JP2006106104A - Depolarizing element - Google Patents

Depolarizing element Download PDF

Info

Publication number
JP2006106104A
JP2006106104A JP2004289003A JP2004289003A JP2006106104A JP 2006106104 A JP2006106104 A JP 2006106104A JP 2004289003 A JP2004289003 A JP 2004289003A JP 2004289003 A JP2004289003 A JP 2004289003A JP 2006106104 A JP2006106104 A JP 2006106104A
Authority
JP
Japan
Prior art keywords
conversion medium
incident
polarized light
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004289003A
Other languages
Japanese (ja)
Inventor
Hironori Tokita
宏典 時田
Seiji Kume
政治 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Oyokoden Lab Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Oyokoden Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Oyokoden Lab Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2004289003A priority Critical patent/JP2006106104A/en
Publication of JP2006106104A publication Critical patent/JP2006106104A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a depolarizing element which realizes miniaturization of the element and improvement in temperature stability. <P>SOLUTION: The depolarizing element converts polarized light into non-polarized light, and is provided with: a conversion medium 1 with optical anisotropy; an incident means (polarization maintaining optical fiber 3) for making the polarized light incident on the conversion medium 1 so that the incident light is included in a plane normal to the optical axis direction in the conversion medium 1 and is made incident on the medium from a direction oblique to the normal line direction of the incident plane 1a; and reflection layers 2a, 2b for reflecting the light propagated through the conversion medium 1 to return it almost in the shape of a letter V, and the polarized light made incident on the conversion medium 1 is separated into two optical components differing in polarization, and the two optical components are reflected two or more times different from each other by the reflection layers 2a, 3b and propagated through the conversion medium 1 while returning almost in the shape of a letter V, thereafter, the components are made to exit from the conversion medium at a position P where the optical paths of the two optical components are superimposed on each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、偏光を無偏光に変換する機能を有する偏光解消素子に関する。   The present invention relates to a depolarizing element having a function of converting polarized light into non-polarized light.

例えばラマン散乱を利用したラマン増幅器は、優れた増幅特性を有するものとして、近年普及が広まっている。
その一方で、ラマン増幅器は利得の偏波依存性が大きいという問題があり、励起光源の偏光を偏光解消素子(デポラライザ)等で解消する技術が重要になっている。
またラマン増幅器以外にも、光通信や光計測(センシング)の分野において、光源光が偏光であるとシステム等に悪影響が生じる場合もあり、これらの分野においても偏光解消素子が用いられる。
For example, Raman amplifiers utilizing Raman scattering have recently become widespread as having excellent amplification characteristics.
On the other hand, the Raman amplifier has a problem that the polarization dependency of the gain is large, and a technique for canceling the polarization of the excitation light source with a depolarizer or the like is important.
In addition to the Raman amplifier, in the fields of optical communication and optical measurement (sensing), if the light source light is polarized, the system or the like may be adversely affected. In these fields, the depolarizing element is used.

従来のデポラライザとしては、例えば、偏波保持光ファイバを45°融着して構成されるLyot-Typeのものが知られている。
また、図6に示すような複屈折率結晶を用いたデポラライザも提案されている(下記、非特許文献1参照)。この例の結晶型デポラライザは、直方体に形成された複屈折率結晶の一面(入射面)から完全偏光を垂直に入射させて、該入射面に対向する面から非偏光を出射させるように構成されている。
風見等、「結晶型デポラライザの開発」、古河電工時報、平成15年1月、第111号、p41〜45。
As a conventional depolarizer, for example, a Lyot-Type one configured by fusing a polarization maintaining optical fiber by 45 ° is known.
A depolarizer using a birefringence crystal as shown in FIG. 6 has also been proposed (see Non-Patent Document 1 below). The crystal type depolarizer in this example is configured so that completely polarized light is incident perpendicularly from one surface (incident surface) of a birefringent crystal formed in a rectangular parallelepiped, and non-polarized light is emitted from a surface facing the incident surface. ing.
Kazami et al., “Development of Crystalline Depolarizer”, Furukawa Electric Times, January 2003, No. 111, p41-45.

上記偏波保持光ファイバを45°融着してなるデポラライザは、単位長さ当たりの偏光解消度が小さいためにファイバが長尺になってしまい、小型化が難しいという問題があった。
また、上記結晶型のデポラライザにあっては、複屈折率結晶の長さを、入射光の隣接FPモード間に位相差(2m+1)πを生じさせるような長さに設定する必要があるが、単位長さ当たりの偏光解消度があまり大きくない。このため、実用的なデポラライザを構成するには長大な結晶が必要であり実用化が難しいうえ、小型化できないという問題があった。デポラライザの小型化は、低コスト化、省スペース化だけでなく、温度特性の向上にも寄与するため重要である。
The depolarizer formed by fusing the polarization-maintaining optical fiber by 45 ° has a problem that since the degree of depolarization per unit length is small, the fiber becomes long and it is difficult to reduce the size.
In the crystal type depolarizer, it is necessary to set the length of the birefringent crystal to such a length as to cause a phase difference (2m + 1) π between adjacent FP modes of incident light. The degree of depolarization per unit length is not very large. For this reason, in order to construct a practical depolarizer, a long crystal is required, which is difficult to put into practical use and cannot be reduced in size. Downsizing of the depolarizer is important because it contributes not only to cost reduction and space saving but also to improvement of temperature characteristics.

