WO2018087886A1 - Heating treatment device and heating treatment method - Google Patents

Heating treatment device and heating treatment method Download PDF

Info

Publication number
WO2018087886A1
WO2018087886A1 PCT/JP2016/083533 JP2016083533W WO2018087886A1 WO 2018087886 A1 WO2018087886 A1 WO 2018087886A1 JP 2016083533 W JP2016083533 W JP 2016083533W WO 2018087886 A1 WO2018087886 A1 WO 2018087886A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating object
heat treatment
support
syringe
optical unit
Prior art date
Application number
PCT/JP2016/083533
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 ▲高▼木
池田 伸一
▲琢▼磨 仁衡
Original Assignee
株式会社イデア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イデア filed Critical 株式会社イデア
Priority to PCT/JP2016/083533 priority Critical patent/WO2018087886A1/en
Publication of WO2018087886A1 publication Critical patent/WO2018087886A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G12/00Accommodation for nursing, e.g. in hospitals, not covered by groups A61G1/00 - A61G11/00, e.g. trolleys for transport of medicaments or food; Prescription lists

Definitions

  • the present invention relates to a heat treatment apparatus and a heat treatment method for performing heat treatment by irradiating with light from a heat ray light source.
  • the syringe melting device described in Patent Document 1 is a light reflecting portion having a light reflecting surface having a shape that is a part of a long and slender elliptical surface inclined from a horizontal plane, and light from a light source disposed at the first focal point of the ellipse.
  • This is a device that reflects the light beam, transmits the light-transmitting cover portion, and irradiates the syringe placed on the second focal point.
  • This syringe melting device can be melted by setting the syringe on the mounting portion and then moving the mounting portion so that the position of the second focal point changes from the needle tip of the syringe toward the needle base. It was.
  • the syringe melting apparatus improves processing efficiency by further including a reflecting mirror that reflects light from the light source toward the second focal point on the side of the placed syringe.
  • a reflecting mirror that reflects light from the light source toward the second focal point on the side of the placed syringe.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a heat treatment apparatus capable of performing heat treatment with high efficiency and low cost.
  • a heat treatment apparatus comprises: An optical unit comprising: a light reflecting portion in which a first light reflecting surface having a shape that is a part of the surface of an oblong ellipsoid is formed on the inside; and a heat linear light source disposed at the first focal point of the oblong ellipsoid.
  • a support body that supports the heating object so that the heating object is positioned at a second focal point of the oblong ellipsoid, and has a second light reflecting surface on a surface facing the heating object;
  • the optical unit moves parallel to the extending direction of the heating object, and heats the heating object.
  • the support may be positioned such that the long axis of the oblong ellipsoid extends in the vertical direction, and the second light reflection surface faces upward in the vertical downward direction of the optical unit.
  • the heating object is a syringe composed of an injection needle and a syringe
  • the optical unit is arranged such that the second focal point is located on the central axis of the injection needle or the syringe, and the second focal point is from the tip of the injection needle to the injection needle or You may make it move in parallel with respect to the extension direction of the said syringe.
  • the electric power value supplied to the heat ray light source is controllable, and may be changed from a high output to a low output when the second focal point is in the middle position of the needle base from the needle tip of the injection needle.
  • the second casing may be pulled out of the first casing before or after the heat treatment, and the heating object may be placed or removed.
  • the support is rotatable with respect to the second casing as an axis of rotation parallel to the extending direction of the heating object, During the heat treatment, the second light reflecting surface is fixed so as to face upward, and when the heating object is removed, the support is rotated so that the heating object is dropped from the support. May be.
  • the second housing may further include a magnet positioned on a side surface of the support body in a state where the second light reflection surface of the support body faces upward during the heat treatment.
  • the heat treatment method according to the second aspect of the present invention includes: An optical unit comprising: a light reflecting portion in which a first light reflecting surface having a shape that is a part of the surface of an oblong ellipsoid is formed on the inside; and a heat linear light source disposed at the first focal point of the oblong ellipsoid.
  • a heat treatment method for heat treatment according to A support having a second light reflecting surface on a surface facing the heating object, and a supporting step of supporting the heating object so that the heating object is positioned at a second focal point of the oblong ellipsoid;
  • FIG. 1 It is a perspective view which shows the inside of the heat processing apparatus which concerns on embodiment. It is a figure which shows the positional relationship of an optical unit and the syringe on a support body. It is a figure for demonstrating the movement of an optical unit. It is a figure which shows the state which pulled out the 2nd housing
  • an XYZ coordinate system including an X axis, a Y axis, and a Z axis that are orthogonal to each other as appropriate is used.
  • the heat treatment apparatus 1 is an apparatus that melts and detoxifies a heating target object by condensing heating using an oblong ellipsoidal reflecting mirror.
  • This embodiment demonstrates the case where the heating target object is the syringe 301 which consists of an injection needle and a syringe.
  • the heat treatment apparatus 1 is a portable small apparatus, and can be easily carried to a place where the apparatus is required.
  • the configuration of the heat treatment apparatus 1 will be described in detail.
  • FIG. 1 is a perspective view showing the inside of the heat treatment apparatus 1.
  • the heat treatment apparatus 1 includes a first housing 100 in which each component is housed, and a second housing 200 that is incorporated in the first housing 100 and is separable from the first housing 100.
  • description will be made assuming that the XY plane is a horizontal plane and the + Z direction is a vertically upward direction.
  • the heat treatment apparatus 1 cools the optical unit 101 that irradiates heat rays downward, a suspension 102 that suspends the optical unit 101, a ball screw 103 that linearly moves the optical unit 101 in a horizontal direction, and the optical unit 101.
  • a cooling fan 104 and an exhaust fan 105 that exhausts air in the first housing 100 are provided in the first housing 100.
  • the first housing 100 further includes a control unit 106 that controls linear motion of the optical unit 101 and power supplied to the optical unit 101.
  • the heat treatment apparatus 1 includes a support body 201 that supports the syringe 301 and a magnet 202 that fixes the orientation of the support body 201 in the second housing 200.
  • a handle 203 is provided on the outer wall surface of the second casing 200, and the second casing 200 can be pulled out from the first casing 100 by pulling the handle 203 in the ⁇ Y direction.
  • the support 201 is provided with a rotation lever 204. Since the rotation lever 204 passes through a hole provided in the outer wall surface of the second casing 200, the rotation lever 204 can be operated from the outside of the second casing 200.
  • FIG. 2 is a diagram showing the positional relationship between the optical unit 101 and the syringe 301 on the support 201, and a cross section in a plane perpendicular to the extending direction (Y direction) of the syringe 301 is viewed from the direction of the injection needle of the syringe 301.
  • FIG. 2 is a diagram showing the positional relationship between the optical unit 101 and the syringe 301 on the support 201, and a cross section in a plane perpendicular to the extending direction (Y direction) of the syringe 301 is viewed from the direction of the injection needle of the syringe 301.
  • the optical unit 101 has a first light reflecting surface 111 having a shape that becomes a part of the surface of an oblong ellipsoid whose ellipse is rotated about the major axis 121 as a rotation axis.
  • the heat ray light source 112 is composed of, for example, a halogen lamp, a xenon lamp, a metal halide lamp, or the like.
  • the support 201 has a plurality of support pieces 205 that support the syringe 301 so that the central axis is located at the second focal point 123 of the oblong ellipsoid of the first light reflecting surface 111, and a surface that faces the central axis of the syringe 301. And a second light reflecting surface 206 formed in the above.
  • the second light reflecting surface 206 extends in the Y direction, and the cross section of the surface perpendicular to the Y direction is a semicircle.
  • the long axis 121 of the oblong ellipsoid of the first light reflecting surface 111 is parallel to the vertical direction (Z direction). Compared with the configuration in which the long axis 121 is inclined with respect to the vertical direction, this configuration is less likely to cause the center axis of the second focal point 123 and the syringe 301 to shift even if the movement of the optical unit 101 is repeated. Long-term reliability can be maintained. Since the long axis 121 is in the vertical direction, the support 201 is positioned vertically below the heat ray light source 112 so that the second light reflecting surface 206 faces upward.
  • the light reflecting portion 113 is formed of an arbitrary material having high heat resistance, and is formed of, for example, a metal such as brass, a resin material such as glass, or a fluororesin.
  • the support 201 is made of any material having high heat resistance, but at least both sides are made of a magnetic material. Accordingly, the second light reflecting surface 206 is fixed in a state in which the second light reflecting surface 206 faces vertically upward (+ Z direction) by the magnetic force of the magnet 202 positioned on both sides of the support 201.
  • the support 201 is parallel to the extending direction (Y direction) of the second light reflecting surface 206 with respect to the second housing 200.
  • the shaft can be rotated as a rotation axis.
  • the first light reflecting surface 111 and the second light reflecting surface 206 are formed so as to have high reflection efficiency at wavelengths in the vicinity of infrared rays, and are formed, for example, by plating with gold or the like.
  • the bottom surface 114 of the optical unit 101 may further include a light transmissive cover.
  • a light transmissive cover is preferably made of a heat-resistant and light-transmitting material such as quartz. Contaminating components adhering to the cover can be easily wiped off during maintenance. Further, a vent is provided in the cover so that a difference in atmospheric pressure does not occur between the inside and outside of the light reflecting portion 113.
