JP6809928B2 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
JP6809928B2
JP6809928B2 JP2017021818A JP2017021818A JP6809928B2 JP 6809928 B2 JP6809928 B2 JP 6809928B2 JP 2017021818 A JP2017021818 A JP 2017021818A JP 2017021818 A JP2017021818 A JP 2017021818A JP 6809928 B2 JP6809928 B2 JP 6809928B2
Authority
JP
Japan
Prior art keywords
light
irradiation
irradiation target
ultraviolet light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017021818A
Other languages
Japanese (ja)
Other versions
JP2018126692A (en
Inventor
靖男 木暮
靖男 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2017021818A priority Critical patent/JP6809928B2/en
Priority to TW107101589A priority patent/TWI741130B/en
Priority to KR1020180015509A priority patent/KR20180092871A/en
Priority to CN201810132649.7A priority patent/CN108481898B/en
Publication of JP2018126692A publication Critical patent/JP2018126692A/en
Application granted granted Critical
Publication of JP6809928B2 publication Critical patent/JP6809928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/005Devices for treating the surfaces of sheets, webs, or other articles in connection with printing of non-flat articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00218Constructional details of the irradiation means, e.g. radiation source attached to reciprocating print head assembly or shutter means provided on the radiation source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • B41J3/40733Printing on cylindrical or rotationally symmetrical objects, e. g. on bottles

Description

本発明は、LED(Light Emitting Diode)を光源として用い、中心軸を中心に回転する立体の照射対象物に対して紫外光を照射する光照射装置に関する。 The present invention relates to a light irradiation device that uses an LED (Light Emitting Diode) as a light source and irradiates an ultraviolet light to a three-dimensional irradiation object that rotates about a central axis.

従来、ビールやジュースの缶・ペットボトル、シャンプーや化粧品のボトル等の容器を印刷するためのインキとして、紫外光の照射により硬化する紫外線硬化型インキが用いられている。そして、このような紫外線硬化型インキの硬化には、一般に、紫外光を照射する紫外光照射装置が用いられる。 Conventionally, as an ink for printing a container such as a can / PET bottle of beer or juice, a bottle of shampoo or cosmetics, an ultraviolet curable ink that is cured by irradiation with ultraviolet light has been used. An ultraviolet light irradiation device that irradiates ultraviolet light is generally used for curing such an ultraviolet curable ink.

例えば、特許文献1には、インクジェットヘッドを用いて、缶体(照射対象物)の外周面に画像を形成する画像形成装置が記載されている。この装置は、缶体の内部に挿入され、缶体を支持する支持筒(マンドレル)、支持筒が支持している缶体の外周面に対して紫外線硬化型インクを吐出するインクジェットヘッド、UVLEDランプ等を備えている。そして、特許文献1の装置は、缶体を回転させながら紫外線硬化型インクを吐出させ、缶体の外周面に画像を形成し、該缶体の外周面にUVLEDランプからの紫外光を照射することによって、缶体の外周面に付着した紫外線硬化型インクを硬化させている。 For example, Patent Document 1 describes an image forming apparatus that forms an image on the outer peripheral surface of a can body (irradiation object) by using an inkjet head. This device is inserted inside a can body and supports a support cylinder (mandrel), an inkjet head that ejects ultraviolet curable ink onto the outer peripheral surface of the can body supported by the support cylinder, and a UV LED lamp. Etc. are provided. Then, the apparatus of Patent Document 1 ejects ultraviolet curable ink while rotating the can body, forms an image on the outer peripheral surface of the can body, and irradiates the outer peripheral surface of the can body with ultraviolet light from a UV LED lamp. As a result, the ultraviolet curable ink adhering to the outer peripheral surface of the can body is cured.

特開2016−013548号公報Japanese Unexamined Patent Publication No. 2016-013548

特許文献1の構成によれば、缶体の中心軸に対して平行に配置したUVLEDランプによって、缶体の外周面に付着した紫外線硬化型インクを硬化させることができる。しかしながら、UVLEDランプは、支持筒(つまり、缶体の外周面)から所定の距離をおいた位置に固定されているため、缶体のサイズ(径)が異なると、ワーキングディスタンス(缶体の外周面とUVLEDランプ間の距離)が変わってしまい、缶体の外周面における紫外光の照射強度も変わってしまうため、多品種の缶体に対応しようとすると、缶体のサイズに応じて紫外光の照射強度を変更したり、照射時間を変更しないとならないといった問題がある。また、このように紫外光の照射強度や照射時間を変更するためには、段取り時間が発生するといった問題がある。 According to the configuration of Patent Document 1, UV LED lamps arranged parallel to the central axis of the can body can cure the ultraviolet curable ink adhering to the outer peripheral surface of the can body. However, since the UV LED lamp is fixed at a position at a predetermined distance from the support cylinder (that is, the outer peripheral surface of the can body), if the size (diameter) of the can body is different, the working distance (outer circumference of the can body) is different. The distance between the surface and the UV LED lamp) will change, and the irradiation intensity of ultraviolet light on the outer peripheral surface of the can body will also change. Therefore, when trying to support a wide variety of can bodies, ultraviolet light depends on the size of the can body. There is a problem that the irradiation intensity must be changed or the irradiation time must be changed. Further, in order to change the irradiation intensity and irradiation time of ultraviolet light in this way, there is a problem that a setup time is required.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、照射対象物のサイズが変わったとしても、照射強度や照射時間を変更することなく、照射対象物の外周面に所定強度の紫外光が得られる光照射装置を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to obtain an irradiation target object without changing the irradiation intensity or irradiation time even if the size of the irradiation target object changes. It is an object of the present invention to provide a light irradiation device capable of obtaining ultraviolet light of a predetermined intensity on an outer peripheral surface.

上記目的を達成するため、本発明の光照射装置は、第1方向に延びる中心軸を中心に回転する、第1方向と直交する第2方向の大きさが直径20mm〜60mmの立体の照射対象物に対して、第2方向に配置され、第2方向から照射対象物の外周面に第1方向に延びるライン状の紫外光を照射する単一の光照射装置であって、基板上に第1方向に沿って配置され、照射対象物に対して紫外光を照射する複数のLED素子と、複数のLED素子の光路中に配置され、各LED素子から出射される紫外光を屈折又は反射させて、中心軸に向かって集束光を出射する集光手段と、を備え、照射対象物の第2方向の大きさに拘わらず、集束光の全てが照射対象物の外周面の一部に入射することを特徴とする。 In order to achieve the above object, the light irradiation device of the present invention is an irradiation target of a solid having a diameter of 20 mm to 60 mm in a second direction orthogonal to the first direction, which rotates around a central axis extending in the first direction. A single light irradiator that is arranged in a second direction and irradiates an outer peripheral surface of an object to be irradiated with linear ultraviolet light extending in the first direction from the second direction, and is a single light irradiating device on a substrate. A plurality of LED elements arranged along one direction to irradiate an object to be irradiated with ultraviolet light, and a plurality of LED elements arranged in the optical path of the plurality of LED elements to refract or reflect ultraviolet light emitted from each LED element. It is equipped with a condensing means that emits focused light toward the central axis, and all of the focused light is incident on a part of the outer peripheral surface of the irradiation target regardless of the size of the irradiation target in the second direction. It is characterized by doing.

