WO2018087845A1 - Planar waveguide - Google Patents

Planar waveguide Download PDF

Info

Publication number
WO2018087845A1
WO2018087845A1 PCT/JP2016/083244 JP2016083244W WO2018087845A1 WO 2018087845 A1 WO2018087845 A1 WO 2018087845A1 JP 2016083244 W JP2016083244 W JP 2016083244W WO 2018087845 A1 WO2018087845 A1 WO 2018087845A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
core
planar waveguide
amplified light
multilayer film
Prior art date
Application number
PCT/JP2016/083244
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 廣澤
柳澤 隆行
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/083244 priority Critical patent/WO2018087845A1/en
Priority to JP2017526988A priority patent/JP6192883B1/en
Publication of WO2018087845A1 publication Critical patent/WO2018087845A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength

Definitions

  • the present invention relates to a planar waveguide.
  • the double clad type planar waveguide is a waveguide in which clads are laminated on both sides of a core for propagating light, and functions as an optical amplifier by using a gain generating member for the core.
  • the gain generating member is a member that amplifies the amplified light by propagating two types of light, that is, the amplified light and the pumping light, thereby absorbing the pumping light and forming an inverted distribution.
  • Some of the double clad type planar waveguides include an outer clad provided on both sides of the core and an inner clad provided between at least one surface of the core and the outer clad.
  • the amplified light propagating through the core is reflected by the inner cladding and returned to the core side, and the excitation light is reflected by the outer cladding and returned to the core side.
  • the waveguide described in Patent Document 1 is the above-described double-clad planar waveguide.
  • the inner cladding is made of a material having a lower refractive index than the core
  • the outer cladding is made of a material having a lower refractive index than the inner cladding.
  • the light totally reflected at the interface between the core and the inner cladding is confined in the core, and the light totally reflected at the interface between the inner cladding and the outer cladding is reflected between the core and the inner cladding. It is confined in the area formed by.
  • planar waveguide Of the light propagating through the planar waveguide, light having a small divergence angle is confined in the core, and light having a larger divergence angle is confined in a region formed by the core and the inner cladding.
  • the degree of divergence of light that can be confined inside a planar waveguide is determined by the refractive index of the core and cladding, which is called the numerical aperture of the waveguide (NA) (hereinafter referred to as NA).
  • NA numerical aperture of the waveguide
  • a material having a low refractive index such as fluoride glass
  • none of the materials for the outer cladding satisfy the NA required for the excitation light.
  • the material of a low refractive index cannot be used for a core, but the subject that the material which can be used for a core was restricted occurred.
  • a planar waveguide functions as the optical amplifier, an inexpensive pumping light source having a large divergence angle cannot be used.
  • the present invention solves the above-described problems, and an object of the present invention is to obtain a planar waveguide having a high NA with respect to excitation light even if the core is made of a material having a low refractive index.
  • the planar waveguide according to the present invention includes a flat core that propagates light, a first clad that is provided on both sides of the core and has higher reflectivity than the amplified light with respect to the excitation light, and the core A second clad provided between at least one surface and the first clad and having a refractive index lower than that of the core.
  • the first cladding is a multilayer film in which a plurality of films made of different materials are stacked.
  • the first clad is constituted by a multilayer film in which a plurality of films of different materials are laminated, even if the core is constituted by a material having a low refractive index, a high NA is obtained with respect to excitation light. There is an effect that a planar waveguide can be obtained.
  • FIG. 4 is a diagram illustrating an arrangement example of a planar waveguide, an amplified light source, a coupling optical system, and an excitation light source according to Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating another arrangement example of the planar waveguide, the amplified light source, the coupling optical system, and the excitation light source according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a planar waveguide 10 according to Embodiment 1 of the present invention, and shows a case where the planar waveguide 10 is an optical amplifier that amplifies amplified light 21.
  • the planar waveguide 10 includes an outer clad 12 and an outer clad 13 on both sides of the core 11, an inner clad 14 between the one surface of the core 11 and the outer clad 12, and the other surface of the core 11 and the outer surface.
  • An internal clad 15 is provided between the clad 13 and the clad 13.
  • the core 11 is a flat member through which the amplified light 21 that is signal light propagates.
  • the amplified light 21 is light indicated by a solid line in FIG.
  • the excitation light 31 emitted from the excitation light source 32 is light indicated by a dotted line in FIG.
  • the thickness direction of the core 11 is the x-axis direction
  • the direction perpendicular to the side surface of the core 11 is the y-axis direction
  • the optical axis direction in which the amplified light 21 is propagated to the core 11 is the z-axis.
  • the refractive index of the core 11 is n 11
  • the thickness of the core 11 is d 11 .
  • the core 11 is composed of a gain generating member that has an action of amplifying the amplified light 21.
  • the gain generating member is a member that generates a gain by radiation transition by absorbing the excitation light 31 to form an inverted distribution.
  • the gain generating member for example, a glass to which a rare earth element such as Er, Yb, Tm, or Nd is added, a crystal to which a rare earth element such as Nd: YVO 4 is added, or a rare earth element such as Yb: YAG is added. And ceramics made from such crystals. Alternatively, a crystal to which a transition metal such as Cr: YAG or Ti: Sapphire is added may be used.
  • the polarization perpendicular to the plane including the thickness direction of the planar waveguide 10 and the propagation direction of the amplified light 21 or the excitation light 31 is called a TE (Transverse Electric field) mode, and the TE mode polarization is TE polarization. is there.
  • the polarization parallel to the plane including the thickness direction of the planar waveguide 10 and the propagation direction of the amplified light 21 or the excitation light 31 is called a TM (Transverse Magnetic Field) mode, and the TM mode polarization is TM. Polarized light.
  • the TE mode is set when y-polarized light and the TM mode is set when x-polarized light.
  • the outer cladding 12 and the outer cladding 13 are components embodying the first cladding, and are flat members that reflect the excitation light 31 and return it to the core 11 side.
  • the outer clad 12 and the outer clad 13 each have a higher reflectance than the amplified light 21 with respect to the excitation light 31, and are arranged at positions symmetrical with respect to the yz plane.
  • the outer clad 12 and the outer clad 13 are composed of a multilayer film in which a plurality of films made of different materials are laminated.
  • the multilayer film includes a multilayer film in which the NA of the waveguide constituted by the core 11 and the inner claddings 14 and 15 is 0.38 or more with respect to the excitation light 31 and 0.38 or less with respect to the amplified light 21. Used.
  • the outer cladding 12 is a multilayer film in which thin films 12a and thin films 12b are alternately stacked, and the outer cladding 13 is formed by alternately stacking thin films 13a and thin films 13b. It is a multilayer film. That is, the outer claddings 12 and 13 are formed of a multilayer film in which one or more film sets made of different materials are stacked.
  • the thin film 12a and the thin film 12b are formed of different materials.
  • two kinds of dielectric materials are selected from among the dielectric materials that can be formed, such as SiO 2 , Ta 2 O 5 , MgO, Nb 2 O 5 , TiO 2 , CaF 2 , MgF 2, etc. 12a and thin film 12b are formed.
  • the combination of the materials of the thin film 12a and the thin film 12b and the combination of the materials of the thin film 13a and the thin film 13b may be the same, or may be different from each other.
  • the refractive index of the thin film 12a is n 12a
  • the refractive index of the thin film 12b is n 12b
  • the film thickness of the thin film 12a is d 12a
  • the film thickness of the thin film 12b is d 12b .
  • One of the refractive index or both of the refractive index between the refractive index n 12b of the refractive index n 12a and the thin film 12b of the thin film 12a may be higher than the refractive index n 11 of the core 11.
  • the refractive index of the thin film 13a is n13a
  • the refractive index of the thin film 13b is n13b
  • the film thickness of the thin film 13a is d13a
  • the film thickness of the thin film 13b is d13b
  • one or both of the refractive index n 13a of the thin film 13a and the refractive index n 13b of the thin film 13b may be higher than the refractive index n 11 of the core 11.
  • the inner cladding 14 and the inner cladding 15 are components embodying the second cladding, and are flat members that reflect the excitation light 31 and return it to the core 11 side.
  • the inner cladding 14 is provided between one surface of the core 11 and the outer cladding 12, and the inner cladding 15 is provided between the other surface of the core 11 and the outer cladding 13. Further, the refractive index n 14 of the inner cladding 14 is lower than the refractive index n 11 of the core 11, the refractive index n 15 of the inner cladding 15 is lower than the refractive index n 11 of the core 11.
  • the refractive index n 14 of the inner cladding 14 and the refractive index n 15 of the inner cladding 15 have a relationship of the following formula (1) and the following formula (2) between the refractive index n 11 of the core 11. Yes. (N 11 -0.01) ⁇ n 14 ⁇ n 11 (1) (N 11 ⁇ 0.01) ⁇ n 15 ⁇ n 11 (2)
  • the excitation light 31 radiated from the excitation light source 32 propagates through the core 11 and the inner claddings 14 and 15 at propagation angles corresponding to these refractive indexes.
  • the core 11 and the inner claddings 14 and 15 have very close refractive indexes, as is apparent from the above formula (1) and the above formula (2).
  • the refraction angle at each interface between the core 11 and the inner claddings 14 and 15 is very small. For this reason, it can be considered that the excitation light 31 propagates at the propagation angle ⁇ 31 both in the core 11 and in the inner claddings 14 and 15.
  • the outer claddings 12 and 13 have a reflectance of 99% or more with respect to the excitation light 31 incident at the propagation angle ⁇ 31 from the inner claddings 14 and 15 side.
  • the refractive index n11 of the core 11 is 1.515.
  • the refractive index n 14 and n 15 of the inner claddings 14 and 15 are approximately 1.51.
  • fluoride glass which is a low refractive index material
  • the NA for the excitation light in the planar waveguide is about 0.35.
  • the NA of the pumping multimode laser diode may exceed 0.35.
  • an optical system such as a lens is required.
  • the NA is 0.38 or more. is required.
  • FIG. 2 is a diagram showing an outline of parasitic oscillation in a planar waveguide. As shown in FIG. 2, when the path of the amplified light 21 is formed only by total reflection inside the waveguide, the laser oscillation occurs because the loss is very small. Such parasitic oscillation consumes energy for amplifying the amplified light 21 propagating through the core 11.
  • n clad represents the higher one of the refractive indexes of the outer cladding 12 and the outer cladding 13.
  • n clad of the outer cladding is 1.47, which is the same as that of fluoride glass, according to the following formula (3), when the refractive index n 11 of the core 11 exceeds 1.78, parasitic oscillation is avoided. It becomes difficult. arcsin (n clad / n 11 ) + arcsin (1 / n 11 ) ⁇ ⁇ / 2 (3)
  • multilayer films that have a reflectivity of 99% or more over a wide range with respect to the excitation light 31 and have a reduced reflectivity with respect to the amplified light 21 are used as the outer claddings 12 and 13. ing. That is, a multilayer film in which the NA of the waveguide constituted by the core 11 and the inner claddings 14 and 15 is 0.38 or more with respect to the pumping light 31 and 0.38 or less with respect to the amplified light 21 is used. . Thereby, it is possible to obtain the planar waveguide 10 having a high NA with respect to the excitation light 31 and suppressing the parasitic oscillation of the amplified light 21.
  • the refractive index n 14 of the inner cladding 14 and the refractive index n 15 of the inner cladding 15 are both 1.42, and the refractive index n 11 of the core 11 is based on the refractive indices n 14 and n 15 . 3/1000 larger. Further, the total thickness of the core 11, the inner cladding 14 and the inner cladding 15 is 120 ⁇ m.
  • the multilayer film that is the outer cladding 12 includes a thin film 12a having a film thickness d 12a of 119 nm and a refractive index n 12a of 2.16, and a thin film 12b having a film thickness d 12b of 274 nm and a refractive index n 12b of 1.45. Assume that 10 layers are alternately stacked. Similarly, for the multilayer film as the outer cladding 13, a thin film 13a having a film thickness d 13a of 119 nm and a refractive index n 13a of 2.16, and a thin film 13b having a film thickness d 13b of 274 nm and a refractive index n 13b of 1.45. And 10 layers are alternately stacked.
  • the amplified light 21 is light having a wavelength of 1550 nm in vacuum
  • the excitation light 31 is light having a wavelength of 940 nm in vacuum.
  • the planar waveguide 10 having a high NA with respect to the excitation light 31 and a suppressed parasitic oscillation of the amplified light 21 as described above.
  • the following materials can be used to obtain the refractive indexes n 11 , n 14 , n 15 , n 12a , n 12b , n 13a , and n 13b having the above values.
  • Er-added aluminum fluoride glass can be cited as the material of the core 11, additive-free aluminum fluoride glass as the material of the inner claddings 14 and 15, Ta 2 O 5 as the material of the thin films 12a and 13a, and the thin films 12b and 13b.
  • the material include SiO 2 .
  • FIG. 3 is a graph showing the reflection characteristics of the outer claddings 12 and 13 with respect to the excitation light 31 and the amplified light 21, and shows the relationship between the propagation angle and the reflectance.
  • the solid line curve a indicates the reflection characteristic of the excitation light 31 at 940 nm light
  • the dotted line curve b indicates the reflection characteristic at the amplified light 21 of 1550 nm light.
  • the propagation angle ⁇ 31 of the excitation light 31 is 43 ° or more, and the reflectivity is 99% or more.
  • NA is 1 with respect to the excitation light 31, and light of an arbitrary angle can be confined. Accordingly, even if the vertical spread angle of the pumping light 31 emitted from the pumping light source 32 is 45 °, the pumping light 31 can be provided with a sufficient design margin only by arranging the pumping light source 32 close to the planar waveguide 10.
  • the propagation angle theta 21 is the reflectance at 60 ° or less is suppressed to 50% or less.
  • FIG. 4 is a top view showing an arrangement example of the planar waveguide 10, the amplified light source 22, the coupling optical system 23, and the excitation light source 32.
  • FIG. 5 is a top view showing another arrangement example of the planar waveguide 10, the amplified light source 22, the coupling optical system 23, and the excitation light source 32. 4 and 5, the amplified light source 22 is a light source that emits amplified light 21 that is signal light, and the coupling optical system 23 is an optical system for coupling the amplified light source 22 to the planar waveguide 10. is there.
  • the excitation light source 32, the planar waveguide 10, the coupling optical system 23, and the amplified light source 22 are arranged in this order in a certain direction.
  • the certain direction is the optical axis direction (z-axis direction) in which the amplified light 21 propagates through the planar waveguide 10.
  • the direction in which the excitation light source 32 and the planar waveguide 10 are aligned z-axis direction
  • the direction in which the planar waveguide 10, the coupling optical system 23, and the amplified light source 22 are aligned are orthogonal to each other. Since the planar waveguide 10 has a high NA with respect to the excitation light 31, no optical system for coupling the excitation light source 32 and the planar waveguide 10 is required as shown in FIGS.
  • a multilayer film in which two types of thin films are alternately stacked has been shown, but it is not limited thereto.
  • two types of thin films may be included in the multilayer film, or three or more types of thin films may be stacked.
  • the multilayer film that is the outer cladding 12 and the multilayer film that is the outer cladding 13 are arranged in a symmetrical relationship with respect to the yz plane.
  • the outer clad 12 and the outer clad 13 may have different materials or film thicknesses used for the multilayer film.
  • the outer cladding 12 or the outer cladding 13 is made of a material having a low refractive index.
  • the excitation light 31 may be confined inside the waveguide by total reflection at the outer cladding 12 or the outer cladding 13.
  • the planar waveguide 10 according to the first embodiment is provided on each of the flat core 11 that propagates light and both sides of the core 11, and is higher than the amplified light 21 with respect to the excitation light 31.
  • External claddings 12 and 13 having reflectivity, and internal claddings 14 and 15 provided between the core 11 and the external claddings 12 and 13 and having a refractive index lower than that of the core 11 are provided.
  • the outer claddings 12 and 13 are multilayer films in which a plurality of films made of different materials are laminated. Since it is configured in this way, the planar waveguide 10 having a high NA with respect to the excitation light 31 can be obtained even if the core 11 is made of a low refractive index material.
  • the core 11 is a gain generating member that absorbs the excitation light 31 and amplifies the amplified light 21.
  • the amplified light 21 does not enter the outer claddings 12 and 13, but when spontaneous emission light is emitted from the core 11 at a wavelength close to the amplified light 21, the spontaneous emission light is incident on the outer claddings 12 and 13. Is done. At this time, if the light path shown in FIG. 2 is formed only by total internal reflection in the waveguide, parasitic oscillation occurs.
  • the planar waveguide 10 since the outer claddings 12 and 13 are formed of the multilayer film, the reflectance with respect to the amplified light 21 can be suppressed and parasitic oscillation can be suppressed. Furthermore, since the planar waveguide 10 can enter the excitation light 31 with a high NA, it is possible to use a multimode excitation light source. Note that multi-mode light sources are generally cheaper than single-mode light sources and can constitute high-power laser light sources.
  • the multilayer film constituting the outer claddings 12 and 13 is formed by laminating one or more sets of films made of different materials. Furthermore, the NA is 0.38 or more for the excitation light 31 and 0.38 or less for the amplified light 21 depending on the characteristics of the multilayer film. Thereby, it is possible to obtain the planar waveguide 10 having a high NA with respect to the excitation light 31 and suppressing the parasitic oscillation of the amplified light 21.
  • Embodiment 2 the double clad type planar waveguide in which the amplified light 21 is confined to the core 11 side by the inner clads 14 and 15 and the excitation light 31 is confined to the core 11 side by the outer clads 12 and 13 is shown.
  • the second embodiment a configuration in which the inner cladding 15 is not provided and both the amplified light 21 and the pumping light 31 are confined on the core 11 side by the outer cladding 13 will be described.
  • FIG. 6 is a diagram showing a configuration of a planar waveguide 10A according to Embodiment 2 of the present invention, and shows a case where the planar waveguide 10A is an optical amplifier that amplifies the amplified light 21.
  • the same components as those in FIG. the polarized light perpendicular to the thickness direction of the planar waveguide 10A in the amplified light 21 and the excitation light 31 is TE polarized light.
  • the polarized light parallel to the plane including the thickness direction of the planar waveguide 10 and the propagation direction of the amplified light 21 in the amplified light 21 and the excitation light 31 is TM polarized light.
  • the TE mode is obtained when y-polarized light and the TM mode is obtained when x-polarized light.
  • the outer clad 13A is a component that embodies the first clad, and is a flat member that reflects both the amplified light 21 and the pumping light 31 and returns it to the core 11 side. Further, the outer cladding 13 ⁇ / b> A has a higher reflectance than the amplified light 21 with respect to the excitation light 31.
  • the inner cladding 15 is not provided on the other surface of the core 11, and the outer cladding 13 ⁇ / b> A is directly bonded to the other surface of the core 11.
  • the outer clad 13A is composed of a multilayer film in which thin films 13a and thin films 13b made of different materials are alternately stacked.
  • FIG. 7 is a diagram showing an outline of the wave number vector of the amplified light 21, and shows the wave vector of the amplified light 21 in the core 11 and the outer cladding 13A.
  • the x direction component of the wave number of the amplified light 21 includes the x direction component k 2111 of the wave number in the core 11, the x direction component k 2113a of the wave number in the thin film 13a, and the x direction component k of the wave number in the thin film 13b. 2113b .
  • k 2111 , k 2113a and k 2113b are defined as in the following formulas (4) to (6).
  • the x-direction component of the wave number is simply expressed as wave numbers k 2111 , k 2113a, and k 2113b .
  • k 2111 (2 ⁇ n 11 cos ⁇ 21 ) / ⁇ 21 (4)
  • k 2113a 2 ⁇ (n 13a 2 ⁇ n 11 2 sin 2 ⁇ 21 ) 1/2 / ⁇ 21 (5)
  • k 2113b 2 ⁇ (n 13b 2 ⁇ n 11 2 sin 2 ⁇ 21 ) 1/2 / ⁇ 21 (6)
  • the propagation angle ⁇ 21 can be determined from the wave number k 2111 in the core 11 according to the above formula (4).
  • the range of the excitation light 31 is propagated, core 11 and inner cladding 14 and has straddle the, the thickness d 14 of the thickness d 11 and inner cladding 14 of the core 11, usually, d 14 >> and it has a d 11. Therefore, the propagation angle theta 31 of the excitation light 31 may take continuous values in comparison with the amplified light 21.
  • the propagation mode is zero order, first order, referred to as the propagation angle theta 21 of the secondary ....
  • a waveguide through which only the amplified light 21 having the 0th-order propagation angle ⁇ 21 can propagate is called a single mode waveguide.
  • the amplified light 21 having the 0th-order propagation angle ⁇ 21 is referred to as 0th-order mode light.
  • a waveguide capable of propagating the amplified light 21 at the low-order propagation angle ⁇ 21 but not capable of propagating the amplified light 21 at the high-order propagation angle ⁇ 21 is referred to as a low-order mode waveguide.
  • the amplified light 21 of the low-order propagation angle theta 21 is referred to as low-order mode light, it referred to as amplified light 21 high-order propagation angle theta 21 and higher-order mode light.
  • FIG. 8 is a diagram showing an outline of the low-order mode light and the high-order mode light of the amplified light 21.
  • the substantial operation is the same even if the inner cladding 14 is omitted. Therefore, for the sake of simplicity, the illustration of the inner cladding 14 is omitted in FIG.
  • the low-order mode light and the high-order mode light are totally reflected at the interface between the core 11 and the outer cladding 12, and are totally reflected at the interface between the core 11 and the outer cladding 13 ⁇ / b> A and propagate through the core 11.
  • the amplified light 21 When the amplified light 21 is incident on the outer cladding 13A from the core 11, there are an infinite number of combinations of the material and film thickness of the multilayer film in which the reflectivity of the amplified light 21 is 99% or more, and it can be designed freely. it can. However, since the thin films 13a and 13b included in the multilayer film are more scattered than general glass, the loss of the amplified light 21 propagating through the multilayer film may be increased.
  • FIG. 9 is a graph showing the relationship between the amount of the amplified light 21 that leaks into the cladding and the measurement result of the waveguide loss.
  • a core 11 made of Nd: YVO 4 is used.
  • the waveguide loss increases as the amount of the amplified light 21 that leaks into the cladding increases, and the amount of the protrusion and the waveguide loss are directly proportional.
  • the amount of the exudation indicates the ratio of the intensity of the amplified light 21 that has entered the multilayer film to the total intensity of the amplified light 21. Even if the outer cladding 13A has a reflectivity of 100% with respect to the amplified light 21, a part of the amplified light 21 is reflected inside the multilayer film, so that a certain amount of energy is present inside the multilayer film. Is present. At this time, the ratio of the energy existing inside the core 11 and the energy existing inside the multilayer film is defined as the amount of exudation. The amount of seepage varies depending on the mode described above.
  • FIG. 10 is a diagram showing the electric field distribution of the amplified light 21 in the 0th-order mode light and the first-order mode light and the seepage to the cladding.
  • the substantial operation is the same even if the inner cladding 14 is omitted. Therefore, for the sake of simplicity of explanation, the illustration of the inner cladding 14 is omitted in FIG.
  • a solid curve 21 a in FIG. 10 indicates the electric field distribution of the zero-order mode light of the amplified light 21, and a dotted curve 21 b in FIG. 10 indicates the electric field distribution of the primary mode light of the amplified light 21.
  • the amplified light 21 in these modes oozes out to the outer cladding 12 and the outer cladding 13A as indicated by the symbols A and B.
  • FIG. 11 is a diagram showing a multilayer film in which the optical path when the amplified light 21 reciprocates once between the films corresponds to a phase of 2 ⁇ .
  • the optical path when the amplified light 21 reciprocates once through the pair of thin films 13a and 13b among the plurality of thin films stacked on the multilayer film.
  • the optical path corresponds to a phase of 2 ⁇ .
  • the reflected light in a thin film interface raises interference, even if it is a case where there are few layers of a multilayer film, a high reflectance can be implement
  • the film thicknesses d 13a and d 13b of the thin films 13a and 13b are determined so as to satisfy the relationship of the following formula (9). (L-1 / 4) ⁇ ⁇ k 2113a d 13a + k 2113b d 13b ⁇ (l + 1/4) ⁇ (9)
  • the outer cladding 13A in the planar waveguide 10A includes the thin films 13a and 13b having the film thicknesses d 13a and d 13b that satisfy the relationship of the above formula (9) with respect to the propagation angle ⁇ 21 of the zero-order mode light. It is a multilayer film. With this configuration, the bleeding of the zero-order mode light in the amplified light 21 is suppressed, and the waveguide loss can be reduced. In addition, since the amount of high-order mode light oozes out, only low-order mode light can be propagated.
  • planar waveguide 10A design example of the planar waveguide 10A to satisfy the relation of the aforementioned expression (9).
  • the planar waveguide 10A is configured as follows.
  • the core 11 has a thickness d 11 of 10 ⁇ m and a refractive index n 11 of 1.42.
  • the multilayer film as the outer cladding 13A is a multilayer film in which thin films 13a and thin films 13b are alternately stacked.
  • the thin film 13a is a thin film having a film thickness d 13a of 426 nm and a refractive index n 13a of 2.16
  • the thin film 13b is a thin film having a film thickness d 13b of 229 nm and a refractive index n 13b of 1.45.
  • the amplified light 21 is light having a wavelength of 1.55 ⁇ m in vacuum
  • the excitation light 31 is light having a wavelength of 940 ⁇ m in vacuum.
  • n 11 , n 13a , and n 13b having the above values are obtained, for example, Er-added aluminum fluoride glass is used as the material of the core 11, and Ta 2 O 5 is used as the material of the thin film 13a. , SiO 2 and the like as the material of the thin film 13b.
  • the propagation angle ⁇ 21 of the 0th-order mode light is 1.516 rad using the above formula (4) and the above formula (7).
  • the wave number k 2113a of the amplified light 21 in the thin film 13a is 6.61 ⁇ 10 6 m ⁇ 1 and the wave number k 2113b of the amplified light 21 in the thin film 13b is 1.23 ⁇ 10 6 m ⁇ 1 .
  • the optical path length of the amplified light 21 in the thin film 13a is 2.81 rad when converted into a phase
  • the optical path length of the amplified light 21 in the thin film 13b is 0.28 rad when converted into a phase. Accordingly, since the total is 3.10 rad, the multilayer film satisfies the relationship of the above formula (9).
  • the amount of exudation of the amplified light 21 in the planar waveguide 10A having the above configuration is calculated by simulation, the amount of exudation of the 0th-order mode light is 0.11%, and the amount of exudation of the first-order mode light is 0.44%.
  • the amount of seepage of the secondary mode light is 1.1%. Therefore, the loss of the 0th-order mode light in the amplified light 21 is suppressed to a value lower than that of the first-order mode light and the second-order mode light, and the planar waveguide 10A is a waveguide capable of propagating low-order mode light. It has become.
  • FIG. 12 is a graph showing the reflection characteristics of the outer cladding 13A with respect to the excitation light 31, and shows the reflection characteristics of the outer cladding 13A with respect to the excitation light 31 in the planar waveguide 10A having the above-described configuration.
  • the propagation angle ⁇ 31 of the excitation light 31 has a high reflectance of 53% or more and 99% or more.
  • the NA of this waveguide is 0.85. Therefore, as in the first embodiment, the waveguide can propagate the excitation light 31 emitted from the excitation light source 32 with a longitudinal spread angle of 45 ° with a sufficient design margin.
  • outer clad 12 has a symmetric structure with the outer clad 13A
  • outer clad 12 is highly reflective with respect to the excitation light 31 as in the structure of FIG. .
  • the present invention is not limited to this.
  • two types of thin films may be included in the multilayer film, or three or more types of thin films may be stacked.
  • the planar waveguide 10A as an optical amplifier
  • the planar waveguide 10A, the amplified light source 22, the coupling optical system 23, and the excitation light source 32 may be disposed as shown in FIGS. .
  • the planar waveguide 10 ⁇ / b> A is provided with the core 11 and the inner cladding 14 interposed on one surface of the core 11.
  • the outer claddings 12 and 13A are multilayer films in which a plurality of films of different materials are laminated.
  • the planar waveguide 10A having a high NA with respect to the excitation light 31 can be obtained. Further, since the planar waveguide 10A can enter the excitation light 31 with a high NA, it is possible to use a multimode excitation light source. Note that multi-mode light sources are generally cheaper than single-mode light sources and can constitute high-power laser light sources.
  • the multilayer film that is the outer claddings 12 and 13A is formed by laminating one or more sets of films made of different materials.
  • the amount of light leaking into the multilayer film varies depending on the propagation mode.
  • the amount of seepage increases as the propagation mode becomes higher order.
  • FIG. Embodiment 3 describes a planar waveguide that propagates linearly polarized amplified light emitted from an amplified light source to the core while maintaining the polarization.
  • FIG. 13 is a diagram showing a configuration of a planar waveguide 10B according to the third embodiment of the present invention, and shows a case where the planar waveguide 10B is an optical amplifier that amplifies the amplified light 21.
  • the same components as those in FIGS. 1 and 6 are denoted by the same reference numerals, and description thereof is omitted.
  • the amplified light 21 is incident on the core 11 with TE polarization.
  • the polarization may not be maintained. This is because birefringence occurs in the core 11 due to heat or stress.
  • the amount of the TE-polarized amplified light 21 and the amount of the TM-polarized amplified light 21 are changed to change the propagation constant of the TE-polarized amplified light 21 and the TM-polarized amplified light. 21 to control the propagation constant. Thereby, the polarization of the amplified light 21 incident on the core 11 is maintained.
  • the propagation constant of the TE-polarized light and TM-polarized amplified light 21 is controlled, and the planar waveguide 10B satisfying the relationship of the above formula (9) with respect to the propagation angle ⁇ 21 of the 0th-order mode light of the amplified light 21
  • the planar waveguide 10B is configured as follows.
  • the core 11 has a thickness d 11 of 10 ⁇ m and a refractive index n 11 of 1.42.
  • the multilayer film as the outer cladding 13A is a multilayer film in which thin films 13a and thin films 13b are alternately stacked.
  • the thin film 13a is a thin film having a film thickness d 13a of 426 nm and a refractive index n 13a of 2.16
  • the thin film 13b is a thin film having a film thickness d 13b of 229 nm and a refractive index n 13b of 1.45.
  • the amplified light 21 is light having a wavelength of 1.55 ⁇ m in vacuum
  • the excitation light 31 is light having a wavelength of 940 ⁇ m in vacuum.
  • n 11 , n 13a , and n 13b having the above values are obtained, for example, Er-added aluminum fluoride glass is used as the material of the core 11, and Ta 2 O 5 is used as the material of the thin film 13a. , SiO 2 and the like as the material of the thin film 13b.
  • the phase change amount does not become a constant value, but the phase change amount varies depending on the amount of the amplified light 21 that has leaked into the outer cladding 13A.
  • the amplified light 21 in the core 11 is obtained from the above equation (11). It can be seen that the wave number k 2111 of the laser beam varies depending on the polarization.
  • the multilayer film that is the outer cladding 13A is configured so that the amount of phase change of the amplified light 21 varies depending on the polarization.
  • phase rotation amount ⁇ 2113 of the amplified light 21 is calculated by simulation in the planar waveguide 10B having the above configuration, the difference between the phase rotation amount ⁇ 2113 between the TE mode amplified light 21 and the TM mode amplified light 21 is about 0. 0. 077 rad. For this reason, the propagation constant can be changed by about 2.5% for each mode.
  • a multilayer film in which two types of thin films are alternately stacked as the outer claddings 12 and 13A is shown.
  • the present invention is not limited to this.
  • two types of thin films may be included in the multilayer film, or three or more types of thin films may be stacked.
  • the planar waveguide 10B as an optical amplifier
  • the planar waveguide 10B, the amplified light source 22, the coupling optical system 23, and the excitation light source 32 may be arranged as shown in FIGS. .
  • the planar waveguide 10B according to the third embodiment in addition to the configuration shown in the second embodiment, in the multilayer film that is the outer claddings 12 and 13A, light leaks into the multilayer film due to polarization. The amount is different, and the amount of phase change of the amplified light differs depending on the polarization. With this configuration, the same effect as in the second embodiment can be obtained, and the propagation constant of the amplified light 21 can be controlled in the TE mode and the TM mode, and the polarization of the amplified light 21 can be maintained. .
  • planar waveguide according to the present invention is suitable for a laser medium of a laser device, for example, because it has a high NA with respect to excitation light even if the core is made of a material having a low refractive index.

