WO2018086633A1 - Bactericide composition including benzisothiazolinone and ethylicin - Google Patents

Bactericide composition including benzisothiazolinone and ethylicin Download PDF

Info

Publication number
WO2018086633A1
WO2018086633A1 PCT/CN2017/115377 CN2017115377W WO2018086633A1 WO 2018086633 A1 WO2018086633 A1 WO 2018086633A1 CN 2017115377 W CN2017115377 W CN 2017115377W WO 2018086633 A1 WO2018086633 A1 WO 2018086633A1
Authority
WO
WIPO (PCT)
Prior art keywords
allicin
composition
composition according
formula
active ingredient
Prior art date
Application number
PCT/CN2017/115377
Other languages
French (fr)
Chinese (zh)
Inventor
仲汉根
季自华
季红进
花伟
季定根
韦建峰
Original Assignee
江苏辉丰生物农业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏辉丰生物农业股份有限公司 filed Critical 江苏辉丰生物农业股份有限公司
Publication of WO2018086633A1 publication Critical patent/WO2018086633A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/08Sulfonic acid halides; alpha-Hydroxy-sulfonic acids; Amino-sulfonic acids; Thiosulfonic acids; Derivatives thereof

Definitions

  • the invention belongs to the field of agricultural plant protection, in particular to a germicidal composition with improved properties, in particular to a germicidal composition comprising benzisothiazolinones and allicin.
  • Benzoisothiazolinones are a new type of broad-spectrum fungicide mainly used for the prevention and treatment of various bacterial and fungal diseases such as cereal crops, vegetables and fruits.
  • the mechanism of bactericidal action mainly includes destroying the nuclear structure of the pathogen, causing it to lose the heart part and failing to death and interfering with the metabolism of the pathogenic cells, causing its physiological disorder and ultimately leading to death. It can effectively protect plants from pathogens in the early stage of disease occurrence. Increasing the dosage after disease occurrence can obviously control the spread of pathogens, thus achieving the dual functions of protection and eradication.
  • Ethylicin is a high-efficiency, pollution-free, broad-spectrum biomimetic fungicide that combines plant growth regulation to promote germination, increase germination rate, increase yield, and improve quality. Its action characteristics are related to the action of substances containing sulfur in the bacteria, thereby inhibiting the normal metabolism of the cells. Allicin has a quick-acting effect, the temperature is above 25 ° C, 24 hours effective, 72 hours to control the disease.
  • High activity, low dosage can effectively inhibit cotton blight, blight, and verticillium; rice blast, bacterial blight, mite, rotten rot, sheath blight; maize size spot, yellow leaf , wheat scab, streak disease, smut, watermelon slow blight, watermelon seedling disease, cucumber seedling stage blight, blight, gray mold, black star disease, downy mildew, cabbage soft rot, Ginger disease, tomato gray mold, bacterial wilt, pepper blight and various diseases on strawberries, atractylodes, ginseng, banana, apple, grape, pear, tea, horseshoe, flower, peanut, soybean, sesame and other crops, effect Significant.
  • the object of the present invention is to solve the resistance of the bactericide in practical application and the problem of soil residue, and to screen out the fungicides with different sterilization principles to obtain a new fungicide composition, so as to improve the control effect of the bactericide and delay the resistance.
  • Sexual production reducing the amount of application, reducing the cost of prevention.
  • Another object of the present invention is to provide an application comprising a combination of two active ingredients A and B in the control of crop diseases in the agricultural sector.
  • the object of the invention can be achieved by the following measures:
  • a synergistic fungicidal composition comprising two active components A and B, wherein the active group
  • the fraction A is a structural compound having the formula (I)
  • the active component B is allicin.
  • R is selected from H or a C 1 - C 8 alkyl group.
  • the C 1 -C 8 alkyl group in the present invention means a linear or branched alkyl group having 1 to 8 carbon atoms, and includes a C 1 alkyl group (e.g., methyl group) and a C 2 alkyl group (e.g., ethyl group). , C 3 alkyl (such as n-propyl, isopropyl), C 4 alkyl (such as n-butyl, isobutyl, tert-butyl, sec-butyl), C 5 alkyl (such as n-pentyl, etc.) , C 6 alkyl, C 7 alkyl, C 8 alkyl. It includes, but is not limited to, C 1 -C 6 alkyl, C 1 -C 5 alkyl, C 1 -C 4 alkyl, and the like.
  • R is selected from H or a C 1 -C 4 alkyl group.
  • R is selected from the group consisting of H, -CH 3 or -C 4 H 9 .
  • A is 1,2-benzisothiazolin-3-one (abbreviated as BIT in the specification).
  • R is CH 3
  • A is 2-methyl-1,2-benzisothiazolin-3-one (abbreviated as MBIT in the specification).
  • R is C 4 H 9
  • A is 2-butyl-1,2-benzisothiazolin-3-one
  • the "butyl group” in the formula is preferably n-butyl (instruction Referred to as BBIT).
  • the inventors have found through experiments that the composition of the present invention is used for controlling bacterial or fungal diseases of crops, and the control effect is obvious, and more importantly, the application amount is reduced, and the use cost is lowered.
  • the compounds containing component A and component B have different structural types and different mechanisms of action. The combination of the two can expand the bactericidal spectrum, and can delay the generation and development of pathogen resistance to a certain extent, and component A and group There is no cross-resistance between points B.
  • the weight ratio between the two components in the bactericide composition of the present invention is from 1:0.1 to 30.
  • the weight ratio between the components of component A and component B can be further optimized to 1:1-20.
  • the weight ratio between the two components of A and B can be arbitrarily adjusted within the range of the following ratios: 10:1, 9:1, 8:1, 7:1, 6:1 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1: 9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:21, 1:22, 1:23, 1:24, 1:25, 1:26, 1:27, 1:28, 1:29, 1:30, or within the range of any two of the above ratios Selection is made, and these ratios can be understood as weight ratios, and may also include molar ratios.
  • composition of the present invention can be made into a pesticide-acceptable dosage form from the active ingredient and agrochemical adjuvant or adjuvant. Further, the composition comprises from 2 to 80% by weight of the active ingredient and from 98 to 20% by weight of the pesticide adjuvant to form a pesticide-acceptable dosage form.
  • the present invention provides the use of a bactericidal composition comprising component A and component B for controlling crop diseases in the agricultural sector, in particular for controlling fungal or bacterial diseases of certain crops.
  • composition may specifically comprise an agrochemical adjuvant or an auxiliary such as one or more of a carrier, a solvent, a dispersing agent, a wetting agent, an adhesive, a thickener, a binder, a surfactant or a fertilizer.
  • auxiliary such as one or more of a carrier, a solvent, a dispersing agent, a wetting agent, an adhesive, a thickener, a binder, a surfactant or a fertilizer.
  • auxiliary such as one or more of a carrier, a solvent, a dispersing agent, a wetting agent, an adhesive, a thickener, a binder, a surfactant or a fertilizer.
  • auxiliary such as one or more of a carrier, a solvent, a dispersing agent, a wetting agent, an adhesive, a thickener, a binder, a surfactant or a fertilizer.
  • Common auxiliaries can be mixed during the application.
  • auxiliaries or auxiliaries may be solid or liquid, they are usually materials commonly used in the processing of dosage forms, such as natural or regenerated minerals, solvents, dispersants, wetting agents, adhesives, thickeners, binders. .
  • the method of application of the compositions of the invention comprises the use of the compositions of the invention for aerial parts of plants, in particular leaves or foliage. You can choose to soak or apply to the surface of the control object.
  • the frequency of administration and the amount administered will depend on the biological and climatic conditions of the pathogen.
  • the plant growth site such as rice fields, may be wetted with a liquid formulation of the composition, or the composition may be applied to the soil in solid form, such as in the form of granules (soil application), the composition may be passed from the soil to the plant through the roots of the plant. In vivo (systemic action).
  • composition of the present invention can be prepared into various pesticide-acceptable dosage forms including, but not limited to, emulsifiable concentrates, suspending agents, wettable powders, water-dispersible granules, powders, granules, aqueous preparations, aqueous emulsions, microemulsions, poison baits.
  • the dosage form of the invention employs a wettable powder, a suspending agent, a water-dispersible granule, an aqueous emulsion or a microemulsion.
  • the compositions may be applied by spraying, misting, dusting, spreading or pouring, and the like.