  • the optical unit 101 and the support body 201 By configuring the optical unit 101 and the support body 201 as shown in FIG. 2, most of the light emitted from the thermal linear light source 112 located at the first focal point 122 is reflected by the first light reflecting surface 111 and the first light reflecting surface 111 is reflected. The light is collected at two focal points 123. Further, a part of the light deviating from the second focal point 123 is reflected by the second light reflecting surface 206 and collected near the second focal point 123. Thereby, the syringe 301 placed on the second focal point 123 is irradiated with light and heated, and the syringe 301 is melted.
  • FIG. 3 is a diagram for explaining the movement of the optical unit 101.
  • the syringe 301 is placed above the second light reflecting surface 206 in the center of the support 201, but the syringe of the syringe 301 is located on the left side of the drawing near the rotation lever 204, and the injection is on the right side of the opposite side of the drawing.
  • the needle is located. That is, the injection needle is placed so as to face the + Y direction.
  • the light unit 101 starts irradiating light, as shown by the arrow in FIG. 3, while maintaining the state where the second focal point 123 of the oblong ellipsoid of the first light reflecting surface 111 is located on the central axis of the syringe 301, Along the extending direction (Y direction) of the second light reflecting surface 206, the syringe 301 moves at a constant speed in the -Y direction from the needle tip of the injection needle of the syringe 301 toward the end of the syringe.
  • the optical unit 101 is suspended from the suspension part 102 so as to be movable in parallel in the Y direction, and the support member is formed with a screw groove that fits into the ball screw 103 provided in the Y direction. At the top.
  • the optical unit 101 moves linearly along the ball screw 103 at a constant speed.
  • the cooling fan 104 is provided above the optical unit 101, sucks in air for cooling the optical unit 101 from the outside, and releases the air downward toward the optical unit 101.
  • the position of the cooling fan 104 may be fixed with respect to the first housing 100.
  • the cooling fan 104 may move linearly along the ball screw 103 together with the optical unit 101 by fixing the position with respect to the optical unit 101.
  • the exhaust fan 105 discharges air containing contaminants generated by heat-treating the syringe 301 to the outside of the first housing 100.
  • a flow path of air discharged from the exhaust fan 105 is provided with a filter, and air from which contaminants have been removed by the filter is discharged to the external space of the first housing 100.
  • the control unit 106 starts and stops the linear motion of the optical unit 101 based on the operation of a control switch provided outside the first housing 100, and supplies power to the heat-linear light source 112 of the optical unit 101. Execute control.
  • FIG. 4 is a diagram illustrating a state in which the second casing 200 of the heat treatment apparatus 1 is pulled out.
  • the user pulls the second casing 200 from the first casing 100 of the heat treatment apparatus 1 with the handle 203 in the ⁇ Y direction.
  • both sides are attracted to the magnet 202 by the magnetic force of the magnet 202 located on both sides of the support 201.
  • the upper surface of the support body 201 on which the second light reflection surface 206 is formed is fixed in a state in which the upper surface is directed vertically upward (+ Z direction).
  • the user places the used syringe 301 on the support piece 205 of the support 201 in the second housing 200.
  • the syringe needle is placed so as to face the + Y direction.
  • the second housing 200 is returned into the first housing 100.
  • the optical unit 101 of the heat treatment apparatus 1 is arranged such that the second focal point is located at the needle tip of the injection needle of the syringe 301 or a point shifted in the + Y direction from the needle tip.
  • the control switch provided outside the first housing 100
  • the cooling fan 104 and the exhaust fan 105 are driven based on the operation, and then the control unit 106 starts controlling the heat treatment.
  • FIG. 5 is a graph showing changes in the power supply value to the heat-linear light source 112. As shown in FIG. 5, when the second focal point is at the tip of the needle, high output power is supplied.
  • the high output power is about 300 W, for example.
  • the control unit 106 rotates the ball screw 103 in the forward direction after the start of power supply.
  • the ball screw 103 rotates in the positive direction, the optical unit 101 moves linearly in the ⁇ Y direction. Then, as shown in FIG. 5, when the second focal point comes to an intermediate position between the needle tip and the needle base, the power is reduced to a low output.
  • the low output power is about 100 W, for example.
  • the injection needle is heated by the light irradiated from the heat ray light source 112 while the optical unit 101 moves linearly and the light reflected and irradiated by the first light reflecting surface 111 or the second light reflecting surface 206.
  • the tip melts and blunts.
  • the injection needle is made of metal, the heat conductivity is high, and the heat of the injection needle propagates toward the needle base and the syringe in a short time.
  • the power supply level after the second focal point is at an intermediate position between the needle tip and the needle base is sufficient with power that is not cooled below the melting point of the syringe by the cooling fan 104 until the syringe is completely melted. I can say that.
  • the control unit 106 stops the power supply to the heat ray light source 112 and moves the optical unit 101 in the + Y direction. Move to, return to the initial position and stop. Thereafter, the cooling fan 104 and the exhaust fan 105 are driven for a predetermined time and then stopped.
  • the user pulls the second casing 200 by pulling the handle 203 of the second casing 200 in the ⁇ Y direction.
  • the support 201 maintains a state in which the upper surface on which the second light reflecting surface 206 is formed is fixed vertically upward (in the + Z direction).
  • the support 201 can be tilted by rotating the rotary lever 204 with a force that exceeds the magnetic force of the magnet 202.
  • FIG. 6A is a diagram showing the support 201 facing upward
  • FIG. 6B is a diagram showing the support 201 facing side.
  • the upper surface of the support 201 faces vertically upward as shown in FIG. 6A.
  • the support 201 rotates as shown in FIG. 6B, and the upper surface of the support 201 faces sideways.
  • the upper surface of the support 201 rotates to an angle of 110 degrees with respect to the horizontal plane.
  • the rotation of the support 201 causes the syringe 301 after heat treatment placed on the support piece 205 to fall vertically downward.
  • the user can store the syringe 301 after the heat treatment in the storage container without touching the syringe 301 by the user.
  • the injection needle and the syringe can be once melted and solidified and stored in the storage container.
  • the tip of the injection needle is blunted, the entire syringe 301 is sterilized, and the volume of the syringe 301 is reduced. Therefore, the safety until the syringe 301 is discarded can be improved and the volume can be reduced.
  • the optical unit 101 includes the light reflecting portion 113 in which the first light reflecting surface 111 having a shape that becomes a part of the surface of the oblong ellipsoid is formed, and the oblong ellipsoid. And a heat linear light source 112 arranged at the first focal point.
  • the syringe 301 is placed on the second focal point of the oblong ellipsoid on the second light reflecting surface 206 of the support 201 in the second housing 200.
  • the optical unit 101 moves along the extending direction of the syringe 301, reflects the light of the heat ray light source 112 by the first light reflecting surface 111 or the second light reflecting surface 206, and heats the syringe 301. It was decided to. Thereby, almost all of the light emitted from the heat ray light source 112 is irradiated to the syringe 301, and a heat treatment with high efficiency and low cost becomes possible.
  • the heat treatment apparatus is arranged at the light reflecting portion in which the first light reflecting surface having a shape that becomes a part of the surface of the oblong ellipsoid is formed, and the first focal point of the oblong ellipsoid. And a second light reflecting surface on the surface facing the heating object so that the heating object is positioned at the second focal point of the oblong ellipsoid.
  • the optical unit moves in parallel with the extending direction of the heating object, and heats the heating object.
  • the heating object is the syringe 301 .
  • the heating object may be another medical instrument or another working instrument.
  • the power supplied from the thermal linear light source 112 is changed from a high output to a low output between the needle tip and the needle base of the syringe 301, but the timing for changing the output level can be made variable. Good.
  • the harmless treatment can be surely performed regardless of the size of the syringe 301 by making adjustments such as increasing the heating time of high output.
  • the power supplied from the heat ray light source 112 may be supplied at a high output from the needle tip of the syringe 301, the power may be stopped at an intermediate position between the needle tip and the needle base, and the movement of the optical unit 101 may also be stopped. In some cases, the syringe can also be melted by the residual heat existing in the needle, and the power consumption can be reduced.
  • the value of the power supplied from the heat linear light source 112 is changed.
  • the moving speed of the optical unit 101 may be changed while keeping the value of the power supplied constant. Start moving from the needle tip of the syringe 301, set the speed until it reaches the middle between the needle tip and the needle base as low speed, heat and melt over time, then move to the end of the syringe at high speed The irradiation time may be shortened.
  • a plurality of second housings 200 having a plurality of types of supports 201 in which the size and shape of the support piece 205 and the second light reflecting surface 206 are changed are prepared, and the size or shape of the heating object is prepared. Accordingly, the second housing 200 may be used properly. Thereby, regardless of the size or shape of the heating object, the second focus can be reliably adjusted to the center of the heating object, and the heating efficiency can be further improved.
  • the optical unit 101 is moved and heated with respect to the syringe 301 fixed to the support body 201 in the second housing 200.
  • the optical unit 101 is fixed and the support body 201 is moved. You may make it make it.
  • the second casing 200 includes a mechanism for moving the support 201 in parallel.
  • the long axis 121 of the oblong ellipsoid of the first light reflecting surface 111 is parallel to the vertical direction (Z direction).
  • the long axis 121 is predetermined with respect to the vertical direction. You may have an angle. By tilting the long axis 121, space can be saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