Abstract

A planar waveguide (10) is provided with: a flat plate-shaped core (11) via which light propagates; exterior claddings (12, 13) provided on both sides of the core (11), the exterior claddings (12, 13) having a higher reflectivity with respect to excitation light (31) than amplified light (21); and interior claddings (14, 15) provided between the core (11) and the exterior claddings (12, 13), the interior claddings (14, 15) having a lower refractive index than the core (11). In this configuration, the exterior claddings (12, 13) are multilayer films laminated from a plurality of films made of different materials.

Description

平面導波路Planar waveguide
 この発明は、平面導波路に関する。 The present invention relates to a planar waveguide.
 ダブルクラッド型の平面導波路は、光を伝搬させるコアの両面にそれぞれクラッドが積層された導波路であり、コアに利得発生部材を使用することで光増幅器として機能する。
 なお、利得発生部材は、信号光である増幅光と励起光との2種類の光を伝搬させることにより、励起光を吸収して反転分布を形成することで増幅光を増幅する部材である。
The double clad type planar waveguide is a waveguide in which clads are laminated on both sides of a core for propagating light, and functions as an optical amplifier by using a gain generating member for the core.
Note that the gain generating member is a member that amplifies the amplified light by propagating two types of light, that is, the amplified light and the pumping light, thereby absorbing the pumping light and forming an inverted distribution.
 また、ダブルクラッド型の平面導波路には、コアの両面側にそれぞれ設けられた外部クラッドと、コアの少なくとも一方の面と外部クラッドとの間に設けられた内部クラッドとを備えるものがある。この平面導波路において、コアを伝搬する増幅光は、内部クラッドで反射されてコア側に戻され、励起光は、外部クラッドで反射されてコア側に戻される。 Some of the double clad type planar waveguides include an outer clad provided on both sides of the core and an inner clad provided between at least one surface of the core and the outer clad. In this planar waveguide, the amplified light propagating through the core is reflected by the inner cladding and returned to the core side, and the excitation light is reflected by the outer cladding and returned to the core side.
 例えば、特許文献1に記載された導波路は、前述したダブルクラッド型の平面導波路である。この平面導波路では、内部クラッドがコアよりも低い屈折率の材料で構成されており、外部クラッドが、内部クラッドよりも低い屈折率の材料で構成されている。
 上記平面導波路を伝搬する光のうち、コアと内部クラッドとの界面で全反射した光は、コアに閉じ込められ、内部クラッドと外部クラッドとの界面で全反射した光は、コアと内部クラッドとがなす領域に閉じ込められる。
For example, the waveguide described in Patent Document 1 is the above-described double-clad planar waveguide. In this planar waveguide, the inner cladding is made of a material having a lower refractive index than the core, and the outer cladding is made of a material having a lower refractive index than the inner cladding.
Of the light propagating through the planar waveguide, the light totally reflected at the interface between the core and the inner cladding is confined in the core, and the light totally reflected at the interface between the inner cladding and the outer cladding is reflected between the core and the inner cladding. It is confined in the area formed by.
 なお、平面導波路を伝搬する光のうち、広がり角が小さい光は、コアに閉じ込められ、広がり角がより大きい光は、コアと内部クラッドとがなす領域に閉じ込められる。
 一般に増幅光の広がり角は小さくしたいという要望があり、また、励起光の広がり角は大きい方が平面導波路の高出力化を図ることができる。
Of the light propagating through the planar waveguide, light having a small divergence angle is confined in the core, and light having a larger divergence angle is confined in a region formed by the core and the inner cladding.
In general, there is a desire to reduce the spread angle of the amplified light, and the higher the spread angle of the excitation light, the higher the output of the planar waveguide can be achieved.
国際公開第2009/016703号International Publication No. 2009/016703
 どの程度の広がり角の光を平面導波路の内部に閉じ込められるかは、コアとクラッドの屈折率で決まり、これは導波路の開口数(NA;Numerical Aperture以下、NAと記載する)と呼ばれている。
 しかしながら、フッ化物ガラスなどの低い屈折率の材料をコアに使用した場合、光学的性質と物理的性質とを考慮すると、外部クラッドの材料として励起光に対して必要なNAを満たすものがない。このため、コアに低い屈折率の材料を使用できず、コアに使用可能な材料が制限されるという課題があった。
 さらに、平面導波路を上記光増幅器として機能させる場合に、広がり角の大きい安価な励起光源を使用できないため、コストの上昇が懸念される。
The degree of divergence of light that can be confined inside a planar waveguide is determined by the refractive index of the core and cladding, which is called the numerical aperture of the waveguide (NA) (hereinafter referred to as NA). ing.
However, when a material having a low refractive index such as fluoride glass is used for the core, considering the optical properties and physical properties, none of the materials for the outer cladding satisfy the NA required for the excitation light. For this reason, the material of a low refractive index cannot be used for a core, but the subject that the material which can be used for a core was restricted occurred.
Furthermore, when a planar waveguide functions as the optical amplifier, an inexpensive pumping light source having a large divergence angle cannot be used.
 この発明は上記課題を解決するもので、低い屈折率の材料でコアを構成しても、励起光に対して高いNAとなる平面導波路を得ることを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to obtain a planar waveguide having a high NA with respect to excitation light even if the core is made of a material having a low refractive index.
 この発明に係る平面導波路は、光を伝搬する平板状のコアと、コアの両面側にそれぞれ設けられ、励起光に対して増幅光よりも高い反射率を有する第1のクラッドと、コアの少なくとも一方の面と第1のクラッドとの間に設けられ、コアよりも低い屈折率を有する第2のクラッドとを備える。この構成において、第1のクラッドは、材質の異なる複数の膜が積層された多層膜である。 The planar waveguide according to the present invention includes a flat core that propagates light, a first clad that is provided on both sides of the core and has higher reflectivity than the amplified light with respect to the excitation light, and the core A second clad provided between at least one surface and the first clad and having a refractive index lower than that of the core. In this configuration, the first cladding is a multilayer film in which a plurality of films made of different materials are stacked.
 この発明によれば、材質が異なる複数の膜が積層された多層膜で第1のクラッドが構成されているので、低い屈折率の材料でコアを構成しても、励起光に対して高いNAとなる平面導波路を得ることができるという効果がある。 According to the present invention, since the first clad is constituted by a multilayer film in which a plurality of films of different materials are laminated, even if the core is constituted by a material having a low refractive index, a high NA is obtained with respect to excitation light. There is an effect that a planar waveguide can be obtained.
この発明の実施の形態1に係る平面導波路の構成を示す図である。It is a figure which shows the structure of the planar waveguide which concerns on Embodiment 1 of this invention. 平面導波路における寄生発振の概要を示す図である。It is a figure which shows the outline | summary of the parasitic oscillation in a planar waveguide. 励起光と増幅光とに対する外部クラッドの反射特性を示すグラフである。It is a graph which shows the reflection characteristic of the external clad with respect to excitation light and amplification light. 実施の形態1に係る平面導波路、増幅光光源、結合光学系および励起光源の配置例を示す図である。4 is a diagram illustrating an arrangement example of a planar waveguide, an amplified light source, a coupling optical system, and an excitation light source according to Embodiment 1. FIG. 実施の形態1に係る平面導波路、増幅光光源、結合光学系および励起光源の他の配置例を示す図である。FIG. 6 is a diagram illustrating another arrangement example of the planar waveguide, the amplified light source, the coupling optical system, and the excitation light source according to the first embodiment. この発明の実施の形態2に係る平面導波路の構成を示す図である。It is a figure which shows the structure of the planar waveguide which concerns on Embodiment 2 of this invention. 増幅光の波数ベクトルの概要を示す図である。It is a figure which shows the outline | summary of the wave vector of amplified light. 増幅光の低次モード光および高次モード光の概要を示す図である。It is a figure which shows the outline | summary of the low order mode light and high order mode light of amplified light. クラッドへの増幅光のしみ出し量と導波路損失の測定結果との関係を示すグラフである。It is a graph which shows the relationship between the amount of seepage of the amplified light to a clad, and the measurement result of waveguide loss. 増幅光の0次モード光と1次モード光とにおける電界分布とクラッドへのしみ出しを示す図である。It is a figure which shows the electric field distribution in the 0th mode light of primary light and primary mode light, and the seepage to a clad. 増幅光が膜間を1往復したときの光路が2πの位相に相当する多層膜を示す図である。It is a figure which shows the multilayer film by which an optical path when amplified light reciprocates 1 time between films | membranes corresponds to the phase of 2 (pi). 励起光に対する外部クラッドの反射特性を示すグラフである。It is a graph which shows the reflection characteristic of the outer clad with respect to excitation light. この発明の実施の形態3に係る平面導波路の構成を示す図である。It is a figure which shows the structure of the planar waveguide which concerns on Embodiment 3 of this invention.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る平面導波路10の構成を示す図であって、平面導波路10が、増幅光21を増幅させる光増幅器である場合を示している。
 平面導波路10は、コア11の両面側にそれぞれ外部クラッド12と外部クラッド13とを備え、コア11の一方の面と外部クラッド12との間に内部クラッド14、コア11の他方の面と外部クラッド13との間に内部クラッド15を備えている。
Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a planar waveguide 10 according to Embodiment 1 of the present invention, and shows a case where the planar waveguide 10 is an optical amplifier that amplifies amplified light 21.
The planar waveguide 10 includes an outer clad 12 and an outer clad 13 on both sides of the core 11, an inner clad 14 between the one surface of the core 11 and the outer clad 12, and the other surface of the core 11 and the outer surface. An internal clad 15 is provided between the clad 13 and the clad 13.
 コア11は、信号光である増幅光21が伝搬する平板状の部材である。
 増幅光21は、図1において実線で示す光である。一方、励起光源32から放射された励起光31は、図1において点線で示す光である。
 なお、図1では、コア11の厚さ方向がx軸方向であり、コア11の側面に垂直な方向がy軸方向であり、コア11に増幅光21が伝搬される光軸方向がz軸方向である。
 また、コア11の屈折率をn11、コア11の厚さをd11とする。
The core 11 is a flat member through which the amplified light 21 that is signal light propagates.
The amplified light 21 is light indicated by a solid line in FIG. On the other hand, the excitation light 31 emitted from the excitation light source 32 is light indicated by a dotted line in FIG.
In FIG. 1, the thickness direction of the core 11 is the x-axis direction, the direction perpendicular to the side surface of the core 11 is the y-axis direction, and the optical axis direction in which the amplified light 21 is propagated to the core 11 is the z-axis. Direction.
The refractive index of the core 11 is n 11 , and the thickness of the core 11 is d 11 .
 コア11は、増幅光21を増幅させる作用のある利得発生部材で構成されている。
 利得発生部材とは、励起光31を吸収して反転分布を形成することで、輻射遷移により利得を発生する部材である。
 利得発生部材としては、例えば、Er、Yb、Tm、Ndなどの希土類元素が添加されたガラス、Nd:YVOのような希土類が添加された結晶、Yb:YAGのような希土類元素が添加された結晶を原料としているセラミックが挙げられる。
 または、Cr:YAGまたはTi:Sapphireなどの遷移金属が添加されている結晶を使用してもよい。
The core 11 is composed of a gain generating member that has an action of amplifying the amplified light 21.
The gain generating member is a member that generates a gain by radiation transition by absorbing the excitation light 31 to form an inverted distribution.
As the gain generating member, for example, a glass to which a rare earth element such as Er, Yb, Tm, or Nd is added, a crystal to which a rare earth element such as Nd: YVO 4 is added, or a rare earth element such as Yb: YAG is added. And ceramics made from such crystals.
Alternatively, a crystal to which a transition metal such as Cr: YAG or Ti: Sapphire is added may be used.
 平面導波路10の厚さ方向と増幅光21または励起光31の伝搬方向とを含む面に垂直な偏光は、TE(Transverse Electric field)モードと呼ばれており、TEモードの偏光がTE偏光である。
 また、平面導波路10の厚さ方向と増幅光21または励起光31の伝搬方向とを含む面に平行な偏光は、TM(Transverse Magnetic field)モードと呼ばれており、TMモードの偏光がTM偏光である。
 なお、図1ではy偏光であるときにTEモードとなり、x偏光であるときにTMモードとなる。
The polarization perpendicular to the plane including the thickness direction of the planar waveguide 10 and the propagation direction of the amplified light 21 or the excitation light 31 is called a TE (Transverse Electric field) mode, and the TE mode polarization is TE polarization. is there.
The polarization parallel to the plane including the thickness direction of the planar waveguide 10 and the propagation direction of the amplified light 21 or the excitation light 31 is called a TM (Transverse Magnetic Field) mode, and the TM mode polarization is TM. Polarized light.
In FIG. 1, the TE mode is set when y-polarized light and the TM mode is set when x-polarized light.
 外部クラッド12および外部クラッド13は、第1のクラッドを具体化した構成要素であり、励起光31を反射してコア11側へ戻す平板状の部材である。なお、外部クラッド12と外部クラッド13は、励起光31に対して増幅光21よりも高い反射率をそれぞれが有しており、yz平面に関して対称な位置に配置されている。
 また、外部クラッド12と外部クラッド13とは、材質の異なる複数の膜が積層された多層膜で構成されている。多層膜には、コア11と内部クラッド14,15とで構成される導波路のNAが、励起光31に対して0.38以上、増幅光21に対して0.38以下となる多層膜が用いられる。
The outer cladding 12 and the outer cladding 13 are components embodying the first cladding, and are flat members that reflect the excitation light 31 and return it to the core 11 side. The outer clad 12 and the outer clad 13 each have a higher reflectance than the amplified light 21 with respect to the excitation light 31, and are arranged at positions symmetrical with respect to the yz plane.
Further, the outer clad 12 and the outer clad 13 are composed of a multilayer film in which a plurality of films made of different materials are laminated. The multilayer film includes a multilayer film in which the NA of the waveguide constituted by the core 11 and the inner claddings 14 and 15 is 0.38 or more with respect to the excitation light 31 and 0.38 or less with respect to the amplified light 21. Used.