  • composition of the present invention can be prepared into various dosage forms by a known method, and the active ingredient and the auxiliary agent, such as a solvent, a solid carrier, and, if necessary, can be uniformly mixed and ground together with the surfactant to prepare a desired preparation. Dosage form.
  • the above solvent may be selected from aromatic hydrocarbons, preferably containing from 8 to 12 carbon atoms, such as a mixture of xylenes or substituted benzenes, phthalates such as dibutyl phthalate or dicaprylic acid, aliphatic hydrocarbons such as rings.
  • aromatic hydrocarbons preferably containing from 8 to 12 carbon atoms, such as a mixture of xylenes or substituted benzenes, phthalates such as dibutyl phthalate or dicaprylic acid, aliphatic hydrocarbons such as rings.
  • Alkenes or paraffins, alcohols and glycols and their ethers and esters such as ethanol, ethylene glycol, ethylene glycol monomethyl
  • ketones such as cyclohexanone
  • highly polar solvents such as N-methyl-2 Pyrrolidone, dimethyl sulfoxide or dimethylformamide
  • vegetable or vegetable oils such as soybean oil.
  • the above solid carriers are typically natural mineral fillers such as talc, kaolin, montmorillonite or activated clay.
  • a highly dispersible silicic acid or a highly dispersible adsorbent polymer carrier such as a particulate adsorbent carrier or a non-adsorbing carrier, and a suitable particulate adsorbent carrier is porous, such as pumice, bentonite or Bentonite; a suitable non-adsorbing carrier such as calcite or sand.
  • a large amount of pre-granulated materials of inorganic or organic nature can be used as a carrier, in particular dolomite.
  • Suitable surfactants according to the chemical nature of the active ingredients in the composition of the invention are lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, alkaline earth metal or amine salts, alkylarylsulfonates, alkyl sulfates , alkyl sulfonate, fatty alcohol sulfuric acid Salts, fatty acids and sulfated fatty alcohol glycol ethers, as well as condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenyl ether, Ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylaryl polyglycol ether, tributylbenzene polyglycol ether,
  • the active ingredient A can be first dissolved in certain specific basic substances to form a benzisothiazolin metal salt.
  • suitable basic substances include: alkali metal carbonates, alkali metal hydrogens Oxide (such as sodium hydroxide, potassium hydroxide), alkali metal alkoxy carbonate, alkali metal alkoxide or magnesium methoxide.
  • the two active ingredients in the compositions of the present invention exhibit synergistic effects, the activity of which is more pronounced than the expected sum of activity using a single compound, and the individual activity of a single compound.
  • the synergistic effect is manifested by allowing for a reduced application rate, a broader fungicidal control profile, quicker effect, longer lasting control effect, better control of plant harmful fungi by only one or a few applications, and broadening of possible application. Intervals. These properties are particularly desirable in the practice of plant fungi control.
  • the fungicide composition of the invention can be applied to the field of agricultural diseases for controlling crop diseases, and the specific diseases targeted include, but not limited to, wheat diseases (such as wheat scab, wheat powdery mildew, wheat rust, etc.) and rice diseases (such as: Rice sheath blight, rice blast disease, rice blast, rice bacterial streaks, etc., corn diseases (such as: corn smut, corn big spot, corn spot), cucumber diseases (such as: cucumber frost Mold disease, cucumber powdery mildew, cucumber anthracnose, cucumber bacterial angular spot disease, etc., tomato diseases (such as: tomato anthracnose, tomato gray mold, tomato bacterial angular spot disease, etc.), grape diseases (such as: grape frost Mildew, grape gray mold, grape powdery mildew), apple disease (such as apple ring disease, apple anthracnose, etc.), citrus disease (citrus canker disease, citrus canker, citrus anthracnose), tobacco disease (tobacco wildfire disease) )Wait.
  • the other characteristics exhibited by the bactericidal composition of the present invention are mainly as follows: 1.
  • the compounding of the composition of the present invention has obvious synergistic effect; 2. Since the chemical composition of the two single agents of the present composition is greatly different, the effect The mechanism is completely different, there is no cross-resistance, and the problem of resistance caused by the separate use of the two single agents can be delayed; 3.
  • the composition of the present invention is safe and safe for crops. It has been proved by experiments that the bactericidal composition of the invention has stable chemical properties, remarkable synergistic effect, and exhibits obvious synergistic effect and complementary effect on the control object.
  • the active ingredient active group A and the active ingredient B are mixed with a solvent, an emulsifier, a dispersing agent, a co-emulsifier and the like in a ratio of the formula, and the water emulsion product is obtained by making up the water.
  • Example 1 10% BIT ⁇ isicin water emulsion
  • Example 2 10% MBIT ⁇ Allicin aqueous emulsion
  • the MBIT was 5%, the allicin was 5%, and the remaining components were prepared in the same manner as in Example 1.
  • Example 3 10% BBIT ⁇ Allicin aqueous emulsion
  • the active ingredient active group A and the active component B, and the components such as a dispersing agent, a wetting agent, a thickener and water are uniformly mixed according to the formula, and after being sanded and/or sheared at a high speed, a semi-finished product is obtained. After the analysis, the water is mixed and evenly filtered to obtain the finished product.
  • the MBIT was 2.5%, the allicin was 50%, and the remaining components were prepared in the same manner as in Example 5.
  • the active ingredient A and the B active ingredient are sufficiently mixed with various auxiliary agents and fillers, and are pulverized by an ultrafine pulverizer to obtain a wettable powder.
  • Example 11 62% BIT ⁇ Allitrione Wettable Powder (1:30)
  • the MBIT was 5%, the allicin was 0.5%, and the remaining components were prepared in the same manner as in Example 10.
  • the BBIT was 5%, the allicin was 0.5%, and the remaining components were prepared in the same manner as in Example 10.
  • Example 15 62% BBIT ⁇ isicin wettable powder
  • the control effect is converted into the probability value (y)
  • the concentration of the drug solution ( ⁇ g/ml) is converted into the logarithm value (x)
  • the virulence equation is calculated by the least squares method and the concentration EC50 is suppressed
  • the virulence index of the drug is calculated according to the method of Sun Yunpei.
  • the co-toxicity coefficient (CTC) is calculated according to the method of Sun Yunpei.
  • Measured virulence index (ATI) (standard drug EC50 / test drug EC50) * 100
  • Theoretical virulence index (TTI) A virulence index * Percentage of A in the mixture + B virulence index * Percentage of B in the mixture
  • CTC Co-toxicity coefficient [mixture measured virulence index (ATI) / mixed theory virulence index (TTI)] * 100
  • CTC ⁇ 80 the composition showed antagonism, 80 ⁇ CTC ⁇ 120, the composition showed an additive effect, CTC ⁇ 120, and the composition showed synergistic effect.
  • Test method In the early stage of the disease, the first spray was immediately performed, and after 7 days, the second application was carried out, each treatment of 4 cells, 20 square meters per cell. The incidence of the disease was investigated before the drug and 11 days after the second drug. Each plot was randomly sampled at 5 points, and 5 crops were investigated at each point. The percentage of the lesion area per leaf on the whole plant was counted and graded. Disease index and control effect.
  • Grade 1 less than 5 leaf lesions, less than 1 cm in length;
  • Grade 3 6-10 leaf lesions, some lesions are longer than 1 cm;
  • Grade 5 11-25 leaf lesions, some lesions are connected into pieces, and the lesion area accounts for 10-25% of the leaf area;
  • Grade 7 more than 26 leaf lesions, the lesions are connected into pieces, and the lesion area accounts for 26-50% of the leaf area;
  • Grade 9 The lesions are connected into pieces, and the area of the lesions accounts for more than 50% of the leaf area or the whole leaves are dead.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided is a bactericide composition, including two effective ingredients, A and B, active ingredient A being a compound having the structure of formula (I), active ingredient B being ethylicin, the weight ratio of the two ingredients being 1:0.1-30. Also provided are a preparation method for the composition and a use of the composition. Test results show that the bactericide composition provided in the present invention has significant synergy and, more importantly, reduced application amounts and decreased usage costs. The bactericide composition can effectively prevent and treat certain specific bacterial or fungal diseases of crops. By compounding bactericides having different mechanisms and modes of action, the bactericidal spectrum is expanded, fungal and bacterial resistance are delayed, and the prevention and treatment effect is improved.