An optical unit (101) within a first housing (100) comprises: a light reflection part which has formed therein a first light reflection surface having a shape that constitutes a part of the surface of a flat long ellipsoid; and a heat ray-type light source disposed at a first focus of the flat long ellipsoid. An injection syringe placed at a second focus of the flat long ellipsoid on a second light reflection surface (206) of a support body (201) within a second housing (200) is heated through irradiation with light emitted from the heat ray-type light source and reflected on the first light reflection surface or a second light reflection surface (206), while the optical unit (101) is moved in the extension direction of the injection syringe.

Description

加熱処理装置及び加熱処理方法Heat treatment apparatus and heat treatment method
 本発明は、熱線性光源の光を照射して加熱処理する加熱処理装置及び加熱処理方法に関する。 The present invention relates to a heat treatment apparatus and a heat treatment method for performing heat treatment by irradiating with light from a heat ray light source.
 使用済みの注射器等の医療廃棄物は、先進国の都市部においては専門の処理業者によって回収され安全に処理される。しかし、交通の便が悪い等の理由から処理業者が頻繁に回収しない場合もあるため、注射器を使用後速やかに無害化することが望ましい。本願の発明者の一人は、注射器を溶融処理して無害化する装置を提案した(例えば、特許文献1)。 医療 Used syringes and other medical waste are collected and handled safely by specialists in urban areas in developed countries. However, since there are cases where the processing company does not collect frequently due to reasons such as poor transportation, it is desirable to make the syringe harmless immediately after use. One of the inventors of the present application has proposed an apparatus for detoxifying a syringe by melting it (for example, Patent Document 1).
 特許文献1に記載の注射器溶融装置は、水平面から傾いた長軸の扁長楕円面の一部となる形状の光反射面を有する光反射部で、楕円の第1焦点に配置した光源の光を反射させ、光透過性を有するカバー部を透過させて、第2焦点に載置した注射器に照射させる装置である。この注射器溶融装置は、注射器を載置部にセットした後、注射器の針先端から針基に向けて第2焦点の位置が変化するように載置部を移動することにより溶融処理することができた。 The syringe melting device described in Patent Document 1 is a light reflecting portion having a light reflecting surface having a shape that is a part of a long and slender elliptical surface inclined from a horizontal plane, and light from a light source disposed at the first focal point of the ellipse. This is a device that reflects the light beam, transmits the light-transmitting cover portion, and irradiates the syringe placed on the second focal point. This syringe melting device can be melted by setting the syringe on the mounting portion and then moving the mounting portion so that the position of the second focal point changes from the needle tip of the syringe toward the needle base. It was.
特開2013-128712号公報JP 2013-128712 A
 特許文献1に係る注射器溶融装置は、載置された注射器の側方に、光源からの光を第2焦点へ向けて反射する反射鏡をさらに具備することにより処理効率を向上させている。しかし、注射器の太さや長さは多様であり、注射器のサイズによっては、反射鏡で反射する光が注射器に照射されないという問題があった。 The syringe melting apparatus according to Patent Document 1 improves processing efficiency by further including a reflecting mirror that reflects light from the light source toward the second focal point on the side of the placed syringe. However, there are various thicknesses and lengths of the syringe, and depending on the size of the syringe, there is a problem that the light reflected by the reflecting mirror is not irradiated on the syringe.
 また、載置部を移動させるため、注射器を強固に固定させる必要があり、多様なサイズの注射器を固定する機構が必要であり、コストを上げる要因となっていた。 In addition, in order to move the mounting portion, it is necessary to firmly fix the syringe, and a mechanism for fixing syringes of various sizes is necessary, which has been a factor in increasing costs.
 本発明は、上記実情に鑑みてなされたものであり、高効率で低コストの加熱処理が可能な加熱処理装置等を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a heat treatment apparatus capable of performing heat treatment with high efficiency and low cost.
 上記目的を達成するため、本発明の第1の観点に係る加熱処理装置は、
 扁長楕円体の表面の一部となる形状の第1光反射面を内側に形成した光反射部と、前記扁長楕円体の第1焦点に配置された熱線性光源と、からなる光ユニットと、
 前記扁長楕円体の第2焦点に加熱対象物が位置するように前記加熱対象物を支持し、前記加熱対象物に対向する面に第2光反射面を有する支持体と、を備え、
 前記光ユニットが、前記加熱対象物の延在方向に平行に移動して、前記加熱対象物を加熱処理することを特徴とする。
In order to achieve the above object, a heat treatment apparatus according to the first aspect of the present invention comprises:
An optical unit comprising: a light reflecting portion in which a first light reflecting surface having a shape that is a part of the surface of an oblong ellipsoid is formed on the inside; and a heat linear light source disposed at the first focal point of the oblong ellipsoid. When,
A support body that supports the heating object so that the heating object is positioned at a second focal point of the oblong ellipsoid, and has a second light reflecting surface on a surface facing the heating object;
The optical unit moves parallel to the extending direction of the heating object, and heats the heating object.
 前記扁長楕円体の長軸が鉛直方向に延在し、前記光ユニットの鉛直下方に前記第2光反射面が上方を向くように前記支持体を位置してもよい。 The support may be positioned such that the long axis of the oblong ellipsoid extends in the vertical direction, and the second light reflection surface faces upward in the vertical downward direction of the optical unit.
 前記加熱対象物は注射針とシリンジからなる注射器であって、
 前記光ユニットは、前記第2焦点が前記注射針又は前記シリンジの中心軸に前記第2焦点が位置するように配置した状態で、前記第2焦点が前記注射針の針先端から前記注射針又は前記シリンジの延在方向に対して平行に移動するようにしてもよい。
The heating object is a syringe composed of an injection needle and a syringe,
The optical unit is arranged such that the second focal point is located on the central axis of the injection needle or the syringe, and the second focal point is from the tip of the injection needle to the injection needle or You may make it move in parallel with respect to the extension direction of the said syringe.
 前記熱線性光源に供給する電力値は制御可能であり、前記第2焦点が前記注射針の針先端から針基の中間位置にあるときに高出力から低出力に変更するようにしてもよい。 The electric power value supplied to the heat ray light source is controllable, and may be changed from a high output to a low output when the second focal point is in the middle position of the needle base from the needle tip of the injection needle.
 前記光ユニットと前記支持体を覆う第1筐体と、前記第1筐体の一部を構成し前記支持体を備える第2筐体と、を更に備え、
 前記加熱処理前又は後に前記第2筐体を前記第1筐体から引き出して前記加熱対象物を載置又は除去するようにしてもよい。
A first casing that covers the optical unit and the support; and a second casing that constitutes a part of the first casing and includes the support.
The second casing may be pulled out of the first casing before or after the heat treatment, and the heating object may be placed or removed.
 前記支持体は前記第2筐体に対して、前記加熱対象物の延在方向に平行な軸を回転軸として回転可能であり、
 前記加熱処理時には、前記第2光反射面が上方を向くように固定され、前記加熱対象物を除去する際に前記支持体を回転させて、前記加熱対象物を前記支持体から落下させるようにしてもよい。
The support is rotatable with respect to the second casing as an axis of rotation parallel to the extending direction of the heating object,
During the heat treatment, the second light reflecting surface is fixed so as to face upward, and when the heating object is removed, the support is rotated so that the heating object is dropped from the support. May be.
 前記支持体の少なくとも両側部は磁性体からなり、
 前記第2筐体には、前記加熱処理時に前記支持体の前記第2光反射面が上方を向く状態において前記支持体の側面に位置する磁石を更に備えてもよい。
At least both sides of the support are made of a magnetic material,
The second housing may further include a magnet positioned on a side surface of the support body in a state where the second light reflection surface of the support body faces upward during the heat treatment.
 また、本発明の第2の観点に係る加熱処理方法は、
 扁長楕円体の表面の一部となる形状の第1光反射面を内側に形成した光反射部と、前記扁長楕円体の第1焦点に配置された熱線性光源と、からなる光ユニットにより加熱処理する加熱処理方法であって、
 前記加熱対象物に対向する面に第2光反射面を有する支持体で、前記扁長楕円体の第2焦点に加熱対象物が位置するように前記加熱対象物を支持する支持ステップと、
 前記光ユニットが、前記加熱対象物の延在方向に平行に移動して、前記加熱対象物を加熱処理する加熱処理ステップと、
 を有することを特徴とする。
Moreover, the heat treatment method according to the second aspect of the present invention includes:
An optical unit comprising: a light reflecting portion in which a first light reflecting surface having a shape that is a part of the surface of an oblong ellipsoid is formed on the inside; and a heat linear light source disposed at the first focal point of the oblong ellipsoid. A heat treatment method for heat treatment according to
A support having a second light reflecting surface on a surface facing the heating object, and a supporting step of supporting the heating object so that the heating object is positioned at a second focal point of the oblong ellipsoid;
A heat treatment step in which the optical unit is moved in parallel with the extending direction of the heating object to heat-treat the heating object;
It is characterized by having.
 本発明によれば、高効率で低コストの加熱処理が可能となる。 According to the present invention, high-efficiency and low-cost heat treatment is possible.
実施形態に係る加熱処理装置の内部を示す斜視図である。It is a perspective view which shows the inside of the heat processing apparatus which concerns on embodiment. 光ユニットと支持体上の注射器との位置関係を示す図である。It is a figure which shows the positional relationship of an optical unit and the syringe on a support body. 光ユニットの移動を説明するための図である。It is a figure for demonstrating the movement of an optical unit. 第2筐体を引き出した状態を示す図である。It is a figure which shows the state which pulled out the 2nd housing | casing. 熱線性光源への供給電力値の変化を示すグラフである。It is a graph which shows the change of the electric power value supplied to a heat ray light source. 上方を向いた支持体を示す図である。It is a figure which shows the support body which faced upwards. 側方を向いた支持体を示す図である。It is a figure which shows the support body which faced the side.