 図1中の拡大図で示すように、外部クラッド12は、薄膜12aと薄膜12bとが交互に積層された多層膜であり、外部クラッド13は、薄膜13aと薄膜13bとが交互に積層された多層膜である。すなわち、外部クラッド12,13は、材質の異なる複数の膜の組が1つ以上積層された多層膜で構成されている。 As shown in the enlarged view of FIG. 1, the outer cladding 12 is a multilayer film in which thin films 12a and thin films 12b are alternately stacked, and the outer cladding 13 is formed by alternately stacking thin films 13a and thin films 13b. It is a multilayer film. That is, the outer claddings 12 and 13 are formed of a multilayer film in which one or more film sets made of different materials are stacked.
 薄膜12aと薄膜12bは、材質が異なる材料で形成されている。
 例えば、成膜が可能な誘電体材料であるSiO、Ta、MgO、Nb、TiO、CaF、MgFなどの中から2種類の誘電体材料が選択されて薄膜12aと薄膜12bとが形成される。薄膜13aと薄膜13bについても同様である。
 なお、薄膜12aと薄膜12bの材料の組み合わせと薄膜13aと薄膜13bの材料の組み合わせとが同じであってもよいが、互いに異なっていてもよい。
The thin film 12a and the thin film 12b are formed of different materials.
For example, two kinds of dielectric materials are selected from among the dielectric materials that can be formed, such as SiO 2 , Ta 2 O 5 , MgO, Nb 2 O 5 , TiO 2 , CaF 2 , MgF 2, etc. 12a and thin film 12b are formed. The same applies to the thin film 13a and the thin film 13b.
Note that the combination of the materials of the thin film 12a and the thin film 12b and the combination of the materials of the thin film 13a and the thin film 13b may be the same, or may be different from each other.
 また、平面導波路10において、薄膜12aの屈折率をn12a、薄膜12bの屈折率をn12bとし、薄膜12aの膜厚をd12a、薄膜12bの膜厚をd12bとする。
 薄膜12aの屈折率n12aと薄膜12bの屈折率n12bとの一方の屈折率または両方の屈折率が、コア11の屈折率n11よりも高くてもよい。
 薄膜13aの屈折率はn13a、薄膜13bの屈折率はn13bであり、薄膜13aの膜厚はd13a、薄膜13bの膜厚はd13bであるものとする。
 同様に、薄膜13aの屈折率n13aと薄膜13bの屈折率n13bのうちの一方の屈折率または両方の屈折率が、コア11の屈折率n11よりも高くてもよい。
In the planar waveguide 10, the refractive index of the thin film 12a is n 12a , the refractive index of the thin film 12b is n 12b , the film thickness of the thin film 12a is d 12a , and the film thickness of the thin film 12b is d 12b .
One of the refractive index or both of the refractive index between the refractive index n 12b of the refractive index n 12a and the thin film 12b of the thin film 12a may be higher than the refractive index n 11 of the core 11.
The refractive index of the thin film 13a is n13a , the refractive index of the thin film 13b is n13b , the film thickness of the thin film 13a is d13a , and the film thickness of the thin film 13b is d13b .
Similarly, one or both of the refractive index n 13a of the thin film 13a and the refractive index n 13b of the thin film 13b may be higher than the refractive index n 11 of the core 11.
 内部クラッド14および内部クラッド15は、第2のクラッドを具体化した構成要素であり、励起光31を反射してコア11側へ戻す平板状の部材である。
 内部クラッド14は、コア11の一方の面と外部クラッド12との間に設けられ、内部クラッド15は、コア11の他方の面と外部クラッド13との間に設けられている。
 さらに、内部クラッド14の屈折率n14は、コア11の屈折率n11よりも低く、内部クラッド15の屈折率n15は、コア11の屈折率n11よりも低くなっている。
The inner cladding 14 and the inner cladding 15 are components embodying the second cladding, and are flat members that reflect the excitation light 31 and return it to the core 11 side.
The inner cladding 14 is provided between one surface of the core 11 and the outer cladding 12, and the inner cladding 15 is provided between the other surface of the core 11 and the outer cladding 13.
Further, the refractive index n 14 of the inner cladding 14 is lower than the refractive index n 11 of the core 11, the refractive index n 15 of the inner cladding 15 is lower than the refractive index n 11 of the core 11.
 なお、内部クラッド14の屈折率n14と内部クラッド15の屈折率n15は、コア11の屈折率n11との間で、下記式(1)と下記式(2)の関係を有している。
(n11-0.01)<n14<n11   (1)
(n11-0.01)<n15<n11   (2)
The refractive index n 14 of the inner cladding 14 and the refractive index n 15 of the inner cladding 15 have a relationship of the following formula (1) and the following formula (2) between the refractive index n 11 of the core 11. Yes.
(N 11 -0.01) <n 14 <n 11 (1)
(N 11 −0.01) <n 15 <n 11 (2)
 励起光源32から放射された励起光31は、コア11の内部と内部クラッド14,15の内部とを、これらの屈折率に応じた伝搬角で伝搬する。
 ただし、伝搬角θ31が90°付近でない場合は、上記式(1)と上記式(2)とから明らかなようにコア11と内部クラッド14,15とが非常に近い屈折率を有するので、コア11と内部クラッド14,15との各界面での屈折角はごく僅かな値となる。
 このため、励起光31は、コア11においても、内部クラッド14,15においても、伝搬角θ31で伝搬するとみなせる。
 なお、外部クラッド12,13は、内部クラッド14,15側から伝搬角θ31で入射された励起光31に対して99%以上の反射率を有している。
The excitation light 31 radiated from the excitation light source 32 propagates through the core 11 and the inner claddings 14 and 15 at propagation angles corresponding to these refractive indexes.
However, when the propagation angle θ 31 is not near 90 °, the core 11 and the inner claddings 14 and 15 have very close refractive indexes, as is apparent from the above formula (1) and the above formula (2). The refraction angle at each interface between the core 11 and the inner claddings 14 and 15 is very small.
For this reason, it can be considered that the excitation light 31 propagates at the propagation angle θ 31 both in the core 11 and in the inner claddings 14 and 15.
The outer claddings 12 and 13 have a reflectance of 99% or more with respect to the excitation light 31 incident at the propagation angle θ 31 from the inner claddings 14 and 15 side.
 一般的なダブルクラッド型の平面導波路では、実現可能なNAに制限がある。
 例えば、コア11の材料としてEr添加リン酸ガラスを用いた場合、コア11の屈折率n11は1.515となる。この場合、上記式(1)と上記式(2)から、内部クラッド14,15の屈折率n14,n15は、およそ1.51と仮定できる。
 一方、外部クラッドとして低屈折率の材料であるフッ化物ガラスを用いると、コア11の屈折率n11は1.47となり、平面導波路における励起光に対するNAは約0.35となる。
In a general double clad type planar waveguide, there is a limit to the realizable NA.
For example, when Er-added phosphate glass is used as the material of the core 11, the refractive index n11 of the core 11 is 1.515. In this case, from the above formulas (1) and (2), it can be assumed that the refractive indexes n 14 and n 15 of the inner claddings 14 and 15 are approximately 1.51.
On the other hand, when fluoride glass, which is a low refractive index material, is used as the outer cladding, the refractive index n11 of the core 11 is 1.47, and the NA for the excitation light in the planar waveguide is about 0.35.
 励起用のマルチモードレーザダイオードのNAは、0.35を上回ることがある。このため、マルチモードレーザダイオードを平面導波路の励起光源として用いる場合、レンズなどの光学系が必要となる。
 例えば、マルチモードレーザダイオードが放射する光の縦方向の広がり角が全角45°であると、このマルチモードレーザダイオードと平面導波路とを近接配置して結合させるには、0.38以上のNAが必要である。
The NA of the pumping multimode laser diode may exceed 0.35. For this reason, when a multimode laser diode is used as an excitation light source for a planar waveguide, an optical system such as a lens is required.
For example, when the longitudinal divergence angle of the light emitted from the multimode laser diode is 45 ° in total, in order to connect the multimode laser diode and the planar waveguide in close proximity, the NA is 0.38 or more. is required.
 これに対して、コア11の屈折率n11を高めれば、全反射で実現可能な平面導波路のNAが向上するが、寄生発振が起こり易くなる。
 図2は、平面導波路における寄生発振の概要を示す図である。図2に示すように、増幅光21の経路が導波路内部の全反射のみで形成されると、損失が非常に少ないことから、レーザ発振してしまう。このような寄生発振によって、コア11を伝搬する増幅光21を増幅させるためのエネルギーが消費される。
In contrast, Takamere a refractive index n 11 of the core 11, but improves the NA of possible planar waveguide realized by total reflection, easily parasitic oscillation occurs.
FIG. 2 is a diagram showing an outline of parasitic oscillation in a planar waveguide. As shown in FIG. 2, when the path of the amplified light 21 is formed only by total reflection inside the waveguide, the laser oscillation occurs because the loss is very small. Such parasitic oscillation consumes energy for amplifying the amplified light 21 propagating through the core 11.
 なお、下記式(3)に示す条件を満たすと、図2に示す増幅光21の経路が導波路内部の全反射のみで形成される。ただし、ncladは、外部クラッド12と外部クラッド13の屈折率のうち、高い方を表す。
 外部クラッドの屈折率ncladがフッ化物ガラスと同様の1.47である場合、下記式(3)によれば、コア11の屈折率n11が1.78を超えると、寄生発振を避けることが困難となる。
arcsin(nclad/n11)+arcsin(1/n11)≦π/2                           (3)
When the condition shown in the following formula (3) is satisfied, the path of the amplified light 21 shown in FIG. 2 is formed only by total reflection inside the waveguide. However, n clad represents the higher one of the refractive indexes of the outer cladding 12 and the outer cladding 13.
When the refractive index n clad of the outer cladding is 1.47, which is the same as that of fluoride glass, according to the following formula (3), when the refractive index n 11 of the core 11 exceeds 1.78, parasitic oscillation is avoided. It becomes difficult.
arcsin (n clad / n 11 ) + arcsin (1 / n 11 ) ≦ π / 2 (3)
 そこで、平面導波路10では、外部クラッド12,13として、励起光31に対して広範囲に亘る角度で99%以上の反射率となり、かつ増幅光21に対して反射率を抑制した多層膜を用いている。すなわち、コア11と内部クラッド14,15とで構成される導波路のNAが、励起光31に対して0.38以上となり、増幅光21に対して0.38以下となる多層膜が用いられる。これにより、励起光31に対するNAが高くかつ増幅光21の寄生発振が抑制された平面導波路10を得ることができる。 Therefore, in the planar waveguide 10, multilayer films that have a reflectivity of 99% or more over a wide range with respect to the excitation light 31 and have a reduced reflectivity with respect to the amplified light 21 are used as the outer claddings 12 and 13. ing. That is, a multilayer film in which the NA of the waveguide constituted by the core 11 and the inner claddings 14 and 15 is 0.38 or more with respect to the pumping light 31 and 0.38 or less with respect to the amplified light 21 is used. . Thereby, it is possible to obtain the planar waveguide 10 having a high NA with respect to the excitation light 31 and suppressing the parasitic oscillation of the amplified light 21.
 例えば、平面導波路10において、内部クラッド14の屈折率n14と内部クラッド15の屈折率n15とがともに1.42であり、コア11の屈折率n11が屈折率n14,n15よりも3/1000大きいものとする。また、コア11、内部クラッド14および内部クラッド15の厚さの合計が120μmであるものとする。
 外部クラッド12である多層膜は、膜厚d12aが119nmで屈折率n12aが2.16の薄膜12aと、膜厚d12bが274nmで屈折率n12bが1.45の薄膜12bと、が交互に10層ずつ積層されているものとする。外部クラッド13である多層膜についても同様に、膜厚d13aが119nmで屈折率n13aが2.16の薄膜13aと、膜厚d13bが274nmで屈折率n13bが1.45の薄膜13bと、が交互に10層ずつ積層されているものとする。
 そして、増幅光21を真空中で波長1550nmの光とし、励起光31を真空中で波長940nmの光とする。
For example, in the planar waveguide 10, the refractive index n 14 of the inner cladding 14 and the refractive index n 15 of the inner cladding 15 are both 1.42, and the refractive index n 11 of the core 11 is based on the refractive indices n 14 and n 15 . 3/1000 larger. Further, the total thickness of the core 11, the inner cladding 14 and the inner cladding 15 is 120 μm.
The multilayer film that is the outer cladding 12 includes a thin film 12a having a film thickness d 12a of 119 nm and a refractive index n 12a of 2.16, and a thin film 12b having a film thickness d 12b of 274 nm and a refractive index n 12b of 1.45. Assume that 10 layers are alternately stacked. Similarly, for the multilayer film as the outer cladding 13, a thin film 13a having a film thickness d 13a of 119 nm and a refractive index n 13a of 2.16, and a thin film 13b having a film thickness d 13b of 274 nm and a refractive index n 13b of 1.45. And 10 layers are alternately stacked.
The amplified light 21 is light having a wavelength of 1550 nm in vacuum, and the excitation light 31 is light having a wavelength of 940 nm in vacuum.
 このように構成することで、前述したように励起光31に対するNAが高くかつ増幅光21の寄生発振が抑制された平面導波路10を実現することができる。
 なお、上記値の屈折率n11,n14,n15,n12a,n12b,n13a,n13bが得られる材料としては、下記のものがある。
 例えば、コア11の材料としてEr添加フッ化アルミニウムガラスが挙げられ、内部クラッド14,15の材料には無添加のフッ化アルミニウムガラス、薄膜12a,13aの材料にTa、薄膜12b,13bの材料にSiOが挙げられる。
With this configuration, it is possible to realize the planar waveguide 10 having a high NA with respect to the excitation light 31 and a suppressed parasitic oscillation of the amplified light 21 as described above.
The following materials can be used to obtain the refractive indexes n 11 , n 14 , n 15 , n 12a , n 12b , n 13a , and n 13b having the above values.
For example, Er-added aluminum fluoride glass can be cited as the material of the core 11, additive-free aluminum fluoride glass as the material of the inner claddings 14 and 15, Ta 2 O 5 as the material of the thin films 12a and 13a, and the thin films 12b and 13b. Examples of the material include SiO 2 .
 図3は、励起光31と増幅光21とに対する外部クラッド12,13の反射特性を示すグラフであり、伝搬角と反射率との関係を示している。ここで、実線の曲線aは、励起光31である940nmの光における反射特性を示しており、点線の曲線bは、増幅光21である1550nmの光における反射特性を示している。 FIG. 3 is a graph showing the reflection characteristics of the outer claddings 12 and 13 with respect to the excitation light 31 and the amplified light 21, and shows the relationship between the propagation angle and the reflectance. Here, the solid line curve a indicates the reflection characteristic of the excitation light 31 at 940 nm light, and the dotted line curve b indicates the reflection characteristic at the amplified light 21 of 1550 nm light.
 図3に示すように、励起光31の伝搬角θ31が43°以上で99%以上の高反射率となっている。このとき、平面導波路10の外部から見ると、励起光31に対してNAは1となり、任意の角度の光を閉じ込めることが可能となっている。
 従って、励起光源32から放射される励起光31の縦方向の広がり角が45°であっても、この励起光源32を平面導波路10に近接配置するだけで、十分な設計余裕をもって励起光31を平面導波路10に伝搬させることができる。
 なお、増幅光21に対しては、伝搬角θ21が60°以下で反射率が50%以下に抑えられている。
As shown in FIG. 3, the propagation angle θ 31 of the excitation light 31 is 43 ° or more, and the reflectivity is 99% or more. At this time, when viewed from the outside of the planar waveguide 10, NA is 1 with respect to the excitation light 31, and light of an arbitrary angle can be confined.
Accordingly, even if the vertical spread angle of the pumping light 31 emitted from the pumping light source 32 is 45 °, the pumping light 31 can be provided with a sufficient design margin only by arranging the pumping light source 32 close to the planar waveguide 10. Can be propagated to the planar waveguide 10.
Incidentally, with respect to the amplified light 21, the propagation angle theta 21 is the reflectance at 60 ° or less is suppressed to 50% or less.
 また、平面導波路10を光増幅器として備える増幅装置では、下記のような構成部品の配置が考えられる。ここで、図4は、平面導波路10、増幅光光源22、結合光学系23および励起光源32の配置例を示す上面図である。
 また、図5は、平面導波路10、増幅光光源22、結合光学系23および励起光源32の他の配置例を示す上面図である。
