WO2018086488A1 - 一种配电网风险辨识系统、方法及计算机存储介质 - Google Patents
一种配电网风险辨识系统、方法及计算机存储介质 Download PDFInfo
- Publication number
- WO2018086488A1 WO2018086488A1 PCT/CN2017/109416 CN2017109416W WO2018086488A1 WO 2018086488 A1 WO2018086488 A1 WO 2018086488A1 CN 2017109416 W CN2017109416 W CN 2017109416W WO 2018086488 A1 WO2018086488 A1 WO 2018086488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- risk
- data
- identification
- module
- analysis
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 92
- 238000009826 distribution Methods 0.000 title claims abstract description 60
- 238000003860 storage Methods 0.000 title claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 33
- 238000004088 simulation Methods 0.000 claims abstract description 29
- 230000002123 temporal effect Effects 0.000 claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims description 69
- 238000012544 monitoring process Methods 0.000 claims description 29
- 238000011156 evaluation Methods 0.000 claims description 20
- 238000007405 data analysis Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 14
- 238000012800 visualization Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 12
- 238000012502 risk assessment Methods 0.000 claims description 12
- 230000004927 fusion Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 230000003068 static effect Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 238000007418 data mining Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000007619 statistical method Methods 0.000 claims description 8
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 238000012806 monitoring device Methods 0.000 claims description 3
- 238000012097 association analysis method Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 3
- 238000010219 correlation analysis Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000010205 computational analysis Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0635—Risk analysis of enterprise or organisation activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
- G06N5/025—Extracting rules from data
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2228—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/043—Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2639—Energy management, use maximum of cheap power, keep peak load low
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
Definitions
- the invention relates to a risk identification method, in particular to a distribution network risk identification system, method and computer storage medium.
- the distribution network consisting of overhead lines, cables, poles, distribution transformers, disconnectors, reactive compensation capacitors and some ancillary facilities is large and complex, and plays an important role in distributing power in the power grid due to fault or load transfer operations.
- the opening and closing network structure of the switch often changes.
- the voltage level can be divided into high voltage distribution network (35-110KV), medium voltage distribution network (6-10KV) and low voltage distribution network (220/380V).
- the distribution network is directly oriented to the end user. It has many points and complex structures. It is increasingly becoming an active network with distributed power supply and diverse load access. The risk of faults in the distribution network and the risk of power quality are increasing.
- embodiments of the present invention are expected to provide a distribution network risk identification system, method, and computer storage medium.
- An embodiment of the present invention provides a method for identifying a risk of a distribution network, where the method includes:
- the severity of the risk is analyzed by means of simulation
- the acquiring the multi-source information data for risk identification includes:
- the analyzing the multi-source information data to obtain the risk feature comprises: performing fusion analysis processing on the multi-source information data to obtain a risk feature by using at least one of the following processing methods: an evidence theory method, Fuzzy set method, rough set method, neural network method.
- the calculating the risk identification indicator based on the risk feature comprises: selecting a risk identification model and an analysis method from the risk identification model library and the analysis method library according to the risk feature, and selecting a risk identification model based on the selected risk identification model Calculating the risk identification indicator with an analysis method;
- the risk identification indicator includes at least one of the following indicator parameters: power quality, overload, overheat, low voltage, insulation resistance, and leakage current.
- the determining the state of the power grid according to the risk identification indicator includes: determining whether the power grid is in a risk state according to a threshold or a limit value corresponding to the risk identification indicator, and a preset risk type and an early warning rule Make a judgment.
- the analyzing the temporal and spatial variation rules and trends of the risk characteristics includes:
- the temporal and spatial variation and trend of the risk characteristics are analyzed by continuous monitoring or statistical methods.
- the preset risk type and the early warning rule are preset according to relevant experience knowledge, or are automatically generated in advance from the historical alarm record and the monitoring statistics by means of data mining.
- correlation analysis and/or evidence theory are used to analyze the causes of risk occurrence.
- the analyzing the severity of the risk by using a simulation method comprises: simulating the risk using Monte Carlo simulation, obtaining a probability of the risk, and obtaining a severity of the risk.
- the assessing the severity of the risk, and issuing risk warning information based on the evaluation result includes:
- the risk warning information will be released.
- the embodiment of the invention further provides a distribution network risk identification system, the system comprising: a multi-source information system, a data center, a data analysis and processing module, a risk simulation module, a risk identification modeling and analysis module, and a risk source location Module, risk cause identification and analysis module and risk visualization module;
- the multi-source information system and the intelligent monitoring terminal are connected to the data center through a data interface module and a communication device; the data center transmits the classified processed data to the data analysis and processing module, and the data analysis and processing
- the module is configured to separately transmit the risk feature related information data to the risk identification modeling and analysis module, the risk source positioning module, and the risk cause identification and analysis module to perform risk state and risk type judgment and early warning;
- the risk visualization module is configured to obtain the risk identification modeling and analysis module, the risk source location module, and the risk cause identification and analysis module judgment and early warning result data, and display the judgment and early warning result data;
- Data of the data center, the data analysis processing module, the risk identification modeling and analysis module, the risk source location module, and the risk cause identification and analysis module are transmitted to the risk simulation module for online or offline simulation Transmitting the simulation results to the risk visualization module.
- the data interface is configured to acquire multi-source information data for risk identification from an intelligent, automated information system
- the communication device is configured to acquire multi-source information data for risk identification in real time from an intelligent terminal or device;
- the data center is configured to classify, store, maintain, and query data transmitted by the data interface and the communication device;
- the data analysis and processing module is configured to perform fast identification, quality detection, statistical analysis, data mining, feature extraction, and data fusion on the data transmitted by the data center;
- the risk identification modeling and analysis module is configured to analyze and process data transmitted by the data analysis and processing module, perform risk feature extraction, risk feature temporal and spatial variation law analysis, risk identification modeling, risk identification index calculation, risk Identification index calculation result comparison, risk type judgment and risk change trend analysis;
- the risk source location module is configured to analyze and determine a location where the risk occurs
- the risk cause identification and analysis module is configured to analyze and determine the cause of the risk occurrence
- the risk simulation module is configured to simulate the severity of the risk
- the risk visualization module is configured to query and display risk warning information
- the risk identification modeling and analysis module, the risk source positioning module, the risk cause identification and analysis module, and the risk simulation module are respectively connected to a model library, a method library, a knowledge base, and a rule base.
- the intelligent monitoring terminal includes at least one of the following terminal types: a mobile monitoring device, an intelligent monitoring terminal, a feeder terminal device (FTU, Feeder Terminal Unit), a data transfer unit (DTU, Data Transfer Unit), Remote Terminal Unit (RTU), audio/video acquisition device and weather data acquisition device.
- FTU Feeder Terminal Unit
- DTU Data Transfer Unit
- RTU Remote Terminal Unit
- audio/video acquisition device and weather data acquisition device.
- An embodiment of the present invention further provides a distribution network risk identification system, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the program to implement the present invention The steps of the distribution network risk identification method described in the embodiments.
- the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the steps of the distribution network risk identification method according to the embodiment of the present invention. .
- the technical solution of the embodiment of the invention breaks the barriers of various data source systems of the distribution network, effectively integrates the data provided by multiple information sources, and provides data support for accurately performing risk identification of the distribution network.
- the evaluation scenario the evaluation object, the evaluation scope, and the evaluation cycle
- the risk identification of the distribution network can be carried out from multiple angles such as time and space.
- it realizes the reasons and sources of finding and discovering risks from a microscopic perspective, and provides decision-making basis for formulating effective risk prevention and control measures.
- FIG. 1 is a schematic structural diagram of a distribution network risk identification system according to an embodiment of the present invention.
- FIG. 2 is a schematic flow chart of a method for identifying a risk of a distribution network according to an embodiment of the present invention.
- FIG. 1 is a schematic diagram of the distribution network risk identification system architecture of the present invention.
- the system includes: a multi-source information system, a data center, Data analysis and processing module, risk simulation module, risk identification modeling and analysis module, risk source location module, risk cause identification and analysis module and risk visualization module;
- the multi-source information system and various intelligent monitoring terminals are connected to the data center through the data interface module and the communication device, and the data center transmits the classified data to the data analysis and processing module for bad data identification, data fusion, risk feature extraction, and the like.
- the risk characteristic related information data is separately transmitted to the risk identification modeling and analysis module, the risk source positioning module and the risk cause identification and analysis module to perform the risk state and the risk type judgment and early warning;
- the risk visualization module is configured to obtain the Describe the risk identification modeling and analysis module, the risk source location module, and the judgment and early warning result data of the risk cause identification and analysis module, and display the judgment and the early warning Result data;
- the data center, the data analysis and processing module, the risk identification modeling and analysis module, the risk source location module, the risk cause identification and analysis module data are transmitted to the risk simulation module for online or offline simulation, The simulation results are compared with the actual risk warning results. Finally, the simulation result data is transmitted to the risk visualization module, and the risk visualization module displays the risk warning results.
- the data interface is configured to acquire multi-source information data for risk identification from the intelligent terminal and the automated information system;
- the communication device is configured to acquire the multi-source information data for the risk identification in real time from the intelligent terminal or the device;
- a data center configured to classify, store, maintain, query, and the like data transmitted by the data interface and the communication device
- the data analysis and processing module is configured to perform fast identification, quality detection, statistical analysis, data mining, feature extraction, data fusion, etc. on the data transmitted by the data center;
- the risk identification modeling and analysis module is configured to analyze and process the data transmitted by the data analysis and processing module, perform risk feature extraction, risk feature temporal and spatial variation law analysis, risk identification modeling, risk identification index calculation, and risk identification index. Calculation result comparison, risk type judgment and risk trend analysis;
- a risk source location module configured to analyze the location at which the risk occurs
- a risk cause identification and analysis module configured to analyze the cause of the risk occurrence
- a risk simulation module configured to simulate the severity of the risk
- the risk warning visualization module is configured to query and display risk warning information
- the model library/method library/knowledge base/rule library is configured to support computational analysis modules such as risk identification, risk source location, risk cause identification and analysis, and risk simulation.
- the human machine interface is configured to accept a risk identification start command input by the user, various risk identification index threshold parameter modification instructions, and a risk decision instruction.
- the multi-source information data required for obtaining risk identification from various intelligent and automated information systems includes, but is not limited to, from dispatching automation systems, distribution automation systems, distribution marketing systems, equipment state maintenance systems, geographic information systems, and meteorological information systems.
- Real-time data, historical data and forecast data of grid operation acquired in various information, automation and intelligent systems such as 95598 system, electricity information collection system, PMS system, fault recording system, pollution information system and lightning monitoring system.
- parameter data of network and equipment spatial data of geographic information, weather forecast information, audio/video data, etc.
- a communication device for collecting and acquiring online real-time data of an intelligent terminal or device including but not limited to intelligentization with a mobile monitoring device, an intelligent monitoring terminal, an FTU, a DTU, an RTU, an audio/video collecting device, a weather data collecting device, and the like
- a wireless transceiver module that transmits data to a terminal or device.
- the risk identification modeling and analysis module, the risk source positioning module, the risk cause identification and analysis module, and the risk simulation module are all connected with the data analysis and processing module to obtain the required data resources; each module has a corresponding model.