 (実施形態)
 以下、本発明の実施形態について図面を参照して詳細に説明する。説明には、適宜相互に直交するX軸、Y軸、Z軸からなるXYZ座標系を用いる。
(Embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the description, an XYZ coordinate system including an X axis, a Y axis, and a Z axis that are orthogonal to each other as appropriate is used.
 本実施形態に係る加熱処理装置1は、扁長楕円体の反射鏡を用いた集光加熱により、加熱対象物を溶融し無害化する装置である。本実施形態では、加熱対象物が注射針及びシリンジからなる注射器301である場合について説明する。この加熱処理装置1は可搬性の小型の装置であり、この装置を必要とする場所へ容易に運ぶことができる。以下、加熱処理装置1の構成について、詳述する。 The heat treatment apparatus 1 according to the present embodiment is an apparatus that melts and detoxifies a heating target object by condensing heating using an oblong ellipsoidal reflecting mirror. This embodiment demonstrates the case where the heating target object is the syringe 301 which consists of an injection needle and a syringe. The heat treatment apparatus 1 is a portable small apparatus, and can be easily carried to a place where the apparatus is required. Hereinafter, the configuration of the heat treatment apparatus 1 will be described in detail.
 図1は、加熱処理装置1の内部を示す斜視図である。加熱処理装置1は、内部に各構成を収納した第1筐体100と、第1筐体100に組み込まれ、第1筐体100から分離可能な第2筐体200を備える。図1に示すようにXY平面が水平面であり、+Z方向が鉛直上向き方向であるとして説明する。 FIG. 1 is a perspective view showing the inside of the heat treatment apparatus 1. The heat treatment apparatus 1 includes a first housing 100 in which each component is housed, and a second housing 200 that is incorporated in the first housing 100 and is separable from the first housing 100. As shown in FIG. 1, description will be made assuming that the XY plane is a horizontal plane and the + Z direction is a vertically upward direction.
 加熱処理装置1は、下方に熱光線を照射する光ユニット101と、光ユニット101を吊り下げる吊り下げ部102と、光ユニット101を水平方向に直線運動させるボールネジ103と、光ユニット101を冷却する冷却ファン104と、第1筐体100内の空気を排気する排気ファン105と、を第1筐体100内に備える。また、光ユニット101の直線運動や、光ユニット101への供給電力を制御する制御部106を更に、第1筐体100内に備える。 The heat treatment apparatus 1 cools the optical unit 101 that irradiates heat rays downward, a suspension 102 that suspends the optical unit 101, a ball screw 103 that linearly moves the optical unit 101 in a horizontal direction, and the optical unit 101. A cooling fan 104 and an exhaust fan 105 that exhausts air in the first housing 100 are provided in the first housing 100. In addition, the first housing 100 further includes a control unit 106 that controls linear motion of the optical unit 101 and power supplied to the optical unit 101.
 また、加熱処理装置1は、注射器301を支持する支持体201と、支持体201の向きを固定する磁石202と、を第2筐体200内に備える。第2筐体200の外壁面には取っ手203が備えられており、取っ手203を-Y方向に引くことにより、第2筐体200を第1筐体100から引き出すことができる。また、支持体201には回転レバー204が備えられている。回転レバー204は第2筐体200の外壁面に設けた穴を貫通しているため、第2筐体200の外側から回転レバー204を操作することが可能である。 Further, the heat treatment apparatus 1 includes a support body 201 that supports the syringe 301 and a magnet 202 that fixes the orientation of the support body 201 in the second housing 200. A handle 203 is provided on the outer wall surface of the second casing 200, and the second casing 200 can be pulled out from the first casing 100 by pulling the handle 203 in the −Y direction. The support 201 is provided with a rotation lever 204. Since the rotation lever 204 passes through a hole provided in the outer wall surface of the second casing 200, the rotation lever 204 can be operated from the outside of the second casing 200.
 図2は光ユニット101と支持体201上の注射器301との位置関係を示す図であり、注射器301の延在方向(Y方向)に垂直な面における断面を注射器301の注射針の方向から見た断面図である。 FIG. 2 is a diagram showing the positional relationship between the optical unit 101 and the syringe 301 on the support 201, and a cross section in a plane perpendicular to the extending direction (Y direction) of the syringe 301 is viewed from the direction of the injection needle of the syringe 301. FIG.
 光ユニット101は、図2に示すように、長軸121を回転軸として楕円を回転させた扁長楕円体の表面の一部となる形状の第1光反射面111を内側に形成した光反射部113と、扁長楕円体の第1焦点122に配置された熱線性光源112と、からなる。熱線性光源112は、例えばハロゲンランプ、キセノンランプ、メタルハライドランプ等から構成される。 As shown in FIG. 2, the optical unit 101 has a first light reflecting surface 111 having a shape that becomes a part of the surface of an oblong ellipsoid whose ellipse is rotated about the major axis 121 as a rotation axis. Part 113 and the heat-line light source 112 arranged at the first focal point 122 of the oblong ellipsoid. The heat ray light source 112 is composed of, for example, a halogen lamp, a xenon lamp, a metal halide lamp, or the like.
 支持体201は、第1光反射面111の扁長楕円体の第2焦点123に、中心軸が位置するように注射器301を支持する複数の支持片205と、注射器301の中心軸に向かう面に形成した第2光反射面206と、を備える。第2光反射面206は、Y方向に延在しており、Y方向に垂直な面における断面が半円となっている。 The support 201 has a plurality of support pieces 205 that support the syringe 301 so that the central axis is located at the second focal point 123 of the oblong ellipsoid of the first light reflecting surface 111, and a surface that faces the central axis of the syringe 301. And a second light reflecting surface 206 formed in the above. The second light reflecting surface 206 extends in the Y direction, and the cross section of the surface perpendicular to the Y direction is a semicircle.
 第1光反射面111の扁長楕円体の長軸121は、鉛直方向(Z方向)に平行である。この構成は、長軸121が鉛直方向に対して傾きを有する構成と比較して、光ユニット101の移動を繰り返しても、第2焦点123と注射器301の中心軸がずれる可能性が低いため、長期信頼性を保つことができる。長軸121が鉛直方向にあるため、支持体201は、熱線性光源112の鉛直下方に、第2光反射面206が上方を向くように位置する。 The long axis 121 of the oblong ellipsoid of the first light reflecting surface 111 is parallel to the vertical direction (Z direction). Compared with the configuration in which the long axis 121 is inclined with respect to the vertical direction, this configuration is less likely to cause the center axis of the second focal point 123 and the syringe 301 to shift even if the movement of the optical unit 101 is repeated. Long-term reliability can be maintained. Since the long axis 121 is in the vertical direction, the support 201 is positioned vertically below the heat ray light source 112 so that the second light reflecting surface 206 faces upward.
 光反射部113は耐熱性の高い任意の材料で形成され、例えば、真鍮等の金属、ガラス、フッ素樹脂などの樹脂材料により形成される。支持体201も同様に、耐熱性の高い任意の材料で形成されるが、少なくとも両側部は磁性体から形成されている。これにより、支持体201の両側方に位置する磁石202の磁力により、第2光反射面206が鉛直上方(+Z方向)を向いた状態で固定されることとなる。なお、ユーザが回転レバー204を、磁力を超える力で回転した場合には、支持体201は第2筐体200に対して、第2光反射面206の延在方向(Y方向)に平行な軸を回転軸として回転可能である。 The light reflecting portion 113 is formed of an arbitrary material having high heat resistance, and is formed of, for example, a metal such as brass, a resin material such as glass, or a fluororesin. Similarly, the support 201 is made of any material having high heat resistance, but at least both sides are made of a magnetic material. Accordingly, the second light reflecting surface 206 is fixed in a state in which the second light reflecting surface 206 faces vertically upward (+ Z direction) by the magnetic force of the magnet 202 positioned on both sides of the support 201. When the user rotates the rotary lever 204 with a force exceeding the magnetic force, the support 201 is parallel to the extending direction (Y direction) of the second light reflecting surface 206 with respect to the second housing 200. The shaft can be rotated as a rotation axis.
 第1光反射面111と第2光反射面206は、赤外線近傍の波長における反射効率が高くなるように形成されており、例えば、金等のメッキにより形成される。 The first light reflecting surface 111 and the second light reflecting surface 206 are formed so as to have high reflection efficiency at wavelengths in the vicinity of infrared rays, and are formed, for example, by plating with gold or the like.
 光ユニット101の底面114には、光透過性を有するカバーを更に備えてもよい。これにより、注射器301を溶融する際に発生する汚染成分が第1光反射面111や熱線性光源112の表面に付着し、光反射効率や光透過効率が低下するのを防ぐことができる。カバーは石英等の耐熱性、光透過性の高い材料から構成されるのが望ましい。カバーに付着した汚染成分は、メンテナンス時に容易に拭き取ることが可能である。また、カバーには通気口を設け、光反射部113の内外で気圧の差が生じないようにする。 The bottom surface 114 of the optical unit 101 may further include a light transmissive cover. Thereby, it is possible to prevent contamination components generated when the syringe 301 is melted from adhering to the surfaces of the first light reflecting surface 111 and the heat ray light source 112 and reducing the light reflecting efficiency and the light transmitting efficiency. The cover is preferably made of a heat-resistant and light-transmitting material such as quartz. Contaminating components adhering to the cover can be easily wiped off during maintenance. Further, a vent is provided in the cover so that a difference in atmospheric pressure does not occur between the inside and outside of the light reflecting portion 113.
 光ユニット101と支持体201を図2に示すように構成することにより、第1焦点122に位置する熱線性光源112から出射された光の大部分は、第1光反射面111で反射し第2焦点123に集光される。また、第2焦点123から逸れた一部分の光は第2光反射面206で反射され第2焦点123近傍に集光される。これにより、第2焦点123に載置した注射器301に光が照射され、加熱されて、注射器301が溶融することとなる。 By configuring the optical unit 101 and the support body 201 as shown in FIG. 2, most of the light emitted from the thermal linear light source 112 located at the first focal point 122 is reflected by the first light reflecting surface 111 and the first light reflecting surface 111 is reflected. The light is collected at two focal points 123. Further, a part of the light deviating from the second focal point 123 is reflected by the second light reflecting surface 206 and collected near the second focal point 123. Thereby, the syringe 301 placed on the second focal point 123 is irradiated with light and heated, and the syringe 301 is melted.