 図4および図5において、増幅光光源22は、信号光である増幅光21を放射する光源であり、結合光学系23は、増幅光光源22を平面導波路10に結合するための光学系である。
Further, in an amplifying apparatus including the planar waveguide 10 as an optical amplifier, the following arrangement of components can be considered. Here, FIG. 4 is a top view showing an arrangement example of the planar waveguide 10, the amplified light source 22, the coupling optical system 23, and the excitation light source 32.
FIG. 5 is a top view showing another arrangement example of the planar waveguide 10, the amplified light source 22, the coupling optical system 23, and the excitation light source 32.
4 and 5, the amplified light source 22 is a light source that emits amplified light 21 that is signal light, and the coupling optical system 23 is an optical system for coupling the amplified light source 22 to the planar waveguide 10. is there.
 図4に示す増幅装置では、励起光源32、平面導波路10、結合光学系23および増幅光光源22が、この順で一定の方向に並べて配置されている。一定の方向は、増幅光21が平面導波路10を伝搬する光軸方向(z軸方向)である。
 また、図5に示す増幅装置では、励起光源32と平面導波路10とが並んだ方向(z軸方向)と、平面導波路10と結合光学系23と増幅光光源22とが並んだ方向(y軸方向)とが直交している。
 平面導波路10は励起光31に対するNAが高いので、図4および図5に示すように、励起光源32と平面導波路10とを結合するための光学系が不要である。
In the amplifying apparatus shown in FIG. 4, the excitation light source 32, the planar waveguide 10, the coupling optical system 23, and the amplified light source 22 are arranged in this order in a certain direction. The certain direction is the optical axis direction (z-axis direction) in which the amplified light 21 propagates through the planar waveguide 10.
In the amplification device shown in FIG. 5, the direction in which the excitation light source 32 and the planar waveguide 10 are aligned (z-axis direction), and the direction in which the planar waveguide 10, the coupling optical system 23, and the amplified light source 22 are aligned ( and the y-axis direction) are orthogonal to each other.
Since the planar waveguide 10 has a high NA with respect to the excitation light 31, no optical system for coupling the excitation light source 32 and the planar waveguide 10 is required as shown in FIGS.
 これまで、外部クラッド12,13として、2種類の薄膜が交互に積層された多層膜を示したが、これに限定されるものではない。
 例えば、多層膜に含まれる薄膜の種類は2種類であってもよいし、3種類以上の薄膜が積層されていてもよい。
Up to now, as the outer claddings 12 and 13, a multilayer film in which two types of thin films are alternately stacked has been shown, but it is not limited thereto.
For example, two types of thin films may be included in the multilayer film, or three or more types of thin films may be stacked.
 図1で示したように、外部クラッド12である多層膜と外部クラッド13である多層膜は、yz平面に対して対称な関係で配置されている。
 ただし、外部クラッド12と外部クラッド13とでは、多層膜に使用する材料あるいは膜厚が互いに異なっていてもよい。
As shown in FIG. 1, the multilayer film that is the outer cladding 12 and the multilayer film that is the outer cladding 13 are arranged in a symmetrical relationship with respect to the yz plane.
However, the outer clad 12 and the outer clad 13 may have different materials or film thicknesses used for the multilayer film.
 また、コア11の材料として低屈折率のガラスなどを用いない場合、外部クラッド12または外部クラッド13を屈折率が低い材料で構成する。これにより、外部クラッド12または外部クラッド13における全反射で励起光31を導波路内部に閉じ込めてもよい。 Further, when the low refractive index glass or the like is not used as the material of the core 11, the outer cladding 12 or the outer cladding 13 is made of a material having a low refractive index. Thereby, the excitation light 31 may be confined inside the waveguide by total reflection at the outer cladding 12 or the outer cladding 13.
 以上のように、実施の形態1に係る平面導波路10は、光を伝搬する平板状のコア11と、コア11の両面側にそれぞれ設けられ、励起光31に対して増幅光21よりも高い反射率を有する外部クラッド12,13と、コア11と外部クラッド12,13との間に設けられ、コア11よりも低い屈折率を有する内部クラッド14,15とを備える。外部クラッド12,13は、材質の異なる複数の膜が積層された多層膜である。
 このように構成されているので、低屈折率の材料でコア11を構成しても、励起光31に対して高いNAとなる平面導波路10を得ることができる。
As described above, the planar waveguide 10 according to the first embodiment is provided on each of the flat core 11 that propagates light and both sides of the core 11, and is higher than the amplified light 21 with respect to the excitation light 31. External claddings 12 and 13 having reflectivity, and internal claddings 14 and 15 provided between the core 11 and the external claddings 12 and 13 and having a refractive index lower than that of the core 11 are provided. The outer claddings 12 and 13 are multilayer films in which a plurality of films made of different materials are laminated.
Since it is configured in this way, the planar waveguide 10 having a high NA with respect to the excitation light 31 can be obtained even if the core 11 is made of a low refractive index material.
 また、実施の形態1に係る平面導波路10において、コア11が、励起光31を吸収して増幅光21を増幅する利得発生部材である。
 増幅光21は、外部クラッド12,13に入射することはないが、コア11から増幅光21に近い波長で自然放出光が放出された場合、この自然放出光は、外部クラッド12,13に入射される。このとき、図2に示した光の経路が導波路内部の全反射のみで形成されると、寄生発振が発生する。
 これに対して、平面導波路10は、外部クラッド12,13が上記多層膜で構成されているので、増幅光21に対する反射率が抑えられて寄生発振を抑制することができる。
 さらに、平面導波路10は励起光31を高いNAで入射することができるので、マルチモードの励起光源を使用することが可能である。
 なお、マルチモードの光源は、一般にシングルモードの光源よりも価格が安く、高出力のレーザ光源を構成することができる。
In the planar waveguide 10 according to the first embodiment, the core 11 is a gain generating member that absorbs the excitation light 31 and amplifies the amplified light 21.
The amplified light 21 does not enter the outer claddings 12 and 13, but when spontaneous emission light is emitted from the core 11 at a wavelength close to the amplified light 21, the spontaneous emission light is incident on the outer claddings 12 and 13. Is done. At this time, if the light path shown in FIG. 2 is formed only by total internal reflection in the waveguide, parasitic oscillation occurs.
On the other hand, in the planar waveguide 10, since the outer claddings 12 and 13 are formed of the multilayer film, the reflectance with respect to the amplified light 21 can be suppressed and parasitic oscillation can be suppressed.
Furthermore, since the planar waveguide 10 can enter the excitation light 31 with a high NA, it is possible to use a multimode excitation light source.
Note that multi-mode light sources are generally cheaper than single-mode light sources and can constitute high-power laser light sources.
 さらに、実施の形態1に係る平面導波路10において、外部クラッド12,13を構成する多層膜は、材質の異なる複数の膜の組が1つ以上積層されている。さらに、多層膜の特性によって、NAが、励起光31に対して0.38以上、増幅光21に対して0.38以下となる。これにより、励起光31に対するNAが高く、かつ増幅光21の寄生発振が抑制された平面導波路10を得ることができる。 Furthermore, in the planar waveguide 10 according to the first embodiment, the multilayer film constituting the outer claddings 12 and 13 is formed by laminating one or more sets of films made of different materials. Furthermore, the NA is 0.38 or more for the excitation light 31 and 0.38 or less for the amplified light 21 depending on the characteristics of the multilayer film. Thereby, it is possible to obtain the planar waveguide 10 having a high NA with respect to the excitation light 31 and suppressing the parasitic oscillation of the amplified light 21.
実施の形態2.
 上記実施の形態1は、内部クラッド14,15によって増幅光21をコア11側に閉じ込め、外部クラッド12,13によって励起光31をコア11側に閉じ込めるダブルクラッド型の平面導波路を示した。実施の形態2では、内部クラッド15を設けず、外部クラッド13によって増幅光21と励起光31の両方をコア11側に閉じ込める構成について説明する。
Embodiment 2. FIG.
In the first embodiment, the double clad type planar waveguide in which the amplified light 21 is confined to the core 11 side by the inner clads 14 and 15 and the excitation light 31 is confined to the core 11 side by the outer clads 12 and 13 is shown. In the second embodiment, a configuration in which the inner cladding 15 is not provided and both the amplified light 21 and the pumping light 31 are confined on the core 11 side by the outer cladding 13 will be described.
 図6は、この発明の実施の形態2に係る平面導波路10Aの構成を示す図であり、平面導波路10Aが、増幅光21を増幅させる光増幅器である場合を示している。
 なお、図6において、図1と同一の構成要素には同一の符号を付して説明を省略する。
 図1と同様に、増幅光21および励起光31における、平面導波路10Aの厚さ方向に垂直な偏光がTE偏光である。また、増幅光21および励起光31における、平面導波路10の厚さ方向と増幅光21の伝搬方向とを含む面に平行な偏光がTM偏光である。図6では、y偏光であるときにTEモードとなり、x偏光であるときにTMモードとなる。
FIG. 6 is a diagram showing a configuration of a planar waveguide 10A according to Embodiment 2 of the present invention, and shows a case where the planar waveguide 10A is an optical amplifier that amplifies the amplified light 21. In FIG.
In FIG. 6, the same components as those in FIG.
As in FIG. 1, the polarized light perpendicular to the thickness direction of the planar waveguide 10A in the amplified light 21 and the excitation light 31 is TE polarized light. Also, the polarized light parallel to the plane including the thickness direction of the planar waveguide 10 and the propagation direction of the amplified light 21 in the amplified light 21 and the excitation light 31 is TM polarized light. In FIG. 6, the TE mode is obtained when y-polarized light and the TM mode is obtained when x-polarized light.
 外部クラッド13Aは、第1のクラッドを具体化した構成要素であって、増幅光21と励起光31の両方を反射してコア11側へ戻す平板状の部材である。また、外部クラッド13Aは、励起光31に対して増幅光21よりも高い反射率を有する。
 なお、平面導波路10Aでは、コア11の他方の面に内部クラッド15が設けられておらず、外部クラッド13Aがコア11の他方の面に直接接合されている。
 図6中の拡大図で示すように、外部クラッド13Aは、材質の異なる薄膜13aと薄膜13bとが交互に積層された多層膜で構成されている。
The outer clad 13A is a component that embodies the first clad, and is a flat member that reflects both the amplified light 21 and the pumping light 31 and returns it to the core 11 side. Further, the outer cladding 13 </ b> A has a higher reflectance than the amplified light 21 with respect to the excitation light 31.
In the planar waveguide 10 </ b> A, the inner cladding 15 is not provided on the other surface of the core 11, and the outer cladding 13 </ b> A is directly bonded to the other surface of the core 11.
As shown in the enlarged view of FIG. 6, the outer clad 13A is composed of a multilayer film in which thin films 13a and thin films 13b made of different materials are alternately stacked.
 真空中で波長λ21を有する増幅光21は、コア11の内部を伝搬角θ21で伝搬する。図7は増幅光21の波数ベクトルの概要を示す図であり、コア11と外部クラッド13Aにおける増幅光21の波数ベクトルを示している。
 図7に示すように、増幅光21の波数のx方向成分には、コア11における波数のx方向成分k2111、薄膜13aにおける波数のx方向成分k2113a、薄膜13bにおける波数のx方向成分k2113bがある。
The amplified light 21 having the wavelength λ 21 in the vacuum propagates through the core 11 at the propagation angle θ 21 . FIG. 7 is a diagram showing an outline of the wave number vector of the amplified light 21, and shows the wave vector of the amplified light 21 in the core 11 and the outer cladding 13A.
As shown in FIG. 7, the x direction component of the wave number of the amplified light 21 includes the x direction component k 2111 of the wave number in the core 11, the x direction component k 2113a of the wave number in the thin film 13a, and the x direction component k of the wave number in the thin film 13b. 2113b .
 k2111、k2113aおよびk2113bは、下記式(4)~(6)のように定義される。
 以降、波数のx方向成分を、単に、波数k2111、k2113aおよびk2113bと簡略して表記する。
2111=(2πn11cosθ21)/λ21          (4)
2113a=2π(n13a -n11 sinθ211/2/λ21  (5)
2113b=2π(n13b -n11 sinθ211/2/λ21  (6)
k 2111 , k 2113a and k 2113b are defined as in the following formulas (4) to (6).
Hereinafter, the x-direction component of the wave number is simply expressed as wave numbers k 2111 , k 2113a, and k 2113b .
k 2111 = (2πn 11 cos θ 21 ) / λ 21 (4)
k 2113a = 2π (n 13a 2 −n 11 2 sin 2 θ 21 ) 1/2 / λ 21 (5)
k 2113b = 2π (n 13b 2 −n 11 2 sin 2 θ 21 ) 1/2 / λ 21 (6)
 平面導波路10Aの内部では、図6に示す増幅光21の伝搬角θ21が離散した値をとる。ここで、コア11と外部クラッド13Aとの界面に入射した増幅光21の位相とこの界面で反射した増幅光21の位相とがπだけ変化していると仮定する。
 この仮定において、コア11が下記式(7)の関係を満足している場合、コア11における波数k2111から、上記式(4)に従って伝搬角θ21を決定することができる。
 なお、下記式(7)において、d11はコア11の厚さであり、m=0,1,2,3,・・・である。
211111=(m+1)π    (7)
Inside the planar waveguide 10A, takes a value propagation angle theta 21 has discrete amplified light 21 shown in FIG. Here, it is assumed that the phase of the amplified light 21 incident on the interface between the core 11 and the outer cladding 13A and the phase of the amplified light 21 reflected at this interface are changed by π.
In this assumption, when the core 11 satisfies the relationship of the following formula (7), the propagation angle θ 21 can be determined from the wave number k 2111 in the core 11 according to the above formula (4).
In the following formula (7), d 11 is the thickness of the core 11 and m = 0, 1, 2, 3,.
k 2111 d 11 = (m + 1) π (7)
 なお、励起光31が伝搬する範囲は、コア11と内部クラッド14とに跨がっており、コア11の厚さd11と内部クラッド14の厚さd14とは、通常、d14>>d11となっている。そのため、励起光31の伝搬角θ31は増幅光21に比べて連続的な値をとることができる。 The range of the excitation light 31 is propagated, core 11 and inner cladding 14 and has straddle the, the thickness d 14 of the thickness d 11 and inner cladding 14 of the core 11, usually, d 14 >> and it has a d 11. Therefore, the propagation angle theta 31 of the excitation light 31 may take continuous values in comparison with the amplified light 21.
 以下、離散した値をとる伝搬角θ21のうち、角度が大きい伝搬角θ21の順に、伝搬モードが0次、1次、2次・・・の伝搬角θ21と呼ぶ。
 また、0次の伝搬角θ21の増幅光21だけが伝搬可能な導波路をシングルモード導波路と呼ぶ。なお、0次の伝搬角θ21の増幅光21を0次モード光と呼ぶ。
 さらに、低次の伝搬角θ21の増幅光21の伝搬は可能であるが、高次の伝搬角θ21の増幅光21の伝搬ができない導波路を低次モード導波路と呼ぶ。
 ここで、低次の伝搬角θ21の増幅光21を低次モード光と呼び、高次の伝搬角θ21の増幅光21を高次モード光と呼ぶ。
Hereinafter, among the propagation angle theta 21 to take discrete values, in the order of large angle propagation angle theta 21, the propagation mode is zero order, first order, referred to as the propagation angle theta 21 of the secondary ....
A waveguide through which only the amplified light 21 having the 0th-order propagation angle θ 21 can propagate is called a single mode waveguide. The amplified light 21 having the 0th-order propagation angle θ 21 is referred to as 0th-order mode light.