本発明は、上記事情に鑑みてなされたものであって、素子の小型化、温度安定性の向上を実現できる偏光解消素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a depolarizing element capable of realizing downsizing of the element and improvement of temperature stability.

上記の目的を達成するために、本発明の偏光解消素子は、偏光を無偏光に変換する偏光解消素子であって、光学的異方性を有する変換媒質と、前記変換媒質に偏光を、該変換媒質における光学軸方向を法線方向とする平面内に含まれ、かつ入射面の法線方向に対して斜め方向から入射させる入射手段と、前記変換媒質内を伝搬した光を反射して略V字状に折り返させる反射手段とを備えており、前記変換媒質に入射された偏光は、偏光状態が異なる2つの光成分に分離され、該2つの光成分は、前記反射手段により互いに異なる回数の複数回反射されて、前記変換媒質内を略V字状に折り返しながら伝搬した後、該2つの光成分の光路が重なり合う位置で前記変換媒質から出射されることを特徴とする。   In order to achieve the above object, the depolarizing element of the present invention is a depolarizing element that converts polarized light into non-polarized light, and includes a conversion medium having optical anisotropy, polarized light in the conversion medium, Incident means that is included in a plane whose normal direction is the optical axis direction of the conversion medium and that is incident obliquely with respect to the normal direction of the incident surface, and substantially reflects and reflects light propagating in the conversion medium. Reflection means for folding back in a V shape, and polarized light incident on the conversion medium is separated into two light components having different polarization states, and the two light components are different from each other by the reflection means. And the light is emitted from the conversion medium at a position where the optical paths of the two light components overlap each other.

本発明によれば、小型化および温度安定性の向上を実現できる偏光解消素子が得られる。   According to the present invention, it is possible to obtain a depolarizing element that can achieve downsizing and improved temperature stability.

図1〜3は本発明の偏光解消素子の一実施形態を示したものであり、図1は斜視図、図2は側面図である。図中符号1は変換媒質、2a、2bは反射層(反射手段)を示す。
図3は変換媒質1内に形成されている光路を含む面に沿う断面図である。該光路を含む面は、図1中のIII−III線に沿う面であり、図2中の符号L2で示される面である。
1 to 3 show an embodiment of the depolarizing element of the present invention. FIG. 1 is a perspective view and FIG. 2 is a side view. In the figure, reference numeral 1 denotes a conversion medium, and 2a and 2b denote reflection layers (reflection means).
FIG. 3 is a cross-sectional view taken along a plane including an optical path formed in the conversion medium 1. The plane including the optical path is a plane along the line III-III in FIG. 1, and is a plane indicated by a symbol L2 in FIG.

変換媒質1は、光学異方性を有する材質であれば特に限定されずに使用できるが、一軸性結晶が好ましく、例えばルチル(正方晶系)、YVO、LN,方解石等を用いることができる。本実施形態ではルチルが用いられている。
変換媒質1の形状は、少なくとも入射面1aおよびこれに対向する面(以下、対向面1bという)が平面で、互いに平行であることが好ましい。本実施形態における変換媒質1は直方体に形成されている。
入射面がX−Y平面で、入射面1aの長さ方向をX方向、入射面1aに含まれ前記X方向に垂直な方向をY方向、入射面の法線方向をZ方向とすると、変換媒質1の光学軸(主光軸)がY方向に平行となるように構成される。一軸性結晶においては結晶軸cが光学軸と一致する。本実施形態ではルチルの結晶軸c(図中,矢印cで示す)がY方向に平行となっている。
The conversion medium 1 can be used without any particular limitation as long as it is a material having optical anisotropy, but is preferably a uniaxial crystal, for example, rutile (tetragonal), YVO 4 , LN, calcite, or the like. . In this embodiment, rutile is used.
As for the shape of the conversion medium 1, it is preferable that at least the incident surface 1 a and the surface facing the incident surface 1 a (hereinafter referred to as the facing surface 1 b) are flat and parallel to each other. The conversion medium 1 in this embodiment is formed in a rectangular parallelepiped.
When the incident surface is an XY plane, the length direction of the incident surface 1a is the X direction, the direction included in the incident surface 1a and perpendicular to the X direction is the Y direction, and the normal direction of the incident surface is the Z direction. The optical axis (main optical axis) of the medium 1 is configured to be parallel to the Y direction. In a uniaxial crystal, the crystal axis c coincides with the optical axis. In this embodiment, the rutile crystal axis c (indicated by an arrow c in the figure) is parallel to the Y direction.

