WO2018086484A1 - 投影系统 - Google Patents

投影系统 Download PDF

Info

Publication number
WO2018086484A1
WO2018086484A1 PCT/CN2017/109329 CN2017109329W WO2018086484A1 WO 2018086484 A1 WO2018086484 A1 WO 2018086484A1 CN 2017109329 W CN2017109329 W CN 2017109329W WO 2018086484 A1 WO2018086484 A1 WO 2018086484A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
polarization state
projection system
modulator
Prior art date
Application number
PCT/CN2017/109329
Other languages
English (en)
French (fr)
Inventor
陈红运
张宝英
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018086484A1 publication Critical patent/WO2018086484A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to a projection system.
  • Existing projection systems generally include a light source device, a spatial light modulator (such as a LCOS spatial light modulator or DM)
  • a spatial light modulator such as a LCOS spatial light modulator or DM
  • the light source device emits three colors of red, green and blue light
  • the spatial light modulator image-modulates light emitted by the light source device according to image data
  • the projection lens The image light output by the spatial light modulator is projected to display a projected image.
  • the present invention provides a projection system with a high contrast ratio.
  • a projection system includes a first spatial light modulator, a second spatial light modulator, and a wavelength conversion device, wherein the first spatial light modulator is configured to receive light source light and perform the light source light Modulating and outputting first image light, the wavelength conversion device configured to receive the first image light and emit converted light that follows a light intensity distribution of the first image light, the light conversion element comprising a wavelength conversion material a segmented region, the wavelength converting material being excited by the first image light to generate a laser light different in color from the first image light, the converted light comprising the received laser light, and the second spatial light modulator The second converted light is output by performing image modulation on the converted light, and the second image light is used to display a projected image.
  • the first spatial light modulator is configured to receive light source light and perform the light source light Modulating and outputting first image light
  • the wavelength conversion device configured to receive the first image light and emit converted light that follows a light intensity distribution of the first image light
  • the light conversion element comprising a wavelength conversion material a segmente
  • the wavelength conversion device includes a light conversion element and a collimation element, the light conversion element receives the first image light and emits the converted light, and the converted light passes through the The collimating element is collimated and provided to the second spatial light modulator.
  • the collimating element and the light converting element are stacked and integrated.
  • the light conversion element receives the first image light from one side and emits the converted light from another side, and the collimating element is disposed at a location of the light conversion element The other side is described and the converted light is collimated.
  • the light conversion element further includes a filter or a filter film on a first image light incident side, the filter or filter film transmitting the first image light and reflecting the light Subject to laser.
  • the first image light is supplied to the light conversion element via the collimating element, the light conversion element receiving the first image light from one side and from the side
  • the laser beam is emitted, and the laser beam is collimated by the collimating element and then emitted.
  • the laser light is collimated and outputted by the collimating element
  • the projection system further includes a dichroic color patch
  • the first image light is Leading to the wavelength conversion device, the laser light is reflected and collimated and guided by the dichroic color patch to the second spatial light modulator
  • the light conversion element includes a plurality of recesses, the wavelength conversion material is disposed in the recess, an inner surface of the recess is a reflective surface, and the recess is used to The laser light is collected such that the laser-received light follows a corresponding light intensity distribution of the first image light.
  • the plurality of recesses are filled with the light conversion elements to emit the segmented regions of the laser light, and the edges of the adjacent recesses are in contact.
  • the wavelength converting material covers an inner surface of the recess to form a recessed surface of the wavelength converting material.
  • the first spatial light modulator is an LCOS modulator; the projection system further includes an excitation light source and a light polarization conversion and recovery device; the excitation light source is configured to emit the excitation light; The light polarization conversion and recovery device is configured to convert the excitation light into light of a first polarization state and direct the light of the first polarization state to the first spatial light modulator; the first spatial light The modulator modulates the light of the first polarization state according to the image data, and converts a portion of the light of the first polarization state into the first image light of the second polarization state and the light of the remaining first polarization state a portion of the first image light of the second polarization state and the unconverted light of the first polarization state are emitted to the light polarization conversion and recovery device; the light polarization conversion and recovery device converts the second polarization Separating the first image light of the state and the unconverted first polarization state, and directing the first image light of the
  • the light polarization conversion and recovery device includes a mirror, a light homogenizer, two 1/4 wave plates, a polarizer, and a polarization beam splitter, the polarizer having a first transmission Light in a polarized state, the excitation light is incident on the light homogenizing rod through a through hole of the mirror, is repeatedly reflected inside the light homogenizing rod, and is incident through the two quarter wave plates a polarizer that transmits light of a first polarization state of the excitation light and reflects light of a second polarization state of the excitation light, the polarization beam splitter reflecting a polarization having a first polarization state And transmitting a polarized light having a second polarization state, the light of the first polarization state of the excitation light being directed to the polarization beam splitter and further reflected to the first spatial light modulator, the excitation Light of the second polarization state in the light is reflected to the two quarter-wave plates and converted into light of
  • the projection system includes two spatial light modulators, and the second spatial light modulator further performs image modulation on the light of the first spatial light modulator, which can improve the projection system.
