WO2018087860A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2018087860A1
WO2018087860A1 PCT/JP2016/083359 JP2016083359W WO2018087860A1 WO 2018087860 A1 WO2018087860 A1 WO 2018087860A1 JP 2016083359 W JP2016083359 W JP 2016083359W WO 2018087860 A1 WO2018087860 A1 WO 2018087860A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
constant
probability
management center
variable
Prior art date
Application number
PCT/JP2016/083359
Other languages
French (fr)
Japanese (ja)
Inventor
真人 高井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/083359 priority Critical patent/WO2018087860A1/en
Priority to CN201680089862.3A priority patent/CN109952261B/en
Priority to KR1020197000013A priority patent/KR102079382B1/en
Priority to JP2018549692A priority patent/JP6593549B2/en
Publication of WO2018087860A1 publication Critical patent/WO2018087860A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3415Control system configuration and the data transmission or communication within the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • This invention relates to an elevator system.
  • Patent Document 1 describes an example of an elevator system.
  • information is transmitted from an elevator to a remote management center.
  • a remote management center For example, when an earthquake with seismic intensity 4 occurs, it is determined whether or not the urgency of the information to be transmitted is higher than the reference. If the urgency of the information is higher than the standard, the information is immediately transmitted to the management center. If the urgency of information is lower than the standard, transmission of information to the management center is temporarily suspended.
  • the management center manages a large number of elevators.
  • information is simultaneously transmitted from the above-mentioned numerous elevators to the management center. For this reason, there is a possibility that the line is congested or the server of the management center is down due to an increase in load.
  • An object of the present invention is to provide an elevator system capable of preventing occurrence of line congestion or server down when a wide-area disaster or the like occurs.
  • the elevator system is based on the first constant, the second constant, and the variable when the storage means for storing the first constant and the second constant and the transmission condition for transmitting information to the management center are established.
  • the generation means for randomly generating the comparison value, the probability calculated by the calculation means and the comparison value generated by the generation means, Transmitting means for transmitting information to the management center.
  • the first constant is set in advance according to the number of terminals that transmit information to the management center when the transmission condition is satisfied.
  • the value of the variable increases every time a certain time elapses after the transmission condition is satisfied.
  • the second constant is set in advance according to the number of terminals from which the management center can receive information in a certain time. As the value of the variable increases, the probability of being calculated by the calculation means increases.
  • the probability for transmitting information to the management center is calculated based on the first constant, the second constant, and the variable.
  • Information is transmitted to the management center based on the calculated probability and the generated comparison value.
  • the first constant is set in advance according to the number of terminals that transmit information to the management center when the transmission condition is satisfied.
  • the value of the variable increases every time a certain time elapses after the transmission condition is satisfied.
  • the second constant is set in advance according to the number of terminals from which the management center can receive information in a certain time. As the value of the variable increases, the probability of calculation increases.
  • the elevator system according to the present invention can prevent the occurrence of line congestion or server down when a wide-area disaster or the like occurs.
  • FIG. 1 is a diagram showing an example of an elevator system according to Embodiment 1 of the present invention.
  • the elevator system shown in FIG. 1 includes a management center 1 and a number of elevators.
  • the management center 1 is provided, for example, in an elevator maintenance company.
  • the management center 1 manages a number of elevators provided remotely.
  • Fig. 1 shows an example where each building is equipped with one elevator.
  • Each elevator includes a communication device 2 and a control device 3, for example.
  • an earthquake detector 4 is provided in each building equipped with an elevator.
  • the earthquake detector 4 detects the occurrence of an earthquake.
  • the control device 3 controls the operation of the elevator.
  • the communication device 2 communicates with the management center 1 via the network 5.
  • the communication device 2 transmits information received from the control device 3 to the management center 1 via the network 5.
  • the communication device 2 transmits information received from the management center 1 via the network 5 to the control device 3.
  • the communication device 2 is an example of a terminal that transmits information to the management center 1.
  • Fig. 1 shows an example of this elevator system.
  • a plurality of elevators may be provided in one building.
  • a plurality of cars may be provided in one elevator.
  • One communication device 2 may be provided for a plurality of control devices 3.
  • FIG. 2 is a block diagram for explaining the function of the communication device 2.
  • the communication device 2 includes, for example, a storage unit 6, a condition determination unit 7, a calculation unit 8, a generation unit 9, a transmission determination unit 10, and a transmission unit 11.
  • the first constant N and the second constant ⁇ are stored in the storage unit 6.
  • the condition determination unit 7 determines whether a transmission condition is satisfied.
  • the transmission condition is a condition for transmitting information to the management center 1. When the transmission condition is satisfied, a process for transmitting information to the management center 1 is started. If the transmission condition is not satisfied, the process for transmitting information to the management center 1 is not started.
  • the calculation unit 8 calculates the probability for transmitting information to the management center 1.
  • the probability that the calculation unit 8 calculates is also referred to as a transmission probability.
  • the calculation unit 8 calculates the transmission probability when the transmission condition is satisfied. For example, when the condition determination unit 7 determines that the transmission condition is satisfied, the calculation unit 8 calculates the transmission probability.
  • the calculation unit 8 performs the above calculation based on the variable l and the first constant N and the second constant ⁇ stored in the storage unit 6.
  • the generation unit 9 randomly generates a comparison value.
  • the comparison value is a value for comparison with the transmission probability calculated by the calculation unit 8.
  • the generation unit 9 may be a random number generator, for example. In order for the generation unit 9 to generate a comparison value, a random number table may be stored in the storage unit 6.
  • the transmission determination unit 10 compares the transmission probability calculated by the calculation unit 8 with the comparison value generated by the generation unit 9.
  • the transmission unit 11 transmits information to the management center 1 based on the transmission probability calculated by the calculation unit 8 and the comparison value generated by the generation unit 9.
  • FIG. 3 is a flowchart illustrating an operation example of the communication device 2.
  • the condition determination unit 7 determines whether or not the transmission condition is satisfied (S101).
  • the transmission condition is satisfied when the occurrence of an earthquake is detected by the earthquake detector 4.
  • the earthquake detector 4 detects the occurrence of an earthquake.
  • the condition determination unit 7 determines that the transmission condition is satisfied.
  • the calculation unit 8 calculates a transmission probability (S102).
  • the computing unit 8 computes the transmission probability P 1 by the following equation, for example.
  • the first constant N is set in advance according to the total number of communication devices 2 that transmit information to the management center 1 when the transmission condition is satisfied.
  • the number of communication devices 2 installed in the Kanto region is stored in the storage unit 6 as a first constant N.
  • the first constant N may be the expected number of communication devices 2 that transmit information to the management center 1.
  • the total number of elevators may be stored in the storage unit 6 as the first constant N.
  • a value obtained by rounding down the fraction may be set as the first constant N.
  • the value of the variable l increases every time a certain time elapses after the transmission condition is satisfied.
  • the variable l increases, for example, by 1 every second.
  • the variable l may increase by 1 every 5 seconds. Examples in which the value of the variable l increases are not limited to these.
  • the certain time is also referred to as a time slot time.
  • the variable l indicates the time slot number.
  • the second constant ⁇ is set in advance according to the number of communication devices 2 that the management center 1 can receive information at the time slot time.
  • the second constant ⁇ is set according to, for example, the line speed or the processing capability of the server provided in the management center 1. For example, a value obtained by subtracting a certain value from the number of communication devices 2 that can receive information at the time slot time of the management center 1 is stored in the storage unit 6 as the second constant ⁇ . A value obtained by rounding down the fraction may be set as the second constant ⁇ .
  • the transmission probability P 1 calculated by the calculation unit 8 increases as the value of the variable l increases.
  • FIG. 4 is a diagram illustrating an example of the transmission probability P 1 calculated by the calculation unit 8.
  • the transmission probability P l ⁇ / N.
  • the transmission probability P 1 is 1.
  • FIG. 4 shows an example in which when the variable l exceeds (N ⁇ ) / ⁇ , the computing unit 8 outputs a constant value as the transmission probability P l .
  • the constant value is 1.
  • (N ⁇ ) / ⁇ is a specified value in the claims.
  • the generating unit 9 When the condition determining unit 7 determines that the transmission condition is satisfied, the generating unit 9 generates a comparison value (S103).