反射層2a、2bは、入射面1aおよび対向面1bの外側にそれぞれ設けられており、反射層2a、2bの反射面は、入射面1aおよび対向面1bにそれぞれ平行となっている。反射層2a、2bの反射率は95〜98%が好ましく100%(全反射)に近い方がより好ましい。
反射層2a、2bの材質は、所望の反射率が得られるものであればよく、特に限定されない。好ましい例としては、SiOからなる層とTaからなる層が交互に積層された誘電体多層膜等が挙げられる。
The reflective layers 2a and 2b are provided outside the incident surface 1a and the opposing surface 1b, respectively, and the reflective surfaces of the reflective layers 2a and 2b are parallel to the incident surface 1a and the opposing surface 1b, respectively. The reflectivity of the reflective layers 2a and 2b is preferably 95 to 98%, and more preferably close to 100% (total reflection).
The material of the reflective layers 2a and 2b is not particularly limited as long as a desired reflectance can be obtained. Preferable examples include a dielectric multilayer film in which layers made of SiO 2 and layers made of Ta 2 O 5 are alternately laminated.

本実施形態においては入射手段として偏波保持光ファイバ3が設けられている。偏波保持光ファイバ3は、ここから出射される直線偏光(以下、偏光L1という)を変換媒質1に所定の入射方向から入射させるように構成されている。該偏光L1の入射方向は、変換媒質1の光学軸方向(Y方向)を法線方向とする平面(X−Z平面)内に含まれ、かつ入射面1aの法線方向(Z方向)に対して斜めとなる方向に設定される。   In the present embodiment, a polarization maintaining optical fiber 3 is provided as an incident means. The polarization maintaining optical fiber 3 is configured to allow linearly polarized light (hereinafter referred to as polarization L1) emitted therefrom to enter the conversion medium 1 from a predetermined incident direction. The incident direction of the polarized light L1 is included in a plane (XZ plane) whose normal direction is the optical axis direction (Y direction) of the conversion medium 1, and is in the normal direction (Z direction) of the incident surface 1a. On the other hand, it is set in an oblique direction.

また、偏光L1の進行方向を法線方向とする面内に含まれ、変換媒質1の光学軸の方向(Y方向)と平行な方向をy1方向、該面内に含まれ該y1方向に垂直な方向をx1方向とする。偏光L1の進行方向を法線方向とする面内における、偏光L1の偏光方位(光線を波として表現したときの電界の振動方向)とy1方向とのなす角度α(図示せず)は0°より大きく90°未満とされる。実用上好ましい無偏光を得るためには、該偏光方位とy方向とのなす角度αが略45°であることが好ましく、45°であることがより好ましい。許容範囲は好ましくは45°±1°程度である。本実施形態ではα=45°に設定されている。 Also included in a plane of the traveling direction of the polarized light L1 and the normal direction, the direction of the optical axis of the conversion medium 1 (Y-direction) and a direction parallel to the y 1 direction, the y 1 direction contained within said surface the direction perpendicular to the x 1 direction. The angle α (not shown) formed by the polarization azimuth of the polarized light L1 (the vibration direction of the electric field when the light beam is expressed as a wave) and the y 1 direction in a plane whose normal direction is the traveling direction of the polarized light L1 is 0. It is greater than ° and less than 90 °. To obtain a practically preferable unpolarized is preferably an angle between the polarizing direction and y 1 direction α is approximately 45 °, and more preferably 45 °. The allowable range is preferably about 45 ° ± 1 °. In the present embodiment, α = 45 ° is set.

偏光1の波長は特に限定されないが、例えば1520〜1620nmの範囲の波長が好適に用いられる。
また変換媒質1に入射される偏光L1は平行光であることが好ましく、必要に応じてコリメータを設けることが好ましい。
また、入射面1aにおける偏光L1の入射位置には、反射層2aは設けられておらず、無反射層(図示略)が設けられている。
Although the wavelength of the polarized light 1 is not specifically limited, For example, the wavelength of the range of 1520-1620 nm is used suitably.
The polarized light L1 incident on the conversion medium 1 is preferably parallel light, and a collimator is preferably provided as necessary.
Further, the reflection layer 2a is not provided at the incident position of the polarized light L1 on the incident surface 1a, and a non-reflection layer (not shown) is provided.

また本実施形態では、偏波保持光ファイバ3と変換媒質1との間の、偏光L1の光路上に偏光子4が設けられている。偏光子4は、偏光L1のうち前記y1方向とのなす角度αが45°の成分のみを選択的に透過させるように構成されている。 In the present embodiment, the polarizer 4 is provided on the optical path of the polarized light L1 between the polarization maintaining optical fiber 3 and the conversion medium 1. The polarizer 4 is configured to selectively transmit only the component of the polarized light L1 having an angle α of 45 ° with the y 1 direction.