  • the second spatial light modulator further performs image modulation on the light of the first spatial light modulator, which can improve the projection system.
  • the wavelength conversion material is placed in the first spatial light modulator, the light irradiated onto the wavelength conversion material is already the first image light modulated by the first spatial light modulator, An image light is proportionally reduced according to the gray scale value of the image.
  • the first spatial light modulator modulates the image light corresponding to the pixel whose image has a grayscale value of 100, and the intensity ratio of the image light to the light source light is approximately 100: 255, therefore, the intensity of the first image light cannot be greater than the intensity of the source light, so that the solution of the present invention can reduce unnecessary light projection onto the wavelength conversion material and reduce the intensity of light irradiated onto the wavelength conversion material. Extends the life of the wavelength conversion device. It can be understood that the amount of unnecessary light depends on the image grayscale value in the image data on which the first spatial light modulator performs image modulation, for example, the first spatial light modulator modulates the image with a grayscale value of 100. For the image light corresponding to the pixel, the intensity ratio of the image light to the source light is approximately 100: 255, and the intensity ratio of the unnecessary light to the source light is approximately 1 55:255.
  • FIG. 1 is a schematic structural view of a projection system capable of improving contrast.
  • FIG. 2 is a schematic structural view of a projection system according to a first embodiment of the present invention.
  • FIG. 3 is a plan view showing the structure of a wavelength conversion device of the projection system shown in FIG. 2.
  • FIG. 4 is a schematic structural view of a projection system according to a second embodiment of the present invention.
  • FIG. 5 is a plan view showing the structure of a wavelength conversion device of the projection system shown in FIG. 4.
  • FIG. 6 is a schematic cross-sectional structural view of the recessed portion of FIG. 5.
  • FIG. 7 is a schematic structural view of a projection system according to a third embodiment of the present invention.
  • FIG. 8 is a plan view showing the structure of a wavelength conversion device of the projection system shown in FIG. 7.
  • excitation light source 211 [0036] excitation light source 211
  • FIG. 1 is a schematic structural diagram of a projection system capable of improving image contrast.
  • the projection system 100 includes a light source device 110, a first spatial light modulator 120, a second spatial light modulator 130, and an associated structure 140.
  • the accessory structure 140 is the portion of the projection system 100 behind the second spatial light modulator 130 and may include a relay lens, a projection lens, a screen, and the like.
  • the relay lens can be understood as a lens or a lens group disposed on the optical path for concentrating, diffusing or shaping the light beam so that the light beam is projected to the designated projection surface according to a predetermined spot size and shape.
  • the light source device 110 emits light source light
  • the first spatial light modulator 120 modulates light of the light source to form first image light
  • the second spatial light modulator 130 further modulates the first image light and forms a second image light.
  • the first spatial light modulator 120 and the second spatial light modulator 130 modulate the incident light to form image light, and also form non-image light; the non-image light is generally absorbed by the light absorbing element.
  • the ratio of image light to non-image light depends on the image data upon which the first spatial light modulator 120 and the second spatial light modulator 130 modulate the ⁇ .
  • the first spatial light modulator 120 and the second spatial light modulator 130 each include a plurality of modulation units, and one modulation unit is used to modulate image light of one pixel.
  • the resolution of the image finally modulated by the projection system 100 is determined by the resolution of the image modulated by the second spatial light modulator 130; generally the resolution of the image modulated by the first spatial light modulator 120 is less than Equal to the resolution of the image modulated by the second spatial light modulator 130, an image modulated by the first spatial light modulator 120
  • the image light of the element is projected onto a plurality of modulation units of the second spatial light modulator 130, and the image light forming the plurality of pixels is further modulated by the plurality of modulation units; thus, one pixel corresponding to the modulation by the first spatial light modulator 120 corresponds to One or more pixels modulated by the second spatial light modulator 130.
  • the image contrast of the spatial light modulator can be understood as: the spatial light modulator modulates the incident light uniformly incident on each modulation unit, and forms the image light of the all white pixel and the image of the all black pixel.
  • the brightness ratio of the light is equal to the ratio of the conversion efficiency corresponding to the all white pixel to the conversion efficiency corresponding to the all black pixel;
  • the conversion efficiency corresponding to the all white pixel is: the image light of the all white pixel formed by the spatial light modulation
  • the conversion efficiency corresponding to the all-black pixel is: the luminance ratio of the image light of the all-black pixel formed by the spatial light modulation to the incident light incident on the spatial light modulator.
  • the light extraction efficiency of the spatial light modulator can be considered as the conversion efficiency corresponding to all white pixels.
  • the image contrast of the first spatial light modulator 120 is a: l (a>1) and the light extraction efficiency is c (0 ⁇ c ⁇ 1), and the image of the second spatial light modulator 130
  • the contrast is b: l (b>l) and the light extraction efficiency is d (0 ⁇ d ⁇ l) as an example.
  • the light source light is uniformly incident on the first spatial light modulator 120, and the brightness of the light source light incident on the first spatial light modulator 120 is set to 1; then the first spatial light modulator 120 is passed through
  • the luminance of the image light WL of the all-white pixel formed by modulation is 1*c
  • the luminance of the image light BL of the all-black pixel modulated by the first spatial light modulator 120 is 1*c/a.
  • the second spatial light modulator 130 further modulates the image light WL to form an all-white pixel, and then modulates the brightness of the formed image light of the all-white pixel to be 1*c*d; and the second spatial light modulator 130 Further, the image light BL is modulated to form a full black pixel, and the luminance of the image light of the all-black pixel formed by modulation is (1*c/a)*d/b.
  • the final contrast of the projection system 100 can be regarded as the brightness ratio of the image light of the all white pixel formed by the second spatial light modulator 130 to the image light of the all black pixel, that is, a*b:1; the projection system
  • the final light extraction efficiency is considered to be the luminance ratio of the image light of the all white pixels formed by the second spatial light modulator 130 to the light source light, that is, c*d.
  • the light source device 110 of the projection system 100 includes an excitation light source and a wavelength conversion device (not shown), the excitation light source emits excitation light (eg, blue laser, ultraviolet laser, etc.), and the wavelength conversion device is located at the excitation light. On the way, the excitation light excites the wavelength converting material on the wavelength conversion device to generate a laser beam, and the laser light is projected as the above-described light source to the first spatial light modulator.
  • excitation light eg, blue laser, ultraviolet laser, etc.
  • the wavelength conversion device is located at the excitation light.
  • the excitation light excites the wavelength converting material on the wavelength conversion device to generate a laser beam
  • the laser light is projected as the above-described light source to the first spatial light modulator.
  • the light extraction efficiency of the projection system 100 is low, which is a defect of the first aspect; a defect of the second aspect of the projection system 100 is: after the wavelength conversion device is disposed after the excitation light source and before the first spatial light modulator 120 On the optical path, high-intensity excitation light is applied to the wavelength conversion material (such as fluorescent material), and the irradiation between the long turns causes the wavelength conversion material to age, and the light conversion efficiency becomes low, and the replacement of the wavelength conversion device increases the cost.
  • the wavelength conversion material such as fluorescent material
  • the present invention provides an apparatus for recycling non-image light modulated by a first spatial light modulator; in view of the above-described drawbacks of the second aspect, the present invention places the wavelength conversion material first After the spatial light modulator, the light irradiated onto the wavelength conversion material is already the first image light modulated by the first spatial light modulator, since the first image light is correspondingly reduced according to the image grayscale value, for example
  • the first spatial light modulator modulates the image light corresponding to the pixel whose image has a grayscale value of 100, and the intensity ratio of the image light to the light source light is approximately 100: 255, so the intensity of the first image light is less than the intensity of the light source light.
  • the solution of the present invention can reduce unnecessary light projection onto the wavelength converting material, reduce the intensity of light irradiated onto the wavelength converting material, and prolong the service life of the wavelength converting device.
  • the amount of unnecessary light depends on the image grayscale value in the image data on which the first spatial light modulator performs image modulation, for example, the first spatial light modulator modulation image has a grayscale value of 100.
  • the intensity ratio of the image light to the source light is approximately 100: 255, and the intensity ratio of the unnecessary light to the source light is approximately 155:255.
  • FIG. 2 is a schematic structural diagram of a projection system according to a first embodiment of the present invention.
  • the projection system 200 includes a light source device 210, a first spatial light modulator 220, a second spatial light modulator 230, a wavelength conversion device 240, and a polarization beam splitter 217.
  • the light source device 210 is configured to emit light source light
  • the first spatial light modulator 220 is configured to receive light source light and modulate the light source light to output first image light
  • the wavelength conversion device 240 is configured to receive the light.
  • the second spatial light modulator 230 for image modulating the converted light to output a second image light such that A projection system produces a projected image in accordance with the second image light.
  • the light source device 210 includes an excitation light source 211 and a light polarization conversion and recovery device 218.
  • the excitation light source 211 is configured to emit excitation light;
  • the light polarization conversion and recovery device 218 is configured to convert the excitation light into light of a first polarization state and direct the light of the first polarization state to the first a spatial light modulator 220;
  • the first spatial light modulator 220 modulates light of the first polarization state (P light) according to image data, and converts a portion of the light of the first polarization state into a second polarization state a portion of the first image light (S light) and the remaining light of the first polarization state are not converted, and the first image light of the second polarization state and the unconverted light of the first polarization state are emitted to the a light polarization conversion and recovery device 218;
  • the light polarization conversion and recovery device 218 separates the first image light of the second polarization state and the unconverted
  • the light polarization conversion and recovery device 218 includes a mirror 212, a light rod 213, two quarter wave plates 214, a polarizer 215, a reflection sheet 216, and a polarization beam splitter 217. It is worth noting that a relay lens can be placed between two optical elements spaced apart by a certain distance. This application does not describe all of the relay lenses that can be placed in the optical path.
