semiconductor substrate 2 made of single crystal Si and having a crystal orientation of Si ⁇ 100> is prepared.
  • an insulating film is formed on the semiconductor substrate 2. That is, the first insulating film 9, the second insulating film 10, and the third insulating film 11 are formed on the semiconductor substrate 2.
  • the first insulating film 9 is, for example, a silicon oxide film having a compressive stress formed by introducing oxygen or water vapor into a furnace body of 1000 ° C. or higher
  • the second insulating film 10 is formed by CVD (Chemical The silicon nitride film having tensile stress formed by the Vapor (Deposition) method and the third insulating film 11 are silicon oxide films having compressive stress using the CVD method.
  • the third insulating film 11 that is the base insulating film is etched by about 15 nm by sputter etching using Ar gas, the surface is modified, and then a metal film, for example, molybdenum (Mo) is formed by about 150 nm by a sputtering method.
  • a metal film for example, molybdenum (Mo) is formed by about 150 nm by a sputtering method.
  • the heater 3 of the humidity sensor, the wiring 4b connected to the heater 3 and the wiring 4a shown in FIG. 1 are formed by using a lithography method and a metal etching technique.
  • a fourth insulating film 12 is formed, and then planarized by CMP (Chemical-Mechanical-Polishing).
  • the fourth insulating film 12 is a silicon oxide film having a compressive stress using a CVD method.
  • the heater 3 and the wiring 4b are covered with the fourth insulating film 12 (embedded in the fourth insulating film 12).
  • the fourth insulating film 12 is etched by about 15 nm by sputter etching using Ar gas, and after surface modification, a metal film such as molybdenum (Mo) is formed by about 150 nm by a sputtering method.
  • Mo molybdenum
  • the heat uniform layer 5 is disposed (formed) so as to overlap the heater 3 in plan view.
  • the heat uniform layer 5 is formed so that the center NC of the heat uniform layer 5 and the center HC of the heater 3 coincide.
  • the metal film forming the heat uniform layer 5 may be W (tungsten), for example.
  • a fifth insulating film 13 is formed, and then planarization is performed by CMP to form a sixth insulating film 14 and a seventh insulating film 15.
  • the fifth insulating film 13 is a silicon oxide film having a compressive stress using a CVD method
  • the sixth insulating film 14 is a silicon nitride film having a tensile stress formed by a plasma CVD method.
  • the insulating film 15 is a silicon oxide film having a compressive stress using a CVD method. Note that a heat treatment step may be appropriately added for adjusting the stress of the metal film and the insulating film formed so far.
  • connection part 16 is formed in the insulating film on the wiring 4a connected to the heater 3 shown in FIG. 1, the wiring 4b, and the wiring 6 connected to the heat uniform layer 5 using the photolithography method and the insulating film etching technique.
  • the seventh insulating film 15 is etched by about 15 nm by sputter etching using Ar gas, and after surface modification, a metal film such as Ti, TiN, TiW or the like is formed by sputtering to a thickness of about 20 nm to 200 nm. Thereafter, a laminated film containing aluminum (Al) as a main component is continuously formed.
  • electrodes 7a, 7b, and 7c shown in FIG. 1 are formed by a photolithography method and a metal etching technique.
  • the first insulating film 9 and the second insulating film 10 formed on the back surface of the semiconductor substrate 2 are bonded to the Si of the semiconductor substrate 2 in the region to be the diaphragm 8 shown in FIG. 1.
  • a mask for removing the film is formed using a photolithography technique and an insulating film etching technique.
  • the first insulating film 9 and the second insulating film 10 on the back surface of the semiconductor substrate 2 are used as a mask to change the Si film on the back surface side of the semiconductor substrate 2 to KOH (potassium hydroxide).
  • the cavity 2 a is formed in the lower region of the heater 3 by wet etching using a solution, TMAH (tetramethylamide) solution, or dry etching using a fluorine-based gas as a main component.
  • TMAH tetramethylamide
  • a silicon nitride film and a silicon oxide film may be additionally formed in order to adjust the film stress of the entire diaphragm 8.
  • the heat uniform layer 5 has a thermal conductivity equal to or higher than that of the heater 3, and the heater 3 and the heat uniform layer 5 are disposed in the insulating film region on the cavity 2a via the insulating layer 12a.
  • the arranged sensor chip 1 is manufactured.
  • the thermal resistance type humidity sensor is characterized by high detection sensitivity at high temperature and high humidity compared to resistance type and capacitance type using other moisture sensitive films.
  • FIG. 8 shows the temperature profile of the first embodiment based on the center of the heater in the AA line of FIG. 1 and the humidity sensor of the comparative example in which the heater is the same size and does not have a heat uniform layer. It is a figure which shows a temperature profile.
  • the size of the diaphragm 8 shown in FIG. 1 is 500 ⁇ m in both length and width, and the distance from the heater center HC to the semiconductor substrate 2 is 250 ⁇ m.
  • the heater 3 has a square shape of 80 ⁇ m in both length and width (40 ⁇ m on one side), and the heat uniform layer 5 of the first embodiment is the same size as the heater 3.
  • the set temperature 100% converted from the heater resistance value is 500 ° C.
  • the temperature profiles of the first embodiment (E) in FIG. 8 and the comparative example (F) in FIG. 8 are compared. Yes.
  • the heater is covered with a silicon oxide film having low thermal conductivity, and away from the Si substrate (semiconductor substrate) with good thermal conductivity, so that the temperature outside the heater end rapidly decreases. It can be seen that at 40 ⁇ m from the end (80 ⁇ m from the center of the heater), the temperature is 40% (about 200 ° C.) with respect to the set temperature, and the temperature decreases further toward the outside of the heater region HA.
  • the temperature rise of the heater center HC can be suppressed to about 5% (t2).
  • the size of the heat uniform layer 5 is preferably equal to or slightly smaller than that of the heater 3. That is, the increase in power consumption of the heater 3 can be suppressed by making the size of the heat uniform layer 5 equal to or slightly smaller than that of the heater 3.
  • FIG. 9 is a diagram showing the relationship between the heater temperature and the humidity detection voltage in the first embodiment of the present invention.
  • the environmental temperature 85 ° C. and the relative humidity is 80% (the moisture content in the air is about 280 kg / m 3 ).
  • the relationship between the heater temperature (resistance replacement calculation) and the humidity detection voltage (v) is shown.
  • the humidity detection voltage is the amount of heat consumed to evaporate moisture in the air.
  • the temperature distribution in the heater surface is large, the flow of air due to moisture evaporation is disturbed, and the output of the detection voltage also varies. Therefore, by providing the heat uniform layer 5 as in the first embodiment, the temperature distribution in the heater region HA shown in FIG. 8 can be reduced, and the humidity can be accurately measured.
  • the humidity sensor as shown in FIG. 2, by providing the heat uniform layer 5 above the heater 3 via the insulating layer 12a, the difference between the temperature distribution in the humidity detection of the heater 3 and the set temperature is obtained. As a result, a humidity sensor with high accuracy and excellent reliability can be realized.
  • the humidity sensor by making the size of the heat uniform layer 5 in plan view equal to or smaller than that of the heater 3, the humidity sensor is less affected by changes in the ambient temperature and the power consumption of the heater 3 can be suppressed. .
  • the thermal conductivity of the fourth insulating film 12 including the insulating layer 12 a between the heat uniform layer 5 and the heater 3 is higher than that of the heat uniform layer 5, there is a tendency to be close to the original heater temperature distribution. Therefore, in order to further reduce the temperature distribution, it is desirable to form the fourth insulating film 12 including the insulating layer 12 a with a material whose thermal conductivity is lower than that of the heat uniform layer 5.