Further, a waveguide capable of propagating the amplified light 21 at the low-order propagation angle θ 21 but not capable of propagating the amplified light 21 at the high-order propagation angle θ 21 is referred to as a low-order mode waveguide.
Here, the amplified light 21 of the low-order propagation angle theta 21 is referred to as low-order mode light, it referred to as amplified light 21 high-order propagation angle theta 21 and higher-order mode light.
 図8は、増幅光21の低次モード光および高次モード光の概要を示す図である。なお、実施の形態2に係る平面導波路10Aでは、内部クラッド14を省略しても実質的な動作は同じである。そこで、説明の簡単化のため、図8では、内部クラッド14の記載を省略している。低次モード光および高次モード光は、コア11と外部クラッド12との界面で全反射し、コア11と外部クラッド13Aとの界面で全反射してコア11の内部を伝搬している。 FIG. 8 is a diagram showing an outline of the low-order mode light and the high-order mode light of the amplified light 21. In the planar waveguide 10A according to the second embodiment, the substantial operation is the same even if the inner cladding 14 is omitted. Therefore, for the sake of simplicity, the illustration of the inner cladding 14 is omitted in FIG. The low-order mode light and the high-order mode light are totally reflected at the interface between the core 11 and the outer cladding 12, and are totally reflected at the interface between the core 11 and the outer cladding 13 </ b> A and propagate through the core 11.
 増幅光21がコア11から外部クラッド13Aに入射したときに、増幅光21の反射率が99%以上になる多層膜の材質と膜厚との組み合わせは無数に存在し、自由に設計することができる。ただし、多層膜に含まれる薄膜13a,13bは、一般的なガラスに比べて散乱が大きいため、多層膜を伝搬する増幅光21の損失も大きくなる場合がある。 When the amplified light 21 is incident on the outer cladding 13A from the core 11, there are an infinite number of combinations of the material and film thickness of the multilayer film in which the reflectivity of the amplified light 21 is 99% or more, and it can be designed freely. it can. However, since the thin films 13a and 13b included in the multilayer film are more scattered than general glass, the loss of the amplified light 21 propagating through the multilayer film may be increased.
 図9は、クラッドへの増幅光21のしみ出し量と導波路損失の測定結果との関係を示すグラフである。図9において、コア11は、Nd:YVOで形成されたものを使用している。図9に示すように、クラッドへの増幅光21のしみ出し量が増えると導波路損失も増加しており、しみ出し量と導波路損失は正比例することが分かる。 FIG. 9 is a graph showing the relationship between the amount of the amplified light 21 that leaks into the cladding and the measurement result of the waveguide loss. In FIG. 9, a core 11 made of Nd: YVO 4 is used. As shown in FIG. 9, it can be seen that the waveguide loss increases as the amount of the amplified light 21 that leaks into the cladding increases, and the amount of the protrusion and the waveguide loss are directly proportional.
 なお、上記しみ出し量は、増幅光21の全強度に対する、多層膜に侵入した増幅光21の強度の割合を示している。
 また、外部クラッド13Aが、増幅光21に対して100%の反射率を有していても、増幅光21の一部は多層膜の内部で反射するため、多層膜の内部には一定のエネルギーが存在している。
 このとき、コア11の内部に存在しているエネルギーと、多層膜の内部に存在しているエネルギーとの割合をしみ出し量と定義する。このしみ出し量は、前述したモードごとに異なる。
Note that the amount of the exudation indicates the ratio of the intensity of the amplified light 21 that has entered the multilayer film to the total intensity of the amplified light 21.
Even if the outer cladding 13A has a reflectivity of 100% with respect to the amplified light 21, a part of the amplified light 21 is reflected inside the multilayer film, so that a certain amount of energy is present inside the multilayer film. Is present.
At this time, the ratio of the energy existing inside the core 11 and the energy existing inside the multilayer film is defined as the amount of exudation. The amount of seepage varies depending on the mode described above.
 図10は、増幅光21の0次モード光と1次モード光とにおける電界分布とクラッドへのしみ出しを示す図である。なお、図8と同様に、実施の形態2に係る平面導波路10Aでは、内部クラッド14を省略しても実質的な動作は同じである。そこで、説明の簡単化のため、図10では、内部クラッド14の記載を省略している。
 図10における実線の曲線21aは、増幅光21の0次モード光の電界分布を示しており、図10における点線の曲線21bは、増幅光21の1次モード光の電界分布を示している。また、これらのモードの増幅光21は、符号Aと符号Bで示すように、外部クラッド12と外部クラッド13Aにしみ出している。
FIG. 10 is a diagram showing the electric field distribution of the amplified light 21 in the 0th-order mode light and the first-order mode light and the seepage to the cladding. As in FIG. 8, in the planar waveguide 10A according to the second embodiment, the substantial operation is the same even if the inner cladding 14 is omitted. Therefore, for the sake of simplicity of explanation, the illustration of the inner cladding 14 is omitted in FIG.
A solid curve 21 a in FIG. 10 indicates the electric field distribution of the zero-order mode light of the amplified light 21, and a dotted curve 21 b in FIG. 10 indicates the electric field distribution of the primary mode light of the amplified light 21. Further, the amplified light 21 in these modes oozes out to the outer cladding 12 and the outer cladding 13A as indicated by the symbols A and B.
 コア11と外部クラッド13Aとの界面に入射した増幅光21の位相とこの界面で反射した増幅光21の位相とがπだけ変化しているという仮定は、増幅光21のしみ出し量の少ない導波路においてよく成立する。
 例えば、あるモードの増幅光21は、多層膜が下記式(8)の関係を満足すると、しみ出し量が少なくなる。ただし、下記式(8)において、lは任意の整数である。
2113a13a+k2113b13b=lπ   (8)
The assumption that the phase of the amplified light 21 incident on the interface between the core 11 and the outer cladding 13A and the phase of the amplified light 21 reflected at this interface are changed by π is a guide with a small amount of exudation of the amplified light 21. This is often true for waveguides.
For example, when the multilayer film satisfies the relationship expressed by the following formula (8), the amount of seepage of the amplified light 21 in a certain mode decreases. However, in the following formula (8), l is an arbitrary integer.
k 2113a d 13a + k 2113b d 13b = lπ (8)
 図11は、増幅光21が膜間を1往復したときの光路が2πの位相に相当する多層膜を示す図である。図11に示すように、上記式(8)の関係を満足する多層膜では、多層膜に積層された複数の薄膜うち、1組の薄膜13aと薄膜13bを増幅光21が1往復したときの光路が2πの位相に相当する。
 そして、上記多層膜では、薄膜界面における反射光が強め合う干渉を起こすため、多層膜の層数が少ない場合であっても、高い反射率を実現することができる。
FIG. 11 is a diagram showing a multilayer film in which the optical path when the amplified light 21 reciprocates once between the films corresponds to a phase of 2π. As shown in FIG. 11, in the multilayer film satisfying the relationship of the above formula (8), when the amplified light 21 reciprocates once through the pair of thin films 13a and 13b among the plurality of thin films stacked on the multilayer film. The optical path corresponds to a phase of 2π.
And in the said multilayer film, since the reflected light in a thin film interface raises interference, even if it is a case where there are few layers of a multilayer film, a high reflectance can be implement | achieved.
 ただし、薄膜13aの膜厚d13aと薄膜13bの膜厚d13bとには、ある程度の誤差が許容されている。このため、増幅光21のしみ出し量が少なくなる条件式として、下記式(9)の関係を満足する場合であっても、増幅光21をコア11の内部に閉じ込めることができる。従って、薄膜13a,13bの膜厚d13a,d13bは、下記式(9)の関係を満足するように決定される。
(l-1/4)π<k2113a13a+k2113b13b<(l+1/4)π                           (9)
However, a certain amount of error is allowed between the film thickness d 13a of the thin film 13a and the film thickness d 13b of the thin film 13b. For this reason, the amplified light 21 can be confined inside the core 11 even when the relationship of the following formula (9) is satisfied as a conditional expression for reducing the amount of the amplified light 21 oozing out. Accordingly, the film thicknesses d 13a and d 13b of the thin films 13a and 13b are determined so as to satisfy the relationship of the following formula (9).
(L-1 / 4) π <k 2113a d 13a + k 2113b d 13b <(l + 1/4) π (9)
 このように、平面導波路10Aにおける外部クラッド13Aは、0次モード光の伝搬角θ21に対して上記式(9)の関係を満足する膜厚d13a,d13bの薄膜13a,13bを含む多層膜である。
 このように構成することで、増幅光21における0次モード光のしみ出しが抑制されて導波路損失を低減することができる。また、高次モード光のしみ出し量は多くなるので、低次モード光のみの伝搬が可能である。
Thus, the outer cladding 13A in the planar waveguide 10A includes the thin films 13a and 13b having the film thicknesses d 13a and d 13b that satisfy the relationship of the above formula (9) with respect to the propagation angle θ 21 of the zero-order mode light. It is a multilayer film.
With this configuration, the bleeding of the zero-order mode light in the amplified light 21 is suppressed, and the waveguide loss can be reduced. In addition, since the amount of high-order mode light oozes out, only low-order mode light can be propagated.
 以下、増幅光21の0次モード光の伝搬角θ21に対して、上記式(9)の関係を満足する平面導波路10Aの設計例について説明する。ここで、平面導波路10Aは、下記のように構成されているものとする。
 コア11は厚さd11が10μmで屈折率n11が1.42である。
 また、外部クラッド13Aである多層膜は、薄膜13aと薄膜13bとが交互に積層された多層膜である。薄膜13aは、膜厚d13aが426nmで屈折率n13aが2.16の薄膜とし、薄膜13bは、膜厚d13bが229nmで屈折率n13bが1.45の薄膜とする。さらに、増幅光21は真空中で波長が1.55μmの光とし、励起光31は真空中で波長が940μmの光とする。
Hereinafter, with respect to the propagation angle theta 21 of the zero-order mode light of the amplified light 21 will be described design example of the planar waveguide 10A to satisfy the relation of the aforementioned expression (9). Here, it is assumed that the planar waveguide 10A is configured as follows.
The core 11 has a thickness d 11 of 10 μm and a refractive index n 11 of 1.42.
The multilayer film as the outer cladding 13A is a multilayer film in which thin films 13a and thin films 13b are alternately stacked. The thin film 13a is a thin film having a film thickness d 13a of 426 nm and a refractive index n 13a of 2.16, and the thin film 13b is a thin film having a film thickness d 13b of 229 nm and a refractive index n 13b of 1.45. Further, the amplified light 21 is light having a wavelength of 1.55 μm in vacuum, and the excitation light 31 is light having a wavelength of 940 μm in vacuum.
 なお、上記値の屈折率n11,n13a,n13bが得られる材料として、例えば、コア11の材料にEr添加フッ化アルミニウムガラスが挙げられ、薄膜13aの材料にTaが挙げられ、薄膜13bの材料にはSiOが挙げられる。 In addition, as a material from which the refractive indexes n 11 , n 13a , and n 13b having the above values are obtained, for example, Er-added aluminum fluoride glass is used as the material of the core 11, and Ta 2 O 5 is used as the material of the thin film 13a. , SiO 2 and the like as the material of the thin film 13b.
 上記構成の平面導波路10Aにおいて、0次モード光の伝搬角θ21は、上記式(4)と上記式(7)とを用いて、1.516radとなる。
 また、薄膜13aにおける増幅光21の波数k2113aは、6.61×10-1となり、薄膜13bにおける増幅光21の波数k2113bは、1.23×10-1となる。さらに、薄膜13aにおける増幅光21の光路長は、位相に換算すると2.81radになり、薄膜13bにおける増幅光21の光路長は、位相に換算すると、0.28radになる。従って、合計で3.10radになるため、上記多層膜は、上記式(9)の関係を満足する。
In the planar waveguide 10A having the above configuration, the propagation angle θ 21 of the 0th-order mode light is 1.516 rad using the above formula (4) and the above formula (7).
The wave number k 2113a of the amplified light 21 in the thin film 13a is 6.61 × 10 6 m −1 and the wave number k 2113b of the amplified light 21 in the thin film 13b is 1.23 × 10 6 m −1 . Further, the optical path length of the amplified light 21 in the thin film 13a is 2.81 rad when converted into a phase, and the optical path length of the amplified light 21 in the thin film 13b is 0.28 rad when converted into a phase. Accordingly, since the total is 3.10 rad, the multilayer film satisfies the relationship of the above formula (9).
 上記構成の平面導波路10Aにおける増幅光21のしみ出し量をシミュレーションで計算すると、0次モード光のしみ出し量は0.11%となり、1次モード光のしみ出し量は0.44%となり、2次モード光のしみ出し量は1.1%となる。
 従って、増幅光21における0次モード光の損失は、1次モード光および2次モード光に比べて低い値に抑えられ、平面導波路10Aは、低次モード光の伝搬が可能な導波路になっている。
When the amount of exudation of the amplified light 21 in the planar waveguide 10A having the above configuration is calculated by simulation, the amount of exudation of the 0th-order mode light is 0.11%, and the amount of exudation of the first-order mode light is 0.44%. The amount of seepage of the secondary mode light is 1.1%.
Therefore, the loss of the 0th-order mode light in the amplified light 21 is suppressed to a value lower than that of the first-order mode light and the second-order mode light, and the planar waveguide 10A is a waveguide capable of propagating low-order mode light. It has become.
 図12は、励起光31に対する外部クラッド13Aの反射特性を示すグラフであって、上記構成の平面導波路10Aにおける励起光31に対する外部クラッド13Aの反射特性を示している。図12に示すように、励起光31の伝搬角θ31は、53°以上で99%以上の高反射率となっている。
 例えば、図8に示した構造と同様に、外部クラッド12が外部クラッド13Aと対称の構造である場合、この導波路のNAは0.85となる。
 従って、実施の形態1と同様に、上記導波路は、励起光源32から縦方向の広がり角が全角45°で放射された励起光31を十分な設計余裕をもって伝搬させることができる。
FIG. 12 is a graph showing the reflection characteristics of the outer cladding 13A with respect to the excitation light 31, and shows the reflection characteristics of the outer cladding 13A with respect to the excitation light 31 in the planar waveguide 10A having the above-described configuration. As shown in FIG. 12, the propagation angle θ 31 of the excitation light 31 has a high reflectance of 53% or more and 99% or more.
For example, as in the structure shown in FIG. 8, when the outer cladding 12 is symmetrical with the outer cladding 13A, the NA of this waveguide is 0.85.
Therefore, as in the first embodiment, the waveguide can propagate the excitation light 31 emitted from the excitation light source 32 with a longitudinal spread angle of 45 ° with a sufficient design margin.
 なお、外部クラッド12が外部クラッド13Aと対称の構造である場合について述べたが、例えば、図6の構造のように、励起光31に対して外部クラッド12が高反射となる構造であればよい。 In addition, although the case where the outer clad 12 has a symmetric structure with the outer clad 13A has been described, for example, as long as the outer clad 12 is highly reflective with respect to the excitation light 31 as in the structure of FIG. .
 これまで、外部クラッド12,13Aとして2種類の薄膜が交互に積層された多層膜を示したが、これに限定されるものではない。
 例えば、多層膜に含まれる薄膜の種類は2種類であってもよいし、3種類以上の薄膜が積層されていてもよい。
Up to now, a multilayer film in which two types of thin films are alternately laminated as the outer claddings 12 and 13A has been shown. However, the present invention is not limited to this.