 図3は、光ユニット101の移動を説明するための図である。注射器301は、支持体201の中央の第2光反射面206の上方に載置されるが、回転レバー204に近い図面左方に注射器301のシリンジが位置し、反対側の図面右方に注射針が位置する。つまり、注射針が+Y方向を向くように載置される。 FIG. 3 is a diagram for explaining the movement of the optical unit 101. The syringe 301 is placed above the second light reflecting surface 206 in the center of the support 201, but the syringe of the syringe 301 is located on the left side of the drawing near the rotation lever 204, and the injection is on the right side of the opposite side of the drawing. The needle is located. That is, the injection needle is placed so as to face the + Y direction.
 光ユニット101は光の照射を開始すると、図3の矢印で示すように、第1光反射面111の扁長楕円体の第2焦点123が注射器301の中心軸に位置する状態を保ちつつ、第2光反射面206の延在方向(Y方向)に沿って、注射器301の注射針の針先端からシリンジの端部に向かって、-Y方向に一定速度で移動する。 When the light unit 101 starts irradiating light, as shown by the arrow in FIG. 3, while maintaining the state where the second focal point 123 of the oblong ellipsoid of the first light reflecting surface 111 is located on the central axis of the syringe 301, Along the extending direction (Y direction) of the second light reflecting surface 206, the syringe 301 moves at a constant speed in the -Y direction from the needle tip of the injection needle of the syringe 301 toward the end of the syringe.
 具体的には、光ユニット101は、吊り下げ部102にY方向に平行移動可能に吊り下げられており、また、Y方向に備えられたボールネジ103に嵌合するネジ溝が形成された支持部材を上部に備えている。ボールネジ103をモータで、一定角速度で回転させることにより、光ユニット101はボールネジ103に沿って一定速度で直線運動する。 Specifically, the optical unit 101 is suspended from the suspension part 102 so as to be movable in parallel in the Y direction, and the support member is formed with a screw groove that fits into the ball screw 103 provided in the Y direction. At the top. By rotating the ball screw 103 with a motor at a constant angular speed, the optical unit 101 moves linearly along the ball screw 103 at a constant speed.
 図1に戻って、他の構成を説明する。冷却ファン104は、図1に示すように、光ユニット101の上方に備えられ、光ユニット101を冷却するための空気を外部から吸い込んで、光ユニット101に向けて下方に空気を放出する。冷却ファン104は、第1筐体100に対して位置を固定してもよい。あるいは、冷却ファン104は、光ユニット101に対して位置を固定することにより、光ユニット101と一緒にボールネジ103に沿って、直線運動するようにしてもよい。 Referring back to FIG. 1, another configuration will be described. As shown in FIG. 1, the cooling fan 104 is provided above the optical unit 101, sucks in air for cooling the optical unit 101 from the outside, and releases the air downward toward the optical unit 101. The position of the cooling fan 104 may be fixed with respect to the first housing 100. Alternatively, the cooling fan 104 may move linearly along the ball screw 103 together with the optical unit 101 by fixing the position with respect to the optical unit 101.
 排気ファン105は、注射器301を加熱処理することにより発生する汚染物質を含む空気を第1筐体100の外に排出させる。排気ファン105から放出される空気の流路にはフィルタを備えており、汚染物質をフィルタで除去した空気を第1筐体100の外部空間に放出する。 The exhaust fan 105 discharges air containing contaminants generated by heat-treating the syringe 301 to the outside of the first housing 100. A flow path of air discharged from the exhaust fan 105 is provided with a filter, and air from which contaminants have been removed by the filter is discharged to the external space of the first housing 100.
 制御部106は、第1筐体100の外部に備えた制御スイッチの操作に基づいて、光ユニット101の直線運動を開始、停止させ、また、光ユニット101の熱線性光源112への電力供給の制御を実行する。 The control unit 106 starts and stops the linear motion of the optical unit 101 based on the operation of a control switch provided outside the first housing 100, and supplies power to the heat-linear light source 112 of the optical unit 101. Execute control.
 以上のように構成された加熱処理装置1の動作について、詳細に説明する。 The operation of the heat treatment apparatus 1 configured as described above will be described in detail.
 図4は、加熱処理装置1の第2筐体200を引き出した状態を示す図である。まず、ユーザは、加熱処理装置1の第1筐体100から、取っ手203をもって第2筐体200を-Y方向に引き出す。このとき、支持体201の少なくとも両側部が磁性体から構成されているため、支持体201の両側方に位置する磁石202の磁力により、両側部が磁石202に引きつけられている。これにより、第2光反射面206が形成された支持体201の上面が鉛直上方(+Z方向)を向いた状態で固定されている。 FIG. 4 is a diagram illustrating a state in which the second casing 200 of the heat treatment apparatus 1 is pulled out. First, the user pulls the second casing 200 from the first casing 100 of the heat treatment apparatus 1 with the handle 203 in the −Y direction. At this time, since at least both sides of the support 201 are made of a magnetic material, both sides are attracted to the magnet 202 by the magnetic force of the magnet 202 located on both sides of the support 201. Thereby, the upper surface of the support body 201 on which the second light reflection surface 206 is formed is fixed in a state in which the upper surface is directed vertically upward (+ Z direction).
 次に、ユーザは、第2筐体200内の支持体201の支持片205上に、使用済みの注射器301を載置する。このとき注射針が+Y方向を向くように載置する。その後、第2筐体200を第1筐体100内に戻す。 Next, the user places the used syringe 301 on the support piece 205 of the support 201 in the second housing 200. At this time, the syringe needle is placed so as to face the + Y direction. Thereafter, the second housing 200 is returned into the first housing 100.
 加熱処理装置1の光ユニット101は、初期状態において、注射器301の注射針の針先端、又は、針先端より+Y方向にずれた点に第2焦点が位置するように配置されている。ユーザが第1筐体100の外部に備えた制御スイッチを操作すると、その操作に基づいて、冷却ファン104と排気ファン105が駆動し、その後、制御部106が加熱処理の制御を開始する。 In the initial state, the optical unit 101 of the heat treatment apparatus 1 is arranged such that the second focal point is located at the needle tip of the injection needle of the syringe 301 or a point shifted in the + Y direction from the needle tip. When the user operates a control switch provided outside the first housing 100, the cooling fan 104 and the exhaust fan 105 are driven based on the operation, and then the control unit 106 starts controlling the heat treatment.
 まず、制御部106は熱線性光源112に電力の供給を開始する。図5は、熱線性光源112への供給電力値の変化を示すグラフである。図5に示すように針先端に第2焦点があるときは、高出力の電力を供給する。高出力の電力は例えば約300Wである。 First, the control unit 106 starts supplying power to the thermal linear light source 112. FIG. 5 is a graph showing changes in the power supply value to the heat-linear light source 112. As shown in FIG. 5, when the second focal point is at the tip of the needle, high output power is supplied. The high output power is about 300 W, for example.
 制御部106は電力の供給開始後、ボールネジ103を正方向に回転させる。ボールネジ103の正方向の回転により、光ユニット101は-Y方向に直線移動する。そして、図5に示すように針先端と針基の中間位置に第2焦点が来たとき、電力を低出力に低下させる。低出力の電力は例えば約100Wである。 The control unit 106 rotates the ball screw 103 in the forward direction after the start of power supply. As the ball screw 103 rotates in the positive direction, the optical unit 101 moves linearly in the −Y direction. Then, as shown in FIG. 5, when the second focal point comes to an intermediate position between the needle tip and the needle base, the power is reduced to a low output. The low output power is about 100 W, for example.
 ここで、注射針は、光ユニット101が直線移動しながら熱線性光源112から照射される光及び第1光反射面111又は第2光反射面206で反射されて照射される光により加熱され針先端が溶融して鈍化する。また、注射針は金属から構成されているため、熱伝導率が高く、注射針の熱が針基及びシリンジの方に短時間で伝搬する。 Here, the injection needle is heated by the light irradiated from the heat ray light source 112 while the optical unit 101 moves linearly and the light reflected and irradiated by the first light reflecting surface 111 or the second light reflecting surface 206. The tip melts and blunts. Further, since the injection needle is made of metal, the heat conductivity is high, and the heat of the injection needle propagates toward the needle base and the syringe in a short time.
 よって、第2焦点が針先端と針基の中間位置にあるときには既に、針の熱がシリンジに十分に伝搬されており、シリンジは溶融される。このため、第2焦点が針先端と針基の中間位置にあるとき以降の供給電力レベルは、シリンジの溶融が完了するまで冷却ファン104によりシリンジの溶融点以下に冷却されない程度の電力で十分と言える。 Therefore, when the second focal point is at an intermediate position between the needle tip and the needle base, the heat of the needle is already sufficiently transmitted to the syringe, and the syringe is melted. For this reason, the power supply level after the second focal point is at an intermediate position between the needle tip and the needle base is sufficient with power that is not cooled below the melting point of the syringe by the cooling fan 104 until the syringe is completely melted. I can say that.
 そして、第2焦点がシリンジの端部、又は、端部より-Y方向にずれた箇所まで達したところで、制御部106は熱線性光源112への電力供給を停止し、光ユニット101を+Y方向に移動させ、初期状態の位置まで戻して停止する。その後予め定めた時間、冷却ファン104と排気ファン105を駆動させた後に停止する。 When the second focal point reaches the end of the syringe or a position shifted in the −Y direction from the end, the control unit 106 stops the power supply to the heat ray light source 112 and moves the optical unit 101 in the + Y direction. Move to, return to the initial position and stop. Thereafter, the cooling fan 104 and the exhaust fan 105 are driven for a predetermined time and then stopped.
 全ての動作が停止すると、ユーザは、第2筐体200の取っ手203を-Y方向に引いて第2筐体200を引き出す。このとき、第2筐体200において、支持体201は、第2光反射面206が形成された上面が鉛直上方(+Z方向方向)を向いて固定された状態を保っている。 When all the operations are stopped, the user pulls the second casing 200 by pulling the handle 203 of the second casing 200 in the −Y direction. At this time, in the second housing 200, the support 201 maintains a state in which the upper surface on which the second light reflecting surface 206 is formed is fixed vertically upward (in the + Z direction).