かかる構成の偏光解消素子にあっては、入射面1aに対して斜め方向から入射された偏光L1は、変換媒質1の複屈折により偏光状態が異なる2つの光成分に分離される。すなわち偏光L1は、電界の振動方向が前記x1方向である偏光成分と、電界の振動方向が前記y1方向である偏光成分とに分離される。本実施形態では、変換媒質1が一軸性結晶からなるので、該2つの偏光成分は常光線と異常光線となる。
該2つの偏光成分(常光線と異常光線)は屈折率が互いに異なることから、図3に示すように、変換媒質1内では互いに異なる光路を形成する。入射面1aおよび対向面1bの外側に反射層2a、2bが設けられているので、前記2つの偏光成分は、反射層2a、2b間で略V字状に折り返しながら伝搬される。変換媒質1内における前記2つの偏光成分の光路は、光学軸方向(Y方向)を法線方向とする平面(X−Z平面)内に形成される。図2中の符号L2は変換媒質1内における前記2つの偏光成分の光路を含む面を示している。
In the depolarizing element having such a configuration, the polarized light L1 incident from the oblique direction with respect to the incident surface 1 a is separated into two light components having different polarization states due to the birefringence of the conversion medium 1. That polarized light L1 and the polarization component oscillating direction of the electric field is the x 1 direction, the vibration direction of the electric field is separated into a polarized light component that is the y 1 direction. In the present embodiment, since the conversion medium 1 is made of a uniaxial crystal, the two polarization components are an ordinary ray and an extraordinary ray.
Since the two polarization components (ordinary ray and extraordinary ray) have different refractive indexes, different optical paths are formed in the conversion medium 1 as shown in FIG. Since the reflection layers 2a and 2b are provided outside the incident surface 1a and the opposing surface 1b, the two polarization components are propagated between the reflection layers 2a and 2b while being folded back in a substantially V shape. The optical paths of the two polarization components in the conversion medium 1 are formed in a plane (XZ plane) whose normal direction is the optical axis direction (Y direction). 2 indicates a surface including the optical paths of the two polarization components in the conversion medium 1.

そして、前記2つの偏光成分は、反射層2a、2bで互いに異なる回数の複数回反射されて、変換媒質1内を略V字状に折り返しながら、面L2(X−Z平面)内をX方向に向かって伝搬した後、入射面1a上において前記2つの偏光成分の光路が重なり合う出射位置Pで合波されて変換媒質1から出射される(符号L3は出射光を示す)。
変換媒質1内における前記2つの偏光成分の光路長には差があるので遅延が生じるが、本発明では、この両者の光路長差(遅延量)が可干渉距離(可干渉時間)よりも長くなるように設計される。したがって、前記2つの偏光成分が出射位置Pで合波されて出射光L3を形成するとき、該2つの偏光成分は可干渉性が解消された状態となっている。
こうして得られる出射光L3は必要に応じてコリメータ(図示せず)を通過した後、シングルモード光ファイバ5で伝送される。なお、出射位置Pには反射層2aは設けられていない。
The two polarization components are reflected by the reflective layers 2a and 2b a plurality of times different from each other, and the inside of the surface L2 (XZ plane) is turned in the X direction while turning back inside the conversion medium 1 in a substantially V shape. Then, the light is combined at the emission position P where the optical paths of the two polarization components overlap on the incident surface 1a and emitted from the conversion medium 1 (reference numeral L3 indicates the emitted light).
A delay occurs because there is a difference between the optical path lengths of the two polarization components in the conversion medium 1. In the present invention, the optical path length difference (delay amount) between the two is longer than the coherence distance (coherence time). Designed to be Therefore, when the two polarization components are combined at the emission position P to form the emission light L3, the two polarization components are in a state where coherence is eliminated.
The outgoing light L3 obtained in this way passes through a collimator (not shown) as necessary, and is then transmitted through the single mode optical fiber 5. In addition, the reflective layer 2a is not provided at the emission position P.

変換媒質1内における前記2つの偏光成分の光路長差(遅延量)は、偏光L1と入射面1aの法線方向とがなす角度θ1及び/又はZ方向における変換媒質1の長さLzを変化させることにより制御できる。
変換媒質1に入射される偏光L1と、入射面1aの法線方向とがなす角度θ1は、0より大きければよいが、小さすぎると反射層2a(または2b)で反射される前の光路と反射後の光路とが略重なり合ってこれら2光線の分離が不十分となる。一方、θ1が大きすぎると所望の光路長差(遅延量)を得るのに必要な変換媒質1の長さ(X方向における入射位置から出射位置Pまでの距離Lx)が大きくなり、素子が大型化してしまう。したがって、θ1は4°〜7°程度が好ましい。
The optical path length difference (delay amount) between the two polarization components in the conversion medium 1 changes the angle θ1 between the polarization L1 and the normal direction of the incident surface 1a and / or the length Lz of the conversion medium 1 in the Z direction. Can be controlled.
The angle θ1 formed by the polarized light L1 incident on the conversion medium 1 and the normal direction of the incident surface 1a may be larger than 0, but if it is too small, the optical path before being reflected by the reflective layer 2a (or 2b) The two light beams are not sufficiently separated because the light paths after reflection substantially overlap. On the other hand, if θ1 is too large, the length (the distance Lx from the incident position to the exit position P in the X direction) of the conversion medium 1 necessary for obtaining a desired optical path length difference (delay amount) increases, and the element becomes large. It will become. Therefore, θ1 is preferably about 4 ° to 7 °.