このような構成によれば、照射対象物のサイズ(第2方向の大きさ)が変わったとしても、紫外光が照射対象物の外周面に確実に入射するため、照射対象物の外周面には所定強度の紫外光が得られる。 According to such a configuration, even if the size (size in the second direction) of the irradiation target is changed, the ultraviolet light is surely incident on the outer peripheral surface of the irradiation target, so that the outer peripheral surface of the irradiation target is covered. Can obtain ultraviolet light of a predetermined intensity.

また、集光手段は、中心軸に向かって光を集束させる反射面を備えるミラーであることが望ましい。また、この場合、反射面は、楕円又は放物面を含む曲面であることが望ましい。 Further, it is desirable that the light collecting means is a mirror provided with a reflecting surface that focuses light toward the central axis. Further, in this case, the reflecting surface is preferably a curved surface including an ellipse or a paraboloid.

また、集光手段は、第1方向に延びるシリンドリカルレンズであり、第1方向から見たときに、複数のLED素子の光軸とシリンドリカルレンズの光軸が照射対象物の中心方向を向くように配置されていることが望ましい。 Further, the condensing means is a cylindrical lens extending in the first direction, so that the optical axes of the plurality of LED elements and the optical axes of the cylindrical lens face the center direction of the irradiation target when viewed from the first direction. It is desirable that it is arranged.

また、集光手段が、紫外光を中心軸に集光するように構成することが望ましい。 Further, it is desirable that the condensing means is configured to condense ultraviolet light on the central axis.

また、別の観点からは、本発明の光照射装置は、第1方向に延びる中心軸を中心に回転する、第1方向と直交する第2方向の大きさが直径20mm〜60mmの立体の照射対象物に対して、第2方向に配置され、第2方向から照射対象物の外周面に第1方向に延びるライン状の紫外光を照射する光照射装置であって、基板と、基板上に第1方向に沿って配置され、照射対象物に対して紫外光を照射する複数のLED素子と、を有するN個(Nは1以上の整数)の光源ユニットと、複数のLED素子の光路中に配置され、各LED素子から出射される紫外光を第1方向から見たときに、所定の線幅を有する光となるように整形するN個の光学素子と、を備え、第1方向から見たときに、複数のLED素子の光軸と光学素子の光軸が照射対象物の中心方向を向くように配置され、所定の線幅が、照射対象物の直径よりも小さくなるように設定され、照射対象物の第2方向の大きさに拘わらず、光学素子から出射された紫外光の全てが照射対象物の外周面の一部に入射することを特徴とする。また、この場合、第1方向から見たときに、複数のLED素子の光軸と光学素子の光軸が中心軸を通るように構成することが望ましい。 From another point of view, the light irradiation device of the present invention irradiates a solid having a diameter of 20 mm to 60 mm in the second direction orthogonal to the first direction, which rotates around a central axis extending in the first direction. An optical irradiation device that is arranged in a second direction with respect to an object and irradiates an outer peripheral surface of the object to be irradiated with line-shaped ultraviolet light extending in the first direction from the second direction, and is on a substrate and a substrate. N (N is an integer of 1 or more) light source units having a plurality of LED elements arranged along the first direction and irradiating an object to be irradiated with ultraviolet light, and in the optical path of the plurality of LED elements. It is provided with N optical elements arranged in the above and shaped so that the ultraviolet light emitted from each LED element becomes light having a predetermined line width when viewed from the first direction, and is provided from the first direction. When viewed, the optical axes of the plurality of LED elements and the optical axes of the optical elements are arranged so as to face the central direction of the irradiation target object, and the predetermined line width is set to be smaller than the diameter of the irradiation target object. Therefore, regardless of the size of the object to be irradiated in the second direction, all the ultraviolet light emitted from the optical element is incident on a part of the outer peripheral surface of the object to be irradiated. Further, in this case, it is desirable that the optical axes of the plurality of LED elements and the optical axes of the optical elements pass through the central axis when viewed from the first direction.

また、この場合、Nは2以上であり、第1方向から見たときに、N個の光源ユニットとN個の光学素子が、中心軸を中心とする円弧上に配置されていることが望ましい。 Further, in this case, N is 2 or more, and it is desirable that N light source units and N optical elements are arranged on an arc centered on the central axis when viewed from the first direction. ..

また、光学素子が、第1方向に延びるシリンドリカルレンズであることが望ましい。 Further, it is desirable that the optical element is a cylindrical lens extending in the first direction.

また、別の観点からは、本発明の光照射装置は、第1方向に延びる中心軸を中心に回転する、第1方向と直交する第2方向の大きさが直径20mm〜60mmの立体の照射対象物に対して、第2方向に配置され、第2方向から照射対象物の外周面に第1方向に延びるライン状の紫外光を照射する単一の光照射装置であって、基板上に第1方向に沿って配置され、照射対象物に対して紫外光を照射する複数のLED素子と、複数のLED素子の光路を第1方向及び前記第2方向と直交する第3方向から挟むように配置され、照射対象物に対して紫外光を導光する一対の導光ミラーと、複数のLED素子と一対の導光ミラーを、照射対象物の直径に応じて第2方向に沿って移動させる移動手段と、を備え、照射対象物の第2方向の大きさに拘わらず、一対の導光ミラーから出射された紫外光の全てが照射対象物の外周面の一部に入射することを特徴とする。
From another point of view, the light irradiation device of the present invention irradiates a solid having a diameter of 20 mm to 60 mm in the second direction orthogonal to the first direction, which rotates around a central axis extending in the first direction. A single light irradiation device that is arranged in a second direction with respect to an object and irradiates the outer peripheral surface of the object to be irradiated with linear ultraviolet light extending in the first direction from the second direction, and is on a substrate. A plurality of LED elements arranged along the first direction and irradiating the object to be irradiated with ultraviolet light and the optical paths of the plurality of LED elements are sandwiched from the first direction and the third direction orthogonal to the second direction. A pair of light guide mirrors that guide ultraviolet light to an object to be irradiated, and a pair of LED elements and a pair of light guide mirrors are moved along a second direction according to the diameter of the object to be irradiated. It is provided with a moving means for allowing the irradiation target to be provided, and all of the ultraviolet light emitted from the pair of light guide mirrors is incident on a part of the outer peripheral surface of the irradiation target regardless of the size of the irradiation target in the second direction. It is a feature.

また、この場合、第1方向から見たときに、複数のLED素子の光軸が中心軸を通るように配置されていることが望ましい。 Further, in this case, it is desirable that the optical axes of the plurality of LED elements are arranged so as to pass through the central axis when viewed from the first direction.

また、一対の導光ミラーの間隔が、照射対象物の直径よりも小さく設定されていることが望ましい。 Further, it is desirable that the distance between the pair of light guide mirrors is set smaller than the diameter of the irradiation target object.

以上のように、本発明の光照射装置によれば、照射対象物のサイズが変わったとしても、照射強度や照射時間を変更することなく、照射対象物の外周面に所定強度の紫外光が得られる。 As described above, according to the light irradiation device of the present invention, even if the size of the irradiation object changes, ultraviolet light of a predetermined intensity is emitted to the outer peripheral surface of the irradiation object without changing the irradiation intensity or the irradiation time. can get.