 支持体201は、磁石202の磁力より勝る力で回転レバー204を回転させることにより、傾けることができる。図6Aは、上方を向いた支持体201を示す図であり、図6Bは、側方を向いた支持体201を示す図である。加熱処理後に第2筐体200を引き出した際には、支持体201の上面は図6Aに示すように鉛直上方を向いている。その状態からユーザが回転レバー204を回転させることにより、図6Bのように支持体201は回転し、支持体201の上面が側方を向く。例えば、支持体201の上面は、水平面に対して110度の角度まで回転する。 The support 201 can be tilted by rotating the rotary lever 204 with a force that exceeds the magnetic force of the magnet 202. FIG. 6A is a diagram showing the support 201 facing upward, and FIG. 6B is a diagram showing the support 201 facing side. When the second housing 200 is pulled out after the heat treatment, the upper surface of the support 201 faces vertically upward as shown in FIG. 6A. When the user rotates the rotary lever 204 from this state, the support 201 rotates as shown in FIG. 6B, and the upper surface of the support 201 faces sideways. For example, the upper surface of the support 201 rotates to an angle of 110 degrees with respect to the horizontal plane.
 支持体201の回転により、支持片205の上に載置されていた加熱処理後の注射器301は鉛直下方に落下する。予め支持体201の下方に保管容器を配置させておくことにより、ユーザが注射器301に触れることなく保管容器に加熱処理後の注射器301を格納することができる。 The rotation of the support 201 causes the syringe 301 after heat treatment placed on the support piece 205 to fall vertically downward. By arranging the storage container below the support 201 in advance, the user can store the syringe 301 after the heat treatment in the storage container without touching the syringe 301 by the user.
 このようにして、注射器301を加熱処理することにより、注射針及びシリンジが一度溶融して凝固した状態で保管容器に格納することができる。処理後の注射器301は、注射針の尖部が鈍化され、注射器301全体が滅菌処理され、注射器301の容積が低減された状態となっている。したがって、注射器301が廃棄されるまでの安全性を向上させるとともに、減容量化することができる。 In this way, by performing the heat treatment on the syringe 301, the injection needle and the syringe can be once melted and solidified and stored in the storage container. In the treated syringe 301, the tip of the injection needle is blunted, the entire syringe 301 is sterilized, and the volume of the syringe 301 is reduced. Therefore, the safety until the syringe 301 is discarded can be improved and the volume can be reduced.
 以上説明したように、本実施形態において、光ユニット101は、扁長楕円体の表面の一部となる形状の第1光反射面111を内側に形成した光反射部113と、扁長楕円体の第1焦点に配置された熱線性光源112と、から構成される。注射器301は、第2筐体200内の支持体201の第2光反射面206上の、扁長楕円体の第2焦点に載置される。そして、光ユニット101は注射器301の延在方向に沿って移動しつつ、熱線性光源112の光を第1光反射面111又は第2光反射面206で反射させて照射させ、注射器301を加熱することとした。これにより、熱線性光源112から出射する光のほぼ全てが注射器301に照射され、高効率で低コストの加熱処理が可能となる。 As described above, in the present embodiment, the optical unit 101 includes the light reflecting portion 113 in which the first light reflecting surface 111 having a shape that becomes a part of the surface of the oblong ellipsoid is formed, and the oblong ellipsoid. And a heat linear light source 112 arranged at the first focal point. The syringe 301 is placed on the second focal point of the oblong ellipsoid on the second light reflecting surface 206 of the support 201 in the second housing 200. Then, the optical unit 101 moves along the extending direction of the syringe 301, reflects the light of the heat ray light source 112 by the first light reflecting surface 111 or the second light reflecting surface 206, and heats the syringe 301. It was decided to. Thereby, almost all of the light emitted from the heat ray light source 112 is irradiated to the syringe 301, and a heat treatment with high efficiency and low cost becomes possible.
 このように本発明は、加熱処理装置が、扁長楕円体の表面の一部となる形状の第1光反射面を内側に形成した光反射部と、扁長楕円体の第1焦点に配置された熱線性光源と、からなる光ユニットと、扁長楕円体の第2焦点に加熱対象物が位置するように加熱対象物を支持し、加熱対象物に対向する面に第2光反射面を有する支持体と、を備え、光ユニットが、加熱対象物の延在方向に平行に移動して、加熱対象物を加熱処理することとした。これにより、加熱対象物の高効率で低コストの加熱処理が可能となる。 As described above, in the present invention, the heat treatment apparatus is arranged at the light reflecting portion in which the first light reflecting surface having a shape that becomes a part of the surface of the oblong ellipsoid is formed, and the first focal point of the oblong ellipsoid. And a second light reflecting surface on the surface facing the heating object so that the heating object is positioned at the second focal point of the oblong ellipsoid. The optical unit moves in parallel with the extending direction of the heating object, and heats the heating object. Thereby, high-efficiency and low-cost heat treatment of the object to be heated becomes possible.
 なお、本発明は、本発明の広義の趣旨及び範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 例えば、上記実施形態では、加熱対象物が注射器301である場合について説明したが、他の医療器具や、他の作業器具の加熱対象物であってもよい。 For example, in the above-described embodiment, the case where the heating object is the syringe 301 has been described. However, the heating object may be another medical instrument or another working instrument.
 また、上記実施形態では、熱線性光源112の供給電力を、注射器301の針先端と針基の中間で高出力から低出力に変化させるとしたが、出力レベルを変化させるタイミングを可変にしてもよい。この場合、注射器301のサイズが大きい場合に高出力の加熱時間を長くする等の調整をすることにより、注射器301のサイズによらず、確実に無害化処理することができる。 Further, in the above embodiment, the power supplied from the thermal linear light source 112 is changed from a high output to a low output between the needle tip and the needle base of the syringe 301, but the timing for changing the output level can be made variable. Good. In this case, when the size of the syringe 301 is large, the harmless treatment can be surely performed regardless of the size of the syringe 301 by making adjustments such as increasing the heating time of high output.
 また、熱線性光源112の供給電力は、注射器301の針先端から高出力で供給し、針先端と針基の中間位置で電力を停止し、光ユニット101の移動も停止させてもよい。針に存する余熱によりシリンジも溶融させることが可能な場合もあり、消費電力を低下することができる。 Further, the power supplied from the heat ray light source 112 may be supplied at a high output from the needle tip of the syringe 301, the power may be stopped at an intermediate position between the needle tip and the needle base, and the movement of the optical unit 101 may also be stopped. In some cases, the syringe can also be melted by the residual heat existing in the needle, and the power consumption can be reduced.
 また、上記実施形態では、熱線性光源112の供給電力の値を変化させるとしたが、供給電力の値を一定にしたまま、光ユニット101の移動速度を変化させるようにしてもよい。注射器301の針先端から移動開始して、針先端と針基の中間に到達するまでの速度を低速度として、時間をかけて加熱し溶融させ、その後シリンジの端までを高速度で移動させて照射時間を短くするようにしてもよい。 In the above-described embodiment, the value of the power supplied from the heat linear light source 112 is changed. However, the moving speed of the optical unit 101 may be changed while keeping the value of the power supplied constant. Start moving from the needle tip of the syringe 301, set the speed until it reaches the middle between the needle tip and the needle base as low speed, heat and melt over time, then move to the end of the syringe at high speed The irradiation time may be shortened.
 また、支持片205及び第2光反射面206の大きさ及び形状を変えた複数種類の支持体201を備えた複数の第2筐体200を用意して、加熱対象物の大きさ又は形状に応じて、第2筐体200を使い分けるようにしてもよい。これにより、加熱対象物の大きさ又は形状によらず、加熱対象物の中心に第2焦点を確実に合わせることができ、加熱効率を更に向上させることができる。 Also, a plurality of second housings 200 having a plurality of types of supports 201 in which the size and shape of the support piece 205 and the second light reflecting surface 206 are changed are prepared, and the size or shape of the heating object is prepared. Accordingly, the second housing 200 may be used properly. Thereby, regardless of the size or shape of the heating object, the second focus can be reliably adjusted to the center of the heating object, and the heating efficiency can be further improved.
 また、上記実施形態では、第2筐体200内の支持体201に固定された注射器301に対して光ユニット101を移動させて加熱するとしたが、光ユニット101を固定して支持体201を移動させるようにしてもよい。この場合、第2筐体200に支持体201を平行移動させる機構を備える。 In the above embodiment, the optical unit 101 is moved and heated with respect to the syringe 301 fixed to the support body 201 in the second housing 200. However, the optical unit 101 is fixed and the support body 201 is moved. You may make it make it. In this case, the second casing 200 includes a mechanism for moving the support 201 in parallel.
 また、上記実施の形態では、第1光反射面111の扁長楕円体の長軸121は、鉛直方向(Z方向)に平行であるとしたが、長軸121が鉛直方向に対して所定の角度を有してもよい。長軸121を傾けることにより、省スペース化を図ることができる。 In the above embodiment, the long axis 121 of the oblong ellipsoid of the first light reflecting surface 111 is parallel to the vertical direction (Z direction). However, the long axis 121 is predetermined with respect to the vertical direction. You may have an angle. By tilting the long axis 121, space can be saved.
 1…加熱処理装置
 100…第1筐体
 101…光ユニット
 102…吊り下げ部
 103…ボールネジ
 104…冷却ファン
 105…排気ファン
 106…制御部
 111…第1光反射面
 112…熱線性光源
 113…光反射部
 114…底面
 121…長軸
 122…第1焦点
 123…第2焦点
 200…第2筐体
 201…支持体
 202…磁石
 203…取っ手
 204…回転レバー
 205…支持片
 206…第2光反射面
 301…注射器
DESCRIPTION OF SYMBOLS 1 ... Heat processing apparatus 100 ... 1st housing | casing 101 ... Optical unit 102 ... Suspension part 103 ... Ball screw 104 ... Cooling fan 105 ... Exhaust fan 106 ... Control part 111 ... 1st light reflective surface 112 ... Heat ray light source 113 ... Light Reflector 114 ... bottom surface 121 ... long axis 122 ... first focus 123 ... second focus 200 ... second housing 201 ... support body 202 ... magnet 203 ... handle 204 ... rotating lever 205 ... support piece 206 ... second light reflecting surface 301 ... Syringe