- the library, method library, knowledge base, and rule base can be set in advance or automatically generated, providing models and method support for analysis and calculation of each module.
- the embodiment of the invention also provides a distribution network risk identification method.
- 2 is a schematic flow chart of a method for identifying a risk of a distribution network according to an embodiment of the present invention. As shown in FIG. 2, the method includes: when the operating parameters of the power grid (voltage, current, impedance, etc., electrical parameters, temperature, humidity, etc. If the continuous change of the electric quantity parameter exceeds the allowable value of the operation within a certain period of time, it is judged that the distribution network is in a risk state.
- Step 1 Obtain the multi-source information data needed for risk identification.
- the obtaining the multi-source information data for risk identification comprises: acquiring at least one of the following data: data of a real-time grid operation monitoring system, dynamic and static data of a device production management system, and external environment information data.
- the multi-source information data is derived from at least three types of systems, and the first is real-time grid operation supervision.
- Measurement system, real-time grid operation monitoring system includes dispatch automation, distribution automation and marketing system; second, acquisition of grid dynamic data, static data production management system, such as production management system (PMS, Production Management System) / geographic information system (GIS) , Geographic Information System) system, power customer service system (such as 95598 system); third, systems that can obtain external environmental information data, such as weather forecasting system, lightning monitoring system, pollution monitoring system, etc.
- the network topology of the high-voltage distribution network including 35kV, 110kV), substation graphics, related equipment parameters, real-time data and fault information can be obtained; from the PMS/GIS system, the medium-voltage distribution network (including 10kV, 20kV) model and graphic information, wherein the graphic information representation graphics include: one-time wiring diagram, single-line diagram, system diagram (including scheduling system diagram, power supply range diagram, switch station diagram, etc.), line geographic layout, etc.
- the electricity information collection system obtain real-time information and power outage information of the distribution transformer; obtain customer business information, policies and regulations, electricity bills, fault repair, complaints, power failure notices, etc.
- Information systems such as SG186 system, SG186 system for the State Grid Corporation integrated enterprise-level information integration platform
- SG186 system SG186 system for the State Grid Corporation integrated enterprise-level information integration platform
- distribution automation system to obtain storage and distribution Net model section, real-time data, fault information, historical data, distribution network analysis results Information.
- Step 2 Analyze and process the multi-source information data to obtain a risk feature.
- the analyzing and processing the multi-source information data to obtain a risk feature comprises: performing fusion analysis processing on the multi-source information data to obtain a risk feature by using at least one of the following processing methods: an evidence theory method, a fuzzy set method, Rough set method, neural network method.
- Step 3 Calculate a risk identification indicator based on the risk feature, and determine a grid state according to the risk identification indicator.
- the calculating the risk identification indicator based on the risk feature comprises: selecting a risk identification model and an analysis method from the risk identification model library and the analysis method library according to the risk feature, The risk identification indicator is calculated based on the selected risk identification model and the analysis method; the risk identification indicator includes at least one of the following indicator parameters: power quality, overload, overheat, low voltage, insulation resistance, and leakage current.
- the determining the state of the power grid according to the risk identification indicator comprises: determining whether the power grid is in a risk state according to a threshold or a limit value corresponding to the risk identification indicator, and a preset risk type and an early warning rule.
- the risk identification model and analysis method are selected from the risk identification model library and the analysis method library, and the risk identification indicators such as power quality, overload, overheat, low voltage, insulation resistance and leakage current are calculated.
- the risk identification indicators such as power quality, overload, overheat, low voltage, insulation resistance and leakage current are calculated.
- At least one of the following according to the threshold or limit corresponding to the risk identification indicator, and the preset risk type and early warning rules, determine whether the power grid is in a risk state and the type of risk faced by the power grid.
- the pre-set risk types and early warning rules can be created in two ways: one is based on the relevant experience knowledge of the operating personnel, and the second is the method of data mining from historical alarm records or monitoring statistics. Automatically generated in advance.
- Step 4 Analyze the temporal and spatial variation rules and trends of the risk characteristics.
- temporal and spatial variation rules and trends of the risk characteristics are analyzed using continuous monitoring or statistical methods.
- Step 5 Determine the location and cause of the risk according to the temporal and spatial variation rules and the changing trend of the risk characteristics.
- the location of the risk occurrence is located; the risk characteristics and information sources obtained from the fusion of the multi-source information data, According to the causal relationship between risk events, risk characteristics and risk types, combined with the empirical knowledge excavated from the fault information history records, the causes of risk occurrence are analyzed by means of correlation analysis and/or evidence theory.
- Step 6 Analyze the severity of the risk using a simulation.
- the analyzing the severity of the risk by using a simulation method includes: using Monte Carlo simulation to simulate the risk, obtaining the probability of the risk, and obtaining the severity of the risk.
- the Monte Carlo method also known as random sampling or statistical test method, belongs to a branch of computational mathematics. It was developed in the mid-1940s to adapt to the development of atomic energy at that time. The traditional empirical method is difficult to obtain satisfactory results because it cannot approach the real physical process. Because the Monte Carlo method can truly simulate the actual physical process, the problem solving is very consistent with the actual situation, and a very satisfactory result can be obtained.
- Monte Carlo simulates the probability of occurrence of grid risk through experiments, and analyzes the consequences and severity of the risk based on the probability.
- Step 7 Evaluate the severity of the risk and issue risk warning information based on the evaluation result.
- the assessing the severity of the risk, and issuing risk warning information based on the evaluation result includes: comprehensively evaluating the risk according to the type of risk, location of the risk source, risk reason and severity of the risk, and setting The risk warning information evaluation and release criteria, according to the user's choice and needs, release risk warning information.
- An embodiment of the present invention further provides a distribution network risk identification system, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the program to implement the present invention The steps of the distribution network risk identification method described in the embodiments.
- the processor is configured to: obtain multi-source information data for risk identification; analyze and process the multi-source information data to obtain a risk feature; calculate a risk identification indicator based on the risk feature, according to the Determining the state of the grid by the risk identification indicator; analyzing the wind Temporal and spatial variation regularity and change trend of risk characteristics; determine the location and cause of risk occurrence according to the temporal and spatial variation law and change trend of the risk characteristics; analyze the severity of the risk by simulation; and assess the severity of the risk, Issue risk warning information based on the evaluation results.
- the processor executes the program, it is implemented to: acquire at least one of the following data: data of a real-time grid operation monitoring system, dynamic data and static data of a device production management system, and external environment information data.
- the processor executes the program, performing fusion analysis processing on the multi-source information data to obtain a risk feature by using at least one of the following processing modes: an evidence theory method, a fuzzy set method, and a rough set Method, neural network method.
- the risk identification model and the analysis method are selected from the risk identification model library and the analysis method library according to the risk feature, and the selected risk identification model and the analysis method are selected.
- the risk identification indicator is calculated; the risk identification indicator includes at least one of the following indicator parameters: power quality, overload, overheat, low voltage, insulation resistance, and leakage current.
- the method determines whether the power grid is in a risk state according to a threshold or a limit value corresponding to the risk identification indicator, and a preset risk type and an early warning rule.
- the processor executes the program, it is implemented to analyze a temporal and spatial variation rule and a change trend of the risk feature by using a continuous monitoring or statistical method.
- the risk type and the early warning rule are preset according to the relevant experience knowledge, or the risk type is automatically generated in advance through the data mining method from the historical alarm record and the monitoring statistics. And early warning rules.
- the correlation analysis method and/or the evidence theory method are used to analyze the cause of the risk occurrence.
- the implementation when the processor executes the program, the implementation is: adopting Monte Carlo The risk is simulated, the probability of obtaining the risk, and the severity of the risk being obtained.
- the processor implements the program: comprehensively assessing the risk according to a risk type, a risk source location, a risk cause, and a risk severity; and combining the set risk early warning information evaluation and release criteria , release risk warning information.
- the memory can be either volatile memory or non-volatile memory, and can include both volatile and nonvolatile memory.
- the non-volatile memory may be a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), or an Erasable Programmable Read (EPROM). Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Ferromagnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD-ROM, or Compact Disc Read-Only Memory (CD-ROM); the magnetic surface memory can be a disk storage or a tape storage.
- the volatile memory can be a random access memory (RAM) that acts as an external cache.
- RAM Random Access Memory
- SRAM Static Random Access Memory
- SSRAM Synchronous Static Random Access Memory
- SSRAM Dynamic Random Access
- DRAM Dynamic Random Access Memory
- SDRAM Synchronous Dynamic Random Access Memory
- DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- ESDRAM enhancement Enhanced Synchronous Dynamic Random Access Memory
- SLDRAM Synchronous Dynamic Random Access Memory
- DRRAM Direct Memory Bus Random Access Memory
- the method disclosed in the foregoing embodiments of the present invention may be applied to a processor or implemented by a processor.
- the processor may be an integrated circuit chip with signal processing capabilities.
- each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
- the above described processor may be a general purpose processor, a DSP, or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
- the processor may implement or perform the methods, steps, and logic blocks disclosed in the embodiments of the present invention.
- a general purpose processor can be a microprocessor or any conventional processor or the like.
- the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a storage medium, the storage medium being located in the memory, the processor reading the information in the memory, and completing the steps of the foregoing methods in combination with the hardware thereof.
- the system may be implemented by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), Complex Programmable Logic Devices (CPLDs, Complex) Programmable Logic Device), FPGA, general purpose processor, controller, MCU, microprocessor, or other electronic component implementation for performing the aforementioned methods.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal processors
- PLDs Programmable Logic Devices
- CPLDs Complex Programmable Logic Devices
- FPGA general purpose processor
- controller MCU
- microprocessor or other electronic component implementation for performing the aforementioned methods.
- the embodiment of the present invention further provides a computer storage medium, which may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM; or may include the above memory One or any combination of various devices.
- a computer storage medium which may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM; or may include the above memory One or any combination of various devices.
- Storing a computer program on the computer storage medium the computer program being executed by the processor, performing: acquiring multi-source information data for risk identification; analyzing and processing the multi-source information data to obtain a risk feature; calculating based on the risk feature
- the risk identification indicator determines the state of the power grid according to the risk identification index; analyzes the temporal and spatial variation law and the change trend of the risk feature; and determines the bit of the risk occurrence according to the temporal and spatial variation law and the change trend of the risk feature.
- the reason and the reason; the severity of the risk is analyzed by means of simulation; the severity of the risk is assessed, and the risk warning information is issued based on the evaluation result.
- the computer program when executed by the processor, performing: acquiring at least one of the following data: data of the real-time grid operation monitoring system, dynamic data and static data of the equipment production management system, and external environment information data.
- performing performing fusion analysis processing on the multi-source information data to obtain risk characteristics by using at least one of the following processing methods: evidence theory method, fuzzy set method, rough set Method, neural network method.
- the computer program when executed by the processor, executing: selecting a risk identification model and an analysis method from the risk identification model library and the analysis method library according to the risk feature, and selecting a risk identification model and an analysis method
- the risk identification indicator is calculated; the risk identification indicator includes at least one of the following indicator parameters: power quality, overload, overheat, low voltage, insulation resistance, and leakage current.
- the computer program when executed by the processor, performing: determining whether the power grid is in a risk state according to a threshold or a limit value corresponding to the risk identification indicator, and a preset risk type and an early warning rule.
- the method when the computer program is executed by the processor, the method performs: analyzing the temporal and spatial variation rules and the changing trend of the risk feature by using continuous monitoring or statistical methods.
- the computer program when executed by the processor, executing: pre-setting a risk type and an early warning rule according to relevant experience knowledge, or automatically generating a risk type by using a data mining method from a historical alarm record and a monitoring statistics. And early warning rules.
- the method when the computer program is executed by the processor, the method performs: analyzing the cause of the risk by using an association analysis method and/or an evidence theory method.
- the computer program when executed by the processor, performing: using Monte Carlo simulation to simulate the risk, obtaining the probability of the risk, and obtaining the risk seriously degree.
- the computer program when executed by the processor, performing: comprehensively evaluating the risk according to the type of risk, location of the risk source, risk reason, and severity of the risk; and combining the set risk assessment information and evaluation criteria , release risk warning information.
- the disclosed method and system may be implemented in other manners.
- the system embodiment described above is only illustrative.
- the division of the module is only a logical function division.
- there may be another division manner for example, multiple modules or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
- the communication connections between the various components shown or discussed may be indirect coupling or communication connections through some interfaces, devices or modules, and may be electrical, mechanical or otherwise.
- the modules described above as separate components may or may not be physically separated.
- the components displayed as modules may or may not be physical modules, that is, may be located in one place or distributed to multiple network modules; Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may be separately used as one module, or two or more modules may be integrated into one module;
- the module can be implemented in the form of hardware or in the form of hardware plus software function modules.
- the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a removable storage device, a ROM, a magnetic disk, or an optical disk, and the like, which can store program codes.
- the above integrated module of the embodiment of the present invention is implemented in the form of a software function module. And when sold or used as a stand-alone product, it can also be stored on a computer readable storage medium.
- the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
- a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.
- the technical solution of the embodiment of the invention breaks the barriers of various data source systems of the distribution network, effectively integrates the data provided by multiple information sources, and provides data support for accurately performing risk identification of the distribution network.
- the evaluation scenario the evaluation object, the evaluation scope, and the evaluation cycle
- the risk identification of the distribution network can be carried out from multiple angles such as time and space.
- it realizes the reasons and sources of finding and discovering risks from a microscopic perspective, and provides decision-making basis for formulating effective risk prevention and control measures.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- General Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Entrepreneurship & Innovation (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Software Systems (AREA)
- Marketing (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Quality & Reliability (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Primary Health Care (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Computational Linguistics (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Databases & Information Systems (AREA)
- Molecular Biology (AREA)
Abstract
一种配电网风险辨识系统、方法及计算机存储介质,该方法包括:获取用于风险辨识的多源信息数据;分析处理该多源信息数据,获得风险特征;基于该风险特征计算风险辨识指标,根据该风险辨识指标判断电网状态;分析该风险特征的时空变化规律和变化趋势;根据该风险特征的时空变化规律和变化趋势确定风险发生的位置和原因;采用模拟仿真方式分析该风险的严重程度;评估该风险的严重程度,基于评估结果发布风险预警信息。
Description
相关申请的交叉引用
本申请基于申请号为201610992702.1、申请日为2016年11月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
本发明涉及一种风险辨识方法,具体涉及一种配电网风险辨识系统、方法及计算机存储介质。
由架空线路、电缆、杆塔、配电变压器、隔离开关、无功补偿电容以及一些附属设施等组成的配电网结构庞大且复杂,在电力网中起重要分配电能作用,由于故障或负荷转移操作中开关的开合网络结构经常发生变化。安电压等级可分为高压配电网(35-110KV)、中压配电网(6-10KV)和低压配电网(220/380V)。配电网直接面向终端用户,点多面广、结构复杂,日益成为一个包含分布式电源、多样性负荷接入的有源网络,配电网故障风险、电能质量风险越来越大。同时,随着社会经济的发展和人民群众文化、生活水平的提高,对供电安全可靠性、供电质量的要求越来越高,因此如何在故障发生之前尽早寻找、发现潜在的风险,并对事故后的风险类型、风险原因、风险源位置进行有效识别是配电网需要研究的重要课题之一。
目前,国内外在配电网风险预警方面的研究主要侧重于基于概率的静态安全风险评估、基于层次分析的多指标综合分析评价、基于在线信息的动态安全风险评估三个方面,并在此基础上,研发了配电网风险评估系统,
虽然传统的基于概率统计的电网风险评估方面开展了一些有益的研究工作,但在实际应用中仍存在一些不足:(1)传统的电网风险评估理论及技术侧重于从宏观层面建立风险评估及预警体系,采用的数据来源单一,数据量少,建立的风险评估模型与数据的关联性不强,给出的风险评估指标单一、片面,不能从时间、空间等多维度全面反映电网面临的风险类型、风险严重程度;(2)传统的基于概率统计的电网风险评估方法,仅给出电网风险发生的可能性和严重程度,虽然能反映电网总体风险水平,但得到的预警结果不能为操作人员发现、找出风险原因和风险源头提供依据,对制定风险预防控制措施具有局限性;(3)风险机理分析、风险源识别高度依赖数据,而现阶段信息不全,数据量少,数据源系统间存在壁垒,难于进行风险机理分析。
发明内容
为了解决现有技术中所存在的上述不足,本发明实施例期望提供一种配电网风险辨识系统、方法及计算机存储介质。
本发明实施例提供了一种配电网风险辨识方法,所述方法包括:
获取用于风险辨识的多源信息数据;
分析处理所述多源信息数据,获得风险特征;
基于所述风险特征计算风险辨识指标,根据所述风险辨识指标判断电网状态;
分析所述风险特征的时空变化规律和变化趋势;
根据所述风险特征的时空变化规律和变化趋势确定风险发生的位置和原因;
采用模拟仿真方式分析所述风险的严重程度;
评估所述风险的严重程度,基于评估结果发布风险预警信息。
在一实施例中,所述获取用于风险辨识的多源信息数据,包括:
获取以下数据的至少之一:实时电网运行监测系统的数据、设备生产管理系统的动态数据和静态数据、外部环境信息数据。
在一实施例中,所述分析处理所述多源信息数据,获得风险特征,包括:采用以下处理方式的至少之一对所述多源信息数据进行融合分析处理获得风险特征:证据理论方法、模糊集方法、粗糙集方法、神经网络方法。
在一实施例中,所述基于所述风险特征计算风险辨识指标,包括:根据所述风险特征,从风险辨识模型库与分析方法库中选择风险辨识模型与分析方法,基于选择的风险辨识模型与分析方法计算所述风险辨识指标;
所述风险辨识指标包括以下指标参数的至少之一:电能质量、过负荷、过热、低电压、绝缘电阻、泄漏电流。
在一实施例中,所述根据所述风险辨识指标判断电网状态,包括:依据所述风险辨识指标对应的阈值或限值,以及预先设定的风险类型和预警规则,对电网是否处于风险状态进行判断。
在一实施例中,所述分析所述风险特征的时空变化规律和变化趋势,包括:
采用持续监测或统计的方法分析所述风险特征的时空变化规律及变化趋势。
在一实施例中,所述预先设定的风险类型和预警规则依据相关经验知识预先设定,或从历史告警记录中、监测统计中通过数据挖掘的方法自动预先生成。
在一实施例中,采用关联性分析法和/或证据理论法对风险发生的原因进行分析。
在一实施例中,所述采用模拟仿真方式分析所述风险的严重程度,包括:采用蒙特卡洛模拟仿真所述风险,获得所述风险的概率,以及获得所述风险的严重程度。
在一实施例中,所述评估所述风险的严重程度,基于评估结果发布风险预警信息,包括:
结合风险类型、风险源位置、风险原因和风险严重程度对所述风险进行综合评估;
结合设定的风险预警信息评价与发布标准,发布风险预警信息。
本发明实施例还提供了一种配电网风险辨识系统,所述系统包括:多源信息系统、数据中心、数据分析与处理模块、风险仿真模块、风险辨识建模与分析模块、风险源定位模块、风险原因识别与分析模块和风险可视化模块;其中,
所述多源信息系统及智能监控终端通过数据接口模块和通讯装置与所述数据中心相连;所述数据中心将经过分类处理的数据传送到所述数据分析与处理模块,所述数据分析与处理模块配置为将风险特征相关信息数据分别传送到所述风险辨识建模与分析模块、所述风险源定位模块和所述风险原因识别与分析模块以进行风险状态及风险类型的判断和预警;
所述风险可视化模块,配置为获得所述风险辨识建模与分析模块、所述风险源定位模块和所述风险原因识别与分析模块的判断和预警结果数据,展示所述判断和预警结果数据;
所述数据中心、所述数据分析处理模块、所述风险辨识建模与分析模块、所述风险源定位模块、风险原因识别与分析模块的数据传送至所述风险仿真模块,进行在线或离线仿真,将仿真结果传送至所述风险可视化模块。
在一实施例中,所述数据接口,配置为从智能化、自动化信息系统获取用于风险辨识所的多源信息数据;
所述通讯装置,配置为从智能化终端或设备在线实时获取用于风险辨识所的多源信息数据;
所述数据中心,配置为对所述数据接口和所述通讯装置传送的数据进行分类、存储、维护和查询;
所述数据分析与处理模块,配置为对所述数据中心传送的数据进行快速识别、质量检测、统计分析、数据挖掘、特征提取和数据融合;
所述风险辨识建模与分析模块,配置为对所述数据分析与处理模块传送的数据进行分析处理,进行风险特征提取、风险特征时空变化规律分析、风险辨识建模、风险辨识指标计算、风险辨识指标计算结果比对、风险类型判断和风险变化趋势分析;
所述风险源定位模块,配置为分析确定风险发生的位置;
所述风险原因识别与分析模块,配置为分析确定风险发生的原因;
所述风险仿真模块,配置为仿真分析风险的严重程度;
所述风险可视化模块,配置为风险预警信息查询和展示;
所述风险辨识建模与分析模块、所述风险源定位模块、所述风险原因识别与分析模块和所述风险仿真模块分别与模型库、方法库、知识库和规则库连接。
在一实施例中,所述智能监控终端包括以下终端类型的至少之一:移动监测装置、智能监测终端、馈线终端设备(FTU,Feeder Terminal Unit)、数据传输单元(DTU,Data Transfer Unit)、远程终端单元(RTU,Remote Terminal Unit)、音/视频采集装置和气象数据采集装置。
本发明实施例还提供了一种配电网风险辨识系统,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本发明实施例所述的配电网风险辨识方法的步骤。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行本发明实施例所述的配电网风险辨识方法的步骤。
本发明实施例的技术方案,一方面,打破了配电网各种数据源系统壁垒,对多种信息源提供的数据进行有效融合,为准确进行配电网风险辨识提供数据支撑。另一方面,可根据评估场景、评估对象、评估范围、评估周期的不同,从时间、空间等多维角度进行配电网风险辨识。又一方面,实现了从微观角度寻找、发现风险发生的原因和源头,为制定有效风险预防控制措施提供决策依据。
图1为本发明实施例的配电网风险辨识系统架构示意图;
图2为本发明实施例的配电网风险辨识方法的流程示意图。
为了更好地理解本发明,下面结合说明书附图和实例对本发明的内容做进一步的说明。
本发明实施例提供一种配电网风险辨识系统及方法,图1为本发明的配电网风险辨识系统架构示意图,如图1所示,所述系统包括:多源信息系统、数据中心、数据分析与处理模块、风险仿真模块、风险辨识建模与分析模块、风险源定位模块、风险原因识别与分析模块和风险可视化模块;其中,
多源信息系统及各种智能监控终端通过数据接口模块和通讯装置与数据中心相连,数据中心将经过分类处理的数据传送到数据分析与处理模块进行不良数据辨识、数据融合、风险特征提取等,将风险特征相关信息数据分别传送到风险辨识建模与分析模块、风险源定位模块和风险原因识别与分析模块以进行风险状态及风险类型的判断和预警;所述风险可视化模块,配置为获得所述风险辨识建模与分析模块、所述风险源定位模块和所述风险原因识别与分析模块的判断和预警结果数据,展示所述判断和预警
结果数据;此外,数据中心、数据分析与处理模块、风险辨识建模与分析模块、所述风险源定位模块、风险原因识别与分析模块的数据传送至风险仿真模块,进行在线或离线仿真,将仿真结果与实际风险预警结果进行比较,最终将仿真结果数据传送至风险可视化模块,由风险可视化模块展示风险预警结果。
其中,数据接口,配置为从智能化终端、自动化信息系统获取用于风险辨识的多源信息数据;
通讯装置,配置为从智能化终端或设备在线实时获取用于风险辨识所的多源信息数据;
数据中心,配置为对所述数据接口和所述通讯装置传送的数据进行分类、存储、维护、查询等;
数据分析与处理模块,配置为于对所述数据中心传送的数据进行快速识别、质量检测、统计分析、数据挖掘、特征提取、数据融合等;
风险辨识建模与分析模块,配置为对所述数据分析与处理模块传送的数据进行分析处理,进行风险特征提取、风险特征时空变化规律分析、风险辨识建模、风险辨识指标计算、风险辨识指标计算结果比对、风险类型判断和风险趋势分析等;
风险源定位模块,配置为分析确定风险发生的位置;
风险原因识别与分析模块,配置为分析确定风险发生的原因;
风险仿真模块,配置为仿真分析风险的严重程度;
风险预警可视化模块,配置为风险预警信息查询和展示;
模型库/方法库/知识库/规则库,配置为支撑风险辨识、风险源定位、风险原因识别与分析、风险仿真等计算分析模块。
人机接口,配置为接受用户输入的风险辨识启动指令、各项风险辨识指标阈值参数修改指令和风险决策指令。
从各种智能化、自动化信息系统获取风险辨识所需多源信息数据具体包括但不限于从调度自动化系统、配电自动化系统、配电营销系统、设备状态检修系统、地理信息系统、气象信息系统、95598系统、用电信息采集系统、PMS系统、故障录波系统、污秽信息系统、雷电监测系统等各种信息化、自动化、智能化系统中获取的电网运行的实时数据、历史数据和预测数据,网络及设备的参数属性数据,地理信息的空间数据,天气预报信息,音频/视频数据等。
用于采集和获取智能化终端或设备在线实时数据的通讯装置,具体包括但不限于与移动监测装置、智能监测终端、FTU、DTU、RTU、音/视频采集装置、气象数据采集装置等智能化终端或设备进行数据传输的无线收发模块。
所述风险辨识建模与分析模块、风险源定位模块、风险原因识别与分析模块、风险仿真模块均与数据分析与处理模块相连,从中获取所需要的数据资源;各模块均有相对应的模型库、方法库、知识库、规则库,可以事先设定,也可以自动生成,为各模块的分析计算提供模型、方法支撑。
基于上述配电网风险辨识系统,本发明实施例还提供了一种配电网风险辨识方法。图2为本发明实施例的配电网风险辨识方法的流程示意图,如图2所示,所述方法包括:即当电网运行参数(电压、电流、阻抗等电气量参数和温度、湿度等非电气量参数)在一段时间内持续变化情况超过运行规定的允许值时,即判断配电网处于风险状态。
步骤1:获取用于风险辨识所需的多源信息数据。
这里,所述获取用于风险辨识的多源信息数据,包括:获取以下数据的至少之一:实时电网运行监测系统的数据、设备生产管理系统的动态和静态数据、外部环境信息数据。
其中,所述多源信息数据至少来源于三类系统,一是实时电网运行监
测系统,实时电网运行监测系统包括调度自动化、配电自动化以及营销系统;二是采集电网动态数据、静态数据的生产管理系统,如生产管理系统(PMS,Production Management System)/地理信息系统(GIS,Geographic Information System)系统、电力客户服务系统(例如95598系统);三是能够获得外部环境信息数据的系统,如天气预报系统、雷电监测系统、污秽监测系统等。从调度自动化系统可以获取高压配电网(包括35kV、110kV)的网络拓扑、变电站图形、相关设备参数、实时数据和故障信息等;从PMS/GIS系统可以获取中压配电网(包括10kV、20kV)的模型和图形信息,其中,图形信息表征的图形包括:站内一次接线图、单线图、系统图(包括调度系统图、供电范围图、开关站图等)、线路地理沿布图等;从用电信息采集系统:获取配电变压器的实时信息和停电信息;从电力客户服务系统中获取客户业务信息、政策法规、电费电量、故障报修、投诉、故障停电预告等信息;从电力营销管理信息系统(例如SG186系统,SG186系统为国家电网公司一体化企业级信息集成平台)中获取实时采集与监控的电能信息、客户缴费信息、客户服务信息等;从配电自动化系统中获取存储配电网模型断面、实时数据、故障信息、历史数据、配电网分析结果等信息。
步骤2:分析处理所述多源信息数据,获得风险特征。
这里,所述分析处理所述多源信息数据,获得风险特征,包括:采用以下处理方式的至少之一对所述多源信息数据进行融合分析处理获得风险特征:证据理论方法、模糊集方法、粗糙集方法、神经网络方法。
步骤3:基于所述风险特征计算风险辨识指标,根据所述风险辨识指标判断电网状态。
这里,所述基于所述风险特征计算风险辨识指标,包括:根据所述风险特征,从风险辨识模型库与分析方法库中选择风险辨识模型与分析方法,
基于选择的风险辨识模型与分析方法计算所述风险辨识指标;所述风险辨识指标包括以下指标参数的至少之一:电能质量、过负荷、过热、低电压、绝缘电阻、泄漏电流。进一步,所述根据所述风险辨识指标判断电网状态,包括:依据所述风险辨识指标对应的阈值或限值,以及预先设定的风险类型和预警规则,对电网是否处于风险状态进行判断。
其中,根据监测或统计得到的风险特征,从风险辨识模型库与分析方法库中选择风险辨识模型与分析方法,计算电能质量、过负荷、过热、低电压、绝缘电阻、泄漏电流等风险辨识指标中的至少之一,根据风险辨识指标对应的阈值或限值,以及预先设定的风险类型及预警规则,判断电网是否处于风险状态以及电网面临的风险类型。其中,预先设定的风险类型及预警规则可通过以下两种方式创建:一是根据运行人员的相关经验知识,预先设定;二是从历史告警记录中、或者监测统计中通过数据挖掘的方法自动预先生成。
步骤4:分析所述风险特征的时空变化规律和变化趋势。
这里,采用持续监测或统计的方法分析所述风险特征的时空变化规律及变化趋势。
步骤5:根据所述风险特征的时空变化规律和变化趋势确定风险发生的位置和原因。
这里,根据多源信息数据融合得到的风险特征的时空变化规律及变化趋势,结合电网运行人员的经验知识,对风险发生的位置进行定位;根据多源信息数据融合得到的风险特征、信息来源,根据风险事件、风险特征及风险类型之间的因果关联关系,结合从故障信息历史记录中挖掘出的经验知识,采用关联性分析法和/或证据理论法等方法对风险发生的原因进行分析。
步骤6:采用模拟仿真方式分析所述风险的严重程度。
这里,所述采用模拟仿真方式分析所述风险的严重程度,包括:采用蒙特卡洛模拟仿真所述风险,获得所述风险的概率,以及获得所述风险的严重程度。
其中,蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在上世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
蒙特卡罗方法的基本思想:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
在这里蒙特卡罗通过试验模拟仿真电网风险出现的概率,根据该概率分析风险发生的后果以及严重程度。
步骤7:评估所述风险的严重程度,基于评估结果发布风险预警信息。
这里,所述评估所述风险的严重程度,基于评估结果发布风险预警信息,包括:结合风险类型、风险源位置、风险原因和风险严重程度等情况,对所述风险进行综合评估,结合设定的风险预警信息评价与发布标准,根据用户的选择和需要,发布风险预警信息。
本发明实施例还提供了一种配电网风险辨识系统,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本发明实施例所述的配电网风险辨识方法的步骤。
具体的,所述处理器执行所述程序时实现:获取用于风险辨识的多源信息数据;分析处理所述多源信息数据,获得风险特征;基于所述风险特征计算风险辨识指标,根据所述风险辨识指标判断电网状态;分析所述风
险特征的时空变化规律和变化趋势;根据所述风险特征的时空变化规律和变化趋势确定风险发生的位置和原因;采用模拟仿真方式分析所述风险的严重程度;评估所述风险的严重程度,基于评估结果发布风险预警信息。
作为一种实施方式,所述处理器执行所述程序时实现:获取以下数据的至少之一:实时电网运行监测系统的数据、设备生产管理系统的动态数据和静态数据、外部环境信息数据。
作为一种实施方式,所述处理器执行所述程序时实现:采用以下处理方式的至少之一对所述多源信息数据进行融合分析处理获得风险特征:证据理论方法、模糊集方法、粗糙集方法、神经网络方法。
作为一种实施方式,所述处理器执行所述程序时实现:根据所述风险特征,从风险辨识模型库与分析方法库中选择风险辨识模型与分析方法,基于选择的风险辨识模型与分析方法计算所述风险辨识指标;所述风险辨识指标包括以下指标参数的至少之一:电能质量、过负荷、过热、低电压、绝缘电阻、泄漏电流。
作为一种实施方式,所述处理器执行所述程序时实现:依据所述风险辨识指标对应的阈值或限值,以及预先设定的风险类型和预警规则,对电网是否处于风险状态进行判断。
作为一种实施方式,所述处理器执行所述程序时实现:采用持续监测或统计的方法分析所述风险特征的时空变化规律及变化趋势。
作为一种实施方式,所述处理器执行所述程序时实现:依据相关经验知识预先设定风险类型和预警规则,或从历史告警记录中、监测统计中通过数据挖掘的方法自动预先生成风险类型和预警规则。
作为一种实施方式,所述处理器执行所述程序时实现:采用关联性分析法和/或证据理论法对风险发生的原因进行分析。
作为一种实施方式,所述处理器执行所述程序时实现:采用蒙特卡洛
模拟仿真所述风险,获得所述风险的概率,以及获得所述风险的严重程度。
作为一种实施方式,所述处理器执行所述程序时实现:结合风险类型、风险源位置、风险原因和风险严重程度对所述风险进行综合评估;结合设定的风险预警信息评价与发布标准,发布风险预警信息。
可以理解,存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器旨在包括但
不限于这些和任意其它适合类型的存储器。
上述本发明实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,系统可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
本发明实施例还提供了一种计算机存储介质,计算机存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。计算机存储介质上存储有计算机程序,该计算机程序被处理器运行时,执行:获取用于风险辨识的多源信息数据;分析处理所述多源信息数据,获得风险特征;基于所述风险特征计算风险辨识指标,根据所述风险辨识指标判断电网状态;分析所述风险特征的时空变化规律和变化趋势;根据所述风险特征的时空变化规律和变化趋势确定风险发生的位
置和原因;采用模拟仿真方式分析所述风险的严重程度;评估所述风险的严重程度,基于评估结果发布风险预警信息。
作为一种实施方式,该计算机程序被处理器运行时,执行:获取以下数据的至少之一:实时电网运行监测系统的数据、设备生产管理系统的动态数据和静态数据、外部环境信息数据。
作为一种实施方式,该计算机程序被处理器运行时,执行:采用以下处理方式的至少之一对所述多源信息数据进行融合分析处理获得风险特征:证据理论方法、模糊集方法、粗糙集方法、神经网络方法。
作为一种实施方式,该计算机程序被处理器运行时,执行:根据所述风险特征,从风险辨识模型库与分析方法库中选择风险辨识模型与分析方法,基于选择的风险辨识模型与分析方法计算所述风险辨识指标;所述风险辨识指标包括以下指标参数的至少之一:电能质量、过负荷、过热、低电压、绝缘电阻、泄漏电流。
作为一种实施方式,该计算机程序被处理器运行时,执行:依据所述风险辨识指标对应的阈值或限值,以及预先设定的风险类型和预警规则,对电网是否处于风险状态进行判断。
作为一种实施方式,该计算机程序被处理器运行时,执行:采用持续监测或统计的方法分析所述风险特征的时空变化规律及变化趋势。
作为一种实施方式,该计算机程序被处理器运行时,执行:依据相关经验知识预先设定风险类型和预警规则,或从历史告警记录中、监测统计中通过数据挖掘的方法自动预先生成风险类型和预警规则。
作为一种实施方式,该计算机程序被处理器运行时,执行:采用关联性分析法和/或证据理论法对风险发生的原因进行分析。
作为一种实施方式,该计算机程序被处理器运行时,执行:采用蒙特卡洛模拟仿真所述风险,获得所述风险的概率,以及获得所述风险的严重
程度。
作为一种实施方式,该计算机程序被处理器运行时,执行:结合风险类型、风险源位置、风险原因和风险严重程度对所述风险进行综合评估;结合设定的风险预警信息评价与发布标准,发布风险预警信息。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法及系统,可以通过其他的方式实现。以上所描述的系统实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其他形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为模块显示的部件可以是、或也可以不是物理模块,即可以位于一个地方,也可以分布到多个网络模块上;可以根据实际的需要选择其中的部分或全部模块来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能模块可以全部集成在一个处理模块中,也可以是各模块分别单独作为一个模块,也可以两个或两个以上模块集成在一个模块中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明实施例上述集成的模块如果以软件功能模块的形式实现
并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例中记载的存储器切换方法、装置只以上述实施例为例,但不仅限于此,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
本发明实施例的技术方案,一方面,打破了配电网各种数据源系统壁垒,对多种信息源提供的数据进行有效融合,为准确进行配电网风险辨识提供数据支撑。另一方面,可根据评估场景、评估对象、评估范围、评估周期的不同,从时间、空间等多维角度进行配电网风险辨识。又一方面,实现了从微观角度寻找、发现风险发生的原因和源头,为制定有效风险预防控制措施提供决策依据。
Claims (15)
- 一种配电网风险辨识方法,所述方法包括:获取用于风险辨识的多源信息数据;分析处理所述多源信息数据,获得风险特征;基于所述风险特征计算风险辨识指标,根据所述风险辨识指标判断电网状态;分析所述风险特征的时空变化规律和变化趋势;根据所述风险特征的时空变化规律和变化趋势确定风险发生的位置和原因;采用模拟仿真方式分析所述风险的严重程度;评估所述风险的严重程度,基于评估结果发布风险预警信息。
- 如权利要求1所述的配电网风险辨识方法,其中,所述获取用于风险辨识的多源信息数据,包括:获取以下数据的至少之一:实时电网运行监测系统的数据、设备生产管理系统的动态数据和静态数据、外部环境信息数据。
- 如权利要求1所述的配电网风险辨识方法,其中,所述分析处理所述多源信息数据,获得风险特征,包括:采用以下处理方式的至少之一对所述多源信息数据进行融合分析处理获得风险特征:证据理论方法、模糊集方法、粗糙集方法、神经网络方法。
- 如权利要求1所述的配电网风险辨识方法,其中,所述基于所述风险特征计算风险辨识指标,包括:根据所述风险特征,从风险辨识模型库与分析方法库中选择风险辨识模型与分析方法,基于选择的风险辨识模型与分析方法计算所述风险辨识指标;所述风险辨识指标包括以下指标参数的至少之一:电能质量、过负荷、过热、低电压、绝缘电阻、泄漏电流。
- 如权利要求1所述的配电网风险辨识方法,其中,所述根据所述风险辨识指标判断电网状态,包括:依据所述风险辨识指标对应的阈值或限值,以及预先设定的风险类型和预警规则,对电网是否处于风险状态进行判断。
- 如权利要求1所述的配电网风险辨识方法,其中,所述分析所述风险特征的时空变化规律和变化趋势,包括:采用持续监测或统计的方法分析所述风险特征的时空变化规律及变化趋势。
- 如权利要求5所述的配电网风险辨识方法,其中,所述预先设定的风险类型和预警规则依据相关经验知识预先设定,或从历史告警记录中、监测统计中通过数据挖掘的方法自动预先生成。
- 如权利要求1所述的配电网风险辨识方法,其中,采用关联性分析法和/或证据理论法对风险发生的原因进行分析。
- 如权利要求1所述的配电网风险辨识方法,其中,所述采用模拟仿真方式分析所述风险的严重程度,包括:采用蒙特卡洛模拟仿真所述风险,获得所述风险的概率,以及获得所述风险的严重程度。
- 如权利要求1所述的配电网风险辨识方法,其中,所述评估所述风险的严重程度,基于评估结果发布风险预警信息,包括:结合风险类型、风险源位置、风险原因和风险严重程度对所述风险进行综合评估;结合设定的风险预警信息评价与发布标准,发布风险预警信息。
- 一种配电网风险辨识系统,所述系统包括:多源信息系统、数据中心、数据分析与处理模块、风险仿真模块、风险辨识建模与分析模块、风险源定位模块、风险原因识别与分析模块和风险可视化模块;其中,所述多源信息系统及智能监控终端通过数据接口模块和通讯装置与所 述数据中心相连;所述数据中心将经过分类处理的数据传送到所述数据分析与处理模块,所述数据分析与处理模块配置为将风险特征相关信息数据分别传送到所述风险辨识建模与分析模块、所述风险源定位模块和所述风险原因识别与分析模块以进行风险状态及风险类型的判断和预警;所述风险可视化模块,配置为获得所述风险辨识建模与分析模块、所述风险源定位模块和所述风险原因识别与分析模块的判断和预警结果数据,展示所述判断和预警结果数据;所述数据中心、所述数据分析与处理模块、所述风险辨识建模与分析模块、所述风险源定位模块、风险原因识别与分析模块的数据传送至所述风险仿真模块,进行在线或离线仿真,将仿真结果传送至所述风险可视化模块。
- 如权利要求11所述的配电网风险辨识系统,其中,所述数据接口,配置为从智能化、自动化信息系统获取用于风险辨识所的多源信息数据;所述通讯装置,配置为从智能化终端或设备在线实时获取用于风险辨识所的多源信息数据;所述数据中心,配置为对所述数据接口和所述通讯装置传送的数据进行分类、存储、维护和查询;所述数据分析与处理模块,配置为对所述数据中心传送的数据进行快速识别、质量检测、统计分析、数据挖掘、特征提取和数据融合;所述风险辨识建模与分析模块,配置为对所述数据分析与处理模块传送的数据进行分析处理,进行风险特征提取、风险特征时空变化规律分析、风险辨识建模、风险辨识指标计算、风险辨识指标计算结果比对、风险类型判断和风险变化趋势分析;所述风险源定位模块,配置为分析确定风险发生的位置;所述风险原因识别与分析模块,配置为分析确定风险发生的原因;所述风险仿真模块,配置为仿真分析风险的严重程度;所述风险可视化模块,配置为风险预警信息查询和展示;所述风险辨识建模与分析模块、所述风险源定位模块、所述风险原因识别与分析模块和所述风险仿真模块分别与模型库、方法库、知识库和规则库连接。
- 如权利要求11所述的配电网风险辨识系统,其中,所述智能监控终端包括以下终端类型的至少之一:移动监测装置、智能监测终端、馈线终端设备FTU、数据传输单元DTU、远程终端单元RTU、音/视频采集装置和气象数据采集装置。
- 一种配电网风险辨识系统,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1-10任一项所述的配电网风险辨识方法的步骤。
- 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至10任一项所述的配电网风险辨识方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/318,487 US11289944B2 (en) | 2016-11-10 | 2017-11-03 | Distribution network risk identification system and method and computer storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610992702.1A CN108074021A (zh) | 2016-11-10 | 2016-11-10 | 一种配电网风险辨识系统及方法 |
CN201610992702.1 | 2016-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018086488A1 true WO2018086488A1 (zh) | 2018-05-17 |
Family
ID=62109454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/109416 WO2018086488A1 (zh) | 2016-11-10 | 2017-11-03 | 一种配电网风险辨识系统、方法及计算机存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11289944B2 (zh) |
CN (1) | CN108074021A (zh) |
WO (1) | WO2018086488A1 (zh) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110232490A (zh) * | 2019-03-07 | 2019-09-13 | 中国电力科学研究院有限公司 | 一种配电网工程投资成效的评估方法及系统 |
CN110378481A (zh) * | 2019-06-18 | 2019-10-25 | 广州供电局有限公司 | 基于粗糙集的决策处理方法、装置、计算机和存储介质 |
CN110472851A (zh) * | 2019-08-02 | 2019-11-19 | 国网上海市电力公司 | 一种基于神经网络的配电网风险隐患动态评价模型构建方法 |
CN110807550A (zh) * | 2019-10-30 | 2020-02-18 | 国网上海市电力公司 | 基于神经网络的配变重过载识别预警方法及终端设备 |
CN110888973A (zh) * | 2019-11-18 | 2020-03-17 | 云南电网有限责任公司普洱供电局 | 一种监控信息表自动结构化梳理的方法 |
CN111130098A (zh) * | 2019-12-30 | 2020-05-08 | 国网辽宁省电力有限公司电力科学研究院 | 一种含分布式电源配电网系统风险评估方法 |
CN111242433A (zh) * | 2020-01-02 | 2020-06-05 | 深圳供电局有限公司 | 电力数据识别方法、装置、计算机设备和存储介质 |
CN111768306A (zh) * | 2020-06-23 | 2020-10-13 | 中国工商银行股份有限公司 | 基于智能数据分析的风险识别方法及系统 |
CN112003375A (zh) * | 2020-08-25 | 2020-11-27 | 杭州电力设备制造有限公司 | 一种电能质量在线监测系统 |
CN112036086A (zh) * | 2020-08-31 | 2020-12-04 | 北京市燃气集团有限责任公司 | 燃气管线动态风险预警系统 |
CN112215526A (zh) * | 2020-11-05 | 2021-01-12 | 国网重庆市电力公司营销服务中心 | 一种计量系统评估方法、装置及可读存储介质 |
CN112529480A (zh) * | 2020-12-31 | 2021-03-19 | 贵州电网有限责任公司 | 一种基于多元数据的低电压风险分析方法 |
CN113159606A (zh) * | 2021-04-30 | 2021-07-23 | 中国工商银行股份有限公司 | 操作风险识别方法及装置 |
CN114022207A (zh) * | 2021-11-08 | 2022-02-08 | 广东电网有限责任公司广州供电局 | 一种电网营销风险管控方法及装置 |
CN114254917A (zh) * | 2021-12-20 | 2022-03-29 | 深圳供电局有限公司 | 一种基于增量配电网的数据处理方法、系统、装置和介质 |
CN114626748A (zh) * | 2022-03-31 | 2022-06-14 | 三峡大学 | 一种交直流电网事故链的关键线路辨识方法 |
CN116090832A (zh) * | 2023-02-22 | 2023-05-09 | 平顶山学院 | 一种电网营销业务风险数字化管控系统及方法 |
CN117171548A (zh) * | 2023-11-03 | 2023-12-05 | 北京格蒂智能科技有限公司 | 一种基于电网大数据的网络安全态势智能预测方法 |
CN117200460A (zh) * | 2023-11-06 | 2023-12-08 | 国网湖北省电力有限公司经济技术研究院 | 一种有源配电网量测优化配置方法及系统 |
CN117669111A (zh) * | 2024-02-02 | 2024-03-08 | 国网上海能源互联网研究院有限公司 | 一种电网模型生成方法、装置、设备和介质 |
CN117689212A (zh) * | 2024-01-30 | 2024-03-12 | 青岛创新奇智科技集团股份有限公司 | 一种生产环境安全监测方法、装置、终端设备和存储介质 |
CN117933713A (zh) * | 2024-01-26 | 2024-04-26 | 广东电网有限责任公司东莞供电局 | 一种用于输电线路的安全态势感知预警系统 |
CN117952413A (zh) * | 2023-11-16 | 2024-04-30 | 北京智城联合科技发展有限公司 | 一种城市安全风险评估方法及系统 |
CN118174464A (zh) * | 2024-05-14 | 2024-06-11 | 国网甘肃省电力公司酒泉供电公司 | 一种具有自动调节功能的应急电网线路传输故障监测系统 |
CN118278749A (zh) * | 2024-05-30 | 2024-07-02 | 深圳中质安股份有限公司 | 一种电力事故预警的应急管理系统 |
CN118411028A (zh) * | 2024-05-09 | 2024-07-30 | 中交一公局第一工程有限公司 | 基于多源监控数据融合的隧道施工风险评估方法及系统 |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108805427B (zh) * | 2018-05-29 | 2020-05-05 | 长沙启岸信息科技有限公司 | 一种基于大数据的配电网运行状态风险预警系统 |
CN109063985B (zh) * | 2018-07-18 | 2022-04-29 | 创新先进技术有限公司 | 一种业务的风险决策方法及装置 |
CN109523105A (zh) * | 2018-08-27 | 2019-03-26 | 中铁上海工程局集团有限公司 | 一种基于bim与ar技术的可视化风险辨识方法及设备 |
CN109190996A (zh) * | 2018-09-18 | 2019-01-11 | 中国电力科学研究院有限公司 | 一种配电网台区运行风险监测预警方法和装置 |
CN109544399B (zh) * | 2018-11-29 | 2021-03-16 | 广东电网有限责任公司 | 基于多源异构数据的输电设备状态评价方法及装置 |
CN109581115B (zh) * | 2018-12-13 | 2022-01-04 | 广西电网有限责任公司电力科学研究院 | 一种配电网低电压诊断系统和诊断方法 |
CN109579913A (zh) * | 2018-12-21 | 2019-04-05 | 云南电网有限责任公司电力科学研究院 | 一种配电变压器多态监测方法与系统 |
CN109886487A (zh) * | 2019-02-20 | 2019-06-14 | 云南电网有限责任公司信息中心 | 一种基于电力设备画像电网监测预警的方法 |
CN110189038B (zh) * | 2019-06-03 | 2021-08-24 | 广东电网有限责任公司 | 一种电网风险分析方法、系统、计算机装置及存储介质 |
CN110378610B (zh) * | 2019-07-25 | 2022-07-22 | 广西电网有限责任公司电力科学研究院 | 基于用户重要度和设备运行状态的配网薄弱环节辨识方法 |
CN110739689B (zh) * | 2019-10-28 | 2021-07-06 | 深圳供电局有限公司 | 一种配电网线路系统运行安全性识别方法及其系统 |
CN110991799A (zh) * | 2019-10-30 | 2020-04-10 | 广西电网有限责任公司电力科学研究院 | 一种配电网生产综合预警方法 |
CN110955585A (zh) * | 2019-11-15 | 2020-04-03 | 山东英信计算机技术有限公司 | 一种智能系统风险预警方法、装置、设备、介质 |
CN111082401B (zh) * | 2019-11-15 | 2022-07-08 | 国网河南省电力公司郑州供电公司 | 基于自学习机制的配电网故障恢复方法 |
CN111027402B (zh) * | 2019-11-15 | 2022-09-02 | 国网江西省电力有限公司电力科学研究院 | 一种自然灾害风险智能检测与评估方法 |
CN110930031B (zh) * | 2019-11-22 | 2022-01-11 | 广东电网有限责任公司 | 一种低压配网储能装置安装台区选址方法、装置和设备 |
CN111105048B (zh) * | 2019-12-11 | 2024-06-21 | 国网甘肃省电力公司电力科学研究院 | 一种输变电物联网设备状态的预警方法 |
CN111160746B (zh) * | 2019-12-23 | 2023-04-18 | 国网冀北电力有限公司张家口供电公司 | 基于风险评估的智能配电网规划评价方法 |
CN111241668A (zh) * | 2020-01-07 | 2020-06-05 | 湖南大唐先一科技有限公司 | 一种电厂受热面失效分析方法、装置、设备及存储介质 |
CN111241184B (zh) * | 2020-02-17 | 2023-07-04 | 湖南工学院 | 用于配电网多源数据库的高吞吐率数据处理方法 |
CN111342470B (zh) * | 2020-02-28 | 2022-12-09 | 中国电力科学研究院有限公司 | 一种用于确定区域电网电压稳定预警指标的方法及系统 |
CN111428895A (zh) * | 2020-03-27 | 2020-07-17 | 安徽数升数据科技有限公司 | 一种智能电表故障诊断支撑中心 |
CN111680872B (zh) * | 2020-04-29 | 2022-11-08 | 国网天津市电力公司电力科学研究院 | 一种基于多源数据融合的电网风险计算方法 |
CN112116235B (zh) * | 2020-09-11 | 2021-09-14 | 国网山东省电力公司枣庄供电公司 | 一种电网中电压脉冲影响力评估方法 |
CN112149329B (zh) * | 2020-09-23 | 2023-09-08 | 中广核工程有限公司 | 核电厂关键设备的状态预演方法、系统、设备及存储介质 |
CN112132065B (zh) * | 2020-09-25 | 2021-08-20 | 智洋创新科技股份有限公司 | 一种基于输电线路通道可视化连续告警的告警策略方法 |
CN111931388B (zh) * | 2020-09-27 | 2021-05-14 | 北京中设光环境科技研究院有限公司 | 一种基于大数据的led路灯运行分析系统及方法 |
CN112433776B (zh) * | 2020-10-16 | 2022-06-28 | 广东电力信息科技有限公司 | 电网业务处理系统 |
CN112398678B (zh) * | 2020-10-16 | 2021-10-01 | 清华大学 | 适用于多源异构电网的运行方式拓扑结构特征提取方法 |
CN112200477A (zh) * | 2020-10-20 | 2021-01-08 | 山东泰开电力电子有限公司 | 一种对电能综合质量进行监测管理的系统及方法 |
CN112348325A (zh) * | 2020-10-23 | 2021-02-09 | 许继集团有限公司 | 一种基于数据流式处理的调控主站系统风险预警方法 |
CN112270447A (zh) * | 2020-11-03 | 2021-01-26 | 中国大唐集团科学技术研究院有限公司华中电力试验研究院 | 一种火力发电机智能风险防控系统 |
CN112488327B (zh) * | 2020-11-10 | 2023-04-28 | 国网天津市电力公司电力科学研究院 | 一种自学习电网设备故障缺陷预警系统及其方法 |
CN112308458B (zh) * | 2020-11-23 | 2022-02-15 | 广东电网有限责任公司计量中心 | 一种低压台区量测数据评价方法和系统 |
CN112348401A (zh) * | 2020-11-26 | 2021-02-09 | 国网四川省电力公司电力科学研究院 | 一种配电网自动化设备的运维管理方法 |
CN112381321B (zh) * | 2020-11-27 | 2023-01-24 | 广东电网有限责任公司肇庆供电局 | 一种基于网格化划分的配电网运行状态感知方法 |
CN112540987A (zh) * | 2020-12-08 | 2021-03-23 | 湖州中朔信息技术有限公司 | 一种基于数据集市的配用电大数据管理系统 |
CN112528498A (zh) * | 2020-12-11 | 2021-03-19 | 深圳供电局有限公司 | 一种用于教学的配电台风应急抢险风险模拟辨识方法 |
CN112487662A (zh) * | 2020-12-15 | 2021-03-12 | 国网辽宁省电力有限公司沈阳供电公司 | 用于评估输电杆塔质量的在线监测方法 |
CN112507501B (zh) * | 2020-12-16 | 2024-04-12 | 中国南方电网有限责任公司 | 一种电网接线结构识别方法及系统 |
CN112581027B (zh) * | 2020-12-29 | 2023-10-31 | 国网河北省电力有限公司电力科学研究院 | 一种风险信息管理方法、装置、电子设备及存储介质 |
CN112700144B (zh) * | 2020-12-31 | 2023-04-28 | 广东电网有限责任公司韶关供电局 | 变电站运行状态风险评估方法、装置、设备以及存储介质 |
US11294097B1 (en) * | 2021-01-29 | 2022-04-05 | State Grid Jiangsu Electric Power Co., Ltd. Suzhou Branch | Lightning prewarning-based method for active protection against lightning strike on important transmission channel |
CN112907105B (zh) * | 2021-03-10 | 2023-01-20 | 广东电网有限责任公司 | 基于业务场景的预警方法及装置 |
CN113033886B (zh) * | 2021-03-18 | 2022-11-04 | 国网江苏省电力有限公司扬州供电分公司 | 一种配电网规划建设评估方法 |
CN113093798B (zh) * | 2021-03-31 | 2023-11-10 | 广东电网有限责任公司 | 基于电场分布的无人机巡检避险方法、装置及存储介质 |
CN113177293B (zh) * | 2021-04-06 | 2022-09-27 | 国网浙江省电力有限公司湖州供电公司 | 一种考虑雷击影响的变压器评价方法 |
CN113162232B (zh) * | 2021-04-09 | 2021-12-10 | 北京智盟信通科技有限公司 | 一种输电线路设备风险评估与防御决策系统及方法 |
CN113312833B (zh) * | 2021-04-16 | 2024-09-13 | 北京交通大学 | 一种分布式能源接入配电网风险评估方法 |
CN113222356B (zh) * | 2021-04-21 | 2024-09-24 | 长沙电力职业技术学院 | 一种用于农网紧急供电装备的安全风险评估方法及系统 |
CN113224755B (zh) * | 2021-05-13 | 2022-06-14 | 中国电力科学研究院有限公司 | 电动汽车快充负荷接入下的电网静态安全分析方法及系统 |
CN113139759B (zh) * | 2021-05-19 | 2024-06-04 | 杭州市电力设计院有限公司余杭分公司 | 一种电网数据类资产管理方法及系统 |
CN113191687B (zh) * | 2021-05-25 | 2022-10-25 | 广东电网有限责任公司广州供电局 | 一种弹性配电网全景信息可视化方法及系统 |
CN113569345B (zh) * | 2021-05-31 | 2024-03-12 | 北京航空航天大学 | 一种基于多源信息融合的数控系统可靠性建模方法与装置 |
CN113312779B (zh) * | 2021-06-07 | 2022-11-08 | 广西大学 | 一种低碳型柔性配电网高满意度动态综合规划方法 |
CN113340353B (zh) * | 2021-06-15 | 2023-03-07 | 山东国瑞新能源有限公司 | 一种输电线路的监测方法、设备及介质 |
CN113360686B (zh) * | 2021-06-22 | 2022-06-14 | 南京南瑞信息通信科技有限公司 | 配电网单线图存储方法、调阅方法、调阅系统及服务端 |
CN113657437B (zh) * | 2021-07-08 | 2024-04-19 | 中国南方电网有限责任公司 | 一种电网检修告警确认方法及系统 |
CN113657622B (zh) * | 2021-07-13 | 2024-02-27 | 国网河北省电力有限公司电力科学研究院 | 电力设备多维状态数据融合方法、装置、终端及存储介质 |
CN113283881B (zh) * | 2021-07-19 | 2021-11-12 | 广东电网有限责任公司东莞供电局 | 一种远动信息源的自动审核方法及系统 |
CN113408967B (zh) * | 2021-08-18 | 2021-11-12 | 国网电子商务有限公司 | 电力“一网通办”多态数据共享风险的评估方法及装置 |
CN113809824A (zh) * | 2021-09-05 | 2021-12-17 | 苏州赢霆信息科技有限公司 | 一种智慧城市电力系统的监控方法及系统 |
CN113784235B (zh) * | 2021-09-15 | 2023-12-26 | 南方电网数字电网科技(广东)有限公司 | 电缆载流量监测系统、方法、装置、网关设备和存储介质 |
CN113792795A (zh) * | 2021-09-15 | 2021-12-14 | 南方电网数字电网研究院有限公司 | 基于网关设备的变电站设备识别方法、装置和网关设备 |
CN113937888B (zh) * | 2021-10-13 | 2024-07-26 | 国网河南省电力公司电力科学研究院 | 一种电力调度自动化系统黑屏监测方法及系统 |
CN113988697B (zh) * | 2021-11-12 | 2024-06-11 | 成都卡普数据服务有限责任公司 | 一种基于关联事件的输电线路风险评估方法 |
CN114004534A (zh) * | 2021-11-15 | 2022-02-01 | 浩云科技股份有限公司 | 基于传感器数据的用电风险分析方法、装置及存储介质 |
CN114091908A (zh) * | 2021-11-23 | 2022-02-25 | 杭州市电力设计院有限公司余杭分公司 | 计及多模式储能站的配电网综合评价方法、装置和设备 |
CN114383652A (zh) * | 2021-12-06 | 2022-04-22 | 中国电力科学研究院有限公司 | 一种配电网潜在故障在线风险辨识方法、系统及装置 |
CN114363040A (zh) * | 2021-12-30 | 2022-04-15 | 国网宁夏电力有限公司 | 一种电网负荷调控平台运行安全防护方法与系统 |
CN114598621B (zh) * | 2022-03-07 | 2023-09-05 | 广东电网有限责任公司 | 一种电力通信网络可靠性评估系统 |
CN114637263B (zh) * | 2022-03-15 | 2024-01-12 | 中国石油大学(北京) | 一种异常工况实时监测方法、装置、设备及存储介质 |
CN114677019B (zh) * | 2022-03-30 | 2024-06-28 | 山东大学 | 基于随机源矩阵和层次分析的用电特征辨识方法及系统 |
CN114897414B (zh) * | 2022-05-31 | 2024-07-12 | 天津大学 | 含高比例光伏和电动汽车配电网关键不确定因素辨识方法 |
CN115687580B (zh) * | 2022-09-22 | 2023-08-01 | 广州视嵘信息技术有限公司 | 搜索提醒补全的生成和重排序方法、装置、设备及介质 |
CN115293665B (zh) * | 2022-10-10 | 2023-01-31 | 北京千尧新能源科技开发有限公司 | 一种风机运行历史数据的预处理方法和系统 |
CN115330559B (zh) * | 2022-10-17 | 2023-01-20 | 国网浙江余姚市供电有限公司 | 一种信息数据时空协同的配电网弹性评估方法和装置 |
CN115589070B (zh) * | 2022-11-11 | 2023-07-18 | 贵州电网有限责任公司 | 一种基于云计算处理的电网风险预警方法及系统 |
CN115936428B (zh) * | 2022-11-17 | 2023-06-30 | 江苏东港能源投资有限公司 | 增量配电网防外破定值优化系统 |
WO2024108343A1 (zh) * | 2022-11-21 | 2024-05-30 | 宁德时代新能源科技股份有限公司 | 故障风险评估方法、装置、存储介质及服务器 |
CN116029116B (zh) * | 2022-12-28 | 2023-10-10 | 广东电网有限责任公司湛江供电局 | 一种智能变电站智慧管控数字孪生系统 |
CN115879774A (zh) * | 2023-02-24 | 2023-03-31 | 北京华源芯电科技有限公司 | 基于电力安全风险的智慧管理系统 |
CN116167527B (zh) * | 2023-04-21 | 2023-09-12 | 南方电网数字电网研究院有限公司 | 纯数据驱动的电力系统静态安全运行风险在线评估方法 |
CN117118853B (zh) * | 2023-08-09 | 2024-05-10 | 深圳倍易通科技有限公司 | 一种用于电力通讯的通讯状态监测管理方法及系统 |
CN117335571B (zh) * | 2023-10-09 | 2024-05-03 | 国网河南省电力公司濮阳供电公司 | 一种配电网智能化故障预警管理系统及方法 |
CN117076894B (zh) * | 2023-10-17 | 2024-01-26 | 国网浙江省电力有限公司金华供电公司 | 供应链风险全过程监测防控管理方法及管理系统 |
CN117094475B (zh) * | 2023-10-18 | 2024-01-30 | 合肥工业大学 | 一种电力配电网故障分析系统 |
CN117391443A (zh) * | 2023-10-19 | 2024-01-12 | 应急管理部大数据中心 | 除尘设备状态监测预警方法及系统 |
CN117172559B (zh) * | 2023-11-02 | 2024-02-09 | 南京怡晟安全技术研究院有限公司 | 一种用于物联网数据的风险识别预警方法、系统及存储介质 |
CN117787684B (zh) * | 2023-11-17 | 2024-09-24 | 深圳市特区铁工建设集团有限公司 | 一种基于视觉检测的隧道围岩坍塌风险分析方法及系统 |
CN117374977B (zh) * | 2023-12-07 | 2024-02-20 | 能拓能源股份有限公司 | 一种储能系统负荷预测及风险分析方法 |
CN117689205A (zh) * | 2023-12-20 | 2024-03-12 | 广东电网有限责任公司东莞供电局 | 一种基于数字孪生的大负荷线路风险预测方法及装置 |
CN117527625B (zh) * | 2024-01-08 | 2024-09-03 | 长春市联心花信息科技有限公司 | 一种网络流量数据采集、大数据分析及可视化呈现方法 |
CN117544420B (zh) * | 2024-01-08 | 2024-03-29 | 山东省标准化研究院(Wto/Tbt山东咨询工作站) | 一种基于数据分析的融合系统安全管理方法及系统 |
CN117830032B (zh) * | 2024-03-06 | 2024-05-31 | 广州长川科技有限公司 | 一种输电线网监控抓拍及风险评估方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102130503A (zh) * | 2011-02-28 | 2011-07-20 | 中国电力科学研究院 | 一种基于多智能体系统的配电网自愈控制方法 |
CN102841582A (zh) * | 2012-08-08 | 2012-12-26 | 中国电力科学研究院 | 一种配电网自愈控制系统及其实现方法 |
US20140025211A1 (en) * | 2011-04-15 | 2014-01-23 | Abb Technology Co., | Dynamic assessment system for high-voltage electrical components |
CN103971182A (zh) * | 2014-05-26 | 2014-08-06 | 湖南大学 | 一种配电网馈线在线风险监测系统及其监测方法 |
CN104218672A (zh) * | 2014-07-11 | 2014-12-17 | 国家电网公司 | 一种基于实时运行状态评价的配电网运行风险预警系统 |
CN104574217A (zh) * | 2015-01-22 | 2015-04-29 | 国家电网公司 | 一种智能配电网在线风险评估方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7233843B2 (en) * | 2003-08-08 | 2007-06-19 | Electric Power Group, Llc | Real-time performance monitoring and management system |
US8126804B2 (en) * | 2009-03-23 | 2012-02-28 | Battelle Memorial Institute | Decision support systems and methods for complex networks |
US20120053983A1 (en) * | 2011-08-03 | 2012-03-01 | Sameer Vittal | Risk management system for use with service agreements |
CN102289582B (zh) * | 2011-08-10 | 2015-07-08 | 中国电力科学研究院 | 一种配电网风险状态辨识方法 |
CN102708411A (zh) * | 2012-04-23 | 2012-10-03 | 中国电力科学研究院 | 一种地区电网在线风险评估方法 |
US20140137257A1 (en) * | 2012-11-12 | 2014-05-15 | Board Of Regents, The University Of Texas System | System, Method and Apparatus for Assessing a Risk of One or More Assets Within an Operational Technology Infrastructure |
CN103427417B (zh) * | 2013-07-31 | 2015-10-14 | 国家电网公司 | 基于多源信息融合的配电网故障处理方法 |
IN2013MU03382A (zh) * | 2013-10-25 | 2015-07-17 | Tata Consultancy Services Ltd | |
CN103632311A (zh) * | 2013-11-28 | 2014-03-12 | 国家电网公司 | 一种电网运行故障排查系统及方法 |
CN104217261A (zh) * | 2014-09-22 | 2014-12-17 | 国家电网公司 | 一种主站系统运行状态风险预警方法 |