図1は、本発明の第1の実施形態に係る光照射装置を用いた光照射システムの構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of a light irradiation system using the light irradiation device according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る光照射装置が備える光源ユニットの構成を説明する正面図である。FIG. 2 is a front view illustrating the configuration of a light source unit included in the light irradiation device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る光照射装置から照射対象物に照射される紫外光を説明する光線図である。FIG. 3 is a light ray diagram illustrating ultraviolet light emitted from an irradiation object from the light irradiation device according to the first embodiment of the present invention. 図4は、本発明の第2の実施形態に係る光照射装置を用いた光照射システムの構成を説明する図である。FIG. 4 is a diagram illustrating a configuration of a light irradiation system using the light irradiation device according to the second embodiment of the present invention. 図5は、本発明の第3の実施形態に係る光照射装置を用いた光照射システムの構成を説明する図である。FIG. 5 is a diagram illustrating a configuration of a light irradiation system using the light irradiation device according to the third embodiment of the present invention. 図6は、本発明の第4の実施形態に係る光照射装置を用いた光照射システムの構成を説明する図である。FIG. 6 is a diagram illustrating a configuration of a light irradiation system using the light irradiation device according to the fourth embodiment of the present invention.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る光照射装置10を用いた光照射システム1の構成を示す斜視図である。図1に示すように、光照射システム1は、照射対象物Pの表面に塗布された紫外線硬化型インクを硬化させるシステムであり、照射対象物Pの内部に挿入され、照射対象物Pを支持する支持筒(マンドレル)50と、照射対象物Pの外周面に対してライン状の紫外光を照射する光照射装置10とから構成されている。支持筒50は、不図示のモータによって時計方向に回転するようになっており、支持筒50の回転に伴って、支持筒50の先端に取り付けられた照射対象物Pが回転するようになっている。なお、図1に示すように、本実施形態においては、説明の便宜のため、照射対象物Pは、略円筒状の形状を呈しているものとし、照射対象物Pの回転中心を中心軸AXとして説明する。また、以下、本明細書においては、光照射装置10から出射されるライン状の紫外光の長手(線長)方向をX軸方向、短手方向をY軸方向、X軸及びY軸と直交する方向をZ軸方向と定義して説明する。また、一般に、紫外光とは、波長400nm以下の光を意味するものとされているが、本明細書において、紫外光とは、紫外線硬化型インクを硬化させることが可能な波長(例えば、波長250〜420nm)の光を意味するものとする。
(First Embodiment)
FIG. 1 is a perspective view showing a configuration of a light irradiation system 1 using the light irradiation device 10 according to the first embodiment of the present invention. As shown in FIG. 1, the light irradiation system 1 is a system for curing the ultraviolet curable ink applied to the surface of the irradiation target P, and is inserted inside the irradiation target P to support the irradiation target P. It is composed of a support cylinder (mandrel) 50 to be irradiated and a light irradiation device 10 that irradiates the outer peripheral surface of the irradiation target object P with linear ultraviolet light. The support cylinder 50 is rotated clockwise by a motor (not shown), and the irradiation object P attached to the tip of the support cylinder 50 rotates with the rotation of the support cylinder 50. There is. As shown in FIG. 1, in the present embodiment, for convenience of explanation, the irradiation target object P is assumed to have a substantially cylindrical shape, and the center of rotation of the irradiation target object P is the central axis AX. It is explained as. Further, hereinafter, in the present specification, the longitudinal (line length) direction of the line-shaped ultraviolet light emitted from the light irradiation device 10 is the X-axis direction, the lateral direction is the Y-axis direction, and the X-axis and the Y-axis are orthogonal to each other. This direction will be described by defining it as the Z-axis direction. Further, in general, ultraviolet light means light having a wavelength of 400 nm or less, but in the present specification, ultraviolet light is a wavelength (for example, a wavelength) capable of curing an ultraviolet curable ink. It shall mean light of 250 to 420 nm).

図1に示すように、本実施形態の光照射装置10は、基台11と、光源ユニット12と、楕円ミラー14と、基台11、光源ユニット12及び楕円ミラー14を収容するケース(不図示)等で構成されている。 As shown in FIG. 1, the light irradiation device 10 of the present embodiment accommodates a base 11, a light source unit 12, an elliptical mirror 14, a base 11, a light source unit 12, and an elliptical mirror 14 (not shown). ) Etc.

基台11は、X軸方向及びY軸方向に平行な金属製の板状部材であり、光源ユニット12の基板12aの裏面に密着するように配置され、光源ユニット12を支持すると共に、光源ユニット12で発生した熱を放熱する、いわゆるヒートシンクとして機能する部材である。 The base 11 is a metal plate-like member parallel to the X-axis direction and the Y-axis direction, and is arranged so as to be in close contact with the back surface of the substrate 12a of the light source unit 12, supports the light source unit 12, and is a light source unit. It is a member that functions as a so-called light source that dissipates heat generated in No. 12.

図2は、光源ユニット12の正面図(Z軸の正方向側から見た図)である。図2に示すように、光源ユニット12は、X軸方向及びY軸方向に平行な矩形状の基板12aと、基板12a上に配置された複数のLED素子12bと、を備えている。 FIG. 2 is a front view of the light source unit 12 (a view seen from the positive direction side of the Z axis). As shown in FIG. 2, the light source unit 12 includes a rectangular substrate 12a parallel to the X-axis direction and the Y-axis direction, and a plurality of LED elements 12b arranged on the substrate 12a.

基板12aは、熱伝導率の高い材料(例えば、窒化アルミニウム)で形成された矩形状配線基板であり、図2に示すように、その表面には、10個のLED素子12bが、X軸方向に沿って所定のピッチ(例えば、3.0mm)で、COB(Chip On Board)実装されている。基板12a上には、各LED素子12bに電力を供給するためのアノードパターン(不図示)及びカソードパターン(不図示)が形成されており、各LED素子12bは、アノードパターン及びカソードパターンにそれぞれ電気的に接続されている。また、基板12aは、不図示の配線ケーブルによってドライバ回路(不図示)と電気的に接続されており、各LED素子12bには、アノードパターン及びカソードパターンを介して、ドライバ回路から駆動電流が供給されるようになっている。各LED素子12bに駆動電流が供給されると、各LED素子12bからは駆動電流に応じた光量の紫外光(例えば、波長365nm)が出射され、光源ユニット12からはX軸方向に平行なライン状の紫外光が出射される。 The substrate 12a is a rectangular wiring board made of a material having high thermal conductivity (for example, aluminum nitride), and as shown in FIG. 2, 10 LED elements 12b are formed on the surface thereof in the X-axis direction. The COB (Chip On Board) is mounted at a predetermined pitch (for example, 3.0 mm) along the above. An anode pattern (not shown) and a cathode pattern (not shown) for supplying electric power to each LED element 12b are formed on the substrate 12a, and each LED element 12b has electricity in the anode pattern and the cathode pattern, respectively. Is connected. Further, the substrate 12a is electrically connected to a driver circuit (not shown) by a wiring cable (not shown), and a drive current is supplied to each LED element 12b from the driver circuit via an anode pattern and a cathode pattern. It is supposed to be done. When a drive current is supplied to each LED element 12b, an amount of ultraviolet light (for example, a wavelength of 365 nm) corresponding to the drive current is emitted from each LED element 12b, and a line parallel to the X-axis direction is emitted from the light source unit 12. Ultraviolet light is emitted.