  • the temperature distribution can be further reduced by making the fourth insulating film 12 have a structure in which the thickness of the fourth insulating film 12 is thicker toward the heater end and toward the heater end.
  • the heat uniform layer 5 may be thicker than the heater 3.
  • the distance L between the heat uniform layer 5 and the semiconductor substrate 2 becomes closer (shorter), so that heat transfer to the semiconductor substrate 2 becomes larger. Or it is desirable to make it longer (longer) than the width of the heater.
  • FIG. 10 is a schematic layout showing a partially broken structure of the thermal air flow meter (sensor module) on which the thermal fluid flow sensor according to the first embodiment of the present invention is mounted
  • FIG. 11 is a BB diagram of FIG. It is sectional drawing of the sensor module cut
  • FIG. 10 shows an example of a sensor module attached to an intake passage of an internal combustion engine such as an automobile. In order to make the structure of the sensor module easier to understand, a part of the module body (body) is seen through. Show.
  • the sensor module 20 is mounted on an intake pipe 21, and includes a support substrate 22 having wiring, a sensor chip 1, an air flow sensor 23, and an adjustment component (for example, a control circuit). And a module body 25 that is a body having a chip, a microcomputer chip, a capacitor, and the like.
  • the sensor module 20 includes a module body 25 and a cover 25a.
  • the sensor module 20 includes a sub-passage 26 that detects an air flow rate with an air flow rate sensor 23, a detection unit 27 that detects humidity and the like, and a control unit 29 that is a control circuit room including the adjustment component 24 and the connector 30.
  • Each of the elements is electrically connected to the wiring of the support substrate 22 by wire bonding.
  • the sensor chip 1 and the air flow sensor 23 send detection signals to the outside through the adjustment component 24 and through the connector 30.
  • the sensor chip 1 is covered with the protective material 31 shown in FIG. 11 so that the electrodes 7a, 7b, and 7c shown in FIG. 1 connected by wire bonding do not corrode, and as shown in FIG.
  • An intake air changing port 28 is provided so that air by the intake air 32 into the intake pipe 21 is appropriately changed.
  • the humidity detection on the surface of the sensor chip 1 affects the temperature distribution on the heat uniform layer 5 when a rapid air flow occurs, and the detection accuracy is lowered. It is designed to be smaller than a shaped passage.
  • a part of the control circuit in the control unit 29 may be formed on the same support substrate 22 of the sensor chip 1. In that case, measure the humidity detection voltage when the relative humidity is changed at the same environmental temperature, create a map to calculate the amount of moisture from the humidity detection voltage, write to the control circuit and microcomputer chip, and output to the outside To do.
  • Emodiment 2 ⁇ Structure of thermal resistance type humidity sensor>
  • the thermal resistance type humidity sensor according to the second embodiment is provided with a plurality of heaters as compared with the thermal resistance type humidity sensor of the first embodiment.
  • FIG. 12 is a plan view of the main part of the sensor chip in the thermal resistance type humidity sensor according to the second embodiment of the present invention.
  • the sensor chip 41 includes a semiconductor substrate (support substrate) 42 made of single crystal silicon (Si), an insulating film (not shown) formed on the semiconductor substrate 42, and the above-described insulating film.
  • the heater (first heater) 43, wirings 44 a and 44 b that supply power to the heater 43, and a heat uniform layer 45 that averages the temperature distribution of the layers on the heater 43 are included.
  • the sensor chip 41 includes a wiring 46 that prevents the heat uniform layer 45 from being charged up, an auxiliary heater (second heater) 47 formed so as to surround the heater 43, and a wiring 48 a that supplies power to the auxiliary heater 47. , 48b and electrodes 49a, 49b, 49c, 49d, 49e for connecting the wirings 44a, 44b, 46, 48a, 48b to the outside.
  • the heater 43, the heat uniform layer 45, and the auxiliary heater 47 are provided in a diaphragm 50 that is formed by removing the semiconductor substrate 42 and is an insulating film region above a cavity 42a shown in FIG.
  • the semiconductor substrate 42 is disposed at a certain distance from the semiconductor substrate 42 and is further thermally insulated.
  • FIG. 13 is a cross-sectional view of the structure cut along the line CC in FIG.
  • a first insulating film 51, a second insulating film 52, and a third insulating film 53 are formed on the semiconductor substrate 42.
  • a heater 43 and an auxiliary heater 47 are provided on the third insulating film 53, and wirings 44a, 44b, 48a, and 48b shown in FIG. 12 for supplying power to the heater 43 and the auxiliary heater 47 are arranged.
  • a uniform heat layer 45 and a wiring 46 are formed on the heater 43 through a fourth insulating film 54 including an insulating layer 54a.
  • a fifth insulating film 55, a sixth insulating film 56, and a seventh insulating film 57 are stacked on the fourth insulating film 54, and the connection portion 58 is provided on the seventh insulating film 57.
  • an electrode 49c is formed.
  • a protective film 59 is formed except for a part in order to prevent corrosion of the electrode 49c.
  • the protective film 59 should not be disposed on the heater 43 and the auxiliary heater 47 in order to stabilize the heater temperature.
  • the material is, for example, a silicon oxide film, a silicon nitride film, or a polyimide film.
  • the heater 43, the heat uniform layer 45, and the auxiliary heater 47 are disposed in the diaphragm 50, which is the region of the insulating film on the cavity 42a formed by removing the semiconductor substrate 42, and the semiconductor. It is arranged at a distance away from the substrate 42.
  • the formed chip is fixed on the pedestal 60 with the adhesive 62, and the manufacture of the sensor chip 41 is completed.
  • the pedestal 60 is provided with a ventilation hole 61 so that the diaphragm 50 is not sealed, and the adhesive 62 is disposed so as not to block the ventilation hole 61.
  • the ventilation hole 61 is formed in the lower surface, but it may be formed in the lateral direction of the pedestal 60 by a groove or the like and communicated with the outside.
  • the auxiliary heater 47 is provided so as to surround the heater 43 at a position between the semiconductor substrate 42 and the heater 43 in plan view. The temperature during heating is lower than that of the heater 43.
  • the heat uniform layer 45 is arranged at a position inside the auxiliary heater 47 in a plan view and covers the heater 43 as shown in FIG. That is, the heat uniform layer 45 does not cover the heater 43 and the auxiliary heater 47. In other words, the heat uniform layer 45 does not cover both the heater 43 and the auxiliary heater 47 in a connected layer state.
  • the distance (L2) between the auxiliary heater 47 and the semiconductor substrate 42 in the plan view is longer (L2> L1) than the distance (L1) between the heat uniform layer 45 and the auxiliary heater 47 in the plan view.
  • FIG. 14 is a diagram showing a temperature profile with respect to the distance from the heater center in each comparative example for each environmental temperature
  • FIG. 15 is a diagram showing a temperature profile with respect to the distance from the heater center in the second embodiment of the present invention for each environmental temperature.
  • FIGS. 14 and 15 show temperature profiles based on the center of the heater in the CC line of FIG. 12, respectively.
  • the thermal equalization of FIG. 13 is possible regardless of whether the environmental temperature is 20 ° C. (K) or the environmental temperature is 80 ° C. (M).
  • first heater region HA1 the region where the first layer 45 is provided (first heater region HA1) suppresses the central portion of the heater from becoming high temperature, and the heat distribution in the heater region is made uniform.