  • the transmission probability P 1 calculated by the calculation unit 8 is a value of 1 or less. For this reason, the production
  • the transmission determination unit 10 determines whether or not the transmission probability Pl calculated by the calculation unit 8 is greater than the comparison value generated by the generation unit 9 (S104).
  • the transmission unit 11 transmits information to the management center 1 (S105).
  • the information transmitted to the management center 1 includes, for example, a signal indicating that an earthquake has occurred and a signal indicating whether or not confinement has occurred.
  • information indicating other contents may be transmitted to the management center 1.
  • the transmission determination unit 10 does not determine that the transmission probability P 1 is greater than the comparison value, the transmission unit 11 does not transmit information to the management center 1.
  • the transmission unit 11 temporarily holds the transmission of information. If transmission probability P l is determined by a large and transmission determining unit 10 than the comparison value, whether the transmission condition has elapsed a predetermined time from the establishment is determined (S106). The certain time is the time slot time T.
  • the calculation unit 8 recalculates the transmission probability P l based on the variable l at that time (S102). Transmission probability P l, which is calculated for the second time is larger than the transmission probability P l, which is calculated for the first time.
  • a comparison value is newly generated by the generation unit 9 (S103). Since the generation unit 9 generates the comparison value at random, basically, the comparison value generated for the second time is different from the comparison value generated for the first time.
  • the transmission determination unit 10 determines whether or not the latest transmission probability Pl calculated by the calculation unit 8 is greater than the latest comparison value generated by the generation unit 9 (S104). When the transmission determination unit 10 determines that the transmission probability Pl is greater than the comparison value, the transmission unit 11 transmits information to the management center 1 (S105). If transmission probability P l is determined by a large and transmission determining unit 10 than the comparison value, whether elapsed further fixed time has elapsed previous time slot T is determined (S106).
  • the process for transmitting the information to the management center 1 is resumed every time slot time T elapses. If the transmission determination unit 10 determines that the transmission probability Pl is greater than the comparison value in S104, the information is transmitted to the management center 1 in S105.
  • the elevator system shown in this embodiment can prevent the occurrence of line congestion or server down when a wide-area disaster or the like occurs.
  • Each communication device 2 the communication condition is satisfied, and compares the comparison value with the transmission probability P l. If the transmission probability Pl is greater than the comparison value, information is transmitted from the communication device 2 to the management center 1. Be greater than the comparison value transmission probability P l is the same processing every time the time slot T elapses is performed. In the example shown in the present embodiment, information is finally transmitted from the N communication devices 2 to the management center 1.
  • FIG. 5 and 6 are diagrams for explaining the information transmission status.
  • terminal no. 7 transmits information to the management center 1.
  • the terminal No. 6 transmits information to the management center 1.
  • the terminal No. 2 and terminal no. N transmits information to the management center 1.
  • no terminal transmits information.
  • FIG. 6 shows a transmission situation when a certain time has passed since the occurrence of an earthquake, for example.
  • the order of the communication devices 2 that transmit information is not determined.
  • the probability that the k communication devices 2 transmit information is expressed by the following equation using a binomial distribution.
  • transmitting information based on the transmission probability P 1 is equivalent to constructing a system according to a Poisson distribution in which an average of ⁇ units per unit time transmits information. It is. With this system, it is possible to control traffic in accordance with the line speed and server processing capacity.
  • FIG. 7 is a diagram illustrating another example of the transmission probability P l, which is calculated by the calculating unit 8.
  • Curve A shown in FIG. 7 shows an example in which the rate of increase of transmission probability P 1 decreases as the value of variable l increases.
  • Curve B shown in FIG. 7 shows an example in which the rate of increase of transmission probability P 1 increases as the value of variable l increases.
  • the arithmetic unit 8 outputs a constant value as the transmission probability P 1 .
  • a curve A shown in FIG. 7 shows an example in which the calculation unit 8 calculates the transmission probability P 1 by the following equation.
  • a curve B shown in FIG. 7 shows an example in which the calculation unit 8 calculates the transmission probability P 1 by the following equation.
  • Equation 5 k is a coefficient which determines the rate of increase in transmission probability P l.
  • the calculation unit 8 when the value of the variable l exceeds a specified value, the calculation unit 8 outputs a constant value as the transmission probability P l .
  • the calculation unit 8 may calculate the transmission probability Pl based on an arbitrary function when the value of the variable l exceeds a specified value.
  • the earthquake detector 4 is an example of a detector that detects a specific event.
  • the transmission condition may be satisfied when an event other than the earthquake is detected by the detector.
  • the transmission condition may be established by receiving a specific signal from the control device 3.
  • the transmission condition may be satisfied by a specific date and time.
  • a plurality of first constants N may be stored in the storage unit 6.
  • the storage unit 6 stores the first value N 1 and the second value N 2 as the first constant N.
  • the calculation unit 8 uses the first value N 1 or the second value N 2 when calculating the transmission probability P 1 .
  • the earthquake detector 4 detects the occurrence of a first level earthquake and the occurrence of a second level earthquake.
  • the second level earthquake is greater than the first level earthquake.
  • the condition determination unit 7 determines that the transmission condition is satisfied when the earthquake detector 4 detects the occurrence of the first level earthquake.
  • the calculation unit 8 calculates the transmission probability P 1 based on the first value N 1 , the second constant ⁇ , and the variable l. Calculate.
  • the condition determination unit 7 determines that the transmission condition is satisfied.
  • the calculation unit 8 determines the transmission probability P 1 based on the second value N 2 , the second constant ⁇ , and the variable l. Calculate. In this example, a second value N 2 is greater than the first value N 1.
  • the earthquake detector 4 is an example of a detector that detects the first event and the second event.
  • FIG. 8 is a block diagram for explaining other functions of the communication apparatus.
  • FIG. 8 corresponds to FIG.
  • each elevator includes a communication device 2 and a control device 3, for example.
  • the communication device 2 includes, for example, a storage unit 6, a condition determination unit 7, a calculation unit 8, a generation unit 9, a transmission determination unit 10, and a transmission unit 11.
  • the detector 12 and the detector 13 are provided in a building equipped with an elevator.
  • the detector 12 detects the first event.
  • the first event is, for example, the occurrence of an earthquake.
  • the detector 13 detects the second event.
  • the second event is, for example, the occurrence of a power failure.
  • the first event type and the second event type may be the same.
  • the detector 12 may detect the occurrence of a first level earthquake, and the detector 13 may detect the occurrence of a second level earthquake. Examples of each event are not limited to these.
  • the storage unit 6 stores the first value N 1 and the second value N 2 as the first constant N.
  • the condition determination unit 7 determines that the transmission condition is satisfied when the detector 12 detects the first event.
  • the calculation unit 8 calculates the transmission probability P 1 based on the first value N 1 , the second constant ⁇ , and the variable l.
  • condition determination unit 7 determines that the transmission condition is satisfied when the detector 13 detects the second event.
  • the calculation unit 8 calculates the transmission probability P 1 based on the second value N 2 , the second constant ⁇ , and the variable l.
  • Table 1 shows an example in which three or more first constants N are stored in the storage unit 6.
  • FIG. 9 is a flowchart showing another operation example of the communication device 2.
  • the process shown in S201 of FIG. 9 is the same as the process shown in S101 of FIG.
  • the processing shown in S204 to S207 in FIG. 9 is the same as the processing shown in S103 to S106 in FIG.
  • the contents shown in Table 1 are stored in the storage unit 6.
  • the operation unit 8 When the transmission condition is determined by the condition determining unit 7 to be satisfied, the operation unit 8 to calculate the transmission probability P l, to obtain a value of the first constant N (S202). Calculating unit 8, using the value of the first constant N obtained, for calculating the transmission probability P l (S203).
  • the value of the first constant N can be set appropriately according to the event.
  • FIG. 10 is a diagram illustrating a hardware configuration of the communication device 2.
  • the communication device 2 includes a processing circuit including, for example, a processor 14 and a memory 15 as hardware resources.
  • the functions of the storage unit 6 are realized by the memory 15.
  • the communication device 2 implements the functions of the units indicated by reference numerals 7 to 11 by executing the program stored in the memory 15 by the processor 14.
  • the processor 14 is also called a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • a semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed.
  • Semiconductor memories that can be used include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
  • Some or all of the functions of the communication device 2 may be realized by hardware.
  • a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof may be employed.
  • the elevator system according to the present invention can be applied to a system including a plurality of terminals that transmit information to a management center.