  • the excitation light source 211 may be a laser diode (LD) or a light emitting diode (LED) or the like.
  • the excitation light may be blue light, purple light or ultraviolet light, etc., but is not limited to the above.
  • the excitation light source 211 is a blue light semiconductor diode for emitting blue excitation light.
  • the mirror 212 includes a through hole 2121, and the through hole 2121 may be located at a central region of the mirror 212. The excitation light emitted by the excitation light source 211 is incident into the uniform light through the through hole 2121.
  • a rod 213 is repeatedly reflected inside the homogenizing rod 213 and injected into the polarizer 215 via the two quarter-wave plates 214, and the polarizer 215 transmits the first polarization in the excitation light.
  • the first polarization state of the excitation light being directed by the reflection sheet 216 to the polarization beam splitter 217 and provided as the Light source light to the first spatial light modulator 220, light of a second polarization state of the excitation light is reflected to the two quarter-wave plates and converted by the two quarter-wave plates
  • the light of the first polarization state is further utilized by the polarizer 215.
  • the first spatial light modulator 220 is an LCOS modulator that receives light of a first polarization state of the excitation light guided by the polarization beam splitter 217, and pairs the excitation light according to image data.
  • the light of the first polarization state is image modulated to generate the first image light and the first image light is supplied to the polarization beam splitter 217.
  • the first spatial light modulator 220 includes a plurality of first modulation units, each of the first modulation units is configured to modulate image light forming one pixel of the first spatial light modulator 220, wherein each of the first A modulation unit can be a pixel region of the LCOS modulator.
  • the first spatial light modulator 220 modulates the light having the first polarization state according to the image data, and converts a portion thereof into light having the second polarization state, from the first space.
  • a portion of the modulated light outputted by the light modulator 220 ie, the first image light
  • another portion is light of a second polarization state, light of a first polarization state and a second polarization state.
  • the proportion of light is determined by the grayscale value of the pixels in the image data. For example, if the grayscale value of a pixel is 100, the ratio of the light of the second polarization state to the light of the first polarization state of the light modulated for the pixel is 100: (255-100).
  • the polarization beam splitter 217 further separates the light of the first polarization state and the light of the second polarization state of the first image light emitted by the first spatial light modulator 220, as described in Light of one polarization state is directed to (e.g., reflects) the reflective sheet 216, and directs (e.g., transmits) light of the second polarization state to the wavelength conversion device 240.
  • the wavelength conversion device 240 is configured to receive the first image light output by the first spatial light modulator via the polarization beam splitter 217 and emit the light of the at least two colors.
  • the wavelength conversion device 240 includes a light conversion element 241 and a collimation element 242.
  • the light conversion element 241 receives the first image light and emits the converted light, and the converted light is collimated via the collimating element 242 and then supplied to the second spatial light tone Controller 230.
  • the collimating element 242 and the light converting element 241 are integrally stacked, and the collimating element 242 may be a collimating lens.
  • the light conversion element 241 further includes a filter or a filter film on the incident side of the first image light, and the filter or the filter film transmits the first image. Light and reflection by the laser.
  • FIG. 3 is a schematic plan view of the light conversion element 241.
  • the light conversion element 241 is a disk-shaped color wheel including at least two segmented regions (such as R, G, B) disposed along a circumferential movement direction thereof for sequentially emitting the at least two colors.
  • each segmented region such as R, G, B
  • At least one of the at least two segmented regions includes a wavelength converting material (eg, a fluorescent material) that is excited by the first image light to produce a different color
  • the converted light of the first image light ie, subjected to laser light.
  • the at least two segment regions include a first segment region R, a second segment region G, and a third segment region B, and the first segment region B is in the first
  • the first color light is emitted by the illumination of the image light
  • the second segment region R emits the second color light under the illumination of the first image light
  • the third segment region G is in the first image
  • the third color light is emitted by the illumination of the light.
  • the first image light is blue light
  • the first color light is blue light
  • the second color light is green light
  • the third color light is red light.
  • the first segmented region B is a transmissive region
  • the first image light is transmitted to the second spatial light modulator 230 via the first segmented region.
  • the second segment region R is provided with a red wavelength conversion material
  • the first image light excites the red wavelength conversion material to generate a red laser beam
  • the third segment region G is provided with a green wavelength conversion material
  • the first image light excites the green wavelength converting material to produce a green laser.
  • the converted light output by the light conversion element 241 includes blue first image light emitted by the first segment region B, red laser light emitted by the second segment region R, and the third segment region
  • the green light emitted by G is affected by the laser.
  • the first image light is ultraviolet light
  • the first color light is blue light
  • the second color light is green light
  • the third color light is red light.
  • the first segment region B is provided with a blue wavelength converting material, and the first image light excites the blue wavelength converting material to generate a blue received laser light.
  • the second segment region R is provided with a red wavelength conversion material, the first image light excites the red wavelength conversion material to generate a red laser beam
  • the third segment region G is provided with a green wavelength conversion material, The first image light excites the green wavelength converting material to produce a green laser.
  • the light conversion element The converted light outputted by the member 241 includes a blue laser light emitted from the first segment region B, a red laser light emitted from the second segment region R, and a green laser light emitted from the third segment region G.
  • the second spatial light modulator 23 is a DMD modulator, and the second spatial light modulator 230 receives the collimated converted light output by the wavelength conversion device 240, and performs the conversion according to the image data.
  • the light is image modulated to emit a second image light, which in turn may display a projected image via a projection lens of the projection system 200.
  • the second spatial light modulator 230 may also include a plurality of second modulation units, each of the second modulation units for modulating image light forming one pixel of the second spatial light modulator 230, the first space
  • the image light of one pixel modulated by the first modulation unit of the light modulator 220 is supplied to the one or more second modulation units of the second spatial light modulator 230 via the wavelength conversion device 240.
  • the first image light of one pixel modulated by the first modulation unit of the first spatial light modulator 220 is supplied to the second spatial light modulator 230 via the wavelength conversion device 240.
  • the second modulation unit On the second modulation unit.
  • the one-frame color image modulation section is divided into a red light modulation section, a green light modulation section, and a blue modulation section.
  • the modulation section of a frame of color image may include multiple sets of red light modulation segments, green light modulation segments, and blue modulation segments.
  • the color image of one frame generally includes red frame image data, green frame image data, and blue frame image data.
  • the first spatial light modulator 220 and the second spatial light modulator 230 are both modulated according to the red frame image data of the frame color image; and the frame color image is In the green light modulation section, the first spatial light modulator 220 and the second spatial light modulator 230 are both modulated according to the green frame image data of the frame color image; the same, the blue color modulation of the color image in the frame In the segment, the first spatial light modulator 220 and the second spatial light modulator 230 are both modulated according to the blue frame image data of the frame color image.
  • Each monochrome frame image data may be processed to reduce the resolution of the image, and each monochrome frame image data after the resolution is reduced is supplied to the first spatial light modulator 220; thereby causing the first spatial light
  • the image resolution of the image data modulated by modulator 220 is lower than that of second spatial light modulator 230.
  • the processing for reducing the resolution may not be performed, that is, the image resolution of the image data modulated by the first spatial light modulator 220 may be the same as that of the second spatial light modulator 230.
  • the projection system 200 includes two spatial light modulators 220, 230, and the second spatial light modulator 230 further performs image modulation on the light of the first spatial light modulator. Improve The contrast of the projection system 200.
  • the projection system 200 of the present invention sets the wavelength conversion device 240 on the optical path between the two spatial light modulators 220, 320, and the wavelength conversion device 140 is set to be excited compared to FIG.
  • the high-intensity excitation light in the prior art is irradiated to the wavelength conversion material.
  • the irradiation between the long turns causes the wavelength conversion material to age, and the light conversion efficiency becomes low, and the replacement of the wavelength conversion device 140 increases the cost; the present invention places the wavelength conversion device 240 in the first spatial light.
  • the light irradiated onto the wavelength converting material is already the first image light modulated by the first spatial light modulator 220, since the first image light is correspondingly reduced according to the image grayscale value, for example
  • the first spatial light modulator 220 modulates the image light corresponding to the pixel whose image has a grayscale value of 100, and the intensity ratio of the hat image light to the light source light is approximately 100: 255, so the intensity of the first image light is impossible to be lighter than the light source light.
  • the intensity is greater, so that the solution of the present invention can reduce unnecessary light projection onto the wavelength converting material, reduce the intensity of light impinging on the wavelength converting material, and prolong the service life of the wavelength converting device 240.
  • the amount of unnecessary light depends on the image grayscale value in the image data on which the first spatial light modulator 220 performs image modulation, for example, the first spatial light modulator 220 modulates the image grayscale value.
  • the image light corresponding to the pixel of 100, the intensity ratio of the hat-like image light to the light source light is approximately 100: 255, and the intensity ratio of the unnecessary light to the source light is approximately 155:255.
  • the wavelength conversion device 240 is located between the excitation light source 211 and the mirror 212, the converted light (mostly the laser light) generated by the wavelength conversion device 240 is relatively divergent and the beam area is relatively large. Large, will not be conducive to the conversion light generated by the wavelength conversion device 240 through the through hole 2121 of the mirror 212; therefore, it is necessary to add an additional concentrating lens group to make the converted light through the through hole 2121, thereby increasing the volume; In the embodiment, the wavelength conversion device 240 is located between the two spatial light modulators 22 0, 230, and there is no such problem.
  • the collimating element 242 is disposed on an optical path between the optical conversion element 241 and the second spatial light modulator 230, and provides conversion to the second spatial light modulator 230.
  • the light is collimated to reduce the scattering of the converted light output by the wavelength conversion device 240, so that the converted light emitted by the wavelength conversion device 240 more closely follows the light intensity distribution of the first image light, and the first spatial light is ensured.
  • a majority of the converted light corresponding to the first image light of one pixel modulated by the first modulation unit of the modulator 220 is supplied to one or more second modulation units corresponding to the second spatial light modulator 230, and No adjustment In the case of illuminating light, the projection effect of the projection system 200 of the present invention is better.
  • the light source device 210 is provided with a mirror 212, the 1/4 wave plate 214, a polarizer 215, a reflection sheet 216, and a polarization beam splitter 217, and the first spatial light modulator 220 Using an LCOS modulator, light that does not conform to the polarization state is further reflected back to the quarter-wave plate 214 and converted into light that conforms to the polarization state, thereby utilizing light recovery and utilization before reaching the LCOS modulator.
  • the light extraction efficiency of the light source device 210 is improved, so that the light extraction efficiency of the projection system 200 is high and the brightness is high.
  • FIG. 4 is a schematic structural diagram of a projection system according to a second embodiment of the present invention
  • FIG. 5 is a schematic plan view showing a wavelength conversion device of the projection system shown in FIG.
  • the projection system 300 is substantially identical in structure to the projection system 200, that is, the above description for the projection system 200 can be substantially used for the projection system 300, the main differences between which are:
  • the light conversion element 341 of the second embodiment is a semi-reflective wavelength conversion device having a structure different from that of the light conversion element 341.
  • the projection system 300 further includes a first dichroic color plate 361 and a second dichroic color.
  • the sheet 362, the first reflecting means 363 and the second reflecting means 364, the optical path of the projection system 300 after the polarizing beam splitter 317 is different from the projection system 200.
  • the first image light is guided to the wavelength conversion device 340 via the first dichroic color patch 361.
  • the first image light is a first color light (such as blue light)
  • the first segment area B of the light conversion element 341 is a transmissive area that transmits the first color light.
  • the first image light is transmitted by the first segment region B to the first reflecting device 363 and further reflected to the second dichroic film 362 via the second reflecting device 364.
  • the second segment region R includes a wavelength converting material and generates a second color light (ie, a red laser beam) under illumination of the first image light
  • the third segment region G including a wavelength converting material and a third color light (ie, a green laser light) is generated by the illumination of the first image light
  • the second segment region R further reflects the second color light to the first dichroic color film 361
  • the The three-segment region G also reflects the second color light to the first dichroic color patch 361
  • the first dichroic color patch 361 further includes the second color light and the third color light (ie, red
  • the laser light and the green light receiving laser which are also generated by the light converting element 341, are reflected to the second dichroic color patch 362.
  • the second dichroic color 362 362 provides the first image light provided by the second reflecting device 364, and the The second color light and the third color light (i.e., the laser light generated by the light conversion element 34 1 ) provided by the first dichroic color sheet 361 are both guided to the second spatial light modulator 330.
  • the collimating element 342 of the wavelength converting device 340 is disposed on a side adjacent to the first spatial light modulator 320, and the first image light emitted by the first spatial light modulator 320 is sequentially passed through the first a dichroic sheet 361, the collimating element 342 is supplied to the light converting element 341, and the laser light generated by the light converting element 341 is collimated by the collimating element 342 and then supplied to the first Dichroic film 361.
  • the second segment region R and the third segment region B are further provided with a concave portion 343, and the inner surface of the concave portion 343 is a reflecting surface for collecting the laser light from the light conversion element 341 to be collected.
  • the recess 343 may cover the second segment region R and the third segment region B, and the adjacent recess portion 343 has a gap region therebetween, and the gap region is a plane.
  • the width of the gap region is as small as possible, that is, the distance between adjacent two recesses 343 is as small as possible, at least smaller than the width of the recess 343 (as 1/4 of the width of the recess 43), In one embodiment, the edges of adjacent recesses 343 may meet.
  • FIG. 6 is a schematic cross-sectional structural view of the recess 343 of FIG. 5.
  • the wavelength conversion material 344 is disposed in the concave portion 343.
  • the concave portion 343 may be spherical but not limited to a spherical shape, and may also have a shape such as a cone shape, a faceted diamond shape or an inverted ladder shape. Specifically, the wavelength conversion material 344 may be coated.
  • the inner surface of the recess 343 is overlaid to cover the entire inner surface of the recess 343 and form a concave reflective wavelength converting material surface.
  • each recess 343 receives and converts the first image light emitted by the one or more first modulation units of the first spatial light modulator 320, and preferably, each recess 343 corresponds to the receiving and converting The first image light emitted by one modulation unit of the first spatial light modulator 320 is described.
  • the number of first modulation units that provide first image light to a recess 343 is at most equal to 1/20 of the number of image pixels.
  • each recess 343 also supplies the laser light to at least one second modulation unit of the second spatial light modulator 330. If a recess receives the first image light emitted by a first modulating unit of the first spatial light modulator 320, then one recess provides a laser to the second modulating unit of the second spatial light modulator 330, specifically The number of two modulation units depends on the ratio of the resolution of the image data on which the spatial light modulators 320, 330 are spatially modulated.
  • each The laser light emitted from a recess 343 is supplied to a plurality of second modulation units of the second spatial light modulator 330.
  • FIG. 7 is a schematic structural view of a projection system according to a third embodiment of the present invention
  • FIG. 8 is a schematic plan view showing a wavelength conversion device of the projection system shown in FIG.
  • the projection system 400 is substantially identical in structure to the projection system 300, that is, the above description for the projection system 300 can be substantially used for the projection system 400, the main differences between which are:
  • the light conversion element 441 of the third embodiment is a reflection type wavelength conversion device, and its structure is different from that of the light conversion element 341.
  • the projection system 400 further includes a first dichroic color patch 461, and the projection system The optical path after the polarization beam splitter 417 is also different from the projection system 300.
  • the first segment region B of the light conversion element 441 is a reflection region, the first image light is ultraviolet light, the first segment region B has a wavelength conversion material, and the first spatial light modulator 420 Exciting the wavelength converting material of the first segment region B via the first image light provided by the first dichroic color patch 461 to generate first color light, the first color light being the first segment region B Reflected and provided to the first dichroic color patch 461 via a collimating element 442, the first dichroic color patch 461 directs the first color light to the second spatial light modulator 430.
  • the first segment region B is also provided with a recess 443.
  • the recess 443 is substantially the same as the recess 343 in the third embodiment, and the recess 443 may be provided with the first color light. Wavelength conversion material.
  • the surface on which the wavelength converting material is disposed forms such recesses 343, 4 43, which help to gather the laser light excited by the first image light incident on the recessed region, so that the emitted light
  • the divergence angle of the laser is reduced. If the surface of the wavelength converting material is entirely formed into a plane, the divergence angle of the emitted laser light is large, so that it is difficult to follow the light intensity distribution of the first image light by the light intensity distribution of the laser light.
  • the surface of the wavelength converting material is covered with the entire inner surface of the concave portions 343, 443, and the first image light is incident on the concave portions 343, 443 from the direction perpendicular to the entrance of the concave portions 343, 443 from the concave portions 343, 443.
  • the main portion of the emitted laser light is emitted substantially in the opposite direction of the incident direction of the first image light, and the laser light generated by the excitation of the first image light having a high light intensity is also relatively high in intensity, and does not have a wide range of divergence, but is concentrated from the approximate Exiting perpendicular to the entrance of the recess, so that the light conversion element 3 can be made 41.
  • the light intensity distribution of the laser light emitted by 441 substantially follows the light intensity distribution of the first image light.
  • the concave portions 343 and 443 can further converge the laser light emitted from the wavelength conversion devices 340 and 440 to reduce the scattering of the laser light output by the wavelength conversion devices 340 and 440.
  • the laser light emitted by the wavelength conversion devices 340, 440 is more closely followed by the light intensity distribution of the first image light, and the image light of one pixel modulated by the first modulation unit of the first spatial light modulator 220, 320 is ensured.
  • a majority of the corresponding laser light is supplied to one or more second modulation units corresponding to the second spatial light modulators 330, 430 without modulating light disorder, and the projection system 300 of the present invention The projection effect of the 400 is better.
  • the design of the light source device improves the light extraction efficiency of the projection system, and the use of two spatial light modulators can be obtained.