Claims (8)

  1.  扁長楕円体の表面の一部となる形状の第1光反射面を内側に形成した光反射部と、前記扁長楕円体の第1焦点に配置された熱線性光源と、からなる光ユニットと、
     前記扁長楕円体の第2焦点に加熱対象物が位置するように前記加熱対象物を支持し、前記加熱対象物に対向する面に第2光反射面を有する支持体と、を備え、
     前記光ユニットが、前記加熱対象物の延在方向に平行に移動して、前記加熱対象物を加熱処理する、
     加熱処理装置。
    An optical unit comprising: a light reflecting portion in which a first light reflecting surface having a shape that is a part of the surface of an oblong ellipsoid is formed on the inside; and a heat linear light source disposed at the first focal point of the oblong ellipsoid. When,
    A support body that supports the heating object so that the heating object is positioned at a second focal point of the oblong ellipsoid, and has a second light reflecting surface on a surface facing the heating object;
    The optical unit moves in parallel with the extending direction of the heating object, and heats the heating object.
    Heat treatment device.
  2.  前記扁長楕円体の長軸が鉛直方向に延在し、前記光ユニットの鉛直下方に前記第2光反射面が上方を向くように前記支持体を位置する、
     請求項1に記載の加熱処理装置。
    The long axis of the oblong ellipsoid extends in the vertical direction, and the support is positioned so that the second light reflecting surface faces upward in the vertical lower direction of the optical unit.
    The heat treatment apparatus according to claim 1.
  3.  前記加熱対象物は注射針とシリンジからなる注射器であって、
     前記光ユニットは、前記第2焦点が前記注射針又は前記シリンジの中心軸に前記第2焦点が位置するように配置した状態で、前記第2焦点が前記注射針の針先端から前記注射針又は前記シリンジの延在方向に対して平行に移動する、
     請求項1又は2に記載の加熱処理装置。
    The heating object is a syringe composed of an injection needle and a syringe,
    The optical unit is arranged such that the second focal point is located on the central axis of the injection needle or the syringe, and the second focal point is from the tip of the injection needle to the injection needle or Moving parallel to the direction of extension of the syringe,
    The heat processing apparatus of Claim 1 or 2.
  4.  前記熱線性光源に供給する電力値は制御可能であり、前記第2焦点が前記注射針の針先端から針基の中間位置にあるときに高出力から低出力に変更する、
     請求項3に記載の加熱処理装置。
    The power value supplied to the heat ray light source is controllable, and the second focus is changed from a high output to a low output when the second focal point is at an intermediate position of the needle base from the needle tip of the injection needle.
    The heat treatment apparatus according to claim 3.
  5.  前記光ユニットと前記支持体を覆う第1筐体と、前記第1筐体の一部を構成し前記支持体を備える第2筐体と、を更に備え、
     前記加熱処理前又は後に前記第2筐体を前記第1筐体から引き出して前記加熱対象物を載置又は除去する、
     請求項1から4のいずれか1項に記載の加熱処理装置。
    A first casing that covers the optical unit and the support; and a second casing that constitutes a part of the first casing and includes the support.
    Before or after the heat treatment, the second casing is pulled out from the first casing to place or remove the heating object.
    The heat processing apparatus of any one of Claim 1 to 4.
  6.  前記支持体は前記第2筐体に対して、前記加熱対象物の延在方向に平行な軸を回転軸として回転可能であり、
     前記加熱処理時には、前記第2光反射面が上方を向くように固定され、前記加熱対象物を除去する際に前記支持体を回転させて、前記加熱対象物を前記支持体から落下させる、
     請求項5に記載の加熱処理装置。
    The support is rotatable with respect to the second casing as an axis of rotation parallel to the extending direction of the heating object,
    At the time of the heat treatment, the second light reflection surface is fixed so as to face upward, and when the heating object is removed, the support is rotated to drop the heating object from the support.
    The heat treatment apparatus according to claim 5.
  7.  前記支持体の少なくとも両側部は磁性体からなり、
     前記第2筐体には、前記加熱処理時に前記支持体の前記第2光反射面が上方を向く状態において前記支持体の側面に位置する磁石を更に備える、
     請求項6に記載の加熱処理装置。
    At least both sides of the support are made of a magnetic material,
    The second housing further includes a magnet positioned on a side surface of the support body in a state where the second light reflecting surface of the support body faces upward during the heat treatment.
    The heat treatment apparatus according to claim 6.
  8.  扁長楕円体の表面の一部となる形状の第1光反射面を内側に形成した光反射部と、前記扁長楕円体の第1焦点に配置された熱線性光源と、からなる光ユニットにより加熱処理する加熱処理方法であって、
     前記加熱対象物に対向する面に第2光反射面を有する支持体で、前記扁長楕円体の第2焦点に加熱対象物が位置するように前記加熱対象物を支持する支持ステップと、
     前記光ユニットが、前記加熱対象物の延在方向に平行に移動して、前記加熱対象物を加熱処理する加熱処理ステップと、
     を有する、加熱処理方法。
    An optical unit comprising: a light reflecting portion in which a first light reflecting surface having a shape that is a part of the surface of an oblong ellipsoid is formed on the inside; and a heat linear light source disposed at the first focal point of the oblong ellipsoid. A heat treatment method for heat treatment according to
    A support having a second light reflecting surface on a surface facing the heating object, and a supporting step of supporting the heating object so that the heating object is positioned at a second focal point of the oblong ellipsoid;
    A heat treatment step in which the optical unit is moved in parallel with the extending direction of the heating object to heat-treat the heating object;
    A heat treatment method comprising:
PCT/JP2016/083533 2016-11-11 2016-11-11 Heating treatment device and heating treatment method WO2018087886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083533 WO2018087886A1 (en) 2016-11-11 2016-11-11 Heating treatment device and heating treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083533 WO2018087886A1 (en) 2016-11-11 2016-11-11 Heating treatment device and heating treatment method