Description

一种包含苯并异噻唑啉酮类和乙蒜素的杀菌剂组合物A bactericidal composition comprising benzisothiazolinones and allicin 技术领域Technical field
本发明属于农业植物保护领域,特别是涉及一种具有改进性能的杀菌组合物,具体地说是涉及一种包含苯并异噻唑啉酮类和乙蒜素的杀菌组合物。The invention belongs to the field of agricultural plant protection, in particular to a germicidal composition with improved properties, in particular to a germicidal composition comprising benzisothiazolinones and allicin.
背景技术Background technique
苯并异噻唑啉酮类化合物是一种新型、广谱杀菌剂,主要用于防治和治疗禾谷类作物、蔬菜、水果等多种细菌、真菌性病害。其杀菌作用机理,主要包括破坏病菌细胞核结构,使其失去心脏部位而衰竭死亡和干扰病菌细胞的新陈代谢,使其生理紊乱,最终导致死亡两个方面。在病害发生初期使用可有效保护植株不受病原物侵染,病害发生后酌情增加用药量可明显控制病菌的蔓延,从而达到保护和铲除的双重作用。Benzoisothiazolinones are a new type of broad-spectrum fungicide mainly used for the prevention and treatment of various bacterial and fungal diseases such as cereal crops, vegetables and fruits. The mechanism of bactericidal action mainly includes destroying the nuclear structure of the pathogen, causing it to lose the heart part and failing to death and interfering with the metabolism of the pathogenic cells, causing its physiological disorder and ultimately leading to death. It can effectively protect plants from pathogens in the early stage of disease occurrence. Increasing the dosage after disease occurrence can obviously control the spread of pathogens, thus achieving the dual functions of protection and eradication.
乙蒜素(Ethylicin)是一种高效无公害广谱仿生杀菌剂,兼具植物生长调节作用,能促进萌芽、提高发芽率、增加产量和改善品质。其作用特点与菌体内含硫基的物质作用,从而抑制菌体的正常代谢。乙蒜素具有速效性,温度在25℃以上,24小时见效,72小时控制病害。活性高,用量少,可有效抑制棉花立枯病、枯萎病、黄萎病;水稻稻瘟病、白叶枯病、恶苗病、烂秧病、纹枯病;玉米大小斑病,黄叶、小麦赤霉病,条纹病,腥黑穗病,西瓜慢枯病,西瓜苗期病害,黄瓜苗期绵疫病,枯萎病,灰霉病,黑星病,霜霉病,白菜软腐病,姜瘟病,番茄灰霉病,青枯病,辣椒疫病及草莓、白术、人参、香蕉、苹果、葡萄、梨树、茶叶,马蹄,花卉,花生,大豆,芝麻等作物上的多种病害,效果显著。Ethylicin is a high-efficiency, pollution-free, broad-spectrum biomimetic fungicide that combines plant growth regulation to promote germination, increase germination rate, increase yield, and improve quality. Its action characteristics are related to the action of substances containing sulfur in the bacteria, thereby inhibiting the normal metabolism of the cells. Allicin has a quick-acting effect, the temperature is above 25 ° C, 24 hours effective, 72 hours to control the disease. High activity, low dosage, can effectively inhibit cotton blight, blight, and verticillium; rice blast, bacterial blight, mite, rotten rot, sheath blight; maize size spot, yellow leaf , wheat scab, streak disease, smut, watermelon slow blight, watermelon seedling disease, cucumber seedling stage blight, blight, gray mold, black star disease, downy mildew, cabbage soft rot, Ginger disease, tomato gray mold, bacterial wilt, pepper blight and various diseases on strawberries, atractylodes, ginseng, banana, apple, grape, pear, tea, horseshoe, flower, peanut, soybean, sesame and other crops, effect Significant.
实际的农药经验已经表明,重复且专一施用一种活性化合物来防治有害真菌在很多情况下将导致真菌菌株的快速选择性,为降低抗性真菌菌株选择性的危险性,目前通常使用不同活性化合物的混合物来防治有害真菌。通过将具有不同作用机理的活性化合物进行组合,可延缓抗性产生,降低施用量,减少防治成本。Practical pesticide experience has shown that repeated and specific application of an active compound to control harmful fungi will in many cases lead to rapid selectivity of fungal strains, and in order to reduce the risk of selectivity of resistant fungal strains, different activities are currently used. A mixture of compounds to control harmful fungi. By combining active compounds having different mechanisms of action, resistance can be delayed, application rates can be reduced, and cost of control can be reduced.
发明内容Summary of the invention
本发明的目的是针对杀菌剂在实际应用中抗性以及土壤残留问题,筛选出不同杀菌原理的杀菌剂进行复配,得到新的一种杀菌剂组合物,以提高杀菌剂防治效果,延缓抗性产生,降低施用量,减少防治成本。The object of the present invention is to solve the resistance of the bactericide in practical application and the problem of soil residue, and to screen out the fungicides with different sterilization principles to obtain a new fungicide composition, so as to improve the control effect of the bactericide and delay the resistance. Sexual production, reducing the amount of application, reducing the cost of prevention.
本发明的另一个目的是提供包含两种有效成分A和B杀菌组合物在农业领域防治农作物病害中的应用。Another object of the present invention is to provide an application comprising a combination of two active ingredients A and B in the control of crop diseases in the agricultural sector.
本发明的目的可以通过以下措施达到:The object of the invention can be achieved by the following measures:
一种具有增效作用的杀菌剂组合物,该组合物包含A和B两种活性组分,其中活性组 分A为具有式(Ⅰ)的结构化合物,活性组分B为乙蒜素。A synergistic fungicidal composition comprising two active components A and B, wherein the active group The fraction A is a structural compound having the formula (I), and the active component B is allicin.
Figure PCTCN2017115377-appb-000001
Figure PCTCN2017115377-appb-000001
式(Ⅰ)中,R选自H或C1~C8烷基。In the formula (I), R is selected from H or a C 1 - C 8 alkyl group.
本发明中的C1~C8烷基是指含有1至8个碳原子的直链或支链烷基,它包括C1烷基(如甲基)、C2烷基(如乙基)、C3烷基(如正丙基、异丙基)、C4烷基(如正丁基、异丁基、叔丁基、仲丁基)、C5烷基(如正戊基等)、C6烷基、C7烷基、C8烷基。它包括但不限于C1~C6烷基、C1~C5烷基、C1~C4烷基等。The C 1 -C 8 alkyl group in the present invention means a linear or branched alkyl group having 1 to 8 carbon atoms, and includes a C 1 alkyl group (e.g., methyl group) and a C 2 alkyl group (e.g., ethyl group). , C 3 alkyl (such as n-propyl, isopropyl), C 4 alkyl (such as n-butyl, isobutyl, tert-butyl, sec-butyl), C 5 alkyl (such as n-pentyl, etc.) , C 6 alkyl, C 7 alkyl, C 8 alkyl. It includes, but is not limited to, C 1 -C 6 alkyl, C 1 -C 5 alkyl, C 1 -C 4 alkyl, and the like.
在一种优选方案中,R选自H或C1~C4烷基。In a preferred embodiment, R is selected from H or a C 1 -C 4 alkyl group.
在一种更优选的方案中,R选自H、-CH3或-C4H9In a more preferred embodiment, R is selected from the group consisting of H, -CH 3 or -C 4 H 9 .
式(Ⅰ)中,当R为H时,A为1,2-苯并异噻唑啉-3-酮(说明书中简称BIT)。In the formula (I), when R is H, A is 1,2-benzisothiazolin-3-one (abbreviated as BIT in the specification).
式(Ⅰ)中,当R为CH3时,A为2-甲基-1,2-苯并异噻唑啉-3-酮(说明书中简称MBIT)。In the formula (I), when R is CH 3 , A is 2-methyl-1,2-benzisothiazolin-3-one (abbreviated as MBIT in the specification).
式(Ⅰ)中,当R为C4H9时,A为2-丁基-1,2-苯并异噻唑啉-3-酮,该式中的“丁基”优选正丁基(说明书中简称BBIT)。In the formula (I), when R is C 4 H 9 , A is 2-butyl-1,2-benzisothiazolin-3-one, and the "butyl group" in the formula is preferably n-butyl (instruction Referred to as BBIT).
发明人通过试验发现,本发明的组合物用于防治农作物细菌或真菌性病害,防治增效明显,更重要的是施用量减少,降低使用成本。含有组分A与组分B的化合物结构类型不同,作用机制各异,两者复配能够扩大杀菌谱,并且可以在一定程度上延缓病原菌抗性的产生和发展速度,且组分A与组分B之间无交互抗性。The inventors have found through experiments that the composition of the present invention is used for controlling bacterial or fungal diseases of crops, and the control effect is obvious, and more importantly, the application amount is reduced, and the use cost is lowered. The compounds containing component A and component B have different structural types and different mechanisms of action. The combination of the two can expand the bactericidal spectrum, and can delay the generation and development of pathogen resistance to a certain extent, and component A and group There is no cross-resistance between points B.
本发明杀菌剂组合物中的两组分之间的重量比为1:0.1~30。为使两组分间的药效增效作用更为显著,组分A和组分B两组分之间的重量比可以进一步优化至1:1~20。The weight ratio between the two components in the bactericide composition of the present invention is from 1:0.1 to 30. In order to make the synergistic effect between the two components more significant, the weight ratio between the components of component A and component B can be further optimized to 1:1-20.
一种优选的方案中,A和B两组分之间的重量比可以任意地在下述配比的范围内进行调整10:1、9:1、8:1、7:1、6:1、5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19、1:20、1:21、1:22、1:23、1:24、1:25、1:26、1:27、1:28、1:29、1:30,也可以在以上任意两个配比所组成的范围内进行选择,这些比例可以理解为重量比,也可以包括摩尔比。In a preferred embodiment, the weight ratio between the two components of A and B can be arbitrarily adjusted within the range of the following ratios: 10:1, 9:1, 8:1, 7:1, 6:1 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1: 9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1:19, 1:20, 1:21, 1:22, 1:23, 1:24, 1:25, 1:26, 1:27, 1:28, 1:29, 1:30, or within the range of any two of the above ratios Selection is made, and these ratios can be understood as weight ratios, and may also include molar ratios.