For example, two types of thin films may be included in the multilayer film, or three or more types of thin films may be stacked.
 また、平面導波路10Aを光増幅器として備える増幅装置において、図4および図5に示したように、平面導波路10A、増幅光光源22、結合光学系23および励起光源32を配置してもよい。 Further, in the amplifying apparatus including the planar waveguide 10A as an optical amplifier, the planar waveguide 10A, the amplified light source 22, the coupling optical system 23, and the excitation light source 32 may be disposed as shown in FIGS. .
 以上のように、実施の形態2に係る平面導波路10Aは、コア11と、コア11の一方の面に内部クラッド14を介在させた状態で設けられ、励起光31に対して増幅光21よりも高い反射率を有する外部クラッド12と、コア11の他方の面に直接接合された状態で設けられ、励起光31に対して増幅光21よりも高い反射率を有する外部クラッド13Aとを備える。この構成において、外部クラッド12,13Aは材質の異なる複数の膜が積層された多層膜である。
 このように構成されているので、低屈折率の材料でコア11を構成しても、励起光31に対して高いNAとなる平面導波路10Aを得ることができる。
 また、平面導波路10Aは励起光31を高いNAで入射することができるので、マルチモードの励起光源を使用することが可能である。
 なお、マルチモードの光源は、一般にシングルモードの光源よりも価格が安く、高出力のレーザ光源を構成することができる。
As described above, the planar waveguide 10 </ b> A according to the second embodiment is provided with the core 11 and the inner cladding 14 interposed on one surface of the core 11. An outer cladding 12 having a high reflectance, and an outer cladding 13 </ b> A which is provided directly joined to the other surface of the core 11 and has a higher reflectance than the amplified light 21 with respect to the excitation light 31. In this configuration, the outer claddings 12 and 13A are multilayer films in which a plurality of films of different materials are laminated.
Since it is configured in this manner, even if the core 11 is made of a material having a low refractive index, the planar waveguide 10A having a high NA with respect to the excitation light 31 can be obtained.
Further, since the planar waveguide 10A can enter the excitation light 31 with a high NA, it is possible to use a multimode excitation light source.
Note that multi-mode light sources are generally cheaper than single-mode light sources and can constitute high-power laser light sources.
 また、実施の形態2に係る平面導波路10Aにおいて、外部クラッド12,13Aである多層膜は、材質の異なる複数の膜の組が1つ以上積層されている。この構成において、多層膜では、伝搬モードに応じて多層膜への光のしみ出し量が異なる。特に、多層膜では、伝搬モードが高次側になるにつれてしみ出し量が増加する。
 このように構成することで、増幅光21における0次モード光のしみ出し量が抑えられて導波路損失を低減することができる。
 また、増幅光21における高次モード光のしみ出し量が多くなることから、増幅光21における低次モード光のみの伝搬が可能な平面導波路10Aが得られる。
In the planar waveguide 10A according to the second embodiment, the multilayer film that is the outer claddings 12 and 13A is formed by laminating one or more sets of films made of different materials. In this configuration, in the multilayer film, the amount of light leaking into the multilayer film varies depending on the propagation mode. In particular, in a multilayer film, the amount of seepage increases as the propagation mode becomes higher order.
By configuring in this way, the amount of the 0th-order mode light in the amplified light 21 can be suppressed and the waveguide loss can be reduced.
Further, since the amount of the high-order mode light in the amplified light 21 increases, the planar waveguide 10A capable of propagating only the low-order mode light in the amplified light 21 is obtained.
実施の形態3.
 実施の形態3は、増幅光光源から放射された直線偏光の増幅光を、偏光を保持したままコアに伝搬する平面導波路について説明する。
 図13は、この発明の実施の形態3に係る平面導波路10Bの構成を示す図であって、平面導波路10Bが、増幅光21を増幅させる光増幅器である場合を示している。
 なお、図13において、図1および図6と同一の構成要素には同一の符号を付して説明を省略する。
Embodiment 3 FIG.
Embodiment 3 describes a planar waveguide that propagates linearly polarized amplified light emitted from an amplified light source to the core while maintaining the polarization.
FIG. 13 is a diagram showing a configuration of a planar waveguide 10B according to the third embodiment of the present invention, and shows a case where the planar waveguide 10B is an optical amplifier that amplifies the amplified light 21.
In FIG. 13, the same components as those in FIGS. 1 and 6 are denoted by the same reference numerals, and description thereof is omitted.
 例えば、コア11、外部クラッド13Aおよび内部クラッド14が、従来の平面導波路と同様に、ガラスなどの等方媒質を用いて構成された場合、増幅光21をTE偏光でコア11に入射しても偏光が保持されないことがある。これは、コア11において熱あるいは応力により複屈折が発生することに起因する。 For example, when the core 11, the outer cladding 13A, and the inner cladding 14 are configured using an isotropic medium such as glass as in the conventional planar waveguide, the amplified light 21 is incident on the core 11 with TE polarization. However, the polarization may not be maintained. This is because birefringence occurs in the core 11 due to heat or stress.
 そこで、平面導波路10Bでは、TE偏光の増幅光21のしみ出し量とTM偏光の増幅光21のしみ出し量とを変化させて、TE偏光の増幅光21における伝搬定数とTM偏光の増幅光21における伝搬定数とを制御する。これにより、コア11に入射された増幅光21の偏光を保持している。 Therefore, in the planar waveguide 10B, the amount of the TE-polarized amplified light 21 and the amount of the TM-polarized amplified light 21 are changed to change the propagation constant of the TE-polarized amplified light 21 and the TM-polarized amplified light. 21 to control the propagation constant. Thereby, the polarization of the amplified light 21 incident on the core 11 is maintained.
 以下、TE偏光とTM偏光の増幅光21における伝搬定数を制御し、さらに増幅光21の0次モード光の伝搬角θ21に対して上記式(9)の関係を満足する平面導波路10Bの設計例について説明する。ここで、平面導波路10Bは、下記のように構成されているものとする。
 コア11は厚さd11が10μmで屈折率n11が1.42である。
 また、外部クラッド13Aである多層膜は、薄膜13aと薄膜13bとが交互に積層された多層膜である。
 薄膜13aは、膜厚d13aが426nmで屈折率n13aが2.16の薄膜とし、薄膜13bは、膜厚d13bが229nmで屈折率n13bが1.45の薄膜とする。さらに、増幅光21は真空中で波長が1.55μmの光とし、励起光31は真空中で波長が940μmの光とする。
Hereinafter, the propagation constant of the TE-polarized light and TM-polarized amplified light 21 is controlled, and the planar waveguide 10B satisfying the relationship of the above formula (9) with respect to the propagation angle θ 21 of the 0th-order mode light of the amplified light 21 A design example will be described. Here, it is assumed that the planar waveguide 10B is configured as follows.
The core 11 has a thickness d 11 of 10 μm and a refractive index n 11 of 1.42.
The multilayer film as the outer cladding 13A is a multilayer film in which thin films 13a and thin films 13b are alternately stacked.
The thin film 13a is a thin film having a film thickness d 13a of 426 nm and a refractive index n 13a of 2.16, and the thin film 13b is a thin film having a film thickness d 13b of 229 nm and a refractive index n 13b of 1.45. Further, the amplified light 21 is light having a wavelength of 1.55 μm in vacuum, and the excitation light 31 is light having a wavelength of 940 μm in vacuum.
 なお、上記値の屈折率n11,n13a,n13bが得られる材料として、例えば、コア11の材料にEr添加フッ化アルミニウムガラスが挙げられ、薄膜13aの材料にTaが挙げられ、薄膜13bの材料にはSiOが挙げられる。 In addition, as a material from which the refractive indexes n 11 , n 13a , and n 13b having the above values are obtained, for example, Er-added aluminum fluoride glass is used as the material of the core 11, and Ta 2 O 5 is used as the material of the thin film 13a. , SiO 2 and the like as the material of the thin film 13b.
 上記実施の形態2では、コア11と外部クラッド13Aとの界面で増幅光21の入射光の位相と反射光の位相とがπだけ変化していると仮定した。
 しかしながら、実際は、位相変化量が一定の値になるのではなく、外部クラッド13Aへの増幅光21のしみ出し量に応じて異なる位相変化量となる。
 例えば、外部クラッド13Aにおける増幅光21の位相回転量をφ2113とし、内部クラッド14における増幅光21の位相回転量をφ2114とすると、上記式(7)は、正確には下記式(10)で表すことができる。ただし、m=1,2,3,・・・である。
211111+φ2113+φ2114=mπ   (10)
In the second embodiment, it is assumed that the phase of the incident light and the phase of the reflected light of the amplified light 21 are changed by π at the interface between the core 11 and the outer cladding 13A.
However, in practice, the phase change amount does not become a constant value, but the phase change amount varies depending on the amount of the amplified light 21 that has leaked into the outer cladding 13A.
For example, when the phase rotation amount of the amplified light 21 in the outer cladding 13A is φ2113 and the phase rotation amount of the amplified light 21 in the inner cladding 14 is φ2114 , the above equation (7) is exactly the following equation (10) Can be expressed as However, m = 1, 2, 3,.
k 2111 d 11 + φ 2113 + φ 2114 = mπ (10)
 なお、位相回転量φ2114はコア11と内部クラッド14との界面での全反射におけるグースヘンシェンシフトに対応している。ただし、臨界角付近の角度である場合、グースヘンシェンシフトは小さい値となる。このため、上記式(10)は下記式(11)のように表すことができる。
211111+φ2113=mπ        (11)
The phase rotation amount φ 2114 corresponds to the Goose Henschen shift in total reflection at the interface between the core 11 and the inner cladding 14. However, when the angle is near the critical angle, the Goose Henschen shift is small. Therefore, the above formula (10) can be expressed as the following formula (11).
k 2111 d 11 + φ 2113 = mπ (11)
 コア11においてTEモードとTMモードとで増幅光21の位相変化量が異なる場合、すなわち位相回転量φ2113が偏光に応じて異なっていると、上記式(11)から、コア11における増幅光21の波数k2111が偏光によって異なることがわかる。 When the phase change amount of the amplified light 21 is different between the TE mode and the TM mode in the core 11, that is, when the phase rotation amount φ 2113 is different depending on the polarization, the amplified light 21 in the core 11 is obtained from the above equation (11). It can be seen that the wave number k 2111 of the laser beam varies depending on the polarization.
 例えば、光ファイバにおいて入射光の偏光を保持する場合、光ファイバに応力を加えて偏光ごとに屈折率を変えている。これにより、入射光の伝搬定数が変化するので、入射光の偏光が保持される。
 これに対して、平面導波路10Bでは、外部クラッド13Aである多層膜を、偏光に応じて増幅光21の位相変化量が異なるように構成している。このように構成することで、偏光に応じて増幅光21の外部クラッド13Aへのしみ出し量が変化し、偏光に応じて増幅光21の伝搬定数が変化する。これにより、コア11に入射された増幅光21の偏光を保持することができる。
For example, when maintaining the polarization of incident light in an optical fiber, stress is applied to the optical fiber to change the refractive index for each polarization. Thereby, since the propagation constant of incident light changes, the polarization of incident light is maintained.
On the other hand, in the planar waveguide 10B, the multilayer film that is the outer cladding 13A is configured so that the amount of phase change of the amplified light 21 varies depending on the polarization. By configuring in this way, the amount of the amplified light 21 oozing out to the outer cladding 13A changes according to the polarization, and the propagation constant of the amplified light 21 changes according to the polarization. Thereby, the polarization of the amplified light 21 incident on the core 11 can be maintained.
 上記構成の平面導波路10Bにおいて、増幅光21の位相回転量φ2113をシミュレーションで計算すると、TEモードの増幅光21とTMモードの増幅光21とで位相回転量φ2113の差が約0.077radとなる。このため、伝搬定数をモードごとに2.5%程度変化させることができる。 When the phase rotation amount φ 2113 of the amplified light 21 is calculated by simulation in the planar waveguide 10B having the above configuration, the difference between the phase rotation amount φ 2113 between the TE mode amplified light 21 and the TM mode amplified light 21 is about 0. 0. 077 rad. For this reason, the propagation constant can be changed by about 2.5% for each mode.
 実施の形態3では、外部クラッド12,13Aとして2種類の薄膜が交互に積層された多層膜を示したが、これに限定されるものではない。
 例えば、多層膜に含まれる薄膜の種類は2種類であってもよいし、3種類以上の薄膜が積層されていてもよい。
In the third embodiment, a multilayer film in which two types of thin films are alternately stacked as the outer claddings 12 and 13A is shown. However, the present invention is not limited to this.
For example, two types of thin films may be included in the multilayer film, or three or more types of thin films may be stacked.
 また、平面導波路10Bを光増幅器として備える増幅装置において、図4および図5に示したように、平面導波路10B、増幅光光源22、結合光学系23および励起光源32を配置してもよい。 Further, in the amplifying apparatus including the planar waveguide 10B as an optical amplifier, the planar waveguide 10B, the amplified light source 22, the coupling optical system 23, and the excitation light source 32 may be arranged as shown in FIGS. .
 以上のように、実施の形態3に係る平面導波路10Bにおいて、実施の形態2で示した構成に加え、外部クラッド12,13Aである多層膜では、偏光によって当該多層膜への光のしみ出し量が異なっており、偏光によって増幅光の位相変化量が異なる。
 このように構成することで、上記実施の形態2と同様の効果が得られ、さらにTEモードとTMモードとで増幅光21の伝搬定数が制御されて増幅光21の偏光を保持することができる。
As described above, in the planar waveguide 10B according to the third embodiment, in addition to the configuration shown in the second embodiment, in the multilayer film that is the outer claddings 12 and 13A, light leaks into the multilayer film due to polarization. The amount is different, and the amount of phase change of the amplified light differs depending on the polarization.
With this configuration, the same effect as in the second embodiment can be obtained, and the propagation constant of the amplified light 21 can be controlled in the TE mode and the TM mode, and the polarization of the amplified light 21 can be maintained. .
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせあるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, a free combination of each embodiment, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible.
 この発明に係る平面導波路は、低い屈折率の材料でコアを構成しても、励起光に対して高いNAとなるので、例えば、レーザ装置のレーザ媒質に好適である。 The planar waveguide according to the present invention is suitable for a laser medium of a laser device, for example, because it has a high NA with respect to excitation light even if the core is made of a material having a low refractive index.
 10,10A,10B 平面導波路、11 コア、12 外部クラッド、12a,12b 薄膜、13,13A 外部クラッド、12a,12b,13a,13b 薄膜、14,15 内部クラッド、21 増幅光、22 増幅光光源、23 結合光学系、31 励起光、32 励起光源。 10, 10A, 10B planar waveguide, 11 core, 12 outer cladding, 12a, 12b thin film, 13, 13A outer cladding, 12a, 12b, 13a, 13b thin film, 14, 15 inner cladding, 21 amplified light, 22 amplified light source , 23 coupled optical system, 31 excitation light, 32 excitation light source.