Abstract

This elevator system is provided with: a storage unit (6); an arithmetic unit (8); a generation unit (9); and a transmission unit (11). The storage unit (6) stores a first constant N and a second constant λ. The arithmetic unit (8) calculates the probability for transmitting information to a management center (1) on the basis of the first constant N, the second constant λ, and a variable l. The generation unit (9) randomly generates a comparison value. The transmission unit (11) transmits the information to the management center (1) on the basis of the probability calculated by the arithmetic unit (8) and the comparison value generated by the generation unit (9).

Description

エレベータシステムElevator system
 この発明は、エレベータシステムに関する。 This invention relates to an elevator system.
 特許文献1に、エレベータシステムの例が記載されている。特許文献1に記載されたシステムでは、例えば地震が発生すると、エレベータから遠隔の管理センターに情報が送信される。例えば震度4の地震が発生すると、送信する情報の緊急度が基準より高いか否かが判定される。情報の緊急度が基準より高ければ、管理センターに対して即座に情報が送信される。情報の緊急度が基準より低ければ、管理センターに対する情報の送信が一旦保留される。 Patent Document 1 describes an example of an elevator system. In the system described in Patent Document 1, for example, when an earthquake occurs, information is transmitted from an elevator to a remote management center. For example, when an earthquake with seismic intensity 4 occurs, it is determined whether or not the urgency of the information to be transmitted is higher than the reference. If the urgency of the information is higher than the standard, the information is immediately transmitted to the management center. If the urgency of information is lower than the standard, transmission of information to the management center is temporarily suspended.
日本特開2014-234255号公報Japanese Unexamined Patent Publication No. 2014-234255
 管理センターは、多数のエレベータを管理する。広域災害が発生すると、上記多数のエレベータから管理センターに対して一斉に情報が送信される。このため、回線が輻輳したり、負荷の増大によって管理センターのサーバがダウンしたりする恐れがあった。 The management center manages a large number of elevators. When a wide-area disaster occurs, information is simultaneously transmitted from the above-mentioned numerous elevators to the management center. For this reason, there is a possibility that the line is congested or the server of the management center is down due to an increase in load.
 特許文献1に記載されたシステムでは、情報の緊急度に応じて情報の送信タイミングが調整される。しかし、広域災害が発生すると、多数のエレベータから管理センターに対して、同じような緊急度の情報が送信されてしまう。 In the system described in Patent Document 1, the transmission timing of information is adjusted according to the urgency of information. However, when a wide-area disaster occurs, information on the same degree of urgency is transmitted from a large number of elevators to the management center.
 この発明は、上述のような課題を解決するためになされた。この発明の目的は、広域災害等が発生した際に、回線の輻輳或いはサーバダウンの発生を防止できるエレベータシステムを提供することである。 This invention has been made to solve the above-described problems. An object of the present invention is to provide an elevator system capable of preventing occurrence of line congestion or server down when a wide-area disaster or the like occurs.
 この発明に係るエレベータシステムは、第1定数及び第2定数が記憶された記憶手段と、管理センターに情報を送信するための送信条件が成立すると、第1定数、第2定数及び変数に基づいて、管理センターに情報を送信するための確率を演算する演算手段と、比較値をランダムに生成する生成手段と、演算手段によって演算された確率と生成手段によって生成された比較値とに基づいて、管理センターに情報を送信する送信手段と、を備える。第1定数は、送信条件が成立することによって管理センターに情報を送信する端末の台数に応じて予め設定される。変数は、送信条件が成立してから一定時間が経過する度に値が大きくなる。第2定数は、管理センターが一定時間に情報を受信することが可能な端末の台数に応じて予め設定される。変数の値が大きくなるにしたがって、演算手段によって演算される確率が大きくなる。 The elevator system according to the present invention is based on the first constant, the second constant, and the variable when the storage means for storing the first constant and the second constant and the transmission condition for transmitting information to the management center are established. Based on the calculation means for calculating the probability for transmitting information to the management center, the generation means for randomly generating the comparison value, the probability calculated by the calculation means and the comparison value generated by the generation means, Transmitting means for transmitting information to the management center. The first constant is set in advance according to the number of terminals that transmit information to the management center when the transmission condition is satisfied. The value of the variable increases every time a certain time elapses after the transmission condition is satisfied. The second constant is set in advance according to the number of terminals from which the management center can receive information in a certain time. As the value of the variable increases, the probability of being calculated by the calculation means increases.
 この発明に係るエレベータシステムでは、送信条件が成立すると、第1定数、第2定数及び変数に基づいて、管理センターに情報を送信するための確率が演算される。また、演算された確率と生成された比較値とに基づいて、管理センターに情報が送信される。第1定数は、送信条件が成立することによって管理センターに情報を送信する端末の台数に応じて予め設定される。変数は、送信条件が成立してから一定時間が経過する度に値が大きくなる。第2定数は、管理センターが一定時間に情報を受信することが可能な端末の台数に応じて予め設定される。変数の値が大きくなるにしたがって、演算される確率が大きくなる。この発明に係るエレベータシステムであれば、広域災害等が発生した際に、回線の輻輳或いはサーバダウンの発生を防止できる。 In the elevator system according to the present invention, when the transmission condition is satisfied, the probability for transmitting information to the management center is calculated based on the first constant, the second constant, and the variable. Information is transmitted to the management center based on the calculated probability and the generated comparison value. The first constant is set in advance according to the number of terminals that transmit information to the management center when the transmission condition is satisfied. The value of the variable increases every time a certain time elapses after the transmission condition is satisfied. The second constant is set in advance according to the number of terminals from which the management center can receive information in a certain time. As the value of the variable increases, the probability of calculation increases. The elevator system according to the present invention can prevent the occurrence of line congestion or server down when a wide-area disaster or the like occurs.
この発明の実施の形態1におけるエレベータシステムの例を示す図である。It is a figure which shows the example of the elevator system in Embodiment 1 of this invention. 通信装置の機能を説明するためのブロック図である。It is a block diagram for demonstrating the function of a communication apparatus. 通信装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of a communication apparatus. 演算部によって演算される送信確率の例を示す図である。It is a figure which shows the example of the transmission probability calculated by the calculating part. 情報の送信状況を説明するための図である。It is a figure for demonstrating the transmission condition of information. 情報の送信状況を説明するための図である。It is a figure for demonstrating the transmission condition of information. 演算部によって演算される送信確率の他の例を示す図である。It is a figure which shows the other example of the transmission probability calculated by the calculating part. 通信装置の他の機能を説明するためのブロック図である。It is a block diagram for demonstrating the other function of a communication apparatus. 通信装置の他の動作例を示すフローチャートである。It is a flowchart which shows the other operation example of a communication apparatus. 通信装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a communication apparatus.
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。 The present invention will be described with reference to the accompanying drawings. The overlapping description will be simplified or omitted as appropriate. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、この発明の実施の形態1におけるエレベータシステムの例を示す図である。図1に示すエレベータシステムは、管理センター1と多数のエレベータとを備える。管理センター1は、例えばエレベータの保守会社に設けられる。管理センター1は、遠隔に備えられた多数のエレベータを管理する。
Embodiment 1 FIG.
1 is a diagram showing an example of an elevator system according to Embodiment 1 of the present invention. The elevator system shown in FIG. 1 includes a management center 1 and a number of elevators. The management center 1 is provided, for example, in an elevator maintenance company. The management center 1 manages a number of elevators provided remotely.
 図1は、各建物に1台のエレベータが備えられた例を示す。各エレベータは、例えば通信装置2及び制御装置3を備える。図1に示す例では、エレベータが備えられた各建物に地震検知器4が設けられる。地震検知器4は、地震の発生を検知する。例えば、地震検知器4は、建物の加速度が基準値を超えると地震の発生を検知する。制御装置3は、エレベータの運行を制御する。通信装置2は、ネットワーク5を介して管理センター1と通信する。例えば、通信装置2は、制御装置3から受信した情報をネットワーク5を介して管理センター1に送信する。通信装置2は、ネットワーク5を介して管理センター1から受信した情報を制御装置3に送信する。通信装置2は、管理センター1に情報を送信する端末の例である。 Fig. 1 shows an example where each building is equipped with one elevator. Each elevator includes a communication device 2 and a control device 3, for example. In the example shown in FIG. 1, an earthquake detector 4 is provided in each building equipped with an elevator. The earthquake detector 4 detects the occurrence of an earthquake. For example, the earthquake detector 4 detects the occurrence of an earthquake when the acceleration of a building exceeds a reference value. The control device 3 controls the operation of the elevator. The communication device 2 communicates with the management center 1 via the network 5. For example, the communication device 2 transmits information received from the control device 3 to the management center 1 via the network 5. The communication device 2 transmits information received from the management center 1 via the network 5 to the control device 3. The communication device 2 is an example of a terminal that transmits information to the management center 1.
 図1は、本エレベータシステムの一例を示す。1つの建物に複数台のエレベータが備えられても良い。1台のエレベータに複数台のかごが備えられても良い。複数台の制御装置3に対して1台の通信装置2が備えられても良い。 Fig. 1 shows an example of this elevator system. A plurality of elevators may be provided in one building. A plurality of cars may be provided in one elevator. One communication device 2 may be provided for a plurality of control devices 3.
 図2は、通信装置2の機能を説明するためのブロック図である。通信装置2は、例えば記憶部6、条件判定部7、演算部8、生成部9、送信判定部10及び送信部11を備える。 FIG. 2 is a block diagram for explaining the function of the communication device 2. The communication device 2 includes, for example, a storage unit 6, a condition determination unit 7, a calculation unit 8, a generation unit 9, a transmission determination unit 10, and a transmission unit 11.
 記憶部6に第1定数N及び第2定数λが記憶される。条件判定部7は、送信条件が成立したか否かを判定する。送信条件は、管理センター1に情報を送信するための条件である。送信条件が成立すると、管理センター1に情報を送信するための処理が開始される。送信条件が成立しなければ、管理センター1に情報を送信するための処理は開始されない。 The first constant N and the second constant λ are stored in the storage unit 6. The condition determination unit 7 determines whether a transmission condition is satisfied. The transmission condition is a condition for transmitting information to the management center 1. When the transmission condition is satisfied, a process for transmitting information to the management center 1 is started. If the transmission condition is not satisfied, the process for transmitting information to the management center 1 is not started.
 演算部8は、管理センター1に情報を送信するための確率を演算する。以下においては、演算部8が演算する確率のことを送信確率ともいう。演算部8は、送信条件が成立すると送信確率を演算する。例えば、演算部8は、送信条件が成立したと条件判定部7によって判定されると、送信確率を演算する。演算部8は、変数lと記憶部6に記憶された第1定数N及び第2定数λとに基づいて上記演算を行う。 The calculation unit 8 calculates the probability for transmitting information to the management center 1. Hereinafter, the probability that the calculation unit 8 calculates is also referred to as a transmission probability. The calculation unit 8 calculates the transmission probability when the transmission condition is satisfied. For example, when the condition determination unit 7 determines that the transmission condition is satisfied, the calculation unit 8 calculates the transmission probability. The calculation unit 8 performs the above calculation based on the variable l and the first constant N and the second constant λ stored in the storage unit 6.
 生成部9は、比較値をランダムに生成する。比較値は、演算部8が演算した送信確率と比較するための値である。生成部9は、例えば乱数発生器でも良い。生成部9が比較値を生成するために、記憶部6に乱数表を記憶させても良い。 The generation unit 9 randomly generates a comparison value. The comparison value is a value for comparison with the transmission probability calculated by the calculation unit 8. The generation unit 9 may be a random number generator, for example. In order for the generation unit 9 to generate a comparison value, a random number table may be stored in the storage unit 6.
 送信判定部10は、演算部8によって演算された送信確率と生成部9によって生成された比較値とを比較する。送信部11は、演算部8によって演算された送信確率と生成部9によって生成された比較値とに基づいて、管理センター1に情報を送信する。 The transmission determination unit 10 compares the transmission probability calculated by the calculation unit 8 with the comparison value generated by the generation unit 9. The transmission unit 11 transmits information to the management center 1 based on the transmission probability calculated by the calculation unit 8 and the comparison value generated by the generation unit 9.
 次に、図3から図6も参照し、本エレベータシステムの動作及び機能について具体的に説明する。図3は、通信装置2の動作例を示すフローチャートである。 Next, the operation and function of the elevator system will be specifically described with reference to FIGS. FIG. 3 is a flowchart illustrating an operation example of the communication device 2.
 通信装置2では、送信条件が成立したか否かが条件判定部7によって判定される(S101)。以下においては、地震の発生が地震検知器4によって検知されることによって送信条件が成立する例について説明する。例えば、建物の加速度が基準値を超えると、地震検知器4は地震の発生を検知する。条件判定部7は、地震検知器4によって地震の発生が検知されると、送信条件が成立したことを判定する。 In the communication apparatus 2, the condition determination unit 7 determines whether or not the transmission condition is satisfied (S101). In the following, an example will be described in which the transmission condition is satisfied when the occurrence of an earthquake is detected by the earthquake detector 4. For example, when the acceleration of a building exceeds a reference value, the earthquake detector 4 detects the occurrence of an earthquake. When the earthquake detector 4 detects the occurrence of an earthquake, the condition determination unit 7 determines that the transmission condition is satisfied.
 送信条件が成立したと条件判定部7によって判定されると、演算部8は送信確率を演算する(S102)。演算部8は、例えば次式によって送信確率Pを演算する。 When the condition determination unit 7 determines that the transmission condition is satisfied, the calculation unit 8 calculates a transmission probability (S102). The computing unit 8 computes the transmission probability P 1 by the following equation, for example.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1定数Nは、送信条件が成立することによって管理センター1に情報を送信する通信装置2の総数に応じて予め設定される。一例として、日本の東京に設置されているエレベータには、関東地域に設置された通信装置2の台数が第1定数Nとして記憶部6に記憶される。第1定数Nは、管理センター1に情報を送信する通信装置2の予想台数でも良い。例えば、第1定数Nとしてエレベータの総数を記憶部6に記憶させても良い。端数を切り捨てた値を第1定数Nとして設定しても良い。 The first constant N is set in advance according to the total number of communication devices 2 that transmit information to the management center 1 when the transmission condition is satisfied. As an example, in an elevator installed in Tokyo, Japan, the number of communication devices 2 installed in the Kanto region is stored in the storage unit 6 as a first constant N. The first constant N may be the expected number of communication devices 2 that transmit information to the management center 1. For example, the total number of elevators may be stored in the storage unit 6 as the first constant N. A value obtained by rounding down the fraction may be set as the first constant N.
 変数lは、送信条件が成立してから一定時間が経過する度に値が大きくなる。変数lは、例えば、1秒毎に1ずつ増加する。変数lは、5秒毎に1ずつ増加しても良い。変数lの値が増加する例はこれらに限定されない。以下においては、上記一定時間のことをタイムスロット時間ともいう。変数lは、タイムスロット番号を示す。 The value of the variable l increases every time a certain time elapses after the transmission condition is satisfied. The variable l increases, for example, by 1 every second. The variable l may increase by 1 every 5 seconds. Examples in which the value of the variable l increases are not limited to these. Hereinafter, the certain time is also referred to as a time slot time. The variable l indicates the time slot number.
 第2定数λは、管理センター1がタイムスロット時間に情報を受信することが可能な通信装置2の台数に応じて予め設定される。第2定数λは、例えば回線速度或いは管理センター1に備えられたサーバの処理能力に応じて設定される。例えば、管理センター1がタイムスロット時間に情報を受信することが可能な通信装置2の台数から一定の値を減算した値が、第2定数λとして記憶部6に記憶される。端数を切り捨てた値を第2定数λとして設定しても良い。 The second constant λ is set in advance according to the number of communication devices 2 that the management center 1 can receive information at the time slot time. The second constant λ is set according to, for example, the line speed or the processing capability of the server provided in the management center 1. For example, a value obtained by subtracting a certain value from the number of communication devices 2 that can receive information at the time slot time of the management center 1 is stored in the storage unit 6 as the second constant λ. A value obtained by rounding down the fraction may be set as the second constant λ.
 演算部8によって演算される送信確率Pは、変数lの値が大きくなるにしたがって大きくなる。 The transmission probability P 1 calculated by the calculation unit 8 increases as the value of the variable l increases.
 図4は、演算部8によって演算される送信確率Pの例を示す図である。変数l=0の時、送信確率Pはλ/Nである。送信確率Pは、変数l=(N-λ)/λになるまで直線的に増加する。変数l=(N-λ)/λの時、送信確率Pは1である。図4は、変数lが(N-λ)/λを超えると、演算部8が送信確率Pとして一定値を出力する例を示す。図4に示す例では、上記一定値は1である。また、(N-λ)/λは、特許請求の範囲における規定値である。 FIG. 4 is a diagram illustrating an example of the transmission probability P 1 calculated by the calculation unit 8. When the variable l = 0, the transmission probability P l is λ / N. The transmission probability P l increases linearly until the variable l = (N−λ) / λ. When the variable l = (N−λ) / λ, the transmission probability P 1 is 1. FIG. 4 shows an example in which when the variable l exceeds (N−λ) / λ, the computing unit 8 outputs a constant value as the transmission probability P l . In the example shown in FIG. 4, the constant value is 1. Further, (N−λ) / λ is a specified value in the claims.
 送信条件が成立したと条件判定部7によって判定されると、生成部9は比較値を生成する(S103)。本実施の形態に示す例では、演算部8によって演算される送信確率Pは1以下の値である。このため、生成部9は1以下の値を比較値として生成する。 When the condition determining unit 7 determines that the transmission condition is satisfied, the generating unit 9 generates a comparison value (S103). In the example shown in the present embodiment, the transmission probability P 1 calculated by the calculation unit 8 is a value of 1 or less. For this reason, the production | generation part 9 produces | generates the value below 1 as a comparison value.
 次に、送信判定部10は、演算部8によって演算された送信確率Pが生成部9によって生成された比較値より大きいか否かを判定する(S104)。送信確率Pが比較値より大きいと送信判定部10によって判定されると、送信部11は、管理センター1に情報を送信する(S105)。管理センター1に送信される情報には、例えば、地震が発生したことを示す信号と閉じ込めが発生したか否かを示す信号とが含まれる。S105において、他の内容を示す情報が管理センター1に送信されても良い。 Next, the transmission determination unit 10 determines whether or not the transmission probability Pl calculated by the calculation unit 8 is greater than the comparison value generated by the generation unit 9 (S104). When the transmission determination unit 10 determines that the transmission probability Pl is greater than the comparison value, the transmission unit 11 transmits information to the management center 1 (S105). The information transmitted to the management center 1 includes, for example, a signal indicating that an earthquake has occurred and a signal indicating whether or not confinement has occurred. In S105, information indicating other contents may be transmitted to the management center 1.
 送信確率Pが比較値より大きいと送信判定部10によって判定されない場合、送信部11は、管理センター1に情報を送信しない。送信部11は、情報の送信を一旦保留する。送信確率Pが比較値より大きいと送信判定部10によって判定されなければ、送信条件が成立してから一定時間が経過したか否かが判定される(S106)。上記一定時間は、タイムスロット時間Tである。 If the transmission determination unit 10 does not determine that the transmission probability P 1 is greater than the comparison value, the transmission unit 11 does not transmit information to the management center 1. The transmission unit 11 temporarily holds the transmission of information. If transmission probability P l is determined by a large and transmission determining unit 10 than the comparison value, whether the transmission condition has elapsed a predetermined time from the establishment is determined (S106). The certain time is the time slot time T.
 送信条件が成立してから1回目のタイムスロット時間Tが経過すると、管理センター1に情報を送信するための処理が再開される。即ち、演算部8は、その時の変数lに基づいて送信確率Pを再演算する(S102)。2回目に演算される送信確率Pは、1回目に演算された送信確率Pより大きくなる。 When the first time slot time T elapses after the transmission condition is satisfied, the process for transmitting information to the management center 1 is resumed. That is, the calculation unit 8 recalculates the transmission probability P l based on the variable l at that time (S102). Transmission probability P l, which is calculated for the second time is larger than the transmission probability P l, which is calculated for the first time.
 更に、生成部9によって比較値が新たに生成される(S103)。生成部9は比較値をランダムに生成するため、基本的に、2回目に生成される比較値は1回目に生成された比較値と異なる値になる。送信判定部10は、演算部8によって演算された最新の送信確率Pが生成部9によって生成された最新の比較値より大きいか否かを判定する(S104)。送信確率Pが比較値より大きいと送信判定部10によって判定されると、送信部11は管理センター1に情報を送信する(S105)。送信確率Pが比較値より大きいと送信判定部10によって判定されなければ、前回のタイムスロット時間Tが経過してから更に一定時間が経過したか否かが判定される(S106)。 Furthermore, a comparison value is newly generated by the generation unit 9 (S103). Since the generation unit 9 generates the comparison value at random, basically, the comparison value generated for the second time is different from the comparison value generated for the first time. The transmission determination unit 10 determines whether or not the latest transmission probability Pl calculated by the calculation unit 8 is greater than the latest comparison value generated by the generation unit 9 (S104). When the transmission determination unit 10 determines that the transmission probability Pl is greater than the comparison value, the transmission unit 11 transmits information to the management center 1 (S105). If transmission probability P l is determined by a large and transmission determining unit 10 than the comparison value, whether elapsed further fixed time has elapsed previous time slot T is determined (S106).
 管理センター1に情報が送信されていなければ、タイムスロット時間Tが経過する度に、管理センター1に情報を送信するための処理が再開される。S104において送信確率Pが比較値より大きいと送信判定部10によって判定されると、S105において管理センター1に情報が送信される。 If the information is not transmitted to the management center 1, the process for transmitting the information to the management center 1 is resumed every time slot time T elapses. If the transmission determination unit 10 determines that the transmission probability Pl is greater than the comparison value in S104, the information is transmitted to the management center 1 in S105.
 本実施の形態に示すエレベータシステムであれば、広域災害等が発生した際に、回線の輻輳或いはサーバダウンの発生を防止できる。 The elevator system shown in this embodiment can prevent the occurrence of line congestion or server down when a wide-area disaster or the like occurs.
 各通信装置2は、通信条件が成立すると、送信確率Pと比較値とを比較する。送信確率Pが比較値より大きければ、通信装置2から管理センター1に情報が送信される。送信確率Pが比較値より大きくなければ、タイムスロット時間Tが経過する度に同様の処理が行われる。本実施の形態に示す例であれば、最終的に、N台の通信装置2から管理センター1に対して情報が送信される。 Each communication device 2, the communication condition is satisfied, and compares the comparison value with the transmission probability P l. If the transmission probability Pl is greater than the comparison value, information is transmitted from the communication device 2 to the management center 1. Be greater than the comparison value transmission probability P l is the same processing every time the time slot T elapses is performed. In the example shown in the present embodiment, information is finally transmitted from the N communication devices 2 to the management center 1.
 図5及び図6は、情報の送信状況を説明するための図である。図5に示す例では、最初のタイムスロット時間で、端末No.1及び端末No.7が管理センター1に情報を送信する。次のタイムスロット時間で、端末No.6が管理センター1に情報を送信する。次のタイムスロット時間で、端末No.2及び端末No.Nが管理センター1に情報を送信する。次のタイムスロット時間では、何れの端末も情報を送信しない。図6は、例えば地震が発生してからある時間が経過した時の送信状況を示す。 5 and 6 are diagrams for explaining the information transmission status. In the example shown in FIG. 1 and terminal no. 7 transmits information to the management center 1. At the next time slot time, the terminal No. 6 transmits information to the management center 1. At the next time slot time, the terminal No. 2 and terminal no. N transmits information to the management center 1. In the next time slot time, no terminal transmits information. FIG. 6 shows a transmission situation when a certain time has passed since the occurrence of an earthquake, for example.
 本システムでは、情報を送信する通信装置2の順番を決めていない。情報を送信するタイミングは、各通信装置2で判断される。このため、図5に示す例のように、常に同じ台数の通信装置2が管理センター1に情報を送信する訳ではない。何れの通信装置2からも情報が送信されない時間帯も発生し得る。しかし、タイムスロット時間Tの間に管理センター1に情報を送信する通信装置2の台数の期待値は、次式に示すように常に一定になる。
 E[P]=λ
 即ち、本システムでは、タイムスロット時間毎に平均λ台の通信装置2が管理センター1に情報を送信するように通信が制御される。
In this system, the order of the communication devices 2 that transmit information is not determined. The timing of transmitting information is determined by each communication device 2. Therefore, as in the example shown in FIG. 5, the same number of communication devices 2 do not always transmit information to the management center 1. There may also occur a time period during which no information is transmitted from any communication device 2. However, the expected value of the number of communication devices 2 that transmit information to the management center 1 during the time slot time T is always constant as shown in the following equation.
E [P l ] = λ
That is, in this system, communication is controlled so that an average of λ communication devices 2 transmit information to the management center 1 every time slot time.
 N台の通信装置2で送信確率Pが演算された場合、k台の通信装置2が情報を送信する確率は、二項分布を用いて次式で表される。 When the transmission probability Pl is calculated by the N communication devices 2, the probability that the k communication devices 2 transmit information is expressed by the following equation using a binomial distribution.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 λ<<Nとすると、上式は、待ち行列理論で知られるポアソン分布として次式のように表すことができる。 If λ << N, the above equation can be expressed as the following equation as a Poisson distribution known in queuing theory.
 これは、単位時間当たり平均λ回起こる現象に対して、単位時間当たりk回起こる事象の確率を表している。なお、ポアソン分布の平均はλとなる。したがって、本実施の形態の例に示すように、送信確率Pに基づいて情報を送信することは、単位時間当たり平均λ台が情報を送信するようなポアソン分布に従うシステムを構築することと等価である。本システムであれば、回線速度及びサーバの処理能力に合わせたトラフィック制御が可能になる。 This represents the probability of an event occurring k times per unit time with respect to a phenomenon occurring on average λ times per unit time. Note that the average of the Poisson distribution is λ. Therefore, as shown in the example of the present embodiment, transmitting information based on the transmission probability P 1 is equivalent to constructing a system according to a Poisson distribution in which an average of λ units per unit time transmits information. It is. With this system, it is possible to control traffic in accordance with the line speed and server processing capacity.
 本実施の形態では、送信確率Pが時間の経過とともに直線的に増加する例について説明した。図7は、演算部8によって演算される送信確率Pの他の例を示す図である。図7に示す曲線Aは、変数lの値が大きくなるにしたがって、送信確率Pの増加率が小さくなる例を示す。図7に示す曲線Bは、変数lの値が大きくなるにしたがって、送信確率Pの増加率が大きくなる例を示す。図7に示す例では、変数lが(N-λ)/λを超えると、演算部8は送信確率Pとして一定値を出力する。 In the present embodiment, the example in which the transmission probability Pl increases linearly with the passage of time has been described. Figure 7 is a diagram illustrating another example of the transmission probability P l, which is calculated by the calculating unit 8. Curve A shown in FIG. 7 shows an example in which the rate of increase of transmission probability P 1 decreases as the value of variable l increases. Curve B shown in FIG. 7 shows an example in which the rate of increase of transmission probability P 1 increases as the value of variable l increases. In the example shown in FIG. 7, when the variable l exceeds (N−λ) / λ, the arithmetic unit 8 outputs a constant value as the transmission probability P 1 .
 図7に示す曲線Aは、演算部8が次式によって送信確率Pを演算する例を示す。 A curve A shown in FIG. 7 shows an example in which the calculation unit 8 calculates the transmission probability P 1 by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 災害が発生した直後に、対応すべきエレベータの台数の見積もりを立てる場合、短い時間で多くの通信装置2から情報を受信することが好ましい。このような場合は、式1を使用して送信確率Pを演算するより、式4を使用して送信確率Pを演算する方が好適である。 When an estimate of the number of elevators to be dealt with is made immediately after a disaster occurs, it is preferable to receive information from many communication devices 2 in a short time. In such a case, it is preferable to calculate the transmission probability P 1 using the expression 4 rather than calculating the transmission probability P 1 using the expression 1.
 図7に示す曲線Bは、演算部8が次式によって送信確率Pを演算する例を示す。 A curve B shown in FIG. 7 shows an example in which the calculation unit 8 calculates the transmission probability P 1 by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 災害が突発的に発生すると、エレベータの保守体制が整っていない場合がある。このような状況下で管理センター1が多数の通信装置2から情報を受信しても、即時に対応することは難しい。したがって、このような場合は、式1を使用して送信確率Pを演算するより、式5を使用して送信確率Pを演算することが好ましい。式5において、kは送信確率Pの増加率を決定する係数である。 If a disaster occurs suddenly, the elevator maintenance system may not be in place. Even if the management center 1 receives information from a large number of communication devices 2 under such circumstances, it is difficult to respond immediately. Therefore, in such a case, it is preferable to calculate the transmission probability P 1 using Equation 5, rather than calculating the transmission probability P 1 using Equation 1. In Equation 5, k is a coefficient which determines the rate of increase in transmission probability P l.
 本実施の形態では、変数lの値が規定値を超えると、演算部8が送信確率Pとして一定値を出力する例について説明した。演算部8は、変数lの値が規定値を超えると、任意の関数に基づいて送信確率Pを演算しても良い。 In the present embodiment, an example has been described in which when the value of the variable l exceeds a specified value, the calculation unit 8 outputs a constant value as the transmission probability P l . The calculation unit 8 may calculate the transmission probability Pl based on an arbitrary function when the value of the variable l exceeds a specified value.
 本実施の形態では、地震検知器4が地震の発生を検知することによって送信条件が成立する例について説明した。地震検知器4は、特定の事象を検出する検出器の一例である。地震以外の他の事象が検出器によって検出されることによって送信条件が成立しても良い。他の例として、制御装置3から特定の信号を受信することによって送信条件が成立しても良い。特定の日時になることによって送信条件が成立しても良い。 In the present embodiment, the example in which the transmission condition is established when the earthquake detector 4 detects the occurrence of the earthquake has been described. The earthquake detector 4 is an example of a detector that detects a specific event. The transmission condition may be satisfied when an event other than the earthquake is detected by the detector. As another example, the transmission condition may be established by receiving a specific signal from the control device 3. The transmission condition may be satisfied by a specific date and time.
 本実施の形態では、記憶部6に1つの第1定数Nが記憶される例について説明した。記憶部6に、複数の第1定数Nが記憶されても良い。例えば、記憶部6に、第1定数Nとして第1の値Nと第2の値Nとが記憶される。かかる場合、演算部8は、送信確率Pを演算する際に第1の値N或いは第2の値Nを用いる。 In the present embodiment, an example in which one first constant N is stored in the storage unit 6 has been described. A plurality of first constants N may be stored in the storage unit 6. For example, the storage unit 6 stores the first value N 1 and the second value N 2 as the first constant N. In such a case, the calculation unit 8 uses the first value N 1 or the second value N 2 when calculating the transmission probability P 1 .
 例えば、地震検知器4は、第1レベルの地震の発生と第2レベルの地震の発生とを検出する。第2レベルの地震は、第1レベルの地震より大きい。かかる場合、条件判定部7は、地震検知器4によって第1レベルの地震の発生が検知されると、送信条件が成立したことを判定する。演算部8は、地震検知器4が第1レベルの地震の発生を検知することによって送信条件が成立すると、第1の値N、第2定数λ及び変数lに基づいて送信確率Pを演算する。 For example, the earthquake detector 4 detects the occurrence of a first level earthquake and the occurrence of a second level earthquake. The second level earthquake is greater than the first level earthquake. In this case, the condition determination unit 7 determines that the transmission condition is satisfied when the earthquake detector 4 detects the occurrence of the first level earthquake. When the transmission condition is satisfied when the earthquake detector 4 detects the occurrence of the first level earthquake, the calculation unit 8 calculates the transmission probability P 1 based on the first value N 1 , the second constant λ, and the variable l. Calculate.
 同様に、条件判定部7は、地震検知器4によって第2レベルの地震の発生が検知されると、送信条件が成立したことを判定する。演算部8は、地震検知器4が第2レベルの地震の発生を検知することによって送信条件が成立すると、第2の値N、第2定数λ及び変数lに基づいて送信確率Pを演算する。この例では、第2の値Nは第1の値Nより大きい。地震検知器4は、第1の事象及び第2の事象を検出する検出器の一例である。 Similarly, when the occurrence of the second level earthquake is detected by the earthquake detector 4, the condition determination unit 7 determines that the transmission condition is satisfied. When the transmission condition is satisfied when the earthquake detector 4 detects the occurrence of the second level earthquake, the calculation unit 8 determines the transmission probability P 1 based on the second value N 2 , the second constant λ, and the variable l. Calculate. In this example, a second value N 2 is greater than the first value N 1. The earthquake detector 4 is an example of a detector that detects the first event and the second event.
 図8は、通信装置の他の機能を説明するためのブロック図である。図8は、図2に相当する図である。図8に示す例では、各エレベータは、例えば通信装置2及び制御装置3を備える。通信装置2は、図2に示す例と同様に、例えば記憶部6、条件判定部7、演算部8、生成部9、送信判定部10及び送信部11を備える。図8に示す例では、エレベータが備えられた建物に検出器12及び検出器13が設けられる。 FIG. 8 is a block diagram for explaining other functions of the communication apparatus. FIG. 8 corresponds to FIG. In the example illustrated in FIG. 8, each elevator includes a communication device 2 and a control device 3, for example. Similar to the example illustrated in FIG. 2, the communication device 2 includes, for example, a storage unit 6, a condition determination unit 7, a calculation unit 8, a generation unit 9, a transmission determination unit 10, and a transmission unit 11. In the example shown in FIG. 8, the detector 12 and the detector 13 are provided in a building equipped with an elevator.
 検出器12は、第1の事象を検出する。第1の事象は、例えば地震の発生である。検出器13は、第2の事象を検出する。第2の事象は、例えば停電の発生である。第1の事象の種類と第2の事象の種類とは同じであっても良い。例えば、検出器12が第1レベルの地震の発生を検出し、検出器13が第2レベルの地震の発生を検出しても良い。各事象の例はこれらに限定されない。 The detector 12 detects the first event. The first event is, for example, the occurrence of an earthquake. The detector 13 detects the second event. The second event is, for example, the occurrence of a power failure. The first event type and the second event type may be the same. For example, the detector 12 may detect the occurrence of a first level earthquake, and the detector 13 may detect the occurrence of a second level earthquake. Examples of each event are not limited to these.
 例えば、記憶部6に、第1定数Nとして第1の値Nと第2の値Nとが記憶される。条件判定部7は、検出器12によって第1の事象が検出されると、送信条件が成立したことを判定する。演算部8は、検出器12が第1の事象を検出することによって送信条件が成立すると、第1の値N、第2定数λ及び変数lに基づいて送信確率Pを演算する。 For example, the storage unit 6 stores the first value N 1 and the second value N 2 as the first constant N. The condition determination unit 7 determines that the transmission condition is satisfied when the detector 12 detects the first event. When the transmission condition is satisfied when the detector 12 detects the first event, the calculation unit 8 calculates the transmission probability P 1 based on the first value N 1 , the second constant λ, and the variable l.
 同様に、条件判定部7は、検出器13によって第2の事象が検出されると、送信条件が成立したことを判定する。演算部8は、検出器13が第2の事象を検出することによって送信条件が成立すると、第2の値N、第2定数λ及び変数lに基づいて送信確率Pを演算する。 Similarly, the condition determination unit 7 determines that the transmission condition is satisfied when the detector 13 detects the second event. When the transmission condition is satisfied when the detector 13 detects the second event, the calculation unit 8 calculates the transmission probability P 1 based on the second value N 2 , the second constant λ, and the variable l.
 記憶部6に、3つ以上の第1定数Nが記憶されても良い。表1は、3つ以上の第1定数Nが記憶部6に記憶される例を示す。 3 or more first constants N may be stored in the storage unit 6. Table 1 shows an example in which three or more first constants N are stored in the storage unit 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図9は、通信装置2の他の動作例を示すフローチャートである。図9のS201に示す処理は、図3のS101に示す処理と同じである。図9のS204からS207に示す処理は、図3のS103からS106に示す処理と同じである。図9に示す例では、例えば、記憶部6に表1に示す内容が記憶される。 FIG. 9 is a flowchart showing another operation example of the communication device 2. The process shown in S201 of FIG. 9 is the same as the process shown in S101 of FIG. The processing shown in S204 to S207 in FIG. 9 is the same as the processing shown in S103 to S106 in FIG. In the example shown in FIG. 9, for example, the contents shown in Table 1 are stored in the storage unit 6.
 送信条件が成立したと条件判定部7によって判定されると、演算部8は送信確率Pを演算するために、第1定数Nの値を取得する(S202)。演算部8は、取得した第1定数Nの値を用いて、送信確率Pを演算する(S203)。 When the transmission condition is determined by the condition determining unit 7 to be satisfied, the operation unit 8 to calculate the transmission probability P l, to obtain a value of the first constant N (S202). Calculating unit 8, using the value of the first constant N obtained, for calculating the transmission probability P l (S203).
 例えば、地震が発生することによって送信条件が成立すると、演算部8は、第1定数N=100000を用いて送信確率Pを演算する。演算部8は、停電が発生することによって送信条件が成立すると、第1定数N=5000を用いて送信確率Pを演算する。演算部8は、浸水が発生することによって送信条件が成立すると、第1定数N=1000を用いて送信確率Pを演算する。 For example, when the transmission condition is satisfied by the occurrence of an earthquake, the calculation unit 8 calculates the transmission probability P 1 using the first constant N = 100000. When the transmission condition is established due to the occurrence of a power failure, the calculation unit 8 calculates the transmission probability Pl using the first constant N = 5000. When the transmission condition is satisfied due to the occurrence of flooding, the calculation unit 8 calculates the transmission probability P 1 using the first constant N = 1000.
 図9に示す例であれば、事象に合わせて第1定数Nの値を適切に設定できる。 In the example shown in FIG. 9, the value of the first constant N can be set appropriately according to the event.
 符号6~11に示す各部は、通信装置2が有する機能を示す。図10は、通信装置2のハードウェア構成を示す図である。通信装置2は、ハードウェア資源として、例えばプロセッサ14とメモリ15とを含む処理回路を備える。記憶部6が有する機能はメモリ15によって実現される。通信装置2は、メモリ15に記憶されたプログラムをプロセッサ14によって実行することにより、符号7~11に示す各部の機能を実現する。 Each unit indicated by reference numerals 6 to 11 represents a function of the communication device 2. FIG. 10 is a diagram illustrating a hardware configuration of the communication device 2. The communication device 2 includes a processing circuit including, for example, a processor 14 and a memory 15 as hardware resources. The functions of the storage unit 6 are realized by the memory 15. The communication device 2 implements the functions of the units indicated by reference numerals 7 to 11 by executing the program stored in the memory 15 by the processor 14.
 プロセッサ14は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ或いはDSPともいわれる。メモリ15として、半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク或いはDVDを採用しても良い。採用可能な半導体メモリには、RAM、ROM、フラッシュメモリ、EPROM及びEEPROM等が含まれる。 The processor 14 is also called a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP. As the memory 15, a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be employed. Semiconductor memories that can be used include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
 通信装置2が有する各機能の一部又は全部をハードウェアによって実現しても良い。通信装置2の機能を実現するハードウェアとして、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらの組み合わせを採用しても良い。 Some or all of the functions of the communication device 2 may be realized by hardware. As hardware for realizing the function of the communication device 2, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof may be employed.
 この発明に係るエレベータシステムは、管理センターに情報を送信する複数の端末を備えたシステムに適用できる。 The elevator system according to the present invention can be applied to a system including a plurality of terminals that transmit information to a management center.
 1 管理センター
 2 通信装置
 3 制御装置
 4 地震検知器
 5 ネットワーク
 6 記憶部
 7 条件判定部
 8 演算部
 9 生成部
 10 送信判定部
 11 送信部
 12 検出器
 13 検出器
 14 プロセッサ
 15 メモリ
DESCRIPTION OF SYMBOLS 1 Management center 2 Communication apparatus 3 Control apparatus 4 Seismic detector 5 Network 6 Memory | storage part 7 Condition determination part 8 Calculation part 9 Generation | occurrence | production part 10 Transmission determination part 11 Transmission part 12 Detector 13 Detector 14 Processor 15 Memory

Claims (7)

  1.  第1定数及び第2定数が記憶された記憶手段と、
     管理センターに情報を送信するための送信条件が成立すると、前記第1定数、前記第2定数及び変数に基づいて、前記管理センターに情報を送信するための確率を演算する演算手段と、
     比較値をランダムに生成する生成手段と、
     前記演算手段によって演算された確率と前記生成手段によって生成された比較値とに基づいて、前記管理センターに情報を送信する送信手段と、
    を備え、
     前記第1定数は、前記送信条件が成立することによって前記管理センターに情報を送信する端末の台数に応じて予め設定され、
     前記変数は、前記送信条件が成立してから一定時間が経過する度に値が大きくなり、
     前記第2定数は、前記管理センターが前記一定時間に情報を受信することが可能な端末の台数に応じて予め設定され、
     前記変数の値が大きくなるにしたがって、前記演算手段によって演算される確率が大きくなるエレベータシステム。
    Storage means for storing the first constant and the second constant;
    When a transmission condition for transmitting information to the management center is established, a calculation means for calculating a probability for transmitting information to the management center based on the first constant, the second constant, and a variable;
    Generating means for randomly generating a comparison value;
    Based on the probability calculated by the calculating means and the comparison value generated by the generating means, transmitting means for transmitting information to the management center;
    With
    The first constant is set in advance according to the number of terminals that transmit information to the management center when the transmission condition is satisfied,
    The variable becomes larger every time a certain period of time elapses after the transmission condition is satisfied,
    The second constant is set in advance according to the number of terminals that the management center can receive information at the predetermined time,
    An elevator system in which the probability of being calculated by the calculating means increases as the value of the variable increases.
  2.  前記送信条件が成立したか否かを判定する第1判定手段と、
     前記演算手段によって演算された確率が前記生成手段によって生成された比較値より大きいか否かを判定する第2判定手段と、
    を更に備え、
     前記演算手段は、前記送信条件が成立したと前記第1判定手段によって判定されると、前記管理センターに情報を送信するための確率を演算し、
     前記送信手段は、前記演算手段によって演算された確率が前記生成手段によって生成された比較値より大きいと前記第2判定手段によって判定されると、前記管理センターに情報を送信する請求項1に記載のエレベータシステム。
    First determination means for determining whether or not the transmission condition is satisfied;
    Second determination means for determining whether or not the probability calculated by the calculation means is greater than the comparison value generated by the generation means;
    Further comprising
    When the first determining unit determines that the transmission condition is satisfied, the calculating unit calculates a probability for transmitting information to the management center,
    The said transmission means transmits information to the said management center, if the said 2nd determination means determines with the probability calculated by the said calculation means being larger than the comparison value produced | generated by the said production | generation means. Elevator system.
  3.  第1の事象を検出する第1検出器と、
     第2の事象を検出する第2検出器と、
    を更に備え、
     前記記憶手段に、前記第1定数として第1の値と第2の値とが記憶され、
     前記演算手段は、前記第1検出器が前記第1の事象を検出することによって前記送信条件が成立すると、前記第1の値、前記第2定数及び前記変数に基づいて、前記管理センターに情報を送信するための確率を演算し、
     前記演算手段は、前記第2検出器が前記第2の事象を検出することによって前記送信条件が成立すると、前記第2の値、前記第2定数及び前記変数に基づいて、前記管理センターに情報を送信するための確率を演算する請求項1又は請求項2に記載のエレベータシステム。
    A first detector for detecting a first event;
    A second detector for detecting a second event;
    Further comprising
    The storage means stores a first value and a second value as the first constant,
    When the transmission condition is satisfied when the first detector detects the first event, the calculation means sends information to the management center based on the first value, the second constant, and the variable. Compute the probability to send
    When the transmission condition is satisfied when the second detector detects the second event, the calculation means sends information to the management center based on the second value, the second constant, and the variable. The elevator system according to claim 1 or 2, wherein a probability for transmitting is calculated.
  4.  第1の事象及び第2の事象を検出する検出器を更に備え、
     前記記憶手段に、前記第1定数として第1の値と第2の値とが記憶され、
     前記演算手段は、前記検出器が前記第1の事象を検出することによって前記送信条件が成立すると、前記第1の値、前記第2定数及び前記変数に基づいて、前記管理センターに情報を送信するための確率を演算し、
     前記演算手段は、前記検出器が前記第2の事象を検出することによって前記送信条件が成立すると、前記第2の値、前記第2定数及び前記変数に基づいて、前記管理センターに情報を送信するための確率を演算する請求項1又は請求項2に記載のエレベータシステム。
    A detector for detecting the first event and the second event;
    The storage means stores a first value and a second value as the first constant,
    The computing means transmits information to the management center based on the first value, the second constant, and the variable when the transmission condition is satisfied when the detector detects the first event. To calculate the probability to
    The computing means transmits information to the management center based on the second value, the second constant, and the variable when the transmission condition is satisfied when the detector detects the second event. The elevator system according to claim 1 or 2, wherein a probability for performing the calculation is calculated.
  5.  前記変数の値が大きくなるにしたがって、前記演算手段によって演算される確率の増加率が大きくなる請求項1から請求項4の何れか一項に記載のエレベータシステム。 The elevator system according to any one of claims 1 to 4, wherein an increasing rate of a probability calculated by the calculating means increases as a value of the variable increases.
  6.  前記変数の値が大きくなるにしたがって、前記演算手段によって演算される確率の増加率が小さくなる請求項1から請求項4の何れか一項に記載のエレベータシステム。 The elevator system according to any one of claims 1 to 4, wherein an increasing rate of a probability calculated by the calculating means decreases as a value of the variable increases.
  7.  前記演算手段は、前記変数の値が規定値を超えると、確率として一定値を出力する請求項1から請求項6の何れか一項に記載のエレベータシステム。 The elevator system according to any one of claims 1 to 6, wherein when the value of the variable exceeds a specified value, the calculation unit outputs a constant value as a probability.
PCT/JP2016/083359 2016-11-10 2016-11-10 Elevator system WO2018087860A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/083359 WO2018087860A1 (en) 2016-11-10 2016-11-10 Elevator system
CN201680089862.3A CN109952261B (en) 2016-11-10 2016-11-10 Elevator system
KR1020197000013A KR102079382B1 (en) 2016-11-10 2016-11-10 Elevator system
JP2018549692A JP6593549B2 (en) 2016-11-10 2016-11-10 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083359 WO2018087860A1 (en) 2016-11-10 2016-11-10 Elevator system