本実施形態では、変換媒質1に入射される偏光L1の偏光方位とy1方向(c軸に平行)とのなす角度αが45°に設定されているので、出射光L3として実用上好ましい無偏光が得られる。
ここでの「実用上好ましい無偏光」とは、例えば偏光解消素子からの出射光L3の光路上に直線偏光子を設けた場合に、直線偏光子を光軸の回りに任意に回転させても、直線偏光子からの出射光量が変化しない状態、また偏光解消素子からの出射光L3の光路上に1/4波長板を設け、該1/4波長板の光路上に直線偏光子を設けた場合に、1/4波長板および直線偏光子をそれぞれ光軸の回りに任意に回転させても、直線偏光子からの出射光量が変化しない状態をいう。
すなわち、図4に示すように、本実施形態ではα=45°となっているので、入射面1aに対して斜め方向から入射された偏光L1が、x1方向に電界の振動方向をもつ偏光成分(光強度;Px)と、y1方向に電界の振動方向をもつ偏光成分(光強度;Py)とに分離されたときに両者の光強度が均等(Px=Py)になる。
出射光L3は、前記x1方向に電界の振動方向をもつ偏光成分(光強度;Px)と、前記y1方向に電界の振動方向をもつ偏光成分(光強度;Py)とが、可干渉性が無い状態で合波されたものであるので、PxとPyとが均等(Px=Py)であるときに上述の「実用上好ましい無偏光」が得られる。
In the present embodiment, the angle α formed by the polarization azimuth of the polarized light L1 incident on the conversion medium 1 and the y 1 direction (parallel to the c-axis) is set to 45 °. Polarized light is obtained.
Here, “practically preferred non-polarized light” means that, for example, when a linear polarizer is provided on the optical path of the outgoing light L3 from the depolarizing element, the linear polarizer may be arbitrarily rotated around the optical axis. In the state where the amount of light emitted from the linear polarizer does not change, a quarter wavelength plate is provided on the optical path of the outgoing light L3 from the depolarizing element, and the linear polarizer is provided on the optical path of the quarter wavelength plate. In this case, the light quantity emitted from the linear polarizer does not change even when the quarter-wave plate and the linear polarizer are arbitrarily rotated around the optical axis.
That is, as shown in FIG. 4, since in the present embodiment has a alpha = 45 °, polarized light L1 incident from an oblique direction with respect to the incident surface 1a is, polarized light having a vibration direction of the electric field in the x 1 direction When separated into a component (light intensity; Px) and a polarized light component (light intensity; Py) having an electric field oscillation direction in the y 1 direction, the light intensity of both becomes equal (Px = Py).
Emitted light L3, the polarization component having the vibration direction of the electric field in the x 1 direction (light intensity; Px) and the polarization component (light intensity; Py) with the vibration direction of the electric field in the y 1 direction, but coherent Therefore, when Px and Py are equal (Px = Py), the above-mentioned “practically preferable non-polarized light” can be obtained.

一方、αが45°でない場合、例えばα=30°の場合には、図5に示すようにPx:Py=1:√3となり、PxとPyとが均等にはならないが、変換媒質1内における2つの偏光成分の光路長差(遅延量)が可干渉距離(可干渉時間)よりも長くなるように設計されているので、前記2つの偏光成分(光強度;Px、Py)は可干渉性が無い状態で合波されて出射光L3となる。
したがって、αが45°でない場合には、上記1/4波長板および/または直線偏光子を光軸の回りに任意に回転させたときの出射光量の変動は生じるものの、αが0°より大きく90°未満の範囲で、偏光成分の可干渉性が解消された状態の出射光L3を得ることができる。このような偏光成分の可干渉性が解消された状態も、本発明における「無偏光」に含まれる。
On the other hand, when α is not 45 °, for example, when α = 30 °, as shown in FIG. 5, Px: Py = 1: √3, and Px and Py are not equal, but in the conversion medium 1 Is designed so that the optical path length difference (delay amount) of the two polarized light components is longer than the coherent distance (coherent time), so that the two polarized components (light intensity; Px, Py) are coherent. In a state where there is no property, the light is combined to become outgoing light L3.
Therefore, when α is not 45 °, the amount of emitted light varies when the quarter-wave plate and / or the linear polarizer is arbitrarily rotated around the optical axis, but α is larger than 0 °. In the range of less than 90 °, it is possible to obtain the emitted light L3 in a state where the coherence of the polarization component is eliminated. Such a state in which the coherence of the polarization component is eliminated is also included in the “non-polarized light” in the present invention.