Claims (9)

  1.  光を伝搬する平板状のコアと、
     前記コアの両面側にそれぞれ設けられ、励起光に対して増幅光よりも高い反射率を有する第1のクラッドと、
     前記コアの少なくとも一方の面と前記第1のクラッドとの間に設けられ、前記コアよりも低い屈折率を有する第2のクラッドとを備え、
     前記第1のクラッドは、材質の異なる複数の膜が積層された多層膜であること
    を特徴とする平面導波路。
    A flat core that propagates light;
    A first clad provided on each side of the core and having a higher reflectance than the amplified light with respect to the excitation light;
    A second clad provided between at least one surface of the core and the first clad and having a lower refractive index than the core;
    The planar waveguide according to claim 1, wherein the first cladding is a multilayer film in which a plurality of films of different materials are laminated.
  2.  前記コアは、励起光を吸収して増幅光を増幅する利得発生部材であることを特徴とする請求項1記載の平面導波路。 2. The planar waveguide according to claim 1, wherein the core is a gain generating member that absorbs excitation light and amplifies amplified light.
  3.  前記多層膜は、材質の異なる複数の膜の組が1つ以上積層されていることを特徴とする請求項1記載の平面導波路。 The planar waveguide according to claim 1, wherein the multilayer film is formed by laminating one or more sets of a plurality of films made of different materials.
  4.  開口数は、励起光に対して0.38以上であり、増幅光に対して0.38以下であることを特徴とする請求項1記載の平面導波路。 2. The planar waveguide according to claim 1, wherein the numerical aperture is 0.38 or more with respect to the excitation light and 0.38 or less with respect to the amplified light.
  5.  同じ組に属する複数の膜は、複数の膜のそれぞれを伝搬する増幅光の波数と、この組を増幅光が1往復したときの光路との関係に基づいて決定される膜厚を有することを特徴とする請求項3記載の平面導波路。 The plurality of films belonging to the same set have a film thickness determined based on the relationship between the wave number of the amplified light propagating through each of the plurality of films and the optical path when the amplified light makes one round trip through the set. 4. The planar waveguide according to claim 3, wherein
  6.  前記多層膜では、光の伝搬モードに応じて当該多層膜への光のしみ出し量が異なることを特徴とする請求項1記載の平面導波路。 2. The planar waveguide according to claim 1, wherein the amount of light oozing out into the multilayer film varies depending on the light propagation mode.
  7.  前記多層膜では、光の伝搬モードが高次側になるにつれてしみ出し量が増加することを特徴とする請求項6記載の平面導波路。 The planar waveguide according to claim 6, wherein in the multilayer film, the amount of protrusion increases as the light propagation mode becomes higher.
  8.  前記多層膜では、偏光に応じて当該多層膜への光のしみ出し量が異なることを特徴とする請求項1記載の平面導波路。 The planar waveguide according to claim 1, wherein the multilayer film has different amounts of light leaking into the multilayer film in accordance with polarization.
  9.  前記多層膜では、偏光に応じて増幅光の位相変化量が異なることを特徴とする請求項1記載の平面導波路。 The planar waveguide according to claim 1, wherein the multilayer film has a different amount of phase change of the amplified light according to polarization.
PCT/JP2016/083244 2016-11-09 2016-11-09 Planar waveguide WO2018087845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/083244 WO2018087845A1 (en) 2016-11-09 2016-11-09 Planar waveguide
JP2017526988A JP6192883B1 (en) 2016-11-09 2016-11-09 Planar waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083244 WO2018087845A1 (en) 2016-11-09 2016-11-09 Planar waveguide