本发明的组合物可以由活性成分和农药助剂或辅料制成农药上允许的剂型。进一步的,该组合物由2~80%重量份的活性组分与98~20%重量份的农药助剂组成农药上允许的剂型。 The composition of the present invention can be made into a pesticide-acceptable dosage form from the active ingredient and agrochemical adjuvant or adjuvant. Further, the composition comprises from 2 to 80% by weight of the active ingredient and from 98 to 20% by weight of the pesticide adjuvant to form a pesticide-acceptable dosage form.
本发明提供了包含组分A和组分B的杀菌组合物在农业领域防治农作物病害方面的用途,特别是在防治某些作物的真菌或细菌性病害方面的用途。The present invention provides the use of a bactericidal composition comprising component A and component B for controlling crop diseases in the agricultural sector, in particular for controlling fungal or bacterial diseases of certain crops.
上述组合物具体可包含农药助剂或辅料,例如载体、溶剂、分散剂、润湿剂、胶粘剂、增稠剂、粘合剂、表面活性剂或肥料等中的一种或几种。在施用的过程中可以混合常用的助剂。The above composition may specifically comprise an agrochemical adjuvant or an auxiliary such as one or more of a carrier, a solvent, a dispersing agent, a wetting agent, an adhesive, a thickener, a binder, a surfactant or a fertilizer. Common auxiliaries can be mixed during the application.
合适的助剂或辅料可以是固体或液体,它们通常是剂型加工过程中常用的物质,例如天然的或再生的矿物质,溶剂、分散剂、润湿剂、胶粘剂、增稠剂、粘合剂。Suitable auxiliaries or auxiliaries may be solid or liquid, they are usually materials commonly used in the processing of dosage forms, such as natural or regenerated minerals, solvents, dispersants, wetting agents, adhesives, thickeners, binders. .
本发明组合物的施用方法包括将本发明的组合物用于植物生长的地上部分,特别是叶部或叶面。可以选择浸种或涂抹于防治对象表面。施用的频率和施用量取决于病原体的生物学和气候生存条件。可以将植物的生长场所,如稻田,用组合物的液体制剂浸湿,或者将组合物以固体形式施用于土壤中,如以颗粒形式(土壤施用),组合物可以由土壤经植物根部进入植物体内(内吸作用)。The method of application of the compositions of the invention comprises the use of the compositions of the invention for aerial parts of plants, in particular leaves or foliage. You can choose to soak or apply to the surface of the control object. The frequency of administration and the amount administered will depend on the biological and climatic conditions of the pathogen. The plant growth site, such as rice fields, may be wetted with a liquid formulation of the composition, or the composition may be applied to the soil in solid form, such as in the form of granules (soil application), the composition may be passed from the soil to the plant through the roots of the plant. In vivo (systemic action).
本发明的组合物可以制备成农药上可接受的各种剂型,包括但不限于乳油、悬浮剂、可湿性粉剂、水分散粒剂、粉剂、粒剂、水剂、水乳剂、微乳剂、毒饵、母液、母粉等,在一种优选方案中,本发明的剂型采用可湿性粉剂、悬浮剂、水分散粒剂、水乳剂或微乳剂。根据这些组合物的性质以及施用组合物所要达到的目的和环境情况,可以选择将组合物以喷雾、弥雾、喷粉、撒播或泼浇等之类的方法施用。The composition of the present invention can be prepared into various pesticide-acceptable dosage forms including, but not limited to, emulsifiable concentrates, suspending agents, wettable powders, water-dispersible granules, powders, granules, aqueous preparations, aqueous emulsions, microemulsions, poison baits. A mother liquor, a mother powder or the like. In a preferred embodiment, the dosage form of the invention employs a wettable powder, a suspending agent, a water-dispersible granule, an aqueous emulsion or a microemulsion. Depending on the nature of the compositions and the intended purpose and environmental conditions to which the compositions are to be applied, the compositions may be applied by spraying, misting, dusting, spreading or pouring, and the like.
可用已知的方法可以将本发明的组合物制备成各种剂型,可以将有效成分与助剂,如溶剂、固体载体,需要时可以与表面活性剂一起均匀混合、研磨,制备成所需要的剂型。The composition of the present invention can be prepared into various dosage forms by a known method, and the active ingredient and the auxiliary agent, such as a solvent, a solid carrier, and, if necessary, can be uniformly mixed and ground together with the surfactant to prepare a desired preparation. Dosage form.
上述的溶剂可选自芳香烃,优选含8-12个碳原子,如二甲苯混合物或取代的苯,酞酸酯类,如酞酸二丁酯或酞酸二辛酸,脂肪烃类,如环已烷或石蜡,醇和乙二醇和它们的醚和酯,如乙醇,乙二醇,乙二醇单甲基;酮类,如环已酮,强极性的溶剂,如N-甲基-2-吡咯烷酮,二甲基亚砜或二甲基甲酰胺,和植物油或植物油,如大豆油。The above solvent may be selected from aromatic hydrocarbons, preferably containing from 8 to 12 carbon atoms, such as a mixture of xylenes or substituted benzenes, phthalates such as dibutyl phthalate or dicaprylic acid, aliphatic hydrocarbons such as rings. Alkenes or paraffins, alcohols and glycols and their ethers and esters, such as ethanol, ethylene glycol, ethylene glycol monomethyl; ketones, such as cyclohexanone, highly polar solvents such as N-methyl-2 Pyrrolidone, dimethyl sulfoxide or dimethylformamide, and vegetable or vegetable oils such as soybean oil.
上述的固体载体,如用于粉剂和可分散剂的通常是天然矿物填料,例如滑石、高岭土,蒙脱石或活性白土。为了管理组合物的物理性能,也可以加入高分散性硅酸或高分散性吸附聚合物载体,例如粒状吸附载体或非吸附载体,合适的粒状吸附载体是多孔型的,如浮石、皂土或膨润土;合适的非吸附载体如方解石或砂。另外,可以使用大量的无机性质或有机性质的预制成粒状的材料作为载体,特别是白云石。The above solid carriers, such as those used in powders and dispersibles, are typically natural mineral fillers such as talc, kaolin, montmorillonite or activated clay. In order to manage the physical properties of the composition, it is also possible to add a highly dispersible silicic acid or a highly dispersible adsorbent polymer carrier, such as a particulate adsorbent carrier or a non-adsorbing carrier, and a suitable particulate adsorbent carrier is porous, such as pumice, bentonite or Bentonite; a suitable non-adsorbing carrier such as calcite or sand. In addition, a large amount of pre-granulated materials of inorganic or organic nature can be used as a carrier, in particular dolomite.
根据本发明组合物中有效成分的化学性质,合适的表面活性剂为木质素磺酸、萘磺酸、苯酚磺酸、碱土金属盐或胺盐,烷基芳基磺酸盐,烷基硫酸盐,烷基磺酸盐,脂肪醇硫酸 盐,脂肪酸和硫酸化脂肪醇乙二醇醚,还有磺化萘和萘衍生物与甲醛的缩合物,萘或萘磺酸与苯酚和甲醛的缩合物,聚氧乙烯辛基苯基醚,乙氧基化异辛基酚,辛基酚,壬基酚,烷基芳基聚乙二醇醚,三丁基苯聚乙二醇醚,三硬脂基苯基聚乙二醇醚,烷基芳基聚醚醇,乙氧基化蓖麻油,聚氧乙烯烷基醚,氧化乙烯缩合物、乙氧基化聚氧丙烯,月桂酸聚乙二醇醚缩醛,山梨醇酯,木质素亚硫酸盐废液和甲基纤维素。Suitable surfactants according to the chemical nature of the active ingredients in the composition of the invention are lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, alkaline earth metal or amine salts, alkylarylsulfonates, alkyl sulfates , alkyl sulfonate, fatty alcohol sulfuric acid Salts, fatty acids and sulfated fatty alcohol glycol ethers, as well as condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenyl ether, Ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylaryl polyglycol ether, tributylbenzene polyglycol ether, tristearyl phenyl polyglycol ether, alkane Alkyl polyether alcohol, ethoxylated castor oil, polyoxyethylene alkyl ether, ethylene oxide condensate, ethoxylated polyoxypropylene, lauric acid polyglycol ether acetal, sorbitol ester, lignin Sulfite waste liquid and methyl cellulose.
在制备液体或固体剂型时,可以先将活性组分A溶于某些特定的碱性物质,形成苯并异噻唑啉金属盐,合适的碱性物质包括:碱金属碳酸盐、碱金属氢氧化物(如氢氧化钠、氢氧化钾)、碱金属烷氧基碳酸盐、碱金属醇盐或甲醇镁。In the preparation of a liquid or solid dosage form, the active ingredient A can be first dissolved in certain specific basic substances to form a benzisothiazolin metal salt. Suitable basic substances include: alkali metal carbonates, alkali metal hydrogens Oxide (such as sodium hydroxide, potassium hydroxide), alkali metal alkoxy carbonate, alkali metal alkoxide or magnesium methoxide.
本发明的组合物中两种有效成分表现为增效效果,该组合物的活性比使用单个化合物的活性预期总和,以及单个化合物的单独活性更为显著。增效效果表现为允许施用量减少、更宽的杀真菌控制谱、见效快、更持久的防治效果、通过仅仅一次或少数几次施用更好的控制植物有害真菌、以及加宽了可能的施用间隔时间。这些特性是植物真菌控制实践过程中特别需要的。The two active ingredients in the compositions of the present invention exhibit synergistic effects, the activity of which is more pronounced than the expected sum of activity using a single compound, and the individual activity of a single compound. The synergistic effect is manifested by allowing for a reduced application rate, a broader fungicidal control profile, quicker effect, longer lasting control effect, better control of plant harmful fungi by only one or a few applications, and broadening of possible application. Intervals. These properties are particularly desirable in the practice of plant fungi control.