  • the temperature profile of the comparative example shown in FIG. 14 having a structure having no heat uniform layer whether the environmental temperature is 25 ° C. (I) or the environmental temperature is 80 ° C. (J), In the heater region HA, it can be seen that the center of the heater is at a high temperature, and the heat distribution in the heater region is not uniform.
  • the auxiliary heater 47 is provided and the humidity is detected by setting the temperature higher than the environmental temperature.
  • the influence on the heater area HA1 can be reduced. Further, even when an air flow is generated, the temperature change can be mitigated by the second heater region HA2, so that the humidity detection accuracy is maintained as compared with the structure of the comparative example having no heat uniform layer. I understand that.
  • the second heater area HA2 becomes wider and the temperature of the auxiliary heater 47 becomes higher, the effect of relaxing the temperature change becomes larger.
  • the second heater area HA2 is large or when the temperature of the auxiliary heater 47 is high, the power consumption of the auxiliary heater 47 increases. Therefore, the size of the second heater area HA2 is considered in consideration of the overall power consumption. Need to design, and temperature.
  • the temperature when the heater 43 is heated is, for example, 500 ° C. or more, but the temperature when the auxiliary heater 47 is heated is preferably near 300 ° C. where the humidity detection voltage rises.
  • the heat uniform layer 45 be disposed so as not to overlap the auxiliary heater 47 in plan view. That is, the heat uniform layer 45 does not cover both the heater 43 and the auxiliary heater 47.
  • the heat uniform layer 45 covers only the heater 43 and does not cover the auxiliary heater 47. That is, the heat uniform layer 45 does not have to cover both the heater 43 and the auxiliary heater 47 in a connected layer state.
  • the heat uniform layer 45 in a state separated into two (not connected) The heater 43 and the auxiliary heater 47 may be covered individually.
  • the sensor chip 1 is connected to the intake pipe 21 by the intake air replacement port 28, and air in the intake pipe 21 constantly enters and exits. An air flow is generated on the sensor chip 1. That is, since an air flow is generated on the sensor chip 1, the temperature profile is likely to fluctuate due to the influence of the air flow.
  • the temperature of the air in the intake pipe 21 can be stabilized by providing the auxiliary heater (second heater) 47 as shown in FIGS.
  • the heat uniform layer is provided on the upper surface side of the heater in the structure of the sensor chip of the humidity sensor.
  • the heat uniform layer is on the side opposite to the upper surface side of the heater. It may be provided at the position, that is, on the lower surface side of the heater. Even if the heat uniform layer is provided on the lower surface side of the heater, the same effects as those of the first and second embodiments can be obtained.
  • the support substrate is not limited to the semiconductor substrate, and may be a ceramic substrate or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

湿度センサは、空洞部2aを有した半導体基板2と、半導体基板2上に配置されたヒータ3と、ヒータ3の上面側に設けられ、かつヒータ3の熱伝導率以上の熱伝導率を有する熱均一層5と、ヒータ3と熱均一層5との間に配置された絶縁層12aと、を有する。さらに、空洞部2a上の絶縁膜の領域にヒータ3と熱均一層5とが配置され、熱均一層5は、平面視でヒータ3と重なるように配置されている。

Description

湿度センサおよびその製造方法
 本発明は、湿度センサおよびその製造方法に関する。
 半導体基板などの基板上にセンサを形成する技術として、特許第5406674号(特許文献1)が知られている。この特許文献1には、半導体基板上に形成されたダイヤフラム内に、空気流量を検出する発熱抵抗体、発熱抵抗体用測温抵抗体および測温抵抗体と、湿度検出用発熱抵抗体を配置し、この湿度検出用発熱抵抗体上に空洞層と、空洞層上の保護膜とが形成され、保護膜に、空洞層に達する複数の孔を設けた熱式流体流量センサが記載されている。これにより、空気流量検出と湿度検出を一つの基板上に形成することができ、コスト低減が図れることが記載されている。