Publications (1)

Publication Number Publication Date
WO2018087845A1 true WO2018087845A1 (en) 2018-05-17

Family

ID=59798914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083244 WO2018087845A1 (en) 2016-11-09 2016-11-09 Planar waveguide

Country Status (2)

Country Link
JP (1) JP6192883B1 (en)
WO (1) WO2018087845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144743A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Laser amplifier
EP4064467A4 (en) * 2019-12-18 2022-11-23 Mitsubishi Electric Corporation Planar waveguide amplifier and laser radar device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719941B1 (en) * 2017-12-28 2022-07-13 Mitsubishi Electric Corporation Planar waveguide and laser amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125602A (en) * 1990-09-18 1992-04-27 Res Dev Corp Of Japan Optical waveguide type polarizer
US20020131746A1 (en) * 2001-03-15 2002-09-19 The Regents Of The University Of California Compact cladding-pumped planar waveguide amplifier and fabrication method
JP2005274842A (en) * 2004-03-24 2005-10-06 Ricoh Co Ltd Optical control element
JP2007333756A (en) * 2006-06-12 2007-12-27 Fujitsu Ltd Optical waveguide device and optical modulator
WO2009016703A1 (en) * 2007-07-27 2009-02-05 Mitsubishi Electric Corporation Planar waveguide laser apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125602A (en) * 1990-09-18 1992-04-27 Res Dev Corp Of Japan Optical waveguide type polarizer
US20020131746A1 (en) * 2001-03-15 2002-09-19 The Regents Of The University Of California Compact cladding-pumped planar waveguide amplifier and fabrication method
JP2005274842A (en) * 2004-03-24 2005-10-06 Ricoh Co Ltd Optical control element
JP2007333756A (en) * 2006-06-12 2007-12-27 Fujitsu Ltd Optical waveguide device and optical modulator
WO2009016703A1 (en) * 2007-07-27 2009-02-05 Mitsubishi Electric Corporation Planar waveguide laser apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144743A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Laser amplifier
EP4064467A4 (en) * 2019-12-18 2022-11-23 Mitsubishi Electric Corporation Planar waveguide amplifier and laser radar device

Also Published As

Publication number Publication date
JP6192883B1 (en) 2017-09-06
JPWO2018087845A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP4754020B2 (en) Planar waveguide laser device
JP6192883B1 (en) Planar waveguide
JP6253672B2 (en) Planar waveguide laser device
JP2010091737A (en) Optical resonator and tunable laser
JPWO2011115275A1 (en) Optical fiber amplifier and fiber laser apparatus using the same
WO2019044557A1 (en) Isolator, light source device, optical transmitter, optical switch, optical amplifier and data center
JPWO2006132285A1 (en) light source
JP5643632B2 (en) Multi-port coupler, and optical fiber amplifier, fiber laser apparatus and resonator using the same
JP6437169B2 (en) Ridge waveguide laser device
CN109313310B (en) Planar waveguide
WO2006098313A1 (en) Optical amplifier and laser device
JP6010892B2 (en) Planar waveguide laser device
JP2006106104A (en) Depolarizing element
JP6739164B2 (en) Laser oscillator
JP5014640B2 (en) Multimode fiber, optical amplifier and fiber laser
WO2006103850A1 (en) Waveguide element and laser generator
JPWO2014168040A1 (en) Optical coupling structure
JP2013247193A (en) Planar optical waveguide and optical amplifier
JPH04125602A (en) Optical waveguide type polarizer
JP2009123883A (en) Optical amplifier and optical oscillator
JP2019101257A (en) Optical module and input method
US20110038046A1 (en) Non-reciprocal unit used for polarization dependent type optical isolator and polarization dependent type optical isolator
JP2015126073A (en) Laser oscillator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017526988

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921368

Country of ref document: EP

Kind code of ref document: A1