Publications (1)

Publication Number Publication Date
WO2018087886A1 true WO2018087886A1 (en) 2018-05-17

Family

ID=62110518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083533 WO2018087886A1 (en) 2016-11-11 2016-11-11 Heating treatment device and heating treatment method

Country Status (1)

Country Link
WO (1) WO2018087886A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168983U (en) * 1987-04-23 1988-11-02
JPH08681A (en) * 1994-06-23 1996-01-09 Sanko Co Ltd Injection needle recovering vessel
US20030141290A1 (en) * 2002-01-30 2003-07-31 Martina Backer Lightwave oven with elliptical-parabolic lamp reflector
CN101008074A (en) * 2006-01-24 2007-08-01 鸿富锦精密工业(深圳)有限公司 Heating apparatus and vacuum film coating equipment using the heating apparatus
JP2012016378A (en) * 2010-07-06 2012-01-26 National Institute Of Advanced Industrial Science & Technology Medical waste heat treatment apparatus, and medical waste heat treatment method
JP2013128712A (en) * 2011-12-22 2013-07-04 National Institute Of Advanced Industrial Science & Technology Syringe melting device
JP2016109318A (en) * 2014-12-02 2016-06-20 国立研究開発法人産業技術総合研究所 Light collection mirror type heating furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168983U (en) * 1987-04-23 1988-11-02
JPH08681A (en) * 1994-06-23 1996-01-09 Sanko Co Ltd Injection needle recovering vessel
US20030141290A1 (en) * 2002-01-30 2003-07-31 Martina Backer Lightwave oven with elliptical-parabolic lamp reflector
CN101008074A (en) * 2006-01-24 2007-08-01 鸿富锦精密工业(深圳)有限公司 Heating apparatus and vacuum film coating equipment using the heating apparatus
JP2012016378A (en) * 2010-07-06 2012-01-26 National Institute Of Advanced Industrial Science & Technology Medical waste heat treatment apparatus, and medical waste heat treatment method
JP2013128712A (en) * 2011-12-22 2013-07-04 National Institute Of Advanced Industrial Science & Technology Syringe melting device
JP2016109318A (en) * 2014-12-02 2016-06-20 国立研究開発法人産業技術総合研究所 Light collection mirror type heating furnace

Similar Documents

Publication Publication Date Title
KR101913481B1 (en) Laser cutting head for machine tool
KR101505531B1 (en) Light applying device and light applying method
HK1062410A1 (en) Quick-install irradiation unit and method of making same.
JP2010229023A (en) Substrate cutting apparatus and method of cutting substrate using the same
EP1650786A4 (en) Focusing optical system, light source unit, illumination optical apparatus, and exposure apparatus
TWI413564B (en) Substrate cutting apparatus and method of cutting substrate using the same
JPH1196818A (en) Optical fiber lighting system
JP6002942B2 (en) Lens and laser processing apparatus equipped with the lens
JP2008155246A (en) Laser beam machine
CN109693034B (en) Infrared and ultraviolet picosecond laser light emitting method and picosecond laser processing system
WO2018087886A1 (en) Heating treatment device and heating treatment method
JP2011147953A (en) Laser machining device
JP5305223B2 (en) Method for stripping insulated conductors
JP2006110989A (en) Resin plate end face treating device
JP2008071680A (en) Ultraviolet radiation device
JP5928780B2 (en) Syringe melting device
KR101411842B1 (en) Pulse lighting device
JP6809928B2 (en) Light irradiation device
JP6631799B2 (en) Light irradiation device
JP2004242211A (en) Image reader
JP2007222790A (en) Light convergence and irradiation device and ultraviolet irradiation device
JP2009034241A (en) Optical depilation device
JP2021012775A (en) Light irradiator
KR101175181B1 (en) Apparatus for position control of mirror consisting of position sensor
JP2012245424A (en) Ultraviolet irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP