WO2018086528A1 - 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法 - Google Patents

一种基于多刃犁切-挤压的三维内翅片管成型装置及方法 Download PDF

Info

Publication number
WO2018086528A1
WO2018086528A1 PCT/CN2017/109917 CN2017109917W WO2018086528A1 WO 2018086528 A1 WO2018086528 A1 WO 2018086528A1 CN 2017109917 W CN2017109917 W CN 2017109917W WO 2018086528 A1 WO2018086528 A1 WO 2018086528A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
dimensional
connecting rod
cutter
feed mechanism
Prior art date
Application number
PCT/CN2017/109917
Other languages
English (en)
French (fr)
Inventor
万珍平
黄书烽
邹水平
陆龙生
汤勇
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2018543645A priority Critical patent/JP6676772B2/ja
Publication of WO2018086528A1 publication Critical patent/WO2018086528A1/zh
Priority to US16/153,777 priority patent/US10807145B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/22Making finned or ribbed tubes by fixing strip or like material to tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex

Definitions

  • the invention relates to a fin preparation process and a device, in particular to a three-dimensional inner fin tube forming device and method based on multi-blade plow cutting-extrusion.
  • the heat exchange tube is a key heat transfer element used in the enhanced heat transfer technology. Its main feature is that a certain surface structure is processed on the inner and outer surfaces of the tube to expand the heat transfer surface or increase the heat transfer coefficient, thereby improving the heat transfer efficiency.
  • the heat transfer tubes used in the enhanced heat transfer technology are mainly finned tubes, and the inner walls thereof are mostly smooth wall surfaces, internal thread grooves or straight tooth grooves. Smooth walls, internally threaded grooves or spur grooves have limited effectiveness in extending the heat transfer surface.
  • the internal thread groove or the straight tooth groove has a relatively regular fin structure, and the extended surface thereof is relatively regular.
  • the boundary layer has a limited degree of damage, and cannot form an effective disturbance action, and the heat transfer coefficient is limited. . Therefore, the heat-dissipating outer finned tube whose inner wall is a smooth wall surface, an internally threaded groove or a straight-toothed groove is difficult to obtain higher heat transfer efficiency.
  • the object of the present invention is to overcome the above-mentioned shortcomings and shortcomings of the prior art, and to provide a three-dimensional inner finned tube forming apparatus and method based on multi-blade plowing-extrusion with simple structure and convenient operation. Obtaining a heat exchange tube having a three-dimensional discontinuous inner fin structure, further improving the contact surface between the inner fin and the working medium of the heat exchange tube Accumulate, improve heat transfer efficiency.
  • a three-dimensional inner fin tube forming device based on multi-blade plow cutting-extrusion comprising a frame 1, a head 3 capable of providing rotational power, a supporting mechanism 4, an axial feeding mechanism 5 and an inner fin forming tool assembly ;
  • the machine head 3, the supporting mechanism 4 and the axial feeding mechanism 5 are sequentially axially mounted on the frame 1; the inner fin forming tool assembly is mounted on the axial feeding mechanism 5;
  • the metal tube 7 of the three-dimensional inner fin to be processed is clamped on the chuck of the rotating main shaft of the head 3, and the other end is placed on the supporting mechanism 4; the axis of the metal tube 7 is coaxial with the axis of the inner fin forming cutter assembly;
  • the rotating main shaft of the handpiece 3 provides rotational power to the metal pipe 7, and the axial feed mechanism 5 drives the inner fin forming tool assembly to move linearly along the axis of the metal pipe 7 and the inner fin forming tool assembly.
  • the support mechanism 4 includes a bracket 4-1.
  • the bracket 4-1 defines a station 4-4 for placing the metal tube 7, and three clamping cylinders 4-2 are symmetrically distributed on the body of the bracket 4-1.
  • the end of the piston of each clamping cylinder 4-2 is mounted with a claw 4-3, the end of the claw 4-3 is mounted with a rotatable roller 4-3a; the roller 4-3a is symmetrically distributed at the station 4 Around the -4, when the metal tube 7 is placed in the station 4-4, the roller 4-3a is in rotational contact with the peripheral wall of the metal tube 7, providing support and positioning for the metal tube 7 in the rotational movement.
  • the inner fin forming tool assembly includes a multi-blade cutter 6-4, a cutter bar 6-3 and a connecting rod 6-2; the multi-blade cutter 6-4 is fixedly mounted at one end of the cutter bar 6-3, and the cutter bar 6 The other end of the -3 is inserted into the end of the connecting rod 6-2; the tail of the connecting rod 6-2 is fixedly mounted on the axial feed mechanism 5.
  • the axial feed mechanism 5 is a screw feeding mechanism, which comprises a screw rod and a slider mounted on the screw rod; when the screw rod rotates, the slider moves axially; the connecting rod 6-2 is fixed On the slider.
  • the rod of the cutter bar 6-3 is provided with a rib 6-5, the end of the connecting rod 6-2 is a cylindrical structure, and an annular permanent magnet 6-1 is disposed inside, and the end of the connecting rod 6-2 Opening a card slot 6-6 adapted to the rib 6-5; when the connecting rod 6-2 is inserted into the connecting rod 6-2, the rib 6-5 and the card slot 6-6 limit the arbor 6-3 Rotating circumferentially with respect to the connecting rod 6-2; the cutter rod 6-3 is attracted to the connecting rod 6-2 by the magnetic force of the annular permanent magnet.
  • the multi-blade cutter 6-4 is fixed to the end of the connecting rod 6-2 by a nut.
  • the cutting edges 6-6 of the multi-blade cutter 6-4 are all of the same tapered structure with a taper of 10° to 30°; the cutting edges 6-6 are symmetrically distributed around the annular base.
  • the left side of the handpiece 3 is further provided with a knife picking mechanism 2 for taking a knife, which comprises a cylinder 2-2, a pneumatic chuck 2-3 disposed at the end of the piston of the cylinder 2-2, and a pneumatic chuck After the end of the cutter bar 6-3 is clamped by 2-3, the piston of the cylinder 2-2 is retracted, and the cutter bar 6-3 is axially taken out from the connecting rod 6-2.
  • a three-dimensional inner fin tube forming method includes the following steps:
  • Step 1 The metal pipe 7 having the internal thread structure is axially placed in the station 4-4 of the support mechanism 4, and the end portion thereof is fixed on the chuck of the rotating spindle of the head 3, and the metal pipe 7 and the multi-blade are maintained.
  • the cutter 6-4 is on the same axis;
  • Step 2 the rotating main shaft of the head 3 drives the metal tube 7 to rotate;
  • Step 3 The axial feed mechanism 5 is activated, and the axial feed mechanism 5 drives the multi-blade cutter 6-4 to continuously move axially in the direction of the metal pipe 7; the multi-blade cutter 6-4 enters the metal pipe 7, and the multi-edge cutter 6
  • the plurality of cutting edges 6-6 of -4 simultaneously cut the convex portion of the internal thread structure of the inner wall surface of the metal pipe 7, so as to be divided into two parts, the curved edge of the cutting edge 6-6 is plowed, and the tapered flank surface is simultaneously Extending the slit to the outside to expand the groove to form a three-dimensional discontinuous inner fin structure higher than the convex portion of the internal thread;
  • Step 4 The axial feed mechanism 5 is continuously fed until a three-dimensional discontinuous inner fin structure is formed on the inner wall surface of the entire metal pipe 7.
  • the multi-blade cutter 6-4 protrudes from the end of the metal pipe 7 and is exposed; the head 3 stops rotating, and the axial feed mechanism 5 stops. Feed; after the pneumatic chuck 2-3 of the knife picking mechanism 2 clamps the end of the cutter rod 6-3, the piston of the cylinder 2-2 is retracted, and the cutter rod 6-3 is taken from the upper shaft of the connecting rod 6-2 The direction is taken out; the axial feed mechanism 5 is moved in the reverse direction to return to the initial position.
  • the present invention has the following advantages and effects:
  • the axial feed mechanism is matched with the multi-edge cutter, and the plurality of cutting edges of the multi-blade cutter simultaneously cut the convex portion of the internal thread structure of the inner wall surface of the metal pipe to be divided into two parts, the front rake face of the blade Cutting, the flank face simultaneously squeezes the groove which is cut open, and the groove is expanded to form a convexity higher than the internal thread a part of the three-dimensional discontinuous inner fin structure; the finned tube of the inner fin structure has a large specific surface area with the working medium, which increases the spoiling effect on the working medium, and the heat transfer surface area is large and increases.
  • the heat transfer coefficient can effectively improve the heat transfer efficiency of the enhanced heat pipe.
  • the invention adopts a multi-blade processing technology, and can effectively improve the processing and production efficiency of the finned tube.
  • the rod body of the arbor of the invention is provided with a rib, the end of the connecting rod is a cylindrical structure, and the inner sleeve has an annular permanent magnet, and the connecting rod end has a card slot adapted to the ridge;
  • the ribs and the card slot limit the rotation of the arbor relative to the connecting circumference; the magnetic force of the annular permanent magnet acts to attract the arbor to the connecting rod.
  • the plug-in type and the magnetic pull-in connection method are convenient and quick to install and disassemble, and are used together with the knife-taking mechanism to effectively reduce the clamping time, improve the production efficiency, and reduce the production cost.
  • FIG. 1 is a schematic view showing the structure of a three-dimensional inner fin tube forming apparatus based on multi-blade plowing-extrusion according to the present invention.
  • Figure 3 is a partial structural view of the inner fin forming tool assembly.
  • Figure 4 is a partial schematic view of a multi-blade tool.
  • Figure 5 is a partial schematic view of the knife taking mechanism.
  • the invention discloses a three-dimensional inner finned tube forming device based on multi-blade plowing-extrusion, comprising a frame 1, a head 3 capable of providing rotational power, a supporting mechanism 4, an axial feeding mechanism 5 and an inner wing Sheet forming tool assembly;
  • the machine head 3, the supporting mechanism 4 and the axial feeding mechanism 5 are sequentially axially mounted on the frame 1; the inner fin forming tool assembly is mounted on the axial feeding mechanism 5;
  • One end of the metal tube 7 to be processed into the three-dimensional inner fin is clamped on the chuck of the rotating main shaft of the head 3, and One end is placed on the support mechanism 4; the axis of the metal tube 7 is coaxial with the axis of the inner fin forming cutter assembly; the rotating main shaft of the head 3 provides rotational power for the metal tube 7, and the axial feed mechanism 5 drives the inner fin forming
  • the cutter assembly moves linearly along the axis of the metal tube 7 and the inner fin forming tool assembly.
  • the support mechanism 4 includes a bracket 4-1.
  • the bracket 4-1 defines a station 4-4 for placing the metal tube 7, and three clamping cylinders 4-2 are symmetrically distributed on the body of the bracket 4-1.
  • the end of the piston of each clamping cylinder 4-2 is mounted with a claw 4-3, the end of the claw 4-3 is mounted with a rotatable roller 4-3a; the roller 4-3a is symmetrically distributed at the station 4 Around the -4, when the metal tube 7 is placed in the station 4-4, the roller 4-3a is in rotational contact with the peripheral wall of the metal tube 7, providing support and positioning for the metal tube 7 in the rotational movement.
  • the inner fin forming tool assembly includes a multi-blade cutter 6-4, a cutter bar 6-3 and a connecting rod 6-2; the multi-blade cutter 6-4 is fixedly mounted at one end of the cutter bar 6-3, and the cutter bar 6 The other end of the -3 is inserted into the end of the connecting rod 6-2; the tail of the connecting rod 6-2 is fixedly mounted on the axial feed mechanism 5.
  • the axial feed mechanism 5 is a screw feeding mechanism, which comprises a screw rod and a slider mounted on the screw rod; when the screw rod rotates, the slider moves axially; the connecting rod 6-2 is fixed On the slider.
  • the rod of the cutter bar 6-3 is provided with a rib 6-5, the end of the connecting rod 6-2 is a cylindrical structure, and an annular permanent magnet 6-1 is disposed inside, and the end of the connecting rod 6-2 Opening a card slot 6-6 adapted to the rib 6-5; when the connecting rod 6-2 is inserted into the connecting rod 6-2, the rib 6-5 and the card slot 6-6 limit the arbor 6-3 Rotating circumferentially with respect to the connecting rod 6-2; the cutter rod 6-3 is attracted to the connecting rod 6-2 by the magnetic force of the annular permanent magnet.
  • the multi-blade cutter 6-4 is fixed to the end of the connecting rod 6-2 by a nut.
  • the cutting edges 6-6 of the multi-blade cutter 6-4 are all of the same tapered structure, and the taper is generally 10 to 30; the cutting edges 6-6 are symmetrically distributed around the annular base.
  • the number and taper of the cutting edges 6-6 can be determined according to the processing requirements.
  • the left side of the handpiece 3 is further provided with a knife picking mechanism 2 for taking a knife, which comprises a cylinder 2-2, a pneumatic chuck 2-3 disposed at the end of the piston of the cylinder 2-2, and a pneumatic chuck After the end of the cutter bar 6-3 is clamped by 2-3, the piston of the cylinder 2-2 is retracted, and the cutter bar 6-3 is axially taken out from the connecting rod 6-2.
  • a knife picking mechanism 2 for taking a knife which comprises a cylinder 2-2, a pneumatic chuck 2-3 disposed at the end of the piston of the cylinder 2-2, and a pneumatic chuck
  • the three-dimensional inner fin tube forming method of the invention can be realized by the following steps:
  • Step 1 The metal pipe 7 having the internal thread structure is axially placed in the station 4-4 of the support mechanism 4, and the end portion thereof is fixed on the chuck of the rotating spindle of the head 3, and the metal pipe 7 and the multi-blade are maintained.
  • the cutter 6-4 is on the same axis; it should be noted that the spiral direction of the internal thread of the metal pipe 7 may be the same as the feed direction of the multi-blade cutter 6-4, or may not be reversed, depending on the actual application.
  • Step 2 the rotating main shaft of the head 3 drives the metal tube 7 to rotate;
  • Step 3 The axial feed mechanism 5 is activated, and the axial feed mechanism 5 drives the multi-blade cutter 6-4 to continuously move axially in the direction of the metal pipe 7; the multi-blade cutter 6-4 enters the metal pipe 7, and the multi-edge cutter 6
  • the plurality of cutting edges 6-6 of -4 simultaneously cut the convex portion of the internal thread structure of the inner wall surface of the metal pipe 7, so as to be divided into two parts, the curved edge of the cutting edge 6-6 is plowed, and the tapered flank surface is simultaneously Extending the slit to the outside to expand the groove to form a three-dimensional discontinuous inner fin structure higher than the convex portion of the internal thread;
  • Step 4 The axial feed mechanism 5 is continuously fed until a three-dimensional discontinuous inner fin structure is formed on the inner wall surface of the entire metal pipe 7.
  • the procedure for taking the knife is as follows:
  • the multi-blade cutter 6-4 protrudes from the end of the metal pipe 7 and is exposed;
  • the head 3 stops rotating, and the axial feed mechanism 5 stops feeding;
  • the axial feed mechanism 5 moves in the reverse direction and returns to the initial position.
  • the present invention can be preferably implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Milling Processes (AREA)
  • Earth Drilling (AREA)
  • Extrusion Of Metal (AREA)
  • Turning (AREA)
  • Confectionery (AREA)

Abstract

一种基于多刃犁切‑挤压的三维内翅片管成型装置以及一种三维内翅片管成型方法;该装置包括机架(1)、可提供旋转动力的机头(3)、支撑机构(4)、轴向进给机构(5)和内翅片成型刀具组件;机头、支撑机构和轴向进给机构依次轴向安装在机架上;内翅片成型刀具组件安装在轴向进给机构上;待加工三维内翅片的金属管(7)一端夹持在机头旋转主轴的卡盘上,另一端置于支撑机构上;机头的旋转主轴为金属管提供旋转动力,轴向进给机构驱动内翅片成型刀具组件沿着金属管与内翅片成型刀具组件的轴线直线移动。采用本装置和方法加工的三维非连续的内翅片结构,其与工质的接触面积大,增加了对工质的扰流作用,传热表面积大,增大了传热系数,能有效提高强化热管的传热效率。

Description

一种基于多刃犁切-挤压的三维内翅片管成型装置及方法 技术领域
本发明涉及翅片制备工艺与设备,尤其涉及一种基于多刃犁切-挤压的三维内翅片管成型装置及方法。
背景技术
随着社会的不断发展,能源短缺的问题日益严重。强化传热技术作为重要的节能途径,对于解决能源问题具有重要的意义,在石油、化工、动力、核能、制冷等领域得到了广泛的应用。换热管是强化传热技术所用到的关键传热元件,其主要特征在于在管的内外表面加工出一定的表面结构,以扩展传热面或提高传热系数,从而提高传热效率。
目前强化传热技术使用的换热管以外翅片管为主,其内壁多为光滑壁面、内螺纹沟槽或者直齿沟槽。光滑壁面、内螺纹沟槽或者直齿沟槽对于扩展传热面效果有限。此外,内螺纹沟槽或直齿沟槽由于翅片结构较为规则,其扩展表面相应比较规则,流体流过时边界层的破坏程度有限,不能形成有效的扰动作用,对于强化传热系数的提高有限。因此,内壁为光滑壁面、内螺纹沟槽或者直齿沟槽的换热外翅片管,难以获得更高的传热效率。
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种结构简单、操作便捷的基于多刃犁切-挤压的三维内翅片管成型装置及方法。以获得具有三维非连续内翅片结构的换热管,进一步提高换热管内部翅片与工质的接触面 积,提高了换热效率。
本发明通过下述技术方案实现:
一种基于多刃犁切-挤压的三维内翅片管成型装置,包括机架1、可提供旋转动力的机头3、支撑机构4、轴向进给机构5和内翅片成型刀具组件;
所述机头3、支撑机构4和轴向进给机构5依次轴向安装在机架1上;所述内翅片成型刀具组件安装在轴向进给机构5上;
待加工三维内翅片的金属管7一端夹持在机头3旋转主轴的卡盘上,另一端置于支撑机构4上;金属管7的轴线与内翅片成型刀具组件的轴线同轴;机头3的旋转主轴为金属管7提供旋转动力,轴向进给机构5驱动内翅片成型刀具组件沿着金属管7与内翅片成型刀具组件的轴线直线移动。
所述支撑机构4包括一支架4-1,支架4-1上开设有一用于放置金属管7的工位4-4,在支架4-1本体上对称分布有三个夹紧气缸4-2,每个夹紧气缸4-2的活塞端部安装有卡爪4-3,卡爪4-3的端部安装有可旋转的滚柱4-3a;滚柱4-3a对称分布在工位4-4的周围,当金属管7置于工位4-4内时,滚柱4-3a与金属管7的周壁转动接触,为旋转运动中的金属管7提供支撑与定位。
所述内翅片成型刀具组件包括多刃刀具6-4、刀杆6-3和连接杆6-2;所述多刃刀具6-4固定安装在刀杆6-3的一端,刀杆6-3的另一端插入连接杆6-2的端部;连接杆6-2尾部固定安装在轴向进给机构5上。
所述轴向进给机构5为丝杆进给机构,其包括丝杆及安装在丝杆上的滑块;当丝杆转动时,带动滑块轴向移动;所述连接杆6-2固定在滑块上。
所述刀杆6-3的杆体上设有凸条6-5,连接杆6-2端部为筒状结构,并内套有一环状永磁体6-1,该连接杆6-2端部开有一与凸条6-5相适配的卡槽6-6;当连接杆6-2插入连接杆6-2内时,凸条6-5和卡槽6-6限制刀杆6-3相对于连接杆6-2周向转动;通过环状永磁体的磁力作用,将刀杆6-3吸合在连接杆6-2上。
所述多刃刀具6-4通过螺母固定在连接杆6-2的端部。
所述多刃刀具6-4的刀刃6-6均为相同的锥形结构,其锥度为10°~30°;所述刀刃6-6对称分布在环状基体的周围。所述机头3的左侧还设有一个用于取刀的取刀机构2,其包括气缸2-2、设置在气缸2-2活塞端部的气动夹头2-3;当气动夹头2-3夹持住刀杆6-3的端部后,气缸2-2的活塞回缩,进而将刀杆6-3从连接杆6-2上轴向取出。
一种三维内翅片管成型方法,其包括如下步骤:
步骤一:将具有内螺纹结构的金属管7轴向置于支撑机构4的工位4-4内,其端部固定在机头3旋转主轴的卡盘上,并保持金属管7与多刃刀具6-4在同一条轴线上;
步骤二:机头3的旋转主轴带动金属管7旋转;
步骤三:轴向进给机构5启动,轴向进给机构5带动多刃刀具6-4向金属管7方向连续轴向移动;多刃刀具6-4进入金属管7内,多刃刀具6-4的多个刀刃6-6同时切开金属管7内壁面的内螺纹结构凸起部分,使其分为前后两部分,刀刃6-6的弧形刃犁切,锥形后刀面同时对其切开的沟槽向外挤压,使沟槽扩张,形成高于内螺纹凸起部分的三维非连续的内翅片结构;
步骤四:轴向进给机构5连续进给,直至在整个金属管7的内壁面形成三维非连续的内翅片结构。
金属管7的内壁面形成三维非连续的内翅片结构完成后,此时,多刃刀具6-4伸出金属管7的末端并外露;机头3停止旋转,轴向进给机构5停止进给;取刀机构2的气动夹头2-3夹紧刀杆6-3的端部后,气缸2-2的活塞回缩,进而将刀杆6-3从连接杆6-2上轴向取出;轴向进给机构5反向运动,回到初始位置。
本发明相对于现有技术,具有如下的优点及效果:
1.采用轴向进给机构与多刃刀具相配合,多刃刀具的多个刀刃同时切开金属管内壁面的内螺纹结构凸起部分,使其分为前后两部分,刀刃的前刀面犁切,后刀面同时对其切开的沟槽向外挤压,使沟槽扩张,形成高于内螺纹凸 起部分的三维非连续的内翅片结构;该种内翅片结构的翅片管,其与工质的比表面积大,增加了对工质的扰流作用,传热表面积大,增大了传热系数,能有效提高强化热管的传热效率。
本发明采用多刃的加工工艺,可以有效提高翅片管的加工生产效率。
本发明刀杆的杆体上设有凸条,连接杆端部为筒状结构,并内套有一环状永磁体,该连接杆端部开有一与凸条相适配的卡槽;当连接杆插入连接杆内时,凸条和卡槽限制刀杆相对于连接周向转动;通过环状永磁体的磁力作用,将刀杆吸合在连接杆上。这种拔插式及磁力吸合连接方式,安装拆卸方便快捷,与取刀机构配合使用,有效减少装夹时间,提高生产效率,降低生产成本。
附图说明
图1为本发明基于多刃犁切-挤压的三维内翅片管成型装置结构示意图。
图2为金属管7支撑机构局部结构示意图。
图3为内翅片成型刀具组件局部结构示意图。
图4为多刃刀具局部结构示意图。
图5为取刀机构局部结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述。
实施例
如图1至4所示。本发明公开了一种基于多刃犁切-挤压的三维内翅片管成型装置,包括机架1、可提供旋转动力的机头3、支撑机构4、轴向进给机构5和内翅片成型刀具组件;
所述机头3、支撑机构4和轴向进给机构5依次轴向安装在机架1上;所述内翅片成型刀具组件安装在轴向进给机构5上;
待加工三维内翅片的金属管7一端夹持在机头3旋转主轴的卡盘上,另 一端置于支撑机构4上;金属管7的轴线与内翅片成型刀具组件的轴线同轴;机头3的旋转主轴为金属管7提供旋转动力,轴向进给机构5驱动内翅片成型刀具组件沿着金属管7与内翅片成型刀具组件的轴线直线移动。
所述支撑机构4包括一支架4-1,支架4-1上开设有一用于放置金属管7的工位4-4,在支架4-1本体上对称分布有三个夹紧气缸4-2,每个夹紧气缸4-2的活塞端部安装有卡爪4-3,卡爪4-3的端部安装有可旋转的滚柱4-3a;滚柱4-3a对称分布在工位4-4的周围,当金属管7置于工位4-4内时,滚柱4-3a与金属管7的周壁转动接触,为旋转运动中的金属管7提供支撑与定位。
所述内翅片成型刀具组件包括多刃刀具6-4、刀杆6-3和连接杆6-2;所述多刃刀具6-4固定安装在刀杆6-3的一端,刀杆6-3的另一端插入连接杆6-2的端部;连接杆6-2尾部固定安装在轴向进给机构5上。
所述轴向进给机构5为丝杆进给机构,其包括丝杆及安装在丝杆上的滑块;当丝杆转动时,带动滑块轴向移动;所述连接杆6-2固定在滑块上。
所述刀杆6-3的杆体上设有凸条6-5,连接杆6-2端部为筒状结构,并内套有一环状永磁体6-1,该连接杆6-2端部开有一与凸条6-5相适配的卡槽6-6;当连接杆6-2插入连接杆6-2内时,凸条6-5和卡槽6-6限制刀杆6-3相对于连接杆6-2周向转动;通过环状永磁体的磁力作用,将刀杆6-3吸合在连接杆6-2上。
所述多刃刀具6-4通过螺母固定在连接杆6-2的端部。
所述多刃刀具6-4的刀刃6-6均为相同的锥形结构,其锥度一般为10°~30°;所述刀刃6-6对称分布在环状基体的周围。刀刃6-6的数量及锥度可根据加工要求而定。
所述机头3的左侧还设有一个用于取刀的取刀机构2,其包括气缸2-2、设置在气缸2-2活塞端部的气动夹头2-3;当气动夹头2-3夹持住刀杆6-3的端部后,气缸2-2的活塞回缩,进而将刀杆6-3从连接杆6-2上轴向取出。
本发明三维内翅片管成型方法,可通过如下步骤实现:
步骤一:将具有内螺纹结构的金属管7轴向置于支撑机构4的工位4-4内,其端部固定在机头3旋转主轴的卡盘上,并保持金属管7与多刃刀具6-4在同一条轴线上;需要说明的是,金属管7的内螺纹的螺旋方向可以与多刃刀具6-4进给方向相同,也可以不相反,具体根据实际应用而定。
步骤二:机头3的旋转主轴带动金属管7旋转;
步骤三:轴向进给机构5启动,轴向进给机构5带动多刃刀具6-4向金属管7方向连续轴向移动;多刃刀具6-4进入金属管7内,多刃刀具6-4的多个刀刃6-6同时切开金属管7内壁面的内螺纹结构凸起部分,使其分为前后两部分,刀刃6-6的弧形刃犁切,锥形后刀面同时对其切开的沟槽向外挤压,使沟槽扩张,形成高于内螺纹凸起部分的三维非连续的内翅片结构;
步骤四:轴向进给机构5连续进给,直至在整个金属管7的内壁面形成三维非连续的内翅片结构。
取刀步骤如下:
一:金属管7的内壁面形成三维非连续的内翅片结构完成后,此时,多刃刀具6-4伸出金属管7的末端并外露;
二:机头3停止旋转,轴向进给机构5停止进给;
三:取刀机构2的气动夹头2-3夹紧刀杆6-3的端部后,气缸2-2的活塞回缩,进而将刀杆6-3从连接杆6-2上轴向取出;
四:轴向进给机构5反向运动,回到初始位置。
如上所述,便可较好地实现本发明。
本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:包括机架(1)、可提供旋转动力的机头(3)、支撑机构(4)、轴向进给机构(5)和内翅片成型刀具组件;
    所述机头(3)、支撑机构(4)和轴向进给机构(5)依次轴向安装在机架(1)上;所述内翅片成型刀具组件安装在轴向进给机构(5)上;
    待加工三维内翅片的金属管(7)一端夹持在机头(3)旋转主轴的卡盘上,另一端置于支撑机构(4)上;金属管(7)的轴线与内翅片成型刀具组件的轴线同轴;机头(3)的旋转主轴为金属管(7)提供旋转动力,轴向进给机构(5)驱动内翅片成型刀具组件沿着金属管(7)与内翅片成型刀具组件的轴线直线移动。
  2. 根据权利要求1所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述支撑机构(4)包括一支架(4-1),支架(4-1)上开设有一用于放置金属管(7)的工位(4-4),在支架(4-1)本体上对称分布有三个夹紧气缸(4-2),每个夹紧气缸(4-2)的活塞端部安装有卡爪(4-3),卡爪(4-3)的端部安装有可旋转的滚柱(4-3a);滚柱(4-3a)对称分布在工位(4-4)的周围,当金属管(7)置于工位(4-4)内时,滚柱(4-3a)与金属管(7)的周壁转动接触,为旋转运动中的金属管(7)提供支撑与定位。
  3. 根据权利要求1所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述内翅片成型刀具组件包括多刃刀具(6-4)、刀杆(6-3)和连接杆(6-2);所述多刃刀具(6-4)固定安装在刀杆(6-3)的一端,刀杆(6-3)的另一端插入连接杆(6-2)的端部;连接杆(6-2)尾部固定安装在轴向进给机构(5)上。
  4. 根据权利要求3所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述轴向进给机构(5)为丝杆进给机构,其包括丝杆及安装在丝杆上的滑块;当丝杆转动时,带动滑块轴向移动;所述连接杆(6-2)固定在滑块上。
  5. 根据权利要求3所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述刀杆(6-3)的杆体上设有凸条(6-5),连接杆(6-2)端部为筒状结构,并内套有一环状永磁体(6-1),该连接杆(6-2)端部开有一与凸条(6-5)相适配的卡槽(6-6);当连接杆(6-2)插入连接杆(6-2)内时,凸条(6-5)和卡槽(6-6)限制刀杆(6-3)相对于连接杆(6-2)周向转动;通过环状永磁体的磁力作用,将刀杆(6-3)吸合在连接杆(6-2)上。
  6. 根据权利要求5所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述多刃刀具(6-4)通过螺母固定在连接杆(6-2)的端部。
  7. 根据权利要求3至6中任一项所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述多刃刀具(6-4)的刀刃(6-6)均为相同的锥形结构,其锥度为10°~30°;所述刀刃(6-6)对称分布在环状基体的周围。
  8. 根据权利要求7所述基于多刃犁切-挤压的三维内翅片管成型装置,其特征在于:所述机头(3)的左侧还设有一个用于取刀的取刀机构(2),其包括气缸(2-2)、设置在气缸(2-2)活塞端部的气动夹头(2-3);当气动夹头(2-3)夹持住刀杆(6-3)的端部后,气缸(2-2)的活塞回缩,进而将刀杆(6-3)从连接杆(6-2)上轴向取出。
  9. 一种三维内翅片管成型方法,其特征在于采用权利要求1至8中任一 项所述基于多刃犁切-挤压的三维内翅片管成型装置实现,其包括如下步骤:
    步骤一:将具有内螺纹结构的金属管(7)轴向置于支撑机构(4)的工位(4-4)内,其端部固定在机头(3)旋转主轴的卡盘上,并保持金属管(7)与多刃刀具(6-4)在同一条轴线上;
    步骤二:机头(3)的旋转主轴带动金属管(7)旋转;
    步骤三:轴向进给机构(5)启动,轴向进给机构(5)带动多刃刀具(6-4)向金属管(7)方向连续轴向移动;多刃刀具(6-4)进入金属管(7)内,多刃刀具(6-4)的多个刀刃(6-6)同时切开金属管(7)内壁面的内螺纹结构凸起部分,使其分为前后两部分,刀刃(6-6)的弧形刃犁切,锥形后刀面同时对其切开的沟槽向外挤压,使沟槽扩张,形成高于内螺纹凸起部分的三维非连续的内翅片结构;
    步骤四:轴向进给机构(5)连续进给,直至在整个金属管(7)的内壁面形成三维非连续的内翅片结构。
  10. 根据权利要求9所述三维内翅片管成型方法,其特征在于,还包括一个取刀步骤:
    金属管(7)的内壁面形成三维非连续的内翅片结构完成后,此时,多刃刀具(6-4)伸出金属管(7)的末端并外露;
    机头(3)停止旋转,轴向进给机构(5)停止进给;
    取刀机构(2)的气动夹头(2-3)夹紧刀杆(6-3)的端部后,气缸(2-2)的活塞回缩,进而将刀杆(6-3)从连接杆(6-2)上轴向取出;
    轴向进给机构(5)反向运动,回到初始位置。
PCT/CN2017/109917 2016-11-10 2017-11-08 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法 WO2018086528A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018543645A JP6676772B2 (ja) 2016-11-10 2017-11-08 マルチブレードプラウイング−押出に基づく三次元インナーフィン付き管成形装置及び方法
US16/153,777 US10807145B2 (en) 2016-11-10 2018-10-07 Device and method for forming inside three-dimensional finned tube by multi-edge ploughing and extruding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610988108.5 2016-11-10
CN201610988108.5A CN106391913B (zh) 2016-11-10 2016-11-10 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/153,777 Continuation US10807145B2 (en) 2016-11-10 2018-10-07 Device and method for forming inside three-dimensional finned tube by multi-edge ploughing and extruding

Publications (1)

Publication Number Publication Date
WO2018086528A1 true WO2018086528A1 (zh) 2018-05-17

Family

ID=59230198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109917 WO2018086528A1 (zh) 2016-11-10 2017-11-08 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法

Country Status (4)

Country Link
US (1) US10807145B2 (zh)
JP (1) JP6676772B2 (zh)
CN (1) CN106391913B (zh)
WO (1) WO2018086528A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047635A (zh) * 2018-10-30 2018-12-21 新昌县奔力机械有限公司 一种制作刀坯用的锻压设备
CN113634998A (zh) * 2021-08-26 2021-11-12 泰州驰骏智能设备有限公司 一种新型工件无自转的翅片管加工方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391913B (zh) * 2016-11-10 2018-07-20 华南理工大学 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法
CN108080657A (zh) * 2018-01-22 2018-05-29 苏州东米智能设备有限公司 数控翅片管齿成型装置及控制方法
CN108127129A (zh) * 2018-02-11 2018-06-08 扬州航瑞电子科技有限公司 一种大长径比前馈波导管加工装置及其工作方法
CN114378136B (zh) * 2021-12-27 2023-10-10 无锡市晟斐机械设备制造有限公司 一种螺纹管液压管机
CN116000333B (zh) * 2022-12-30 2024-04-30 华南理工大学 一种用于制备波形结构金属翅片的装置及其制备方法
CN116833767B (zh) * 2023-07-31 2024-03-05 上海摩威环境科技股份有限公司 一种微量双注射泵的生产装置及生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630058A (en) * 1970-01-27 1971-12-28 Frances E Reed Process and apparatus for forming tubes with spiral corrugations
US3938374A (en) * 1975-02-06 1976-02-17 Dynatherm Corporation Tool for forming internal threads
CN1428211A (zh) * 2001-11-16 2003-07-09 韦尔兰德工厂有限公司 两面有构造的换热器管及其制造方法
CN101180143A (zh) * 2005-03-25 2008-05-14 沃尔弗林管子公司 用于制造传热性能得到增强的传热表面的工具
CN102069105A (zh) * 2010-10-30 2011-05-25 佛山神威热交换器有限公司 一种外翅片管的生产方法及装置
CN106391913A (zh) * 2016-11-10 2017-02-15 华南理工大学 一种基于多刃犁切‑挤压的三维内翅片管成型装置及方法
CN206215803U (zh) * 2016-11-10 2017-06-06 华南理工大学 一种基于多刃犁切‑挤压的三维内翅片管成型装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1036804A (en) * 1976-08-02 1978-08-22 Noranda Mines Limited Method for forming a serrated-fin tube
DE8528705U1 (de) * 1985-10-09 1985-11-21 kabelmetal electro GmbH, 3000 Hannover Vorrichtung zum Formen einer schraubenlinienförmigen Wellung
GB2183519B (en) * 1985-12-02 1989-10-04 Carrier Corp Method and apparatus for producing helically finned tubes
CA2230213C (en) * 1997-03-17 2003-05-06 Xin Liu A heat transfer tube and method of manufacturing same
JP4122490B2 (ja) * 1999-10-04 2008-07-23 Smc株式会社 位置検出機構付き複合型エアチャック
US6760972B2 (en) * 2000-09-21 2004-07-13 Packless Metal Hose, Inc. Apparatus and methods for forming internally and externally textured tubing
CN100395061C (zh) * 2006-07-28 2008-06-18 张产国 加工传热管的孔内螺旋翅片的方法
CN102441775A (zh) * 2011-09-09 2012-05-09 华南理工大学 一种三维整体非连续外翅片及其加工方法
CN102921765B (zh) * 2012-10-25 2015-10-14 佛山神威热交换器有限公司 一种外翅片管的制造方法和加工设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630058A (en) * 1970-01-27 1971-12-28 Frances E Reed Process and apparatus for forming tubes with spiral corrugations
US3938374A (en) * 1975-02-06 1976-02-17 Dynatherm Corporation Tool for forming internal threads
CN1428211A (zh) * 2001-11-16 2003-07-09 韦尔兰德工厂有限公司 两面有构造的换热器管及其制造方法
CN101180143A (zh) * 2005-03-25 2008-05-14 沃尔弗林管子公司 用于制造传热性能得到增强的传热表面的工具
CN102069105A (zh) * 2010-10-30 2011-05-25 佛山神威热交换器有限公司 一种外翅片管的生产方法及装置
CN106391913A (zh) * 2016-11-10 2017-02-15 华南理工大学 一种基于多刃犁切‑挤压的三维内翅片管成型装置及方法
CN206215803U (zh) * 2016-11-10 2017-06-06 华南理工大学 一种基于多刃犁切‑挤压的三维内翅片管成型装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047635A (zh) * 2018-10-30 2018-12-21 新昌县奔力机械有限公司 一种制作刀坯用的锻压设备
CN113634998A (zh) * 2021-08-26 2021-11-12 泰州驰骏智能设备有限公司 一种新型工件无自转的翅片管加工方法
CN113634998B (zh) * 2021-08-26 2023-02-07 泰州驰骏智能设备有限公司 一种工件无自转的翅片管加工方法

Also Published As

Publication number Publication date
CN106391913B (zh) 2018-07-20
US10807145B2 (en) 2020-10-20
JP2019512394A (ja) 2019-05-16
US20190039115A1 (en) 2019-02-07
CN106391913A (zh) 2017-02-15
JP6676772B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2018086528A1 (zh) 一种基于多刃犁切-挤压的三维内翅片管成型装置及方法
CN102069105B (zh) 一种外翅片管的生产方法及装置
CN106391914B (zh) 一种轧制与犁切-挤压三维内外翅片管制造设备与方法
CN203843275U (zh) 手动式薄壁铜管切割器
WO2013044589A1 (zh) 一种偏心强力反向加工刀具
BR102016026244A2 (pt) Method and system for forming a hole in a work part
CN104191185B (zh) 一种无通孔微型涡轮的加工工艺
CN201711551U (zh) 一种热管刀具
CN204338923U (zh) 一种精镗孔防变形冷却工艺装置
CN204504676U (zh) 一种可转换加工方向的超声波金属表面加工机构
CN203621663U (zh) 一种新型可转位螺纹刀具
CN206215803U (zh) 一种基于多刃犁切‑挤压的三维内翅片管成型装置
CN201855848U (zh) 一种外翅片管的生产装置
CN202684215U (zh) 一种换热器管板孔坡口加工刀具
CN103317047B (zh) 锥形翅片冷凝管的轧制方法
CN108871036A (zh) 一种高比表面积内翅片管及其加工方法
JP4928445B2 (ja) 格納式のフィン付け工具及びその使用方法
CN202411571U (zh) 铝合金衬塑管专用剥皮机
CN214023874U (zh) 一种用于换热器拔管的切割装置
CN206536039U (zh) 一种加工长螺纹孔的刀柄
CN206185264U (zh) 一种丝杆铜螺母内毛刺清除装置
CN202824695U (zh) 加工三维内肋管的刀具
CN209866997U (zh) 一种铝管螺纹挤出模具
CN116984911B (zh) 一种机械加工弹簧结构的浮动刀杆
CN212578053U (zh) 一种切钢管专用锯床的钢管固定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018543645

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17869076

Country of ref document: EP

Kind code of ref document: A1