本发明的杀菌剂组合物可应用于农业领域防治农作物病害方面,所针对的具体病症包括但不限于小麦病害(如:小麦赤霉病、小麦白粉病、小麦锈病等)、水稻病害(如:水稻纹枯病、水稻稻曲病、水稻稻瘟病、水稻细菌性条斑等)、玉米病害(如:玉米黑穗病、玉米大斑病、玉米小斑病)、黄瓜病害(如:黄瓜霜霉病、黄瓜白粉病、黄瓜炭疽病、黄瓜细菌性角斑病等)、番茄病害(如:番茄炭疽病、番茄灰霉病、番茄细菌性角斑病等)、葡萄病害(如:葡萄霜霉病、葡萄灰霉病、葡萄白粉病)、苹果病害(如苹果轮纹病、苹果炭疽病等)、柑橘病害(柑橘溃疡病、柑橘疮痂并、柑橘炭疽病)、烟草病害(烟草野火病)等。The fungicide composition of the invention can be applied to the field of agricultural diseases for controlling crop diseases, and the specific diseases targeted include, but not limited to, wheat diseases (such as wheat scab, wheat powdery mildew, wheat rust, etc.) and rice diseases (such as: Rice sheath blight, rice blast disease, rice blast, rice bacterial streaks, etc., corn diseases (such as: corn smut, corn big spot, corn spot), cucumber diseases (such as: cucumber frost Mold disease, cucumber powdery mildew, cucumber anthracnose, cucumber bacterial angular spot disease, etc., tomato diseases (such as: tomato anthracnose, tomato gray mold, tomato bacterial angular spot disease, etc.), grape diseases (such as: grape frost Mildew, grape gray mold, grape powdery mildew), apple disease (such as apple ring disease, apple anthracnose, etc.), citrus disease (citrus canker disease, citrus canker, citrus anthracnose), tobacco disease (tobacco wildfire disease) )Wait.
本发明的杀菌组合物的表现出的其它特点主要表现为:1、本发明的组合物混配具有明显的增效作用;2、由于本组合物的两个单剂化学结构差异很大,作用机理完全不同,不存在交互抗性,可延缓两单剂单独使用所产生的抗性问题;3、本发明的组合物对作物安全、防效好。经试验证明,本发明杀菌剂组合物化学性质稳定,增效显著,对防治对象表现出明显的增效以及互补作用。The other characteristics exhibited by the bactericidal composition of the present invention are mainly as follows: 1. The compounding of the composition of the present invention has obvious synergistic effect; 2. Since the chemical composition of the two single agents of the present composition is greatly different, the effect The mechanism is completely different, there is no cross-resistance, and the problem of resistance caused by the separate use of the two single agents can be delayed; 3. The composition of the present invention is safe and safe for crops. It has been proved by experiments that the bactericidal composition of the invention has stable chemical properties, remarkable synergistic effect, and exhibits obvious synergistic effect and complementary effect on the control object.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 In order to make the objects, technical solutions and advantages of the present invention more comprehensible, the present invention will be further described in detail below with reference to the embodiments. It is understood that the specific embodiments described herein are intended to be illustrative of the invention and are not to be construed as limiting the scope of the invention. Within the scope of protection of the present invention.
以下实施例所有配方中百分比均为重量百分比。本发明组合物各种制剂的加工工艺均为现有技术,根据不同情况可以有所变化。The percentages in all formulations in the following examples are percentages by weight. The processing techniques of the various formulations of the compositions of the present invention are all prior art and may vary depending on the circumstances.
一、剂型制备实施例First, the dosage form preparation example
(一)水乳剂的加工及实施例(1) Processing and examples of water emulsion
将活性成分活性分组A与活性组分B,与溶剂、乳化剂、分散剂、共乳化剂等按配方的比例混合均匀,补足水后制得水乳剂产品。The active ingredient active group A and the active ingredient B are mixed with a solvent, an emulsifier, a dispersing agent, a co-emulsifier and the like in a ratio of the formula, and the water emulsion product is obtained by making up the water.
(1)活性组分A(BIT)与乙蒜素制备水乳剂(1) Preparation of water emulsion by active ingredient A (BIT) and allicin
实施例1:10%BIT·乙蒜素水乳剂Example 1: 10% BIT·isicin water emulsion
BIT 5%,乙蒜素5%,甲苯8%,硅酸镁铝5%,聚乙烯醇6%,乙二醇8%,水补足至100%。BIT 5%, arsenic 5%, toluene 8%, magnesium silicate aluminum 5%, polyvinyl alcohol 6%, ethylene glycol 8%, water to 100%.
(2)活性组分A(MBIT)与乙蒜素制备水乳剂(2) Preparation of water emulsion by active ingredient A (MBIT) and allicin
实施例2:10%MBIT·乙蒜素水乳剂Example 2: 10% MBIT·Allicin aqueous emulsion
MBIT 5%,乙蒜素5%,其余组分按照实施例1的方法制备。The MBIT was 5%, the allicin was 5%, and the remaining components were prepared in the same manner as in Example 1.
(3)活性组分A(BBIT)与乙蒜素制备水乳剂(3) Preparation of water emulsion by active ingredient A (BBIT) and allicin
实施例3:10%BBIT·乙蒜素水乳剂Example 3: 10% BBIT·Allicin aqueous emulsion
BBIT 5%,乙蒜素5%,其余组分按照实施例1的方法制备。BBIT 5%, arsenicin 5%, and the remaining components were prepared in accordance with the method of Example 1.
(二)悬浮剂的加工及实施例(2) Processing and examples of suspending agents
将活性成分活性分组A与活性组分B,与分散剂、润湿剂、增稠剂和水等各组分按配方的比例混合均匀,经砂磨和/或高速剪切后,得到半成品,分析后补加水混合均匀过滤即得成品。The active ingredient active group A and the active component B, and the components such as a dispersing agent, a wetting agent, a thickener and water are uniformly mixed according to the formula, and after being sanded and/or sheared at a high speed, a semi-finished product is obtained. After the analysis, the water is mixed and evenly filtered to obtain the finished product.
(1)活性组分A(BIT)与乙蒜素制备悬浮剂(1) Preparation of suspending agent from active ingredient A (BIT) and allicin
实施例4:16.5%BIT·乙蒜素悬浮剂(1:10)Example 4: 16.5% BIT·Allitridi Suspension (1:10)
BIT 1.5%,乙蒜素15%,拉开粉BX 5%,黄原胶4%,丙三醇6%,聚二甲基硅氧烷0.01%,水补足至100%。BIT 1.5%, allicin 15%, pull open powder BX 5%, xanthan gum 4%, glycerol 6%, polydimethylsiloxane 0.01%, water to 100%.
实施例5:52.5%BIT·乙蒜素悬浮剂(1:20)Example 5: 52.5% BIT·Allitridi Suspension (1:20)
BIT 2.5%,乙蒜素50%,烷基苯磺酸钠12%,硅酸镁铝6%,丙二醇10%,聚氧乙烯甘油醚0.1%,水补足至100%。BIT 2.5%, allicin 50%, sodium alkylbenzene sulfonate 12%, magnesium silicate aluminum 6%, propylene glycol 10%, polyoxyethylene glyceryl ether 0.1%, water to 100%.
(2)活性组分A(MBIT)与乙蒜素制备悬浮剂(2) Preparation of suspending agent from active ingredient A (MBIT) and allicin
实施例6:16.5%MBIT·乙蒜素悬浮剂Example 6: 16.5% MBIT·Allitridi Suspension
MBIT 1.5%,乙蒜素15%,其余组分按照实施例4的方法制备。 MBIT 1.5%, allicin 15%, and the remaining components were prepared in accordance with the method of Example 4.
实施例7:52.5%MBIT·乙蒜素悬浮剂Example 7: 52.5% MBIT·Allitridi Suspension
MBIT 2.5%,乙蒜素50%,其余组分按照实施例5的方法制备。The MBIT was 2.5%, the allicin was 50%, and the remaining components were prepared in the same manner as in Example 5.
(3)活性组分A(BBIT)与乙蒜素制备悬浮剂(3) Active ingredient A (BBIT) and preparation of suspending agent
实施例8:16.5%BBIT·乙蒜素悬浮剂Example 8: 16.5% BBIT·Allitridi Suspension
BBIT 1.5%,乙蒜素15%,其余组分按照实施例4的方法制备。BBIT 1.5%, allicin 15%, and the remaining components were prepared in accordance with the method of Example 4.
实施例9:52.5%BBIT·乙蒜素悬浮剂Example 9: 52.5% BBIT·Allitridi Suspension
BBIT 2.5%,乙蒜素50%,其余组分按照实施例5的方法制备。BBIT 2.5%, allicin 50%, and the remaining components were prepared in accordance with the procedure of Example 5.
(三)可湿性粉剂的加工及实施例(3) Processing and examples of wettable powders
将活性成分A与B活性成分与各种助剂及填料等按比例充分混合,经超细粉碎机粉碎后制得可湿性粉剂。The active ingredient A and the B active ingredient are sufficiently mixed with various auxiliary agents and fillers, and are pulverized by an ultrafine pulverizer to obtain a wettable powder.
(1)活性组分A(BIT)与乙蒜素制备可湿性粉剂(1) Preparation of wettable powder by active ingredient A (BIT) and allicin
实施例10:5.5%BIT·乙蒜素可湿性粉剂(1:0.1)Example 10: 5.5% BIT·Allitrione Wettable Powder (1:0.1)
BIT 5%,乙蒜素0.5%,拉开粉BX 3%,木质素磺酸钠2%,碳酸氢钠3%,高岭土补足至100%。BIT 5%, allicin 0.5%, pull open powder BX 3%, sodium lignosulfonate 2%, sodium bicarbonate 3%, kaolin to make up 100%.
实施例11:62%BIT·乙蒜素可湿性粉剂(1:30)Example 11: 62% BIT·Allitrione Wettable Powder (1:30)
BIT 2%,乙蒜素60%,十二烷基硫酸钠8%,烷基酚聚氧乙烯醚6%,硫酸铵6%,白炭黑补足至100%。BIT 2%, allicin 60%, sodium lauryl sulfate 8%, alkylphenol ethoxylate 6%, ammonium sulfate 6%, white carbon black to 100%.
(2)活性组分A(MBIT)与乙蒜素制备可湿性粉剂(2) Active component A (MBIT) and allicin to prepare wettable powder
实施例12:5.5%MBIT·乙蒜素可湿性粉剂Example 12: 5.5% MBIT·Allitrione Wettable Powder
MBIT 5%,乙蒜素0.5%,其余组分按照实施例10的方法制备。The MBIT was 5%, the allicin was 0.5%, and the remaining components were prepared in the same manner as in Example 10.
实施例13:62%MBIT·乙蒜素可湿性粉剂Example 13: 62% MBIT·Allitrione Wettable Powder
MBIT 2%,乙蒜素60%,其余组分按照实施例11的方法制备。MBIT 2%, allicin 60%, and the remaining components were prepared in accordance with the procedure of Example 11.
(3)活性组分A(BBIT)与乙蒜素制备可湿性粉剂(3) Active ingredient A (BBIT) and allicin to prepare wettable powder
实施例14:5.5%BBIT·乙蒜素可湿性粉剂Example 14: 5.5% BBIT·Allitrione Wettable Powder
BBIT 5%,乙蒜素0.5%,其余组分按照实施例10的方法制备。The BBIT was 5%, the allicin was 0.5%, and the remaining components were prepared in the same manner as in Example 10.
实施例15:62%BBIT·乙蒜素可湿性粉剂Example 15: 62% BBIT·isicin wettable powder
BBIT 2%,乙蒜素60%,其余组分按照实施例11的方法制备。BBIT 2%, allicin 60%, and the remaining components were prepared in accordance with the procedure of Example 11.
二、药效验证试验Second, the efficacy test
(一)生物测定实施例(1) Bioassay examples
按照试验分级标准调查整株叶片的发病情况,计算病情指数和防治效果。 According to the test grading standards, the incidence of the whole plant leaves was investigated, and the disease index and control effect were calculated.
将防治效果换算成几率值(y),药液浓度(μg/ml)转换成对数值(x),以最小二乘法计算毒力方程和抑制中浓度EC50,依孙云沛法计算药剂的毒力指数及共毒系数(CTC)。The control effect is converted into the probability value (y), the concentration of the drug solution (μg/ml) is converted into the logarithm value (x), the virulence equation is calculated by the least squares method and the concentration EC50 is suppressed, and the virulence index of the drug is calculated according to the method of Sun Yunpei. And the co-toxicity coefficient (CTC).
实测毒力指数(ATI)=(标准药剂EC50/供试药剂EC50)*100Measured virulence index (ATI) = (standard drug EC50 / test drug EC50) * 100
理论毒力指数(TTI)=A药剂毒力指数*混剂中A的百分含量+B药剂毒力指数*混剂中B的百分含量Theoretical virulence index (TTI) = A virulence index * Percentage of A in the mixture + B virulence index * Percentage of B in the mixture
共毒系数(CTC)=[混剂实测毒力指数(ATI)/混剂理论毒力指数(TTI)]*100Co-toxicity coefficient (CTC) = [mixture measured virulence index (ATI) / mixed theory virulence index (TTI)] * 100
CTC≤80,组合物表现为拮抗作用,80<CTC<120,组合物表现为相加作用,CTC≥120,组合物表现为增效作用。CTC ≤ 80, the composition showed antagonism, 80 < CTC < 120, the composition showed an additive effect, CTC ≥ 120, and the composition showed synergistic effect.
1、BIT与乙蒜素复配对猕猴桃溃疡病毒力测定试验1, BIT and allicin complexed with kiwi ulcer virus test
表1.BIT与乙蒜素复配对猕猴桃溃疡病毒力测定结果分析Table 1. Analysis of the results of virulence determination of kiwifruit with BIT and allicin
Figure PCTCN2017115377-appb-000002
Figure PCTCN2017115377-appb-000002
结果(表1)表明,BIT与乙蒜素复配对猕猴桃溃疡病的防治效果显著提高,尤其在其配比在1:0.1-30的毒力系数均在190以上。说明两者复配对猕猴桃溃疡病防治有显著的增效作用。The results (Table 1) showed that the control effect of BIT and allicin on kiwifruit ulcer disease was significantly improved, especially in the ratio of 1:1 to 30 virulence coefficient. It shows that the two have a significant synergistic effect on the prevention and treatment of kiwifruit ulcer disease.
2、MBIT与乙蒜素复配对茄子褐纹病毒力测定试验2, MBIT and allicin complex test for eggplant brown vein virus test
表2.MBIT与乙蒜素复配对茄子褐纹病毒力测定结果分析Table 2. Analysis of the results of the determination of the strength of eggplant brown streak virus by MBIT and allicin
Figure PCTCN2017115377-appb-000003
Figure PCTCN2017115377-appb-000003
Figure PCTCN2017115377-appb-000004
Figure PCTCN2017115377-appb-000004
结果(表2)表明,MBIT与乙蒜素复配对茄子褐纹病的防治效果显著提高,说明二者复配对茄子褐纹病防治有显著的增效作用。The results (Table 2) showed that the control effect of MBIT and allicin on eggplant brown streak was significantly improved, indicating that the two had a significant synergistic effect on the prevention and treatment of eggplant brown streak disease.
3、BBIT与乙蒜素对小麦赤霉病毒力测定试验3, BBIT and allicin on the test of wheat gibberella virus
表3.BBIT与乙蒜素复配对小麦赤霉病毒力测定结果分析Table 3. Analysis of the results of BBIT and B.
Figure PCTCN2017115377-appb-000005
Figure PCTCN2017115377-appb-000005
结果(表3)表明,BBIT与乙蒜素复配对小麦赤霉病的防治效果显著提高,说明二者复配对小麦赤霉病防治有显著的增效作用。The results (Table 3) showed that the control effect of BBIT and allicin on wheat scab was significantly improved, indicating that the two had a significant synergistic effect on the control of wheat scab.
(二)田间药效验证试验(2) Field efficacy test
试验方法:在发病初期,立即进行第一次喷雾,7天后进行第二次施药,每个处理4个小区,每个小区20平米。于药前和第二次药后11天调查统计发病情况,每个小区5点随机取样,每点调查5株作物,调查整株上每叶片的病斑面积占叶片面积的百分率并分级,计算病情指数和防治效果。Test method: In the early stage of the disease, the first spray was immediately performed, and after 7 days, the second application was carried out, each treatment of 4 cells, 20 square meters per cell. The incidence of the disease was investigated before the drug and 11 days after the second drug. Each plot was randomly sampled at 5 points, and 5 crops were investigated at each point. The percentage of the lesion area per leaf on the whole plant was counted and graded. Disease index and control effect.
Figure PCTCN2017115377-appb-000006
Figure PCTCN2017115377-appb-000006
Figure PCTCN2017115377-appb-000007
Figure PCTCN2017115377-appb-000007
预期防效(%)=X+Y-XY/100(其中,X,Y为单剂防效)Expected control effect (%) = X + Y-XY / 100 (where X, Y is a single dose control)
分级标准:Grading standards:
0级:无病斑;Level 0: no lesions;
1级:叶片病斑少于5个,长度小于1cm; Grade 1: less than 5 leaf lesions, less than 1 cm in length;
3级:叶片病斑6-10个,部分病斑长度大于1cm;Grade 3: 6-10 leaf lesions, some lesions are longer than 1 cm;
5级:叶片病斑11-25个,部分病斑连成片,病斑面积占叶面积的10-25%;Grade 5: 11-25 leaf lesions, some lesions are connected into pieces, and the lesion area accounts for 10-25% of the leaf area;
7级:叶片病斑26个以上,病斑连成片,病斑面积占叶面积的26-50%;Grade 7: more than 26 leaf lesions, the lesions are connected into pieces, and the lesion area accounts for 26-50% of the leaf area;
9级:病斑连成片,病斑面积占叶面积的50%以上或全叶枯死。Grade 9: The lesions are connected into pieces, and the area of the lesions accounts for more than 50% of the leaf area or the whole leaves are dead.
1、BIT与乙蒜素复配田间药效实验1. Field efficacy experiment of BIT and allicin
表4 BIT与乙蒜素混配对水稻稻瘟病防治效果Table 4 Effect of BIT and allicin on the control of rice blast
Figure PCTCN2017115377-appb-000008
Figure PCTCN2017115377-appb-000008
测定结果(表4)表明,BIT与乙蒜素的复配对水稻稻瘟病防效明显提高,说明二者复配对水稻稻瘟病有显著的增效作用。The results of the determination (Table 4) showed that the combination of BIT and allicin significantly improved the control effect of rice blast, indicating that the two had a significant synergistic effect on rice blast.
2、MBIT与乙蒜素复配田间药效实验2. Field efficacy experiment of MBIT and allicin
表5 MBIT与乙蒜素混配对黄瓜细菌性角斑病防治效果Table 5 MBIT and allicin mixed with cucumber bacterial leaf spot control effect
Figure PCTCN2017115377-appb-000009
Figure PCTCN2017115377-appb-000009
Figure PCTCN2017115377-appb-000010
Figure PCTCN2017115377-appb-000010
测定结果(表5)表明,MBIT与乙蒜素混配对黄瓜细菌性角斑病的防效明显提高,说明二者复配对黄瓜细菌性角斑病有显著的增效作用。The results of the test (Table 5) showed that the control effect of MBIT mixed with allicin on cucumber bacterial leaf spot was significantly improved, indicating that the two had a significant synergistic effect on cucumber bacterial leaf spot.
3、BBIT与乙蒜素复配田间药效实验3, BBIT and allicin compound field efficacy experiment
表6 BBIT与乙蒜素混配对苹果叶斑病防治效果Table 6 BBIT and allicin mixed with apple leaf spot control effect
Figure PCTCN2017115377-appb-000011
Figure PCTCN2017115377-appb-000011
Figure PCTCN2017115377-appb-000012
Figure PCTCN2017115377-appb-000012
测定结果(表6)表明,BBIT与乙蒜素混配对苹果叶斑病的防效明显提高,说明二者复配对苹果叶斑病有显著的增效作用。 The results of the determination (Table 6) showed that the control effect of BBIT mixed with allicin on apple leaf spot was significantly improved, indicating that the two had a significant synergistic effect on apple leaf spot.

Claims (8)

  1. 一种杀菌剂组合物,其特征在于所述的组合物包含A和B两种活性组分,其中活性组分A为具有式(Ⅰ)的结构化合物,活性组分B为乙蒜素,两组分之间的重量比为1:0.1~30A bactericidal composition, characterized in that the composition comprises two active components A and B, wherein active component A is a structural compound having formula (I), active component B is allicin, two The weight ratio between the components is 1:0.1-30
    Figure PCTCN2017115377-appb-100001
    Figure PCTCN2017115377-appb-100001
    式(Ⅰ)中,R选自H或C1~C8烷基。In the formula (I), R is selected from H or a C 1 - C 8 alkyl group.
  2. 根据权利要求1所述的杀菌剂组合物,其特征在于式(Ⅰ)中,R选自H或C1~C4烷基。The bactericidal composition according to claim 1, wherein in the formula (I), R is selected from H or a C 1 - C 4 alkyl group.
  3. 根据权利要求1所述的杀菌剂组合物,其特征在于式(Ⅰ)中,R优先选自H、-CH3或-C4H9,对应的活性组分A分别为1,2-苯并异噻唑啉-3-酮、2-甲基-1,2-苯并异噻唑啉-3-酮或2-丁基-1,2-苯并异噻唑啉-3-酮。The bactericidal composition according to claim 1, wherein in the formula (I), R is preferably selected from H, -CH 3 or -C 4 H 9 , and the corresponding active component A is 1,2-benzene. Isothiazolin-3-one, 2-methyl-1,2-benzisothiazolin-3-one or 2-butyl-1,2-benzisothiazolin-3-one.
  4. 根据权利要求1所述的杀菌剂组合物,其特征在于活性组分A和活性组分B的重量比为1:1~20。The bactericide composition according to claim 1, wherein the weight ratio of the active component A to the active component B is from 1:1 to 20.
  5. 根据权利要求1~4中任意一项所述的杀菌剂组合物,其特征在于该组合物由活性成分和农药助剂或辅料制成农药上允许的剂型。The bactericidal composition according to any one of claims 1 to 4, wherein the composition is made into a pesticide-acceptable dosage form from an active ingredient and an agrochemical adjuvant or an auxiliary.
  6. 根据权利要求5所述的杀菌剂组合物,其特征在于所述的剂型为可湿性粉剂、悬浮剂、水分散粒剂、水乳剂或微乳剂。The bactericidal composition according to claim 5, wherein the dosage form is a wettable powder, a suspending agent, a water-dispersible granule, an aqueous emulsion or a microemulsion.
  7. 根据权利要求5或6所述的杀菌剂组合物,其特征在于所述农药助剂或辅料选自载体、溶剂、分散剂、润湿剂、胶粘剂、增稠剂、粘合剂、表面活性剂或肥料中的一种或几种。The bactericidal composition according to claim 5 or 6, wherein the pesticide adjuvant or adjuvant is selected from the group consisting of a carrier, a solvent, a dispersing agent, a wetting agent, an adhesive, a thickener, a binder, and a surfactant. Or one or more of the fertilizers.
  8. 权利要求1~7中任意一项所述的杀菌剂组合物在农业领域防治农作物病害方面的用途。 Use of the bactericide composition according to any one of claims 1 to 7 for controlling crop diseases in the agricultural field.
PCT/CN2017/115377 2016-11-11 2017-12-11 Bactericide composition including benzisothiazolinone and ethylicin WO2018086633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610993693.8 2016-11-11
CN201610993693.8A CN106359405A (en) 2016-11-11 2016-11-11 Bactericide composition containing benzisothiazolone and ethylicin