US9900299B2 (en) * | 2015-04-03 | 2018-02-20 | Oracle International Corporation | Aggregated computing infrastructure analyzer |
WO2018065942A1 (en) * | 2016-10-07 | 2018-04-12 | KPMG Australia IP Holdings Pty Ltd | Method and system for collecting, visualising and analysing risk data |
-
2016
- 2016-11-10 CN CN201610992702.1A patent/CN108074021A/zh active Pending
-
2017
- 2017-11-03 WO PCT/CN2017/109416 patent/WO2018086488A1/zh active Application Filing
- 2017-11-03 US US16/318,487 patent/US11289944B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102130503A (zh) * | 2011-02-28 | 2011-07-20 | 中国电力科学研究院 | 一种基于多智能体系统的配电网自愈控制方法 |
US20140025211A1 (en) * | 2011-04-15 | 2014-01-23 | Abb Technology Co., | Dynamic assessment system for high-voltage electrical components |
CN102841582A (zh) * | 2012-08-08 | 2012-12-26 | 中国电力科学研究院 | 一种配电网自愈控制系统及其实现方法 |
CN103971182A (zh) * | 2014-05-26 | 2014-08-06 | 湖南大学 | 一种配电网馈线在线风险监测系统及其监测方法 |
CN104218672A (zh) * | 2014-07-11 | 2014-12-17 | 国家电网公司 | 一种基于实时运行状态评价的配电网运行风险预警系统 |
CN104574217A (zh) * | 2015-01-22 | 2015-04-29 | 国家电网公司 | 一种智能配电网在线风险评估方法 |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110232490A (zh) * | 2019-03-07 | 2019-09-13 | 中国电力科学研究院有限公司 | 一种配电网工程投资成效的评估方法及系统 |
CN110378481A (zh) * | 2019-06-18 | 2019-10-25 | 广州供电局有限公司 | 基于粗糙集的决策处理方法、装置、计算机和存储介质 |
CN110472851A (zh) * | 2019-08-02 | 2019-11-19 | 国网上海市电力公司 | 一种基于神经网络的配电网风险隐患动态评价模型构建方法 |
CN110807550A (zh) * | 2019-10-30 | 2020-02-18 | 国网上海市电力公司 | 基于神经网络的配变重过载识别预警方法及终端设备 |
CN110807550B (zh) * | 2019-10-30 | 2023-11-24 | 国网上海市电力公司 | 基于神经网络的配变重过载识别预警方法及终端设备 |
CN110888973A (zh) * | 2019-11-18 | 2020-03-17 | 云南电网有限责任公司普洱供电局 | 一种监控信息表自动结构化梳理的方法 |
CN110888973B (zh) * | 2019-11-18 | 2022-05-10 | 云南电网有限责任公司普洱供电局 | 一种监控信息表自动结构化梳理的方法 |
CN111130098A (zh) * | 2019-12-30 | 2020-05-08 | 国网辽宁省电力有限公司电力科学研究院 | 一种含分布式电源配电网系统风险评估方法 |
CN111130098B (zh) * | 2019-12-30 | 2023-03-24 | 国网辽宁省电力有限公司电力科学研究院 | 一种含分布式电源配电网系统风险评估方法 |
CN111242433A (zh) * | 2020-01-02 | 2020-06-05 | 深圳供电局有限公司 | 电力数据识别方法、装置、计算机设备和存储介质 |
CN111242433B (zh) * | 2020-01-02 | 2022-07-22 | 深圳供电局有限公司 | 电力数据识别方法、装置、计算机设备和存储介质 |
CN111768306A (zh) * | 2020-06-23 | 2020-10-13 | 中国工商银行股份有限公司 | 基于智能数据分析的风险识别方法及系统 |
CN111768306B (zh) * | 2020-06-23 | 2023-08-15 | 中国工商银行股份有限公司 | 基于智能数据分析的风险识别方法及系统 |
CN112003375A (zh) * | 2020-08-25 | 2020-11-27 | 杭州电力设备制造有限公司 | 一种电能质量在线监测系统 |
CN112036086A (zh) * | 2020-08-31 | 2020-12-04 | 北京市燃气集团有限责任公司 | 燃气管线动态风险预警系统 |
CN112215526B (zh) * | 2020-11-05 | 2023-11-10 | 国网重庆市电力公司营销服务中心 | 一种计量系统评估方法、装置及可读存储介质 |
CN112215526A (zh) * | 2020-11-05 | 2021-01-12 | 国网重庆市电力公司营销服务中心 | 一种计量系统评估方法、装置及可读存储介质 |
CN112529480B (zh) * | 2020-12-31 | 2023-04-11 | 贵州电网有限责任公司 | 一种基于多元数据的低电压风险分析方法 |
CN112529480A (zh) * | 2020-12-31 | 2021-03-19 | 贵州电网有限责任公司 | 一种基于多元数据的低电压风险分析方法 |
CN113159606A (zh) * | 2021-04-30 | 2021-07-23 | 中国工商银行股份有限公司 | 操作风险识别方法及装置 |
CN114022207A (zh) * | 2021-11-08 | 2022-02-08 | 广东电网有限责任公司广州供电局 | 一种电网营销风险管控方法及装置 |
CN114254917A (zh) * | 2021-12-20 | 2022-03-29 | 深圳供电局有限公司 | 一种基于增量配电网的数据处理方法、系统、装置和介质 |
CN114626748A (zh) * | 2022-03-31 | 2022-06-14 | 三峡大学 | 一种交直流电网事故链的关键线路辨识方法 |
CN116090832A (zh) * | 2023-02-22 | 2023-05-09 | 平顶山学院 | 一种电网营销业务风险数字化管控系统及方法 |
CN117171548B (zh) * | 2023-11-03 | 2024-02-02 | 北京格蒂智能科技有限公司 | 一种基于电网大数据的网络安全态势智能预测方法 |
CN117171548A (zh) * | 2023-11-03 | 2023-12-05 | 北京格蒂智能科技有限公司 | 一种基于电网大数据的网络安全态势智能预测方法 |
CN117200460A (zh) * | 2023-11-06 | 2023-12-08 | 国网湖北省电力有限公司经济技术研究院 | 一种有源配电网量测优化配置方法及系统 |
CN117200460B (zh) * | 2023-11-06 | 2024-01-23 | 国网湖北省电力有限公司经济技术研究院 | 一种有源配电网量测优化配置方法及系统 |
CN117952413A (zh) * | 2023-11-16 | 2024-04-30 | 北京智城联合科技发展有限公司 | 一种城市安全风险评估方法及系统 |
CN117933713A (zh) * | 2024-01-26 | 2024-04-26 | 广东电网有限责任公司东莞供电局 | 一种用于输电线路的安全态势感知预警系统 |
CN117689212A (zh) * | 2024-01-30 | 2024-03-12 | 青岛创新奇智科技集团股份有限公司 | 一种生产环境安全监测方法、装置、终端设备和存储介质 |
CN117689212B (zh) * | 2024-01-30 | 2024-05-14 | 青岛创新奇智科技集团股份有限公司 | 一种生产环境安全监测方法、装置、终端设备和存储介质 |
CN117669111A (zh) * | 2024-02-02 | 2024-03-08 | 国网上海能源互联网研究院有限公司 | 一种电网模型生成方法、装置、设备和介质 |
CN117669111B (zh) * | 2024-02-02 | 2024-04-12 | 国网上海能源互联网研究院有限公司 | 一种电网模型生成方法、装置、设备和介质 |
CN118411028A (zh) * | 2024-05-09 | 2024-07-30 | 中交一公局第一工程有限公司 | 基于多源监控数据融合的隧道施工风险评估方法及系统 |
CN118174464A (zh) * | 2024-05-14 | 2024-06-11 | 国网甘肃省电力公司酒泉供电公司 | 一种具有自动调节功能的应急电网线路传输故障监测系统 |
CN118278749A (zh) * | 2024-05-30 | 2024-07-02 | 深圳中质安股份有限公司 | 一种电力事故预警的应急管理系统 |
CN118278749B (zh) * | 2024-05-30 | 2024-07-26 | 深圳中质安股份有限公司 | 一种电力事故预警的应急管理系统 |
Also Published As
Publication number | Publication date |
---|---|
US11289944B2 (en) | 2022-03-29 |
US20190305589A1 (en) | 2019-10-03 |
CN108074021A (zh) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018086488A1 (zh) | 一种配电网风险辨识系统、方法及计算机存储介质 | |
CN105894172B (zh) | 一种基于营配融合的联合停电研判方法 | |
CN106570784B (zh) | 电压监测一体化模型 | |
CN102368634B (zh) | 智能变电站状态监测统一信息平台系统 | |
CN102236841B (zh) | 一种电力系统事故处理的方法 | |
CN108279650B (zh) | 一种电力设备状态监测评价与指挥系统 | |
CN108282026A (zh) | 一种高压开关设备远程运维系统 | |
CN107835107A (zh) | 一种基于电网计量拓扑和WebGis的计量展示系统 | |
CN110991037A (zh) | 一种基于scd的智能变电站测试仿真系统 | |
CN112467724A (zh) | 一种低压配电网故障研判方法 | |
CN107508728B (zh) | 基于iec61850服务跟踪的二次设备在线监测方法 | |
CN114383652A (zh) | 一种配电网潜在故障在线风险辨识方法、系统及装置 | |
CN105488118A (zh) | 电气设备故障信息的展示方法和装置 | |
CN115456410A (zh) | 一种电网风险的评估方法及评估系统 | |
CN111046543A (zh) | 一种智能变电站测试仿真方法 | |
CN115313625A (zh) | 变电站监测方法和系统 | |
CN114301177A (zh) | 基于智能电网监控告警信息事件化的分析方法 | |
CN102684307B (zh) | 一种用于集控站、变电站综合自动化监视的信息智能分层推送的方法 | |
CN113379193B (zh) | 一种电网运检管控方法、装置及终端设备 | |
CN106199251A (zh) | 一种基于自适应建模分析的配电网故障预警系统及方法 | |
CN106651113A (zh) | 一种基于超前n‑1分析的调度员操作风险评估方法 | |
Liu et al. | Research on online status evaluation technology for main equipment of power transmission and transformation based on digital twin | |
CN104751281B (zh) | 一种氧化锌避雷器设备的自动工况评价方法 | |
CN114626440A (zh) | 一种监控信号的对象化分析方法及装置 | |
Kan et al. | The design of remote monitoring and warning system for dangerous chemicals based on CPS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17870233 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17870233 Country of ref document: EP Kind code of ref document: A1 |