光源ユニット12に電力が供給され、各LED素子12bから紫外光が出射されると、LED素子12bの自己発熱により温度が上昇し、発光効率が著しく低下するといった問題が発生するが、本実施形態においては、基台11によって光源ユニット12が冷却されるため、かかる問題の発生が抑制される。 When power is supplied to the light source unit 12 and ultraviolet light is emitted from each LED element 12b, the temperature rises due to the self-heating of the LED element 12b, which causes a problem that the luminous efficiency is remarkably lowered. Since the light source unit 12 is cooled by the base 11, the occurrence of such a problem is suppressed.

楕円ミラー14は、光源ユニット12からの紫外光を反射するための金属製の部材であり、光源ユニット12をZ軸の正方向側から覆うようにケース(不図示)内に取り付けられている(図1)。楕円ミラー14の光源ユニット12に対向する側の表面には、金属薄膜等の光反射性材料がコーティングされており、反射面14aが形成されている。本実施形態の楕円ミラー14の反射面14aは、X軸方向に延びる楕円面となっており、X軸方向から見たときに、その第1焦点位置に光源ユニット12の各LED素子12bが配置されている。 The elliptical mirror 14 is a metal member for reflecting ultraviolet light from the light source unit 12, and is mounted in a case (not shown) so as to cover the light source unit 12 from the positive direction side of the Z axis (not shown). Figure 1). The surface of the elliptical mirror 14 on the side facing the light source unit 12 is coated with a light-reflecting material such as a metal thin film, and a reflecting surface 14a is formed. The reflection surface 14a of the ellipsoidal mirror 14 of the present embodiment is an ellipsoidal surface extending in the X-axis direction, and each LED element 12b of the light source unit 12 is arranged at the first focal position thereof when viewed from the X-axis direction. Has been done.

図3は、本実施形態の光照射装置10から照射対象物Pに照射される紫外光を説明する光線図である。なお、図3において、P1は、最小サイズ(例えば、直径20mm)の照射対象物Pを示し、P2は、最大サイズ(例えば、直径60mm)の照射対象物Pを示している。 FIG. 3 is a light ray diagram illustrating ultraviolet light emitted from the light irradiation device 10 of the present embodiment to the irradiation target P. In FIG. 3, P1 indicates an irradiation object P having a minimum size (for example, a diameter of 20 mm), and P2 indicates an irradiation object P having a maximum size (for example, a diameter of 60 mm).

図3に示すように、本実施形態においては、楕円ミラー14の第2焦点位置に照射対象物Pの中心軸AXが配置されており、光源ユニット12から出射された紫外光(各光線)が照射対象物Pの中心軸AXに集光するように構成されている。従って、照射対象物Pのサイズが小さい場合(P1)でも、照射対象物Pのサイズが大きい場合(P2)でも、光源ユニット12から出射された紫外光は、照射対象物Pの外周面に確実に入射する。このため、照射対象物Pのサイズを変更したとしても、照射対象物Pの外周面には所定強度の紫外光が得られる。つまり、本実施形態の構成によれば、照射対象物Pのサイズを変更する度に、照射強度や照射時間を変更する必要がない。 As shown in FIG. 3, in the present embodiment, the central axis AX of the irradiation target P is arranged at the second focal position of the elliptical mirror 14, and the ultraviolet light (each ray) emitted from the light source unit 12 is emitted. It is configured to focus on the central axis AX of the irradiation target object P. Therefore, regardless of whether the size of the irradiation target P is small (P1) or the size of the irradiation target P is large (P2), the ultraviolet light emitted from the light source unit 12 is surely on the outer peripheral surface of the irradiation target P. Is incident on. Therefore, even if the size of the irradiation target object P is changed, ultraviolet light having a predetermined intensity can be obtained on the outer peripheral surface of the irradiation target object P. That is, according to the configuration of the present embodiment, it is not necessary to change the irradiation intensity and the irradiation time each time the size of the irradiation target P is changed.

以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。 The above is the description of the present embodiment, but the present invention is not limited to the above configuration, and various modifications can be made within the scope of the technical idea of the present invention.

例えば、本実施形態の各LED素子12b上に半球状又は砲弾状の封止レンズを配置することも可能である。このような構成によれば、各LED素子12bから出射される紫外光の広がり角を狭めることが可能となるため、楕円ミラー14のサイズを小さくすることが可能となる。 For example, it is also possible to arrange a hemispherical or bullet-shaped sealing lens on each LED element 12b of the present embodiment. According to such a configuration, it is possible to narrow the spreading angle of the ultraviolet light emitted from each LED element 12b, so that the size of the elliptical mirror 14 can be reduced.

また、本実施形態においては、楕円ミラー14の第2焦点位置に照射対象物Pの中心軸AXが配置されており、光源ユニット12から出射された紫外光(各光線)が照射対象物Pの中心軸AXに集光するものとして説明したが、必ずしもこのような構成に限定されるものではない。楕円ミラー14は、中心軸AXに向かって光を集束させる反射面を備えればよく、楕円ミラー14に代えて、放物面の反射ミラーを備える放物面ミラーを適用することも可能である。 Further, in the present embodiment, the central axis AX of the irradiation target object P is arranged at the second focal position of the elliptical mirror 14, and the ultraviolet light (each ray) emitted from the light source unit 12 is the irradiation target object P. Although it has been described as focusing on the central axis AX, it is not necessarily limited to such a configuration. The elliptical mirror 14 may be provided with a reflecting surface that focuses light toward the central axis AX, and instead of the elliptical mirror 14, a parabolic mirror provided with a parabolic reflecting mirror can be applied. ..

(第2の実施形態)
図4は、本発明の第2の実施形態に係る光照射装置10Aを用いた光照射システム1Aの構成を説明する図であり、本実施形態の光照射装置10AをX軸方向から見たときの光線図である。図4に示すように、本実施形態の光照射装置10Aは、光源ユニット12が下向き(Y軸の負方向側に向くように)に取り付けられ、楕円ミラー14に代えて、集光レンズ15を備える点で、第1の実施形態の光照射装置10と異なる。なお、集光レンズ15は、不図示の固定部材によってケース(不図示)内に固定されている。
(Second Embodiment)
FIG. 4 is a diagram illustrating a configuration of a light irradiation system 1A using the light irradiation device 10A according to the second embodiment of the present invention, when the light irradiation device 10A of the present embodiment is viewed from the X-axis direction. It is a ray diagram of. As shown in FIG. 4, in the light irradiation device 10A of the present embodiment, the light source unit 12 is attached downward (so as to face the negative direction side of the Y axis), and the condensing lens 15 is used instead of the elliptical mirror 14. It is different from the light irradiation device 10 of the first embodiment in that it is provided. The condenser lens 15 is fixed in a case (not shown) by a fixing member (not shown).