 また、特開2014-16177号公報(特許文献2)には、ヒータ部を急激に加熱した場合、ヒータ部と絶縁層に大きな温度差が生じ、局所的な熱応力によるヒータ部の剥離やクラックが発生し、信頼度低下につながる課題が記載されている。この対策として、ヒータ部と絶縁層の間に熱伝導率が高い材料で形成された熱応力緩和層をヒータ部と接触させて配置することで、局所的な熱応力による剥離を抑制でき、長期的な信頼性を高められることが記載されている。
特許第5406674号 特開2014-16177号公報
 近年、自動車などの内燃機関の燃費向上のため、吸気管には吸入空気量の検出の他、吸入空気の湿度や圧力などを検出することが必要とされている。
 特に半導体を用いたMEMS(Micro Electro Mechanical Systems:微小電気機械システム)技術により製造されたヒータを有する熱式抵抗型の湿度センサ素子が、高温環境下で高精度の湿度検出が可能であり、かつコストを低減できることから注目されている。
 しかしながら、上述の技術においては、湿度検出時のヒータの温度分布に関して、考慮されておらず、上記特許文献1においては、ヒータが絶縁膜により覆われた構造となっており、ヒータを加熱した場合、ヒータ領域の中心部が高温となり、ヒータの中心部から離れるほど温度が低下しヒータ領域内の温度分布が大きくなる。これにより、ヒータ領域内における水分蒸発量の差が大きくなり、検出感度のばらつきが大きくなるという課題がある。なお、上記ヒータ領域内の温度分布は、周囲の温度変化にも影響を受けやすいため、吸入空気が入れ替わるわずかな空気の流れでも検出値のばらつきがさらに大きくなる要因となる。
 上記特許文献2においては、ヒータ部と熱伝導率が良好な応力緩和層を接触させた構造のため、ヒータ部の領域の温度分布は小さくなるが、応力緩和層全体(体積)をヒータ部で一定温度に加熱しなければならず消費電力が高くなるという課題がある。また、応力緩和層と基板との距離が考慮されていないため、基板への熱伝導により、湿度検出領域の境界が不安定となり、検出精度が低下するという懸念もある。
 本発明の目的は、湿度センサにおいて、ヒータ領域内の温度分布の設定温度との差を小さくし、かつ、周囲温度の変化に影響されにくくして消費電力を抑えることができる技術を提供することにある。
 本発明の前記の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 一実施の形態における湿度センサは、空洞部を備えた支持基板と、上記支持基板上に配置された第1ヒータと、上記第1ヒータの上面側または下面側に設けられ、上記第1ヒータの熱伝導率以上の熱伝導率を有する熱均一層と、上記第1ヒータと上記熱均一層との間に配置された絶縁層と、を有する。さらに、上記空洞部上の絶縁膜の領域に上記第1ヒータと上記熱均一層とが配置され、上記熱均一層は、平面視で上記第1ヒータと重なるように配置されており、上記第1ヒータから出力される電圧の変化を用いて湿度の計測を行う。
 一実施の形態における湿度センサの製造方法は、(a)支持基板上に絶縁膜を設ける工程、(b)上記絶縁膜上に金属膜からなるヒータ、および上記ヒータに繋がる配線を形成する工程、(c)上記ヒータ上に絶縁層を介して熱均一層、および上記熱均一層に繋がる配線を形成する工程、を有する。さらに、(d)上記熱均一層上に他の絶縁膜を形成する工程、(e)上記支持基板における上記ヒータの下部の領域に空洞部を形成する工程、を有する。さらに、上記熱均一層は、上記ヒータの熱伝導率以上の熱伝導率を有し、上記空洞部上の上記絶縁膜の領域に上記第1ヒータと上記熱均一層とを配置し、上記(c)工程において、上記熱均一層を、平面視で上記ヒータと重なるように配置する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 ヒータの湿度検出内における温度分布の温度差を小さくすることができ、高精度で、かつ信頼性に優れた湿度センサを実現することができる。
本発明の実施の形態1の熱式抵抗型湿度センサにおけるセンサチップを示す平面図である。 図1のA-A線に沿って切断した構造の断面図である。 本発明の実施の形態1である熱式抵抗型湿度センサにおけるセンサチップの製造工程を示す要部断面図である。 図3に続く熱式抵抗型湿度センサのセンサチップの製造方法を示す要部断面図である。 図4に続く熱式抵抗型湿度センサのセンサチップの製造方法を示す要部断面図である。 図5に続く熱式抵抗型湿度センサのセンサチップの製造方法を示す要部断面図である。 図6に続く熱式抵抗型湿度センサのセンサチップの製造方法を示す要部断面図である。 本発明の実施の形態1と比較例の温度プロファイルを比較した図である。 本発明の実施の形態1におけるヒータ温度と湿度検出電圧の関係を示す図である。 本発明の実施の形態1において自動車の内燃機関の吸気通路に取り付けられた熱式流体流量センサを実装した熱式空気流量計の構造を一部破断して示す概略配置図である。 図10のB-B線に沿って切断したセンサモジュールの断面図である。 本発明の実施の形態2の熱式抵抗型湿度センサにおけるセンサチップの要部平面図である。 図12のC-C線に沿って切断した構造の断面図である。 比較例のヒータ中心からの距離に対する温度プロファイルを環境温度ごとに示す図である。 本発明の実施の形態2のヒータ中心からの距離に対する温度プロファイルを環境温度ごとに示す図である。
 (実施の形態1)
 本発明の一実施の形態である湿度センサを図面を参照して説明する。本実施の形態1の熱式抵抗型湿度センサは、発熱抵抗体を用いて絶対湿度を検出する湿度センサであり、発熱低抗体に一定の電圧を印加しこの発熱低抗体から出力される電圧の変化を用いて湿度の計測を行うものである。
 <熱式抵抗型湿度センサの構造>
 図1は、本実施の形態1のヒータ(第1ヒータ)3と熱均一層5を有した熱式抵抗型湿度センサのセンサチップを示す平面図である。なお、図1は平面図であるが、図面を分かり易くするためにハッチングを付した箇所がある。図1に示すように、センサチップ1は、単結晶シリコン(Si)からなる半導体基板(支持基板)2と、半導体基板2上に形成された絶縁膜(図示は省略)と、上記絶縁膜上に形成された発熱低抗体であるヒータ3と、ヒータ3に電源を供給する配線4a、4bと、を有している。さらに、ヒータ3上の温度分布を平均化する熱均一層5と、熱均一層5のチャージアップを防止する配線6と、配線4a、4b、6をそれぞれ外部と接続する電極7a、7b、7cとを有している。
 なお、ヒータ3、熱均一層5は、半導体基板2を除去して形成された上記絶縁膜の領域であるダイヤフラム8の内部であり、かつ、半導体基板2から一定の距離離れた位置に配置され、かつ断熱された状態となっている。ここで、上述のように、半導体基板2を一部除去して形成された空洞部2aの上の上記絶縁膜の薄肉部の領域をダイヤフラム8と呼ぶ。
 図2は、図1のセンサチップ1のA-A線に沿った断面図である。
 図1と図2を用いて湿度センサであるセンサチップ1の要部の構成を説明すると、空洞部2aを備えた半導体基板2と、半導体基板2上に配置されたヒータ3と、ヒータ3の上面側に設けられ、かつヒータ3の熱伝導率以上の熱伝導率を有する熱均一層5と、ヒータ3と熱均一層5との間に配置された絶縁層12aと、を有している。なお、ヒータ3と熱均一層5は、空洞部2a上の上記絶縁膜の領域に配置されている。そして、熱均一層5は、平面視でヒータ3と重なるように配置されている。すなわち、平面視において、熱均一層5は、少なくともその一部がヒータ3と重なるように配置されており、好ましくは図1に示すように、熱均一層5の中心NCとヒータ3の中心HCとが一致するように両者が配置されている。
 なお、熱均一層5は、ヒータ3の熱伝導率以上の熱伝導率を有する層であり、熱平衡層でもある。すなわち、ヒータ3上の層の熱分布を均一化するものである。そして、熱均一層5は、金属膜、もしくは樹脂膜などの絶縁膜からなる層であり、好ましくは金属膜からなる。その際、熱均一層5は、熱均一層5とヒータ3との間に介在される絶縁層12aの熱伝導率よりも大きな熱伝導率の金属膜からなることが好ましい。さらに、熱均一層5は、ヒータ3よりも大きな熱伝導率の金属膜からなることが好ましく、これにより、更にヒータ3上の層の熱分布の均一化を図ることができる。
 また、熱均一層5は、ヒータ3と同一の材質からなることが好ましい。例えば、熱均一層5とヒータ3は、モリブデン(Mo)からなる。その際、熱均一層5の厚さは、ヒータ3の厚さ以上であることが好ましい。さらに、熱均一層5は、平面視の大きさが、ヒータ3と同等もしくはそれ以下であることが好ましい。
 なお、熱均一層5は、グランド電位が供給されるグランド電極に電気的に接続されている。すなわち、図1に示す熱均一層5と配線6を介して電気的に接続された電極7cは、グランド電位が供給されるグランド電極である。
 また、図2に示すように、半導体基板2上には、第1の絶縁膜9、第2の絶縁膜10、第3の絶縁膜11、第4の絶縁膜12、第5の絶縁膜13、第6の絶縁膜14および第7の絶縁膜15が、それぞれ上方に向かって順に形成されている。すなわち、各絶縁膜が上方に向かって積層されている。
 なお、ヒータ3は、第3の絶縁膜11上の第4の絶縁膜12中に埋め込まれ、一方、熱均一層5は、第4の絶縁膜12上の第5の絶縁膜13中に埋め込まれており、ヒータ3と熱均一層5との間には第4の絶縁膜12における絶縁層12aが配置されている。つまり、熱均一層5は、絶縁層12aを介してヒータ3上に配置されている。言い換えると、熱均一層5は、絶縁層12aと同一の材質からなる他の絶縁層(第4の絶縁膜12)内に配置されている。ただし、ヒータ3および熱均一層5が埋め込まれる絶縁膜は、半導体基板2上の別の絶縁膜であってもよく、上記絶縁膜や上記他の絶縁膜に限定されるものではない。
 また、半導体基板2上の第3の絶縁膜11上には、ヒータ3に電源を供給する図1に示す配線4a、4bが配置され、その上に図2に示すように第4の絶縁膜12を介して熱均一層5と配線6が形成されている。さらに、その上には第5の絶縁膜13、第6の絶縁膜14、第7の絶縁膜15が順次積層され、接続部(コンタクト部)16を介して配線4bが電極7bと電気的に接続されている。
 なお、上述したようにヒータ3と熱均一層5は、半導体基板2を除去して形成された空洞部2aの上方の絶縁膜の領域であるダイヤフラム8内に位置し、かつ、半導体基板2から離れた距離に配置されている。例えば、図1に示すように、平面視における半導体基板2と熱均一層5との距離Lは、平面視における熱均一層5の幅Wもしくはヒータ3の幅より長い(L>W)。
 また、熱均一層5とヒータ3の両者とも絶縁層12aを含む絶縁膜(第1の絶縁膜9~第7の絶縁膜15)より熱伝導率の高い材質で構成されている。そして、台座17上に形成した上記チップを接着剤19によって固定することで、センサチップ1が形成される。なお、台座17には、ダイヤフラム8が密閉されないよう換気孔18が設けられ、接着剤19は換気孔18を塞がないように形成されている。また、本実施の形態1では、換気孔18が下面に空けられている構造を図示しているが、換気孔18は溝などによって横方向に形成されていてもよい。
 次に、本実施の形態1による湿度センサの製造方法を、図3~図7を用いて工程順に説明する。図3~図7は本発明の実施の形態1である熱式抵抗型湿度センサにおけるセンサチップの製造工程を示す要部断面図である。
 まず、図3に示すように、単結晶SiでSi<100>の結晶方位からなる半導体基板2を用意する。次に、半導体基板2上に絶縁膜を形成する。すなわち、半導体基板2上に第1の絶縁膜9、第2の絶縁膜10および第3の絶縁膜11を形成する。なお、第1の絶縁膜9は、例えば、1000℃以上の炉体に酸素、または水蒸気を導入して形成した圧縮応力を有する酸化シリコン膜であり、第2の絶縁膜10は、CVD(Chemical Vapor Deposition)法で形成した引っ張り応力を有する窒化シリコン膜、第3の絶縁膜11は、CVD法を用いた圧縮応力を有する酸化シリコン膜である。
 次に、Arガスによるスパッタエッチングで下地絶縁膜である第3の絶縁膜11を約15nmエッチングし、表面改質した後、スパッタリング法で金属膜、例えばモリブデン(Mo)を約150nm形成し、フォトリソグラフィ法とメタルエッチング技術を用いて湿度センサのヒータ3および、ヒータ3に繋がる配線4bと図1に示す配線4aを形成する。
 次に、図4に示すように、第4の絶縁膜12を形成し、その後、CMP(Chemical Mechanical Polishing : 化学機械研磨)により平坦化を行う。なお、第4の絶縁膜12は、CVD法を用いた圧縮応力を有する酸化シリコン膜である。これにより、ヒータ3や配線4bは第4の絶縁膜12によって覆われる(第4の絶縁膜12中に埋め込まれる)。
 次に、Arガスを用いたスパッタエッチングで第4の絶縁膜12を約15nmエッチングし、表面改質した後、スパッタリング法で金属膜、例えばモリブデン(Mo)を約150nm形成し、フォトリソグラフィ法とメタルエッチング技術を用いて熱均一層5および、熱均一層5に繋がる配線6を形成する。これにより、熱均一層5は、ヒータ3上に第4の絶縁膜12の絶縁層12aを介して配置される。
 この時、熱均一層5を、図1に示すように、平面視でヒータ3と重なるように配置する(形成する)。好ましくは、熱均一層5の中心NCとヒータ3の中心HCとが一致するように熱均一層5を形成する。
 なお、熱均一層5を形成する金属膜は、例えば、W(タングステン)などであってもよい。
 次に、熱均一層5上に他の絶縁膜を形成する。詳細には、図5に示すように、第5の絶縁膜13を形成し、その後、CMPにより平坦化を行い、第6の絶縁膜14、第7の絶縁膜15を形成する。なお、第5の絶縁膜13は、CVD法を用いた圧縮応力を有する酸化シリコン膜であり、第6の絶縁膜14は、プラズマCVD法で形成した引っ張り応力を有する窒化シリコン膜、第7の絶縁膜15は、CVD法を用いた圧縮応力を有する酸化シリコン膜である。なお、これまで形成した金属膜、および絶縁膜の応力調整のため、適宜熱処理工程を加えてもよい。
 次に、図1に示すヒータ3に繋がる配線4a、配線4b、および熱均一層5に繋がる配線6上の絶縁膜に、フォトリソグラフィ法と絶縁膜エッチング技術とを用いて接続部16を形成する。次に、Arガスを用いたスパッタエッチングで第7の絶縁膜15を約15nmエッチングし、表面改質した後、スパッタリング法で金属膜、例えばTiやTiN、TiWなどを20nm~200nm程度形成し、その後アルミニウム(Al)を主成分とした積層膜を連続して形成する。その後、フォトリソグラフィ法とメタルエッチング技術により図1に示す電極7a、7b、7cを形成する。
 次に、図6に示すように、半導体基板2の裏面に形成された第1の絶縁膜9と第2の絶縁膜10とに、図1に示すダイヤフラム8となる領域の半導体基板2のSi膜を除去するマスクをフォトリソグラフィ技術と絶縁膜エッチング技術とを用いて形成する。
 次に、図7に示すように、半導体基板2の裏面の第1の絶縁膜9と第2の絶縁膜10をマスクにして、半導体基板2の裏面側のSi膜をKOH(水酸化カリウム)溶液、TMAH(テトラメチルアミド)溶液によるウェットエッチング、または、フッ素系ガスを主成分としたドライエッチングにより除去し、ヒータ3の下部の領域に空洞部2aを形成する。これにより、空洞部2aの上部に絶縁膜の領域であるダイヤフラム8を形成する。
 なお、第3の絶縁膜11を形成した後にダイヤフラム8全体の膜応力調整のため、窒化シリコン膜と酸化シリコン膜を追加して形成しても良い。
 以上により、熱均一層5が、ヒータ3の熱伝導率以上の熱伝導率を有し、かつ空洞部2a上の絶縁膜の領域にヒータ3と熱均一層5とが絶縁層12aを介して配置されたセンサチップ1が製造される。
 <本実施の形態1の湿度センサの効果>
 熱式抵抗型湿度センサは、他の感湿膜を用いた抵抗型や容量型と比較し、高温高湿時の検出感度が高いのが特徴である。
 図8は、図1のA-A線中のヒータ中心を基準にした本実施の形態1の温度プロファイルと、ヒータは同一サイズで、かつ熱均一層を有していない比較例の湿度センサの温度プロファイルとを示す図である。
 図8において、図1に示すダイヤフラム8のサイズが縦、横とも500μmであり、ヒータ中心HCから半導体基板2までの距離が250μmである。そして、ヒータ3は、縦横とも80μm(片側40μm)の四角形であり、本実施の形態1の熱均一層5は、ヒータ3と同一サイズである。ここでは、ヒータ抵抗値から換算した設定温度100%が500℃の場合に関して、図8の本実施の形態1(E)と図8の比較例(F)との両者の温度プロファイルを比較している。
 まず、比較例(F)では、ヒータ中心HCの温度が設定温度に対して約15%(t1)高温になっており、ヒータの外側に向かうに従い温度が低下し、ヒータ領域HAにおけるヒータ端の付近では100%を数%(t0)下回っている。つまり、上面から見てヒータ中心から放射状に温度が低下する温度プロファイルであることが分かる。したがって、ヒータ内(ヒータ領域HA)の温度分布(温度差)は約20%程度(ΔT1=t1+t0)であり、ヒータ形状が四角形であるためヒータ角部はさらに温度が低下する。なお、ヒータは、熱伝導率が低い酸化シリコン膜によって覆われていること、熱伝導の良いSi基板(半導体基板)から離れていることにより、ヒータ端から外側の温度は急激に低下し、ヒータ端から40μm(ヒータ中心から80μm)では、設定温度に対して40%(約200℃)となり、さらにヒータ領域HAの外側に行くほど温度が低下していくことが分かる。
 これに対して、ヒータ3と熱均一層5が同一サイズの図8に示す本実施の形態1(E)では、ヒータ中心HCの温度上昇を約5%(t2)に抑えることができ、ヒータ内の温度分布も10%未満(ΔT2=t2+t0)にすることができ、熱均一層5によりヒータ内の温度を均一化できることが分かる。なお、熱均一層5はヒータ3と同一サイズのため、ヒータ端(熱均一層5の端部)より外側の温度プロファイルは(F)の比較例と等しく、温度低下(t0)も(F)の比較例とほぼ等しくなる。
 なお、他のヒータ温度(ヒータ抵抗値換算)に設定して温度プロファイルを計測した結果、設定温度に対応した割合で計算した温度プロファイルがほぼ同等であることを確認している。また、ヒータ領域HAの温度分布は熱均一層5がヒータ3より大きくなるほど低減されるが、その分ヒータの消費電力が増加することがわかった。したがって、熱均一層5の大きさは、ヒータ3と同等か若干小さいほうが好ましい。すなわち、熱均一層5の大きさをヒータ3と同等かもしくは若干小さくすることにより、ヒータ3の消費電力の増加を抑制することができる。
 次に、図9は本発明の実施の形態1におけるヒータ温度と湿度検出電圧の関係を示す図であり、環境温度85℃、相対湿度80%の場合(空気中水分量約280kg/m3)のヒータ温度(抵抗置換算)と湿度検出電圧(v)の関係を示している。
 図9に示すように、ヒータ温度が300℃以上になると急激に湿度検出電圧が高くなる。つまり、ヒータ温度が高いほど湿度検出電圧が大きくなり、検出感度は高くなることがわかる。なお、熱均一層を有していない比較例(H)では、温度分布(ΔT1)が大きいため、ヒータ部の湿度検出領域では、湿度検出電圧が設定に対して約±30%以上(ΔV1)ばらつくことが分かった。これに対し、本実施の形態1(G)による検出電圧のばらつきは、温度分布(ΔT2)を低減することができるため、±10%以下(ΔV2)に抑えることができる。上記湿度検出電圧は、空気中の水分を蒸発させる消費熱量であり、ヒータ面内の温度分布が大きいと水分蒸発による空気の流れが乱され、検出電圧の出力にもばらつきが発生する。そこで、本実施の形態1のように熱均一層5を設けることで、図8に示すヒータ領域HAにおける温度分布を低減することができ、精度良く湿度を計測することができる。
 すなわち、湿度センサにおいて、図2に示すように、ヒータ3の上方に絶縁層12aを介して熱均一層5を設けたことにより、ヒータ3の湿度検出内における温度分布の設定温度との差を小さくすることができ、その結果、高精度で、かつ信頼性に優れた湿度センサを実現することができる。
 また、湿度センサにおいて、熱均一層5の平面視の大きさをヒータ3と同等もしくはヒータ3より小さくすることで、周囲温度の変化に影響されにくく、かつヒータ3の消費電力を抑えることができる。
 なお、熱均一層5とヒータ3との間の絶縁層12aを含む第4の絶縁膜12の熱伝導率が熱均一層5より高い場合、元のヒータ温度分布に近くなる傾向がある。したがって、温度分布をより低減するためには、絶縁層12aを含む第4の絶縁膜12をその熱伝導率が熱均一層5より低くなるような材料によって形成することが望ましい。特に、第4の絶縁膜12をその膜厚がヒータ中央部は厚く、かつヒータ端部に向かうほど薄くなる構造とすることで、より温度分布の低減化を図ることができる。また、ヒータ3上の熱分布(温度分布)を均一化するため、熱均一層5をヒータ3より厚くしてもよい。
 また、図1に示すように、熱均一層5と半導体基板2との間の距離Lは、近づく(短くなる)ほど半導体基板2への熱伝達が大きくなるため、熱均一層5の幅Wもしくはヒータの幅より離す(長くする)ことが望ましい。
 本実施の形態1では、湿度センサに関して説明したが、ヒータを用いている他のセンサ、例えば空気流量センサや加速度センサなどでもヒータ温度のばらつきを低減することによって計測精度を向上させることができる。
 <本実施の形態1の湿度センサと流量センサを組み合わせた例>
 図10は本発明の実施の形態1の熱式流体流量センサを実装した熱式空気流量計(センサモジュール)の構造を一部破断して示す概略配置図、図11は図10のB-B線に沿って切断したセンサモジュールの断面図である。なお、図10では、自動車などの内燃機関の吸気通路に取り付けられたセンサモジュールの一例を示しており、センサモジュールの構造を分かり易くするため、モジュール本体(ボディ)の一部を透過させて図示している。
 図10および図11に示すように、センサモジュール20は、吸気管21に装着されており、配線を有する支持基板22と、センサチップ1と、空気流量センサ23と、調整部品(例えば制御用回路チップやマイコンチップ、コンデンサなど)24と、を有したボディであるモジュール本体25を備えている。そして、センサモジュール20はモジュール本体25と、カバー25aとによって構成されている。
 なお、センサチップ1および空気流量センサ23と、調整部品24は、支持基板22上に搭載されている。そして、センサモジュール20は、空気流量センサ23により空気流量を検出する副通路26と、湿度などを検出する検出部27と、調整部品24やコネクタ30がある制御回路室である制御部29とに分離されており、各素子は、ワイヤボンディングにより支持基板22の配線に電気的に接続されている。なお、センサチップ1および空気流量センサ23は、調整部品24を介し、かつコネクタ30を通して外部へ検出信号を送っている。
 また、センサチップ1は、ワイヤボンディングで接続された図1に示す電極7a、7b、7cが腐食しないように図11に示す保護材31で覆われ、かつ図10に示すように、検出部27と吸気管21内への吸気32による空気が適度に入れ替わるように吸気入替口28が設けられている。
 また、センサチップ1の表面での湿度検出は、急激な空気の流れが発生すると熱均一層5上の温度分布に影響を与え、検出精度が低下するため、吸気入替口28の面積が、クランク形状の通路などと比較して小さくなるように設計されている。
 また、センサチップ1の同一支持基板22上に、制御部29における制御回路の一部を形成してもよい。その場合、同一の環境温度において相対湿度を変化させたときの湿度検出電圧を計測し、さらに湿度検出電圧から水分量を計算するマップを作成し、上記制御回路やマイコンチップに書き込んで外部に出力する。
 (実施の形態2)
 <熱式抵抗型湿度センサの構造>
 本実施の形態2に係る熱式抵抗型湿度センサは、上記実施の形態1の熱式抵抗型湿度センサと比較して、ヒータが複数設けられているものである。
 図12は本発明の実施の形態2の熱式抵抗型湿度センサにおけるセンサチップの要部平面図である。図12に示すように、センサチップ41は、単結晶シリコン(Si)からなる半導体基板(支持基板)42と、半導体基板42上に形成された絶縁膜(図示は省略)と、上記絶縁膜上に形成されたヒータ(第1ヒータ)43と、ヒータ43に電源を供給する配線44a、44bと、ヒータ43上の層の温度分布を平均化する熱均一層45と、を有している。さらに、センサチップ41は、熱均一層45のチャージアップを防止する配線46と、ヒータ43を取り囲むように形成された補助ヒータ(第2ヒータ)47と、補助ヒータ47に電源を供給する配線48a、48bと、配線44a、44b、46、48a、48bのそれぞれを外部と接続する電極49a、49b、49c、49d、49eとを有している。
 なお、ヒータ43、熱均一層45、補助ヒータ47は、半導体基板42を除去して形成された、後述する図13に示す空洞部42aの上部の絶縁膜の領域であるダイヤフラム50内に設けられ、かつ、半導体基板42から一定の距離離れた位置に配置され、さらに断熱された状態となっている。
 ここで、図13は図12のC-C線に沿って切断した構造の断面図である。図13に示すように、半導体基板42上に第1の絶縁膜51、第2の絶縁膜52および第3の絶縁膜53が形成されている。さらに第3の絶縁膜53上にヒータ43と補助ヒータ47が設けられ、かつヒータ43、補助ヒータ47にそれぞれ電源を供給する図12に示す配線44a、44b、48a、48bが配置されている。そして、ヒータ43の上に、絶縁層54aを含む第4の絶縁膜54を介して熱均一層45と配線46が形成されている。
 また、第4の絶縁膜54の上には第5の絶縁膜55、第6の絶縁膜56および第7の絶縁膜57が積層され、第7の絶縁膜57上には、接続部58を介して電極49cが形成されている。さらに、電極49cの腐食防止のため、一部を除いて保護膜59が形成されている。なお、保護膜59は、ヒータ温度の安定化のため、ヒータ43、補助ヒータ47上には配置しない方がよく、材質としては、例えば酸化シリコン膜、窒化シリコン膜、ポリイミド膜などである。
 また、上述したようにヒータ43と熱均一層45、および補助ヒータ47は、半導体基板42を除去して形成された空洞部42a上の絶縁膜の領域であるダイヤフラム50内に配置され、かつ半導体基板42から離れた距離に配置されている。
 次に、台座60上に、形成したチップを接着剤62によって固定して、センサチップ41の製造を終える。なお、台座60には、ダイヤフラム50が密閉されないよう換気孔61が設けられ、接着剤62は換気孔61を塞がないように配置されている。また、本実施の形態2では、換気孔61が下面に空けられているが、溝などにより台座60の横方向に向かって形成され、外部に通じていてもよい。
 ここで、本実施の形態2の湿度センサの要部の構造について説明すると、補助ヒータ47は、平面視において、半導体基板42とヒータ43との間の位置にヒータ43を囲むように設けられており、ヒータ43より加熱時の温度が低い。
 また、図12に示すように、熱均一層45は、平面視で補助ヒータ47より内側の位置に配置され、かつ、図13に示すように、ヒータ43を覆っている。すなわち、熱均一層45は、ヒータ43と補助ヒータ47とに跨がって覆っていない。言い換えると、熱均一層45は、繋がった層の状態でヒータ43と補助ヒータ47の両者を覆ってはいない。
 また、平面視における熱均一層45と補助ヒータ47との距離(L1)に比べて、平面視における補助ヒータ47と半導体基板42との距離(L2)の方が長い(L2>L1)。
 本実施の形態2の湿度センサのその他の構造については、実施の形態1の湿度センサと同様であるため、その重複説明については省略する。
 <本実施の形態2の湿度センサの効果>
 図14は比較例のヒータ中心からの距離に対する温度プロファイルを環境温度ごとに示す図、図15は本発明の実施の形態2のヒータ中心からの距離に対する温度プロファイルを環境温度ごとに示す図である。図14および図15は、それぞれ図12のC-C線中のヒータ中心を基準にした温度プロファイルを示すものである。
 図15に示すように、本実施の形態2の温度プロファイルにおいては、環境温度20℃(K)の場合であっても環境温度80℃(M)の場合であっても、図13の熱均一層45が設けられた領域(第1ヒータ領域HA1)は、上記実施の形態1と同様、ヒータ中心部が高温になるのを抑え、ヒータ領域の熱分布が均一化されているのが分かる。一方、熱均一層を有していない構造の図14に示す比較例の温度プロファイルでは、環境温度25℃(I)の場合であっても環境温度80℃(J)の場合であっても、ヒータ領域HAにおいて、ヒータ中心部が高温になっており、ヒータ領域での熱分布が均一化されていないことが分かる。
 そして、本実施の形態2の熱均一層45を有した構造による図15に示す温度プロファイルによれば、補助ヒータ47を設け、かつ環境温度より高温にしておくことにより、湿度を検出する第1ヒータ領域HA1に影響を及ぼすことを低減することができる。また、空気の流れが発生した場合においても、第2ヒータ領域HA2により温度変化を緩和することができるため、熱均一層を有していない比較例の構造に比べて湿度検出精度が維持されることが分かる。
 なお、この温度分布の変化に関して、第2ヒータ領域HA2が広くなるほど、また、補助ヒータ47の温度が高いほど温度変化を緩和する効果が大きくなる。ただし、第2ヒータ領域HA2が大きい場合、あるいは補助ヒータ47の温度が高い場合は、補助ヒータ47の消費電力が増加するため、全体の消費電力を考慮して、第2ヒータ領域HA2の大きさ、および温度を設計する必要がある。
 ここで、ヒータ43の加熱時の温度は、例えば500℃以上であるが、補助ヒータ47の加熱時の温度に関しては、湿度検出電圧が立ち上がる300℃近傍が良好である。さらに、消費電力の観点から、熱均一層45は、平面視で補助ヒータ47と重ならないように配置することが望ましい。すなわち、熱均一層45は、ヒータ43と補助ヒータ47の両者に対して跨がって覆ってはいない。一例として、図13に示す構造では、熱均一層45はヒータ43のみを覆っており、補助ヒータ47は覆っていない。つまり、熱均一層45は、繋がった層の状態でヒータ43と補助ヒータ47の両者を覆っていなければよく、例えば、2つに分離した状態(繋がっていない状態)の熱均一層45が、個々に単独でヒータ43と補助ヒータ47を覆ってればよい。
 また、図13に示すように、熱均一層45と補助ヒータ47との間隔L1より補助ヒータ47と半導体基板42との間隔L2を大きくする(L2>L1)ことにより、半導体基板42への熱伝達を防止することができ、湿度検出の精度を向上させることができる。
 また、例えば、図10に示す流量センサと湿度センサを組み合わせた構造の場合には、センサチップ1は吸気入替口28により、吸気管21と繋がっており、絶えず吸気管21内の空気が出入りし、センサチップ1上には空気の流れが発生している。すなわち、センサチップ1上には空気の流れが発生しているため、温度プロファイルが空気の流れの影響を受けて変動し易くなる。
 そこで、図10に示す構造においても、図12および図13に示すような補助ヒータ(第2ヒータ)47を設けることにより、吸気管21内の空気の温度の安定化を図ることができる。
 本実施の形態2の湿度センサによって得られるその他の効果については、実施の形態1の湿度センサと同様であるため、その重複説明は省略する。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。
 上記実施の形態1、2では、湿度センサのセンサチップの構造において、熱均一層がヒータの上面側に設けられている場合を説明したが、熱均一層は、ヒータの上面側と反対側の位置、すなわちヒータの下面側に設けられていてもよい。熱均一層がヒータの下面側に設けられた構造であっても、上記実施の形態1、2と同様の効果を得ることができる。
 また、支持基板は半導体基板に限定されることはなく、セラミック基板などであってもよい。
 1、41  センサチップ
 2、42  半導体基板(支持基板)
2a、42a 空洞部
 3、43  ヒータ(第1ヒータ)
4a、4b、44a、44b、48a、48b 配線
 5、45  熱均一層
 6、46  配線
7a、7b、7c、49a、49b、49c、49d、49e 電極
 8、50  ダイヤフラム
 9、51  第1の絶縁膜
10、52  第2の絶縁膜
11、53  第3の絶縁膜
12、54  第4の絶縁膜
12a、54a 絶縁層
13、55  第5の絶縁膜
14、56  第6の絶縁膜
15、57  第7の絶縁膜
   47  補助ヒータ(第2ヒータ)

Claims (15)

  1.  空洞部を備えた支持基板と、
     前記支持基板上に配置された第1ヒータと、
     前記第1ヒータの上面側または下面側に設けられ、前記第1ヒータの熱伝導率以上の熱伝導率を有する熱均一層と、
     前記第1ヒータと前記熱均一層との間に配置された絶縁層と、
     を有し、
     前記空洞部上の絶縁膜の領域に前記第1ヒータと前記熱均一層とが配置され、
     前記熱均一層は、平面視で前記第1ヒータと重なるように配置されており、
     前記第1ヒータから出力される電圧の変化を用いて湿度の計測を行う、湿度センサ。
  2.  請求項1に記載の湿度センサにおいて、
     前記熱均一層は、熱伝導率が前記絶縁層の熱伝導率より大きい金属膜からなる、湿度センサ。
  3.  請求項1に記載の湿度センサにおいて、
     前記熱均一層は、前記第1ヒータと同一の材質からなる、湿度センサ。
  4.  請求項1に記載の湿度センサにおいて、
     前記熱均一層の厚さは、前記第1ヒータの厚さ以上である、湿度センサ。
  5.  請求項1に記載の湿度センサにおいて、
     前記熱均一層は、前記絶縁層と同一の材質からなる他の絶縁層内に配置されている、湿度センサ。
  6.  請求項1に記載の湿度センサにおいて、
     前記熱均一層は、グランド電位が供給されるグランド電極に電気的に接続されている、湿度センサ。
  7.  請求項1に記載の湿度センサにおいて、
     前記熱均一層は、平面視の大きさが、前記第1ヒータと同等もしくはそれ以下である、湿度センサ。
  8.  請求項1に記載の湿度センサにおいて、
     平面視における前記支持基板と前記熱均一層との距離は、平面視における前記熱均一層の幅より長い、湿度センサ。
  9.  請求項1に記載の湿度センサにおいて、
     平面視において前記支持基板と前記第1ヒータとの間には、前記第1ヒータより加熱時の温度が低い第2ヒータが設けられている、湿度センサ。
  10.  請求項9に記載の湿度センサにおいて、
     前記熱均一層は、平面視で前記第2ヒータより内側の位置で前記第1ヒータを覆っている、湿度センサ。
  11.  請求項9に記載の湿度センサにおいて、
     前記熱均一層は、前記第1ヒータと前記第2ヒータとに跨がって覆っていない、湿度センサ。
  12.  請求項8に記載の湿度センサにおいて、
     平面視における前記熱均一層と前記第2ヒータとの距離に比べて、平面視における前記第2ヒータと前記支持基板との距離の方が長い、湿度センサ。
  13.  請求項1に記載の湿度センサにおいて、
     平面視における前記熱均一層の中心と前記第1ヒータの中心とが一致している、湿度センサ。
  14.  請求項1に記載の湿度センサにおいて、
     前記熱均一層は、熱伝導率が前記第1ヒータの熱伝導率より大きい金属膜からなる、湿度センサ。
  15.  ヒータから出力される電圧の変化を用いて湿度を計測する湿度センサの製造方法であって、
     (a)支持基板上に絶縁膜を設ける工程、
     (b)前記絶縁膜上に金属膜からなる前記ヒータ、および前記ヒータに繋がる配線を形成する工程、
     (c)前記ヒータ上に絶縁層を介して熱均一層、および前記熱均一層に繋がる配線を形成する工程、
     (d)前記熱均一層上に他の絶縁膜を形成する工程、
     (e)前記支持基板における前記ヒータの下部の領域に空洞部を形成する工程、
     を有し、
     前記熱均一層は、前記ヒータの熱伝導率以上の熱伝導率を有し、
     前記空洞部上の前記絶縁膜の領域に前記第1ヒータと前記熱均一層とを配置し、
     前記(c)工程において、前記熱均一層を、平面視で前記ヒータと重なるように配置する、湿度センサの製造方法。
PCT/JP2017/032773 2016-11-09 2017-09-12 湿度センサおよびその製造方法 WO2018088019A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-218907 2016-11-09
JP2016218907A JP6718363B2 (ja) 2016-11-09 2016-11-09 湿度センサおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2018088019A1 true WO2018088019A1 (ja) 2018-05-17

Family

ID=62109648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032773 WO2018088019A1 (ja) 2016-11-09 2017-09-12 湿度センサおよびその製造方法

Country Status (2)

Country Link
JP (1) JP6718363B2 (ja)
WO (1) WO2018088019A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095619A1 (ja) * 2018-11-08 2020-05-14 日立オートモティブシステムズ株式会社 熱式湿度測定装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163132B2 (ja) * 2018-10-16 2022-10-31 日立Astemo株式会社 熱式センサ装置
WO2020234631A1 (en) * 2019-05-23 2020-11-26 Arcelormittal A humidity detection equipment of a strip
CN111122656A (zh) * 2019-12-04 2020-05-08 浙江省北大信息技术高等研究院 一种湿度传感器及其制备方法
CZ2020125A3 (cs) 2020-03-10 2021-10-06 Západočeská Univerzita V Plzni Senzor vlhkosti pro měření stejnosměrným měřicím signálem a způsob jeho výroby
TWI741826B (zh) * 2020-10-12 2021-10-01 國立清華大學 感測裝置、濕度感測晶片、及其製作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251104A (ja) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd 発熱型薄膜素子センサとその製造方法
JP2011137679A (ja) * 2009-12-28 2011-07-14 Hitachi Automotive Systems Ltd 熱式ガスセンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251104A (ja) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd 発熱型薄膜素子センサとその製造方法
JP2011137679A (ja) * 2009-12-28 2011-07-14 Hitachi Automotive Systems Ltd 熱式ガスセンサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095619A1 (ja) * 2018-11-08 2020-05-14 日立オートモティブシステムズ株式会社 熱式湿度測定装置
JPWO2020095619A1 (ja) * 2018-11-08 2021-09-24 日立Astemo株式会社 熱式湿度測定装置

Also Published As

Publication number Publication date
JP2018077129A (ja) 2018-05-17
JP6718363B2 (ja) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2018088019A1 (ja) 湿度センサおよびその製造方法
JP4307738B2 (ja) 圧力センサ
US8689608B2 (en) Thermal gas sensor
TWI557527B (zh) 具儲熱元件的微機電溫度控制系統
JP3335860B2 (ja) 熱式空気流量計用測定素子及び熱式空気流量計
CN103026181B (zh) 热式流量计
JPH10197309A (ja) 熱式空気流量計用の測定素子及び熱式空気流量計
WO2012117446A1 (ja) 熱式流量計
JP4608843B2 (ja) 流量測定装置
JPH1114414A (ja) 流量検出素子およびそれを用いた流量センサ
JP2012073206A (ja) 熱式流量センサ
JPWO2005050143A1 (ja) 熱式流体流量計
KR100408199B1 (ko) 열식 유량센서
JP2004037302A (ja) 気体流量・温度測定素子
US11302854B2 (en) Sensor device
JP5765609B2 (ja) 電気素子、集積素子、電子回路及び温度較正装置
JP6951225B2 (ja) 湿度センサ
JP2013024822A (ja) 熱式流量計
JP6990165B2 (ja) 熱式センサおよびその製造方法並びに半導体装置
JP6532810B2 (ja) 流量センサ
US20190219529A1 (en) Humidity Measuring Apparatus
JP4437336B2 (ja) 静電容量型真空センサ
JP6621434B2 (ja) Memsセンサ
JP2005031078A (ja) センサ素子
JPH11281445A (ja) 流量検出素子及び流量センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870184

Country of ref document: EP

Kind code of ref document: A1