上記1/4波長板および/または直線偏光子を光軸の回りに任意に回転させたときの出射光量の変動は、αの値が45°より大きくなるほど又は小さくなるほど大きくなる。該出射光量の変動幅の許容範囲は偏光解消素子の用途等により異なる。したがってαの許容範囲も偏光解消素子に要求される精度によって異なるが、前記出射光量の変動がほとんど生じない「実用上好ましい無偏光」を要求される場合には、45°±1°程度の範囲が好ましい。
また前記出射光量の変動に対する要求が厳しくなく、偏光成分の可干渉性が解消された状態の無偏光が要求される用途の場合は、αを0°より大きく90°未満の範囲で設定することができる。
The variation in the amount of emitted light when the quarter-wave plate and / or the linear polarizer is arbitrarily rotated around the optical axis increases as the value of α becomes larger or smaller than 45 °. The allowable range of the fluctuation range of the emitted light amount varies depending on the application of the depolarizer. Accordingly, the allowable range of α also varies depending on the accuracy required for the depolarizing element, but when “practically preferred non-polarized light” that hardly changes the amount of emitted light is required, a range of about 45 ° ± 1 ° is required. Is preferred.
In addition, in a case where the requirement for fluctuation of the amount of emitted light is not strict and non-polarized light is required in a state where the coherence of the polarization component is eliminated, α should be set in a range greater than 0 ° and less than 90 °. Can do.

なお、上記実施形態では、図3に示すように、反射層2a、2bと、入射面1aおよび対向面1bとの間にそれぞれ間隙が設けられているが、反射層2a、2bが入射面1aおよび対向面1bにそれぞれ接していてもよく、一体化されていてもよい。該間隙を設ける場合は、この間隙の幅Dが大きすぎると素子が不必要に大きくなってしまうので、1mm以下とするのが好ましく、0.5mm以下がより好ましい。また、前記間隙を設ける場合、入射面1aおよび対向面1b上に無反射コート層を設けることが好ましい。
また、入射手段は偏波モード間のモード結合を抑制しながら光伝送を行うことができるものであればよく、偏波保持光ファイバ3に代えて空間光等を用いることもできる。
また、出射位置Pは前記2つの偏光成分の光路が重なり合う位置であればよく、対向面1b上に出射位置Pを設けてもよい。
また、反射層2a、2bの反射面どうしは、必ずしも平行でなくてもよく、両者のなす角度が10°以下は許容範囲とすることができる。
In the above embodiment, as shown in FIG. 3, the gaps are provided between the reflective layers 2a and 2b and the incident surface 1a and the opposing surface 1b, respectively, but the reflective layers 2a and 2b are provided on the incident surface 1a. And may be in contact with the opposing surface 1b or may be integrated. When the gap is provided, if the gap width D is too large, the element becomes unnecessarily large. Therefore, the gap is preferably 1 mm or less, and more preferably 0.5 mm or less. Moreover, when providing the said gap | interval, it is preferable to provide a non-reflective coating layer on the incident surface 1a and the opposing surface 1b.
The incident means may be any means that can perform optical transmission while suppressing mode coupling between the polarization modes. Spatial light or the like can be used instead of the polarization maintaining optical fiber 3.
The emission position P may be any position where the optical paths of the two polarization components overlap, and the emission position P may be provided on the facing surface 1b.
Moreover, the reflective surfaces of the reflective layers 2a and 2b do not necessarily have to be parallel to each other, and an angle formed by the two can be within an allowable range.

本実施形態の偏光解消素子は、変換媒質1が小型であっても、該変換媒質1内で分離される2つの偏光成分の光路長を長くすることができるので、小型の素子で大きな光路長差(遅延量)を発生させることができる。したがって小型で高性能の偏光解消素子が得られる。また素子を小型化することにより、素子の温度安定性が向上する。
また、偏光L1の入射角度θ1を変化させるだけで、変換媒質1を変えなくても、複数種の遅延量を得ることが可能である。
In the depolarizing element of this embodiment, even if the conversion medium 1 is small, the optical path length of two polarization components separated in the conversion medium 1 can be increased. A difference (a delay amount) can be generated. Therefore, a small and high performance depolarizing element can be obtained. Further, by reducing the size of the element, the temperature stability of the element is improved.
Further, it is possible to obtain a plurality of types of delay amounts without changing the conversion medium 1 by changing the incident angle θ1 of the polarized light L1.

(実施例1)
図1〜3に示す偏波解消素子を下記の条件で構成したときに得られる遅延量をシミュレーションした。変換媒質1内における2つの偏光成分の屈折率は一方が1.9447、他方が2.1486とした。
X方向における入射位置から出射位置Pまでの距離Lx:13.7mm
Z方向における変換媒質1の長さLz:5.0mm
反射層2a、2bと、入射面1aおよび対向面1bとの間隙の幅D:0.3mm
偏光L1の入射角度θ1:6.5°
反射層2a、2bの反射率:99%
偏光L1の波長:1550nm
このとき、変換媒質1内で分離された2つの偏光成分のうち、反射層2a、2bでの反射回数が少ない方の成分については、反射回数が25回、反射層2a(2b)の反射面において隣り合う反射位置間の距離Wは0.53mmとなる。そして、変換媒質1内において発生する該2つの偏光成分の光路長差は45.95mmであり、遅延量は153psec(ピコ秒)となる。
また、ガウスビームの結合効率計算式により得られる結合光線間損失の値は0.079dBとなる。
Example 1
The delay amount obtained when the polarization cancellation element shown in FIGS. 1 to 3 is configured under the following conditions was simulated. One of the refractive indexes of the two polarization components in the conversion medium 1 is 1.9447 and the other is 2.1486.
Distance Lx from the entrance position to the exit position P in the X direction: 13.7 mm
Length Lz of conversion medium 1 in the Z direction: 5.0 mm
Width D of the gap between the reflective layers 2a and 2b and the incident surface 1a and the opposing surface 1b: 0.3 mm
Incident angle θ1: 6.5 ° of polarized light L1
Reflectivity of the reflective layers 2a and 2b: 99%
Wavelength of polarized light L1: 1550 nm
At this time, of the two polarization components separated in the conversion medium 1, the component having the smaller number of reflections at the reflection layers 2a and 2b has a reflection number of 25 and the reflection surface of the reflection layer 2a (2b). The distance W between the reflection positions adjacent to each other is 0.53 mm. The optical path length difference between the two polarization components generated in the conversion medium 1 is 45.95 mm, and the delay amount is 153 psec (picoseconds).
Further, the value of the loss between coupled rays obtained by the formula for calculating the coupling efficiency of the Gaussian beam is 0.079 dB.

(実施例2)
図1〜3に示す偏波解消素子を下記の条件で構成したときに得られる遅延量をシミュレーションした。変換媒質1内における2つの偏光成分の屈折率は一方が1.9447、他方が2.1486とした。
X方向における入射位置から出射位置Pまでの距離Lx:13.7mm
Z方向における変換媒質1の長さLz:8.2mm
反射層2a、2bと、入射面1aおよび対向面1bとの間隙の幅D:0.3mm
偏光L1の入射角度θ1:4.5°
反射層2a、2bの反射率:99%
偏光L1の波長: 1550nm
このとき、変換媒質1内で分離された2つの偏光成分のうち、反射層2a、2bでの反射回数が少ない方の成分については、反射回数が23回、反射層2a(2b)の反射面において隣り合う反射位置間の距離Wは0.599mmとなる。そして、変換媒質1内において発生する該2つの偏光成分の光路長差は72.02mmであり、遅延量は240psec(ピコ秒)となる。
また、ガウスビームの結合効率計算式により得られる結合光線間損失の値は0.071dBとなる。
(Example 2)
The delay amount obtained when the polarization cancellation element shown in FIGS. 1 to 3 is configured under the following conditions was simulated. One of the refractive indexes of the two polarization components in the conversion medium 1 is 1.9447 and the other is 2.1486.
Distance Lx from the entrance position to the exit position P in the X direction: 13.7 mm
Length Lz of conversion medium 1 in the Z direction: 8.2 mm
Width D of the gap between the reflective layers 2a and 2b and the incident surface 1a and the opposing surface 1b: 0.3 mm
Incident angle θ1: 4.5 ° of polarized light L1
Reflectivity of the reflective layers 2a and 2b: 99%
Wavelength of polarized light L1: 1550 nm
At this time, of the two polarization components separated in the conversion medium 1, the component having the smaller number of reflections at the reflection layers 2a and 2b has a reflection number of 23 and the reflection surface of the reflection layer 2a (2b). The distance W between adjacent reflection positions is 0.599 mm. The optical path length difference between the two polarization components generated in the conversion medium 1 is 72.02 mm, and the delay amount is 240 psec (picoseconds).
Further, the value of the loss between coupled rays obtained from the Gaussian beam coupling efficiency calculation formula is 0.071 dB.

本発明の偏光解消素子の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the depolarizing element of this invention. 図1の偏光解消素子の測面図である。FIG. 2 is a surface plan view of the depolarizing element in FIG. 1. 図1の変換媒質内に形成されている光路を含む面に沿う断面図。Sectional drawing which follows the surface containing the optical path currently formed in the conversion medium of FIG. 入射光の偏光方位の好ましい角度を説明するための図である。It is a figure for demonstrating the preferable angle of the polarization azimuth | direction of incident light. 入射光の偏光方位の好ましい角度を説明するための図である。It is a figure for demonstrating the preferable angle of the polarization azimuth | direction of incident light. 従来の偏光解消素子の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional depolarizing element.