集光レンズ15は、光源ユニット12からの紫外光を照射対象物Pの中心軸AXに集光するための光学部材であり、LED素子12bの光路中に配置されている。本実施形態の集光レンズ15は、X軸方向に延びる、光学ガラス又はシリコン製の両凸シリンドリカルレンズであり、X軸方向から見たときに、LED素子12bの光軸と集光レンズ15の光軸が照射対象物Pの中心軸AXを通るように配置され、LED素子12bから出射される紫外光(各光線)をZ軸方向に屈折し、照射対象物Pの中心軸AXに集光するように構成されている。従って、照射対象物Pのサイズが小さい場合(P1)でも、照射対象物Pのサイズが大きい場合(P2)でも、光源ユニット12から出射された紫外光は、照射対象物Pの外周面に確実に入射する。このため、照射対象物Pのサイズを変更したとしても、照射対象物Pの外周面には所定強度の紫外光が得られる。つまり、本実施形態の構成によれば、照射対象物Pのサイズを変更する度に、照射強度や照射時間を変更する必要がない。なお、本実施形態においては、LED素子12bの光軸と集光レンズ15の光軸が照射対象物Pの中心軸AXを通るものとしたが、必ずしもこのような構成に限定されるものではなく、LED素子12bの光軸と集光レンズ15の光軸が照射対象物Pの中心方向を向くように配置されればよい。 The condensing lens 15 is an optical member for condensing ultraviolet light from the light source unit 12 on the central axis AX of the irradiation target P, and is arranged in the optical path of the LED element 12b. The condensing lens 15 of the present embodiment is a biconvex cylindrical lens made of optical glass or silicon extending in the X-axis direction, and when viewed from the X-axis direction, the optical axis of the LED element 12b and the condensing lens 15 The optical axis is arranged so as to pass through the central axis AX of the irradiation target P, and the ultraviolet light (each light beam) emitted from the LED element 12b is refracted in the Z-axis direction and focused on the central axis AX of the irradiation target P. It is configured to do. Therefore, regardless of whether the size of the irradiation target P is small (P1) or the size of the irradiation target P is large (P2), the ultraviolet light emitted from the light source unit 12 is surely on the outer peripheral surface of the irradiation target P. Is incident on. Therefore, even if the size of the irradiation target object P is changed, ultraviolet light having a predetermined intensity can be obtained on the outer peripheral surface of the irradiation target object P. That is, according to the configuration of the present embodiment, it is not necessary to change the irradiation intensity and the irradiation time each time the size of the irradiation target P is changed. In the present embodiment, the optical axis of the LED element 12b and the optical axis of the condenser lens 15 pass through the central axis AX of the irradiation target P, but the configuration is not necessarily limited to this. , The optical axis of the LED element 12b and the optical axis of the condenser lens 15 may be arranged so as to face the center direction of the irradiation target object P.

(第3の実施形態)
図5は、本発明の第3の実施形態に係る光照射装置10Bを用いた光照射システム1Bの構成を説明する図であり、本実施形態の光照射装置10BをX軸方向から見たときの光線図である。図5に示すように、本実施形態の光照射装置10Bは、3つの光源ユニット12と、3つの集光レンズ15Bを備える点、各集光レンズ15Bから出射される紫外光が略平行光となるように構成されている点で、第2の実施形態の光照射装置10Aと異なる。
(Third Embodiment)
FIG. 5 is a diagram for explaining the configuration of the light irradiation system 1B using the light irradiation device 10B according to the third embodiment of the present invention, when the light irradiation device 10B of the present embodiment is viewed from the X-axis direction. It is a ray diagram of. As shown in FIG. 5, the light irradiation device 10B of the present embodiment includes three light source units 12 and three condensing lenses 15B, and the ultraviolet light emitted from each condensing lens 15B is substantially parallel light. It differs from the light irradiation device 10A of the second embodiment in that it is configured to be.

集光レンズ15Bは、光源ユニット12からの紫外光を略平行光に整形するための光学部材であり、各光源ユニット12のLED素子12bの光路中に配置されている。本実施形態の集光レンズ15Bは、X軸方向に延びる、光学ガラス又はシリコン製の両凸シリンドリカルレンズであり、X軸方向から見たときに、LED素子12bの光軸と集光レンズ15Bの光軸が照射対象物Pの中心軸AXを通るように配置され、LED素子12bから出射される紫外光(各光線)をZ軸方向に屈折し、所定の線幅を有する略平行光となるように整形する。 The condenser lens 15B is an optical member for shaping the ultraviolet light from the light source unit 12 into substantially parallel light, and is arranged in the optical path of the LED element 12b of each light source unit 12. The condensing lens 15B of the present embodiment is a biconvex cylindrical lens made of optical glass or silicon extending in the X-axis direction, and when viewed from the X-axis direction, the optical axis of the LED element 12b and the condensing lens 15B The optical axis is arranged so as to pass through the central axis AX of the irradiation target object P, and the ultraviolet light (each light beam) emitted from the LED element 12b is refracted in the Z-axis direction to become substantially parallel light having a predetermined line width. Shape it like this.

図5に示すように、本実施形態の3つの光源ユニット12と3つの集光レンズ15Bは、照射対象物Pの中心軸AXを中心とする円弧上に配置されており、各光源ユニット12から出射される紫外光の主光線(広がり角0°の光線)が照射対象物Pの中心軸AXに集光するように配置されている。また、各集光レンズ15Bから出射される紫外光の線幅dは、最小サイズの照射対象物P1の直径よりも十分に小さく、各光源ユニット12から出射される紫外光が照射対象物Pの外周面に確実に入射するように構成されている。つまり、照射対象物Pのサイズが小さい場合(P1)でも、照射対象物Pのサイズが大きい場合(P2)でも、各光源ユニット12から出射された紫外光は、照射対象物Pの外周面に確実に入射するようになっている。このため、照射対象物Pのサイズを変更したとしても、照射対象物Pの外周面には所定強度の紫外光が得られる。つまり、本実施形態の構成によれば、照射対象物Pのサイズを変更する度に、照射強度や照射時間を変更する必要がない。 As shown in FIG. 5, the three light source units 12 and the three condensing lenses 15B of the present embodiment are arranged on an arc centered on the central axis AX of the irradiation target object P, and are arranged from each light source unit 12. The main light beam of the emitted ultraviolet light (light ray having a spread angle of 0 °) is arranged so as to be focused on the central axis AX of the irradiation target P. Further, the line width d of the ultraviolet light emitted from each condensing lens 15B is sufficiently smaller than the diameter of the irradiation target object P1 having the smallest size, and the ultraviolet light emitted from each light source unit 12 is the irradiation target object P. It is configured to be reliably incident on the outer peripheral surface. That is, regardless of whether the size of the irradiation target P is small (P1) or the size of the irradiation target P is large (P2), the ultraviolet light emitted from each light source unit 12 is applied to the outer peripheral surface of the irradiation target P. It is designed to be surely incident. Therefore, even if the size of the irradiation target object P is changed, ultraviolet light having a predetermined intensity can be obtained on the outer peripheral surface of the irradiation target object P. That is, according to the configuration of the present embodiment, it is not necessary to change the irradiation intensity and the irradiation time each time the size of the irradiation target P is changed.

なお、本実施形態においては、光照射装置10Bが、3つの光源ユニット12と、3つの集光レンズ15Bを備えるものとしたが、光源ユニット12と集光レンズ15Bの数は、これに限定されるものではなく、照射対象物Pの外周面に塗布された紫外線硬化型インクを硬化させるために必要な照射強度に応じて適宜変更すること(つまり、N個(Nは1以上の整数)の光源ユニット12と集光レンズ15Bを用いる構成)が可能である。また、本実施形態においては、LED素子12bの光軸と集光レンズ15Bの光軸が照射対象物Pの中心軸AXを通るものとしたが、必ずしもこのような構成に限定されるものではなく、LED素子12bの光軸と集光レンズ15Bの光軸が照射対象物Pの中心方向を向くように配置されればよい。また、集光レンズ15Bから出射される紫外光は、必ずしも略平行光に限定されるものではない。 In the present embodiment, the light irradiation device 10B includes three light source units 12 and three condensing lenses 15B, but the number of light source units 12 and condensing lenses 15B is limited to this. However, it should be appropriately changed according to the irradiation intensity required to cure the ultraviolet curable ink applied to the outer peripheral surface of the irradiation target P (that is, N (N is an integer of 1 or more)). A configuration using the light source unit 12 and the condenser lens 15B) is possible. Further, in the present embodiment, the optical axis of the LED element 12b and the optical axis of the condenser lens 15B pass through the central axis AX of the irradiation target P, but the configuration is not necessarily limited to this. , The optical axis of the LED element 12b and the optical axis of the condenser lens 15B may be arranged so as to face the center direction of the irradiation object P. Further, the ultraviolet light emitted from the condenser lens 15B is not necessarily limited to substantially parallel light.