Publications (1)

Publication Number Publication Date
WO2018087860A1 true WO2018087860A1 (en) 2018-05-17

Family

ID=62109476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083359 WO2018087860A1 (en) 2016-11-10 2016-11-10 Elevator system

Country Status (4)

Country Link
JP (1) JP6593549B2 (en)
KR (1) KR102079382B1 (en)
CN (1) CN109952261B (en)
WO (1) WO2018087860A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840660A (en) * 1994-07-28 1996-02-13 Hitachi Ltd Elevator monitoring center against wide area disaster
JP2003073050A (en) * 2001-08-30 2003-03-12 Toshiba Elevator Co Ltd Elevator remote monitoring device
JP2014234255A (en) * 2013-05-31 2014-12-15 三菱電機株式会社 Monitoring device for elevator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907150B2 (en) * 2005-10-31 2012-03-28 東芝エレベータ株式会社 Remote monitoring system
CN101633461A (en) * 2009-05-22 2010-01-27 苏州新达电扶梯部件有限公司 Remote monitoring system of elevator
JP6224941B2 (en) * 2013-07-26 2017-11-01 ジャパンエレベーターサービスホールディングス株式会社 Remote monitoring system, remote monitoring program and remote monitoring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840660A (en) * 1994-07-28 1996-02-13 Hitachi Ltd Elevator monitoring center against wide area disaster
JP2003073050A (en) * 2001-08-30 2003-03-12 Toshiba Elevator Co Ltd Elevator remote monitoring device
JP2014234255A (en) * 2013-05-31 2014-12-15 三菱電機株式会社 Monitoring device for elevator

Also Published As

Publication number Publication date
JPWO2018087860A1 (en) 2019-03-22
KR102079382B1 (en) 2020-04-07
CN109952261A (en) 2019-06-28
CN109952261B (en) 2020-10-30
KR20190015462A (en) 2019-02-13
JP6593549B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
EP3661133B1 (en) Delay-based transmission path control method, network controller and system
CN109905259B (en) Communication connection maintaining method, system and related equipment
KR101896783B1 (en) V2x communication apparatus for verifying reliability of v2x data, system having the same and method thereof
JP7144424B2 (en) BATTERY PACK, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP6040867B2 (en) Elevator monitoring equipment
WO2019106724A1 (en) Elevator monitoring system
JP6593549B2 (en) Elevator system
US10095555B2 (en) Task control system
JP2019216348A5 (en)
KR102327204B1 (en) Method and terminal for transmitting and receiving data
JP5334011B2 (en) Elevator earthquake control operation system
JP5085352B2 (en) Earthquake disaster prevention system
JP6358923B2 (en) Earthquake warning system
EP3869740A1 (en) Network reliability testing method and apparatus
JP5486464B2 (en) Wireless communication terminal, wireless network system, wireless communication route selection program, and wireless communication route selection method
JP2006211236A (en) Presence distribution system
KR102299260B1 (en) Method and apparatus for transmitting and receiving data
JP2016024605A (en) Distributed processing method, processing server, and program
WO2020194696A1 (en) Train control system
JP2024039803A (en) Traffic accident prevention system, traffic accident prevention method, traffic accident prevention program, terminal, and cloud device
JP2017019607A (en) Remote monitoring system for elevator
KR20160018335A (en) Method and terminal for transmitting and receiving data
JP6034816B2 (en) Traffic control device, traffic control method, and traffic control program
KR102276858B1 (en) Method and terminal for communicating
JP5941435B2 (en) Congestion detection device, congestion detection method, congestion detection program, and program recording medium

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549692

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000013

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921299

Country of ref document: EP

Kind code of ref document: A1