符号の説明Explanation of symbols

1…変換媒質
2a、2b…反射層(反射手段)
3…偏波保持光ファイバ(入射手段)

DESCRIPTION OF SYMBOLS 1 ... Conversion medium 2a, 2b ... Reflection layer (reflection means)
3. Polarization-maintaining optical fiber (incident means)

Claims (2)

偏光を無偏光に変換する偏光解消素子であって、
光学的異方性を有する変換媒質と、
前記変換媒質に偏光を、該変換媒質における光学軸方向を法線方向とする平面内に含まれ、かつ入射面の法線方向に対して斜め方向から入射させる入射手段と、
前記変換媒質内を伝搬した光を反射して略V字状に折り返させる反射手段とを備えており、
前記変換媒質に入射された偏光は、偏光状態が異なる2つの光成分に分離され、該2つの光成分は、前記反射手段により互いに異なる回数の複数回反射されて、前記変換媒質内を略V字状に折り返しながら伝搬した後、該2つの光成分の光路が重なり合う位置で前記変換媒質から出射されることを特徴とする偏光解消素子。
A depolarizing element that converts polarized light into non-polarized light,
A conversion medium having optical anisotropy;
Incident means for making polarized light incident on the conversion medium in a plane that is included in a plane whose normal direction is the optical axis direction of the conversion medium and that is incident obliquely with respect to the normal direction of the incident surface;
Reflecting means for reflecting the light propagating in the conversion medium and folding it back into a substantially V shape;
The polarized light incident on the conversion medium is separated into two light components having different polarization states, and the two light components are reflected by the reflection means a plurality of times different from each other, and the inside of the conversion medium is approximately V. A depolarizing element, which propagates while being folded back in a letter shape, and is emitted from the conversion medium at a position where the optical paths of the two light components overlap.
前記変換媒質に入射される偏光の進行方向を法線方向とする面内において、前記変換媒質における光学軸方向と平行な方向と、前記変換媒質に入射される偏光の偏光方位とのなす角度αが略45°であることを特徴とする請求項1記載の偏光解消素子。


An angle α between a direction parallel to the optical axis direction of the conversion medium and a polarization direction of the polarization incident on the conversion medium in a plane having a normal direction as a traveling direction of the polarization incident on the conversion medium. The depolarizing element according to claim 1, wherein is approximately 45 °.


JP2004289003A 2004-09-30 2004-09-30 Depolarizing element Withdrawn JP2006106104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289003A JP2006106104A (en) 2004-09-30 2004-09-30 Depolarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289003A JP2006106104A (en) 2004-09-30 2004-09-30 Depolarizing element

Publications (1)

Publication Number Publication Date
JP2006106104A true JP2006106104A (en) 2006-04-20

Family

ID=36375953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289003A Withdrawn JP2006106104A (en) 2004-09-30 2004-09-30 Depolarizing element

Country Status (1)

Country Link
JP (1) JP2006106104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136320A (en) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2011203077A (en) * 2010-03-25 2011-10-13 Otsuka Denshi Co Ltd Optical measurement apparatus, optical measurement system, and fiber coupler
JP2014002286A (en) * 2012-06-19 2014-01-09 Ricoh Opt Ind Co Ltd Depolarization element, and optical device using the same
JP2016062011A (en) * 2014-09-19 2016-04-25 株式会社島津製作所 Coherence reduction element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136320A (en) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2011203077A (en) * 2010-03-25 2011-10-13 Otsuka Denshi Co Ltd Optical measurement apparatus, optical measurement system, and fiber coupler
CN102235910A (en) * 2010-03-25 2011-11-09 大*电子株式会社 Optical measurement apparatus, optical measurement system, and fiber coupler
TWI495854B (en) * 2010-03-25 2015-08-11 Otsuka Denshi Kk Optical measurement apparatus, optical measurement system, and fiber coupler
JP2014002286A (en) * 2012-06-19 2014-01-09 Ricoh Opt Ind Co Ltd Depolarization element, and optical device using the same
JP2016062011A (en) * 2014-09-19 2016-04-25 株式会社島津製作所 Coherence reduction element

Similar Documents

Publication Publication Date Title
JP4754020B2 (en) Planar waveguide laser device
JP4798106B2 (en) Bidirectional light emitting / receiving module
JPH08254668A (en) Laser diode module and depolarizer
JP6253672B2 (en) Planar waveguide laser device
WO2006028078A1 (en) Passive q switch laser device
JP2007012981A (en) Laser with high reflective coating on interior total reflection surface of optical element
WO2007026510A1 (en) Fiber laser and optical device
JP6192883B1 (en) Planar waveguide
JP3407046B1 (en) Interferometer type optical isolator and optical circulator
US7317740B2 (en) Mode locker for fiber laser
JP2006106104A (en) Depolarizing element
JP6437169B2 (en) Ridge waveguide laser device
JPH01241502A (en) Polarizing element for optical isolator
JP2004334169A (en) Beam multiplexing element, beam multiplexing method, beam separating element, beam separating method, and exciting light output device
US20080080571A1 (en) Intracavity frequency-doubling laser device
JP2010522891A (en) Optical element, method for producing the same, and method for using the same
JP7472066B2 (en) Optical unit and interference type optical magnetic field sensor device
JPH04125602A (en) Optical waveguide type polarizer
JP2013019960A (en) Semiconductor laser module
JP2018155892A (en) Optical isolator and optical module
CN109313310B (en) Planar waveguide
JPS6230607B2 (en)
JP2006317624A (en) Optical circulator
JP2004012771A (en) Non-reciprocal optical device
Al-Hilou et al. Design of Dielectric Bragg Mirror Consisting Quarter Wave Stacks Using Transfer Matrix Method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204