(第4の実施形態)
図6は、本発明の第4の実施形態に係る光照射装置10Cを用いた光照射システム1Cの構成を説明する図であり、本実施形態の光照射装置10CをX軸方向から見たときの光線図である。図6に示すように、本実施形態の光照射システム1Cは、照射対象物Pのサイズ(直径)に応じて光照射装置10Cを昇降させる昇降機構20を備える点で第1の実施形態の光照射システム1と異なり、図6(a)は、光照射装置10Cを最小サイズの照射対象物P1に近接して配置した状態を示し、図6(b)は、光照射装置10Cを最大サイズの照射対象物P2に近接して配置した状態を示している。また、本実施形態の光照射装置10Cは、光源ユニット12が下向き(Y軸の負方向側に向くように)に取り付けられ、楕円ミラー14に代えて、一対の導光ミラー17を備える点で、第1の実施形態の光照射装置10と異なっている。なお、昇降機構20には、スライダ等、周知の機構を採用することができるが、図6においては、説明の便宜のため、昇降機構20を単にブロックで示している。
(Fourth Embodiment)
FIG. 6 is a diagram for explaining the configuration of the light irradiation system 1C using the light irradiation device 10C according to the fourth embodiment of the present invention, when the light irradiation device 10C of the present embodiment is viewed from the X-axis direction. It is a ray diagram of. As shown in FIG. 6, the light irradiation system 1C of the present embodiment includes an elevating mechanism 20 for raising and lowering the light irradiation device 10C according to the size (diameter) of the irradiation target P, and the light of the first embodiment is provided. Unlike the irradiation system 1, FIG. 6A shows a state in which the light irradiation device 10C is arranged close to the irradiation target P1 of the minimum size, and FIG. 6B shows a state in which the light irradiation device 10C has the maximum size. It shows a state in which the object is placed close to the irradiation target P2. Further, the light irradiation device 10C of the present embodiment is provided with a pair of light guide mirrors 17 instead of the elliptical mirror 14 in that the light source unit 12 is attached downward (so as to face the negative direction side of the Y axis). , It is different from the light irradiation device 10 of the first embodiment. A well-known mechanism such as a slider can be adopted as the elevating mechanism 20, but in FIG. 6, the elevating mechanism 20 is simply shown as a block for convenience of explanation.

一対の導光ミラー17は、光源ユニット12からの紫外光を照射対象物Pの外周面に導光するための光学部材であり、LED素子12bの光路をZ軸方向から挟むように配置されている。本実施形態の一対の導光ミラー17は、Z軸方向に間隔pをおいてX軸方向に平行に延びる平行平板ミラーであり、各導光ミラー17の内側の面(互いに対向する面)には、反射面が形成されている。 The pair of light guide mirrors 17 are optical members for guiding ultraviolet light from the light source unit 12 to the outer peripheral surface of the irradiation target P, and are arranged so as to sandwich the optical path of the LED element 12b from the Z-axis direction. There is. The pair of light guide mirrors 17 of the present embodiment are parallel flat plate mirrors extending in parallel in the X-axis direction with an interval p in the Z-axis direction, and are formed on inner surfaces (planes facing each other) of the light guide mirrors 17. Has a reflective surface formed.

図6(a)に示すように、最小サイズの照射対象物P1を照射する場合、光源ユニット12は、照射対象物P1の外周面に近接する位置に移動され、光源ユニット12から出射される紫外光の主光線(広がり角0°の光線)が照射対象物Pの中心軸AXを通るように配置される。また、一対の導光ミラー17の間隔pは、照射対象物P1の直径よりも十分に小さく設定されており、光源ユニット12から出射される紫外光が照射対象物P1の外周面に確実に入射するように構成されている。 As shown in FIG. 6A, when irradiating the irradiation target object P1 having the smallest size, the light source unit 12 is moved to a position close to the outer peripheral surface of the irradiation target object P1 and is emitted from the light source unit 12. A main ray of light (a ray having a spreading angle of 0 °) is arranged so as to pass through the central axis AX of the irradiation target P. Further, the distance p between the pair of light guide mirrors 17 is set to be sufficiently smaller than the diameter of the irradiation target object P1, so that the ultraviolet light emitted from the light source unit 12 is surely incident on the outer peripheral surface of the irradiation target object P1. It is configured to do.

また、図6(b)に示すように、最大サイズの照射対象物P2を照射する場合、光源ユニット12は、照射対象物P2の外周面に近接する位置に移動され、光源ユニット12から出射される紫外光の主光線(広がり角0°の光線)が照射対象物Pの中心軸AXを通るように配置される。上述のように、一対の導光ミラー17の間隔pは、照射対象物P1の直径よりも十分に小さく設定されているため、最大サイズの照射対象物P2を照射する場合にも、光源ユニット12から出射される紫外光が照射対象物P2の外周面に確実に入射する。 Further, as shown in FIG. 6B, when irradiating the irradiation target object P2 having the maximum size, the light source unit 12 is moved to a position close to the outer peripheral surface of the irradiation target object P2 and is emitted from the light source unit 12. The main ray of ultraviolet light (a ray having a spreading angle of 0 °) is arranged so as to pass through the central axis AX of the irradiation target P. As described above, since the distance p between the pair of light guide mirrors 17 is set to be sufficiently smaller than the diameter of the irradiation target object P1, the light source unit 12 also irradiates the irradiation target object P2 having the maximum size. The ultraviolet light emitted from the light source is surely incident on the outer peripheral surface of the irradiation target P2.

このように、本実施形態の構成においても、第1乃至第3の実施形態と同様、照射対象物Pのサイズが小さい場合(P1)でも、照射対象物Pのサイズが大きい場合(P2)でも、光源ユニット12から出射された紫外光は、照射対象物Pの外周面に確実に入射する。このため、照射対象物Pのサイズを変更したとしても、照射対象物Pの外周面には所定強度の紫外光が得られる。つまり、本実施形態の構成によれば、照射対象物Pのサイズを変更する度に、照射強度や照射時間を変更する必要がない。 As described above, also in the configuration of the present embodiment, as in the first to third embodiments, the size of the irradiation target object P is small (P1) and the size of the irradiation target object P is large (P2). The ultraviolet light emitted from the light source unit 12 is surely incident on the outer peripheral surface of the irradiation target P. Therefore, even if the size of the irradiation target object P is changed, ultraviolet light having a predetermined intensity can be obtained on the outer peripheral surface of the irradiation target object P. That is, according to the configuration of the present embodiment, it is not necessary to change the irradiation intensity and the irradiation time each time the size of the irradiation target P is changed.

なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be noted that the embodiments disclosed this time are examples in all respects and should not be considered to be restrictive. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1、1A、1B、1C 光照射システム
10、10A、10B、10C 光照射装置
11 基台
12 光源ユニット
12a 基板
12b LED素子
14 楕円ミラー
15、15B 集光レンズ
17 導光ミラー
20 昇降機構
50 支持筒
1, 1A, 1B, 1C Light irradiation system 10, 10A, 10B, 10C Light irradiation device 11 Base 12 Light source unit 12a Substrate 12b LED element 14 Elliptical mirror 15, 15B Condensing lens 17 Light guide mirror 20 Lifting mechanism 50 Support cylinder

Claims (12)

第1方向に延びる中心軸を中心に回転する、前記第1方向と直交する第2方向の大きさが直径20mm〜60mmの立体の照射対象物に対して、前記第2方向に配置され、前記第2方向から前記照射対象物の外周面に前記第1方向に延びるライン状の紫外光を照射する単一の光照射装置であって、
基板上に前記第1方向に沿って配置され、前記照射対象物に対して前記紫外光を照射する複数のLED素子と、
前記複数のLED素子の光路中に配置され、前記各LED素子から出射される前記紫外光を屈折又は反射させて、前記中心軸に向かって集束光を出射する集光手段と、
を備え、
前記照射対象物の前記第2方向の大きさに拘わらず、前記集束光の全てが前記照射対象物の外周面の一部に入射する
ことを特徴とする光照射装置。
A solid irradiation object having a diameter of 20 mm to 60 mm in a second direction orthogonal to the first direction, which rotates about a central axis extending in the first direction, is arranged in the second direction and described. A single light irradiating device that irradiates the outer peripheral surface of the object to be irradiated with linear ultraviolet light extending in the first direction from the second direction.
A plurality of LED elements arranged on the substrate along the first direction and irradiating the irradiation target with the ultraviolet light,
A condensing means that is arranged in the optical path of the plurality of LED elements, refracts or reflects the ultraviolet light emitted from each of the LED elements, and emits focused light toward the central axis.
With
A light irradiation device, characterized in that all of the focused light is incident on a part of the outer peripheral surface of the irradiation target regardless of the size of the irradiation target in the second direction.
前記集光手段は、前記中心軸に向かって光を集束させる反射面を備えるミラーであることを特徴とする請求項1に記載の光照射装置。 The light irradiation device according to claim 1, wherein the light collecting means is a mirror provided with a reflecting surface that focuses light toward the central axis. 前記反射面は、楕円又は放物面を含む曲面であることを特徴とする請求項2に記載の光照射装置。 The light irradiation device according to claim 2, wherein the reflecting surface is an ellipse or a curved surface including a paraboloid. 前記集光手段は、前記第1方向に延びるシリンドリカルレンズであり、
前記第1方向から見たときに、前記複数のLED素子の光軸と前記シリンドリカルレンズの光軸が前記照射対象物の中心方向を向くように配置されている
ことを特徴とする請求項1に記載の光照射装置。
The condensing means is a cylindrical lens extending in the first direction.
The first aspect of the present invention is characterized in that the optical axes of the plurality of LED elements and the optical axes of the cylindrical lens are arranged so as to face the central direction of the irradiation target when viewed from the first direction. The light irradiation device described.
前記集光手段が、前記紫外光を前記中心軸に集光することを特徴とする請求項1から請求項4のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 4, wherein the light condensing means collects the ultraviolet light on the central axis. 第1方向に延びる中心軸を中心に回転する、前記第1方向と直交する第2方向の大きさが直径20mm〜60mmの立体の照射対象物に対して、前記第2方向に配置され、前記第2方向から前記照射対象物の外周面に前記第1方向に延びるライン状の紫外光を照射する光照射装置であって、
基板と、前記基板上に前記第1方向に沿って配置され、前記照射対象物に対して前記紫外光を照射する複数のLED素子と、を有するN個(Nは1以上の整数)の光源ユニットと、
前記複数のLED素子の光路中に配置され、前記各LED素子から出射される前記紫外光を前記第1方向から見たときに、所定の線幅を有する光となるように整形するN個の光学素子と、
を備え、
前記第1方向から見たときに、前記複数のLED素子の光軸と前記光学素子の光軸が前記照射対象物の中心方向を向くように配置され、前記所定の線幅が、前記照射対象物の直径よりも小さくなるように設定され、前記照射対象物の前記第2方向の大きさに拘わらず、前記光学素子から出射された前記紫外光の全てが前記照射対象物の外周面の一部に入射する
ことを特徴とする光照射装置。
A solid irradiation object having a diameter of 20 mm to 60 mm in a second direction orthogonal to the first direction, which rotates about a central axis extending in the first direction, is arranged in the second direction and described. A light irradiating device that irradiates the outer peripheral surface of the object to be irradiated with linear ultraviolet light extending in the first direction from the second direction.
N light sources (N is an integer of 1 or more) having a substrate and a plurality of LED elements arranged on the substrate along the first direction and irradiating the irradiation target with the ultraviolet light. With the unit
N pieces arranged in the optical path of the plurality of LED elements and shaped so that the ultraviolet light emitted from each of the LED elements has a predetermined line width when viewed from the first direction. Optical elements and
With
When viewed from the first direction, the optical axes of the plurality of LED elements and the optical axes of the optical elements are arranged so as to face the center direction of the irradiation target, and the predetermined line width is the irradiation target. It is set to be smaller than the diameter of the object, and regardless of the size of the object to be irradiated in the second direction, all of the ultraviolet light emitted from the optical element is one of the outer peripheral surfaces of the object to be irradiated. An optical irradiation device characterized in that it is incident on a part.
前記第1方向から見たときに、前記複数のLED素子の光軸と前記光学素子の光軸が前記中心軸を通ることを特徴とする請求項6に記載の光照射装置。 The light irradiation device according to claim 6, wherein the optical axes of the plurality of LED elements and the optical axes of the optical elements pass through the central axis when viewed from the first direction. 前記Nは2以上であり、
前記第1方向から見たときに、前記N個の光源ユニットと前記N個の光学素子が、前記中心軸を中心とする円弧上に配置されていることを特徴とする請求項6又は請求項7に記載の光照射装置。
The N is 2 or more,
6. or claim 6, wherein the N light source units and the N optical elements are arranged on an arc centered on the central axis when viewed from the first direction. 7. The light irradiation device according to 7.
前記光学素子が、前記第1方向に延びるシリンドリカルレンズであることを特徴とする請求項6から請求項8のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 6 to 8, wherein the optical element is a cylindrical lens extending in the first direction. 第1方向に延びる中心軸を中心に回転する、前記第1方向と直交する第2方向の大きさが直径20mm〜60mmの立体の照射対象物に対して、前記第2方向に配置され、前記第2方向から前記照射対象物の外周面に前記第1方向に延びるライン状の紫外光を照射する単一の光照射装置であって、
基板上に前記第1の方向に沿って配置され、前記照射対象物に対して前記紫外光を照射する複数のLED素子と、
前記複数のLED素子の光路を前記第1方向及び前記第2方向と直交する第3方向から挟むように配置され、前記照射対象物に対して前記紫外光を導光する一対の導光ミラーと、
前記複数のLED素子と前記一対の導光ミラーを、前記照射対象物の直径に応じて前記第2方向に沿って移動させる移動手段と、
を備え、
前記照射対象物の前記第2方向の大きさに拘わらず、前記一対の導光ミラーから出射された前記紫外光の全てが前記照射対象物の外周面の一部に入射する
ことを特徴とする光照射装置。
A solid irradiation object having a diameter of 20 mm to 60 mm in a second direction orthogonal to the first direction, which rotates about a central axis extending in the first direction, is arranged in the second direction and described. A single light irradiating device that irradiates the outer peripheral surface of the object to be irradiated with linear ultraviolet light extending in the first direction from the second direction.
A plurality of LED elements arranged on the substrate along the first direction and irradiating the irradiation target with the ultraviolet light,
A pair of light guide mirrors arranged so as to sandwich the optical paths of the plurality of LED elements from the first direction and the third direction orthogonal to the second direction, and guide the ultraviolet light to the irradiation target object. ,
A moving means for moving the plurality of LED elements and the pair of light guide mirrors along the second direction according to the diameter of the irradiation target object.
With
Regardless of the size of the irradiation target in the second direction, all of the ultraviolet light emitted from the pair of light guide mirrors is incident on a part of the outer peripheral surface of the irradiation target. Light irradiation device.
前記第1方向から見たときに、前記複数のLED素子の光軸が前記中心軸を通るように配置されていることを特徴とする請求項10に記載の光照射装置。 The light irradiation device according to claim 10, wherein the optical axes of the plurality of LED elements are arranged so as to pass through the central axis when viewed from the first direction. 前記一対の導光ミラーの間隔が、前記照射対象物の直径よりも小さく設定されていることを特徴とする請求項10又は請求項11に記載の光照射装置。 The light irradiation device according to claim 10 or 11, wherein the distance between the pair of light guide mirrors is set to be smaller than the diameter of the irradiation target object.
JP2017021818A 2017-02-09 2017-02-09 Light irradiation device Active JP6809928B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017021818A JP6809928B2 (en) 2017-02-09 2017-02-09 Light irradiation device
TW107101589A TWI741130B (en) 2017-02-09 2018-01-16 Light irradiating device
KR1020180015509A KR20180092871A (en) 2017-02-09 2018-02-08 Light irradiating apparatus
CN201810132649.7A CN108481898B (en) 2017-02-09 2018-02-09 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021818A JP6809928B2 (en) 2017-02-09 2017-02-09 Light irradiation device