Publications (1)

Publication Number Publication Date
WO2018086633A1 true WO2018086633A1 (en) 2018-05-17

Family

ID=57892890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115377 WO2018086633A1 (en) 2016-11-11 2017-12-11 Bactericide composition including benzisothiazolinone and ethylicin

Country Status (2)

Country Link
CN (1) CN106359405A (en)
WO (1) WO2018086633A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106359405A (en) * 2016-11-11 2017-02-01 江苏辉丰农化股份有限公司 Bactericide composition containing benzisothiazolone and ethylicin
CN107668035A (en) * 2017-10-17 2018-02-09 四川国光农化股份有限公司 A kind of composition pesticide and its application on moss is removed
CN110037041A (en) * 2019-04-30 2019-07-23 三河市霍夫曼化学品制造有限公司 A kind of isothiazolinone built-up microemulsion type biocide mildewcide, preparation method and application
CN115487182B (en) * 2020-09-07 2024-01-16 南京艾力彼兽药研究所有限公司 Application of isothiazolinone as synergist of antibacterial drug
KR20220102918A (en) 2021-01-14 2022-07-21 광저우 바이윈 시징 싱첸 엘티디 A Bactericidal Composition
CN115918666A (en) * 2022-09-20 2023-04-07 贵州省生物技术研究所(贵州省生物技术重点实验室、贵州省马铃薯研究所、贵州省食品加工研究所) 1,2-benzisothiazolin-3-one and carvacrol compounded konjak soft rot resistant pesticide suspending agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174658A (en) * 1996-08-27 1998-03-04 张长兴 Compound broad spectrum pesticide
CN1288662A (en) * 2000-06-22 2001-03-28 张长兴 Farm chemical for preventing and controlling black spot of fruit tree
CN1742579A (en) * 2005-09-26 2006-03-08 田琳 Agricultural and forestry crop bactericide
CN1943347A (en) * 2005-10-04 2007-04-11 罗门哈斯公司 Synergistic microbicidal compositions
CN101467530A (en) * 2007-12-20 2009-07-01 罗门哈斯公司 Synergistic microbicidal compositions
CN101986841A (en) * 2009-07-30 2011-03-23 罗门哈斯公司 Synergistic microbicidal compositions
CN106359405A (en) * 2016-11-11 2017-02-01 江苏辉丰农化股份有限公司 Bactericide composition containing benzisothiazolone and ethylicin

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101669486B (en) * 2009-10-16 2012-06-06 深圳诺普信农化股份有限公司 Benzolkresoxim-methyl containing bactericide composition
CN101984809B (en) * 2010-07-22 2012-11-21 福建诺德生物科技有限责任公司 Oil suspension preparation using resin-based vegetable oil as carrier and preparation method thereof
CN102172240B (en) * 2011-03-01 2015-09-30 陕西西大华特科技实业有限公司 A kind of bactericidal composition containing benziothiazolinone and methoxy acrylic bactericide
CN103704234B (en) * 2014-01-07 2015-04-01 中国农业科学院植物保护研究所 Composite for preventing and controlling agricultural bacterial disease
CN105494369A (en) * 2015-12-02 2016-04-20 京博农化科技股份有限公司 Composition containing gliotoxin
CN105685061A (en) * 2016-02-29 2016-06-22 陕西西大华特科技实业有限公司 Application of benziothiazolinone in preventing and treating potato seed-borne diseases and promoting rooting and germination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174658A (en) * 1996-08-27 1998-03-04 张长兴 Compound broad spectrum pesticide
CN1288662A (en) * 2000-06-22 2001-03-28 张长兴 Farm chemical for preventing and controlling black spot of fruit tree
CN1742579A (en) * 2005-09-26 2006-03-08 田琳 Agricultural and forestry crop bactericide
CN1943347A (en) * 2005-10-04 2007-04-11 罗门哈斯公司 Synergistic microbicidal compositions
CN101467530A (en) * 2007-12-20 2009-07-01 罗门哈斯公司 Synergistic microbicidal compositions
CN101986841A (en) * 2009-07-30 2011-03-23 罗门哈斯公司 Synergistic microbicidal compositions
CN106359405A (en) * 2016-11-11 2017-02-01 江苏辉丰农化股份有限公司 Bactericide composition containing benzisothiazolone and ethylicin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, JUNWEI ET AL.: "Research Progress of Characterization and Synthesis of Benzisothiazolinone", FINE AND SPECIALTY CHEMICALS, 21 March 2013 (2013-03-21), pages 41 - 45 *

Also Published As

Publication number Publication date
CN106359405A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2018086633A1 (en) Bactericide composition including benzisothiazolinone and ethylicin
WO2018059606A1 (en) Bactericidal composition containing benzisothiazolinone and mandipropamid
WO2018040775A1 (en) Germicide composition
WO2014026396A1 (en) Synergistic fungicide composition
WO2018157649A1 (en) Microbicide composition containing emodin derivative and benzisothiazolinone
WO2017121019A1 (en) Antimicrobial composition
WO2017084242A1 (en) Plant growth regulator composition with synergistic action
WO2017166565A1 (en) Synergistic plant growth regulator composition
WO2018086634A1 (en) Composition comprising thidiazuron and alternaria tenuissima activator protein
WO2017185559A1 (en) Anti-microbial composition
WO2018126878A1 (en) Fungicide composition containing benzisothiazolinone and tetraconazole
WO2018068773A2 (en) Bactericidal composition containing benzisothiazolinone and alternaria tenuissima activator protein
WO2017206825A1 (en) Weeding composition having synergistic effects
WO2015196951A1 (en) Insecticide and acaricide composition having synergism
WO2018024067A1 (en) Fungicide composition
WO2018006462A1 (en) Fungicidal composition
WO2018001152A1 (en) Bactericide composition
CN105211075A (en) Bactericidal composition and application thereof
WO2018028324A1 (en) Weeding composition having synergistic effects
WO2018068772A1 (en) Bactericidal composition containing benzisothiazolinone and ametoctradin
WO2018040788A1 (en) Germicide composition
WO2018036294A1 (en) Pesticide composition
WO2018040764A1 (en) Herbicide composition having synergistic effect
CN106857511A (en) A kind of microbicide compositions comprising emodin derivates Yu pyrazol acid amide compounds
WO2018054396A1 (en) Bactericide composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869106

Country of ref document: EP

Kind code of ref document: A1