Publications (2)

Publication Number Publication Date
JP2018126692A JP2018126692A (en) 2018-08-16
JP6809928B2 true JP6809928B2 (en) 2021-01-06

Family

ID=63171765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021818A Active JP6809928B2 (en) 2017-02-09 2017-02-09 Light irradiation device

Country Status (4)

Country Link
JP (1) JP6809928B2 (en)
KR (1) KR20180092871A (en)
CN (1) CN108481898B (en)
TW (1) TWI741130B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133218A1 (en) 2020-12-11 2022-06-15 Bartenbach Holding Gmbh Light reactor and process for the synthetic production of substances by means of light irradiation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282064B2 (en) * 1995-02-28 2002-05-13 株式会社オーク製作所 Apparatus and method for measuring degree of cure of ultraviolet-curable transfer coating material containing colorant
JP2002166166A (en) * 2000-11-30 2002-06-11 Harison Toshiba Lighting Corp Ultraviolet ray radiation apparatus
JP4364805B2 (en) * 2002-12-19 2009-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for irradiating a spot on a layer
JP2009034831A (en) * 2007-07-31 2009-02-19 Ushio Inc Light irradiator and printer using the same
JP5207827B2 (en) * 2008-05-22 2013-06-12 キヤノン株式会社 Galvano device, processing device, method for obtaining mirror tilt angle in galvano device, and processing method
US20150076368A1 (en) * 2009-02-13 2015-03-19 Robert L. Sargent Efficient irradiation system using curved reflective surfaces
US8869419B2 (en) * 2009-02-13 2014-10-28 Soliduv, Inc. Efficient irradiation system using curved reflective surfaces
JP2011005726A (en) * 2009-06-25 2011-01-13 Ushio Inc Light radiating device
JP5598239B2 (en) * 2010-10-08 2014-10-01 ウシオ電機株式会社 Light irradiation device
CN103858042B (en) * 2011-10-12 2019-05-28 佛森技术公司 More light for curing optical fiber assemble and the lens combination with same position focus
JP2013215661A (en) * 2012-04-06 2013-10-24 Ushikata Shokai:Kk Ultraviolet light irradiation device
JP5815888B2 (en) * 2012-10-24 2015-11-17 Hoya Candeo Optronics株式会社 Light irradiation device
WO2014087723A1 (en) * 2012-12-04 2014-06-12 Hoya Candeo Optronics株式会社 Light irradiation device
TWI620889B (en) * 2013-04-15 2018-04-11 Hoya Candeo Optronics Corp Light irradiation device
CN103568544A (en) * 2013-11-20 2014-02-12 北京慧眼智行科技有限公司 Curing optical system and printing equipment
JP6012583B2 (en) * 2013-12-02 2016-10-25 Hoya Candeo Optronics株式会社 Light irradiation device
JP2016004927A (en) * 2014-06-18 2016-01-12 株式会社オーク製作所 Ultraviolet irradiation device
EP3259133A1 (en) * 2015-02-19 2017-12-27 UV Ray S.r.l. Ultraviolet ray apparatus for printing machines
CN105927864B (en) * 2015-02-27 2020-02-21 日亚化学工业株式会社 Light emitting device
JP6131297B2 (en) 2015-07-16 2017-05-17 昭和アルミニウム缶株式会社 Image forming apparatus
CN106365468B (en) * 2016-10-09 2019-03-08 江苏通鼎光棒有限公司 A kind of fibre coating UV LED curing apparatus and method

Also Published As

Publication number Publication date
JP2018126692A (en) 2018-08-16
TW201829207A (en) 2018-08-16
TWI741130B (en) 2021-10-01
CN108481898A (en) 2018-09-04
CN108481898B (en) 2021-09-14
KR20180092871A (en) 2018-08-20

Similar Documents

Publication Publication Date Title
KR102304706B1 (en) Light irradiating device
JP2010157381A (en) Light-emitting device
WO2014065081A1 (en) Light radiation device
JP2011060798A (en) Ultraviolet irradiation device
JP6379118B2 (en) Light irradiation device
JP6809928B2 (en) Light irradiation device
US10641461B2 (en) Light illuminating apparatus
US11806988B2 (en) Pivoted elliptical reflector for large distance reflection of ultraviolet rays
JP6243143B2 (en) Linear light source device for image reading device and image reading device
JP5668980B2 (en) Light emitting device
JP2010287547A (en) Light irradiating device
US10596543B2 (en) Light illuminating apparatus
JP2007222790A (en) Light convergence and irradiation device and ultraviolet irradiation device
JP7088964B2 (en) High irradiance lighting assembly
CN111993780A (en) Light irradiation device
JP2019062008A (en) Light-source device
JP6533507B2 (en) Light irradiation device
JP2011041879A (en) Ultraviolet irradiation device
JP6258713B2 (en) Light irradiation device
KR20150121512A (en) Ultra violet cure apparatus using a leds
JP2007089853A (en) Led astral lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200911

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201210

R150 Certificate of patent or registration of utility model

Ref document number: 6809928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250