  • the resulting high contrast ratio of the projection system of the present invention is high in light extraction efficiency, brightness, and contrast.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影系统(200),包括第一空间光调制器(220)、第二空间光调制器(230)及波长转换装置(240),所述第一空间光调制器(220)用于接收光源光并对所述光源光进行调制而输出第一图像光,所述波长转换装置(240)用于接收所述第一图像光并射出遵循所述第一图像光的光强分布的转换光,所述第二空间光调制器(230)用于对所述转换光进行图像调制而输出第二图像光使得所述投影系统(200)依据所述第二图像光显示投影图像。所述投影系统(200)的对比度较高、出光效率较高。

Description

说明书 发明名称:投影系统
技术领域
[0001] 本发明涉及一种投影系统。
背景技术
[0002] 现有投影系统一般包括光源装置、 空间光调制器 (如 LCOS空间光调制器或 DM
D空间光调制器) 及投影镜头, 所述光源装置射出如红绿蓝三色光, 所述空间光 调制器依据图像数据对所述光源装置发出的光进行图像调制, 所述投影镜头对 所述空间光调制器输出的图像光进行投影以显示投影图像。
技术问题
[0003] 然而, 现有投影系统可能存在对比度较低的情形, 有必要改善。
问题的解决方案
技术解决方案
[0004] 为解决现有技术投影系统对比度较低的问题, 本发明提供一种对比度较高的投 影系统。
[0005] 一种投影系统, 所述投影系统包括第一空间光调制器、 第二空间光调制器及波 长转换装置, 所述第一空间光调制器用于接收光源光并对所述光源光进行调制 而输出第一图像光, 所述波长转换装置用于接收所述第一图像光并射出遵循所 述第一图像光的光强分布的转换光, 所述光转换元件包括设置有波长转换材料 的分段区域, 所述波长转换材料被所述第一图像光激发产生颜色不同于所述第 一图像光的受激光, 所述转换光包括所述受激光, 所述第二空间光调制器用于 对所述转换光进行图像调制而输出第二图像光, 所述第二图像光用于显示投影 图像。
[0006] 在一种实施方式中, 所述波长转换装置包括光转换元件及准直元件, 所述光转 换元件接收所述第一图像光并射出所述转换光, 所述转换光经由所述准直元件 准直后被提供到所述第二空间光调制器。
[0007] 在一种实施方式中, 所述准直元件与所述光转换元件层叠设置于一体。 [0008] 在一种实施方式中, 所述光转换元件从一侧接收所述第一图像光并从另外一侧 射出所述转换光, 所述准直元件设置于所述光转换元件的所述另外一侧并对所 述转换光进行准直。
[0009] 在一种实施方式中, 所述光转换元件还包括位于第一图像光入射侧的滤光片或 滤光膜, 该滤光片或滤光膜透射第一图像光且反射所述受激光。
[0010] 在一种实施方式中, 所述第一图像光经由所述准直元件被提供到所述光转换元 件, 所述光转换元件从一侧接收所述第一图像光并从该侧射出所述受激光, 所 述受激光经由所述准直元件准直后射出。
[0011] 在一种实施方式中, 所述受激光经由所述准直元件准直后输出, 所述投影系统 还包括二向色片, 所述第一图像光经由所述二向色片被引导至所述波长转换装 置, 所述受激光被反射且准直后被所述二向色片引导至所述第二空间光调制器
[0012] 在一种实施方式中, 所述光转换元件包括多个凹部, 所述波长转换材料设置于 所述凹部中, 所述凹部的内表面为反射表面, 所述凹部用于对所述受激光进行 汇集以使所述受激光的光遵循对应的所述第一图像光的光强分布。
[0013] 在一种实施方式中, 所述多个凹部布满所述光转换元件射出所述受激光的分段 区域, 相邻凹部的边缘相接。
[0014] 在一种实施方式中, 所述波长转换材料覆盖于所述凹部的内表面从而形成凹陷 状的波长转换材料表面。
[0015] 在一种实施方式中, 所述第一空间光调制器为 LCOS调制器; 所述投影系统还 包括激发光源和光偏振转换及回收装置; 所述激发光源用于射出所述激发光; 所述光偏振转换及回收装置用于将所述激发光转换成第一偏振态的光并将所述 第一偏振态的光引导至所述第一空间光调制器; 所述第一空间光调制器依据图 像数据调制所述第一偏振态的光, 将所述第一偏振态的光的一部分转换成第二 偏振态的所述第一图像光以及剩余所述第一偏振态的光的一部分未转换, 所述 第二偏振态的第一图像光以及未转换的第一偏振态的光出射至所述光偏振转换 及回收装置; 所述光偏振转换及回收装置将所述第二偏振态的第一图像光以及 未转换的第一偏振态的光分离, 并将所述第二偏振态的第一图像光引导至所述 波长转换装置, 以及将所述未转换的第一偏振态的光引导至所述第一空间光调 制器, 所述光源光包括所述激发光转换成第一偏振态的光及所述未转换的第一 偏振态的光。
[0016] 在一种实施方式中, 所述光偏振转换及回收装置包括反射镜、 匀光棒、 两个 1/ 4波片、 偏振器及偏振分束器, 所述偏振器透射具有第一偏振态的光, 所述激发 光经由所述反射镜的通孔射入所述匀光棒、 在所述匀光棒内部反复反射、 并经 由所述两个 1/4波片后射入所述偏振器, 所述偏振器透射所述激发光中的第一偏 振态的光并反射所述激发光中的第二偏振态的光, 所述偏振分束器反射具有第 一偏振态的偏振光线并且透射具有第二偏振态的偏振光线, 所述激发光中的第 一偏振态的光被引导至所述偏振分束器并进一步被反射至所述第一空间光调制 器, 所述激发光中的第二偏振态的光被反射至所述两个 1/4波片并被所述两个 1/4 波片转换为第一偏振态的光。
发明的有益效果
有益效果
[0017] 与现有技术相比较, 所述投影系统包括两个空间光调制器, 所述第二空间光调 制器进一步对第一空间光调制器的光进行图像调制, 可以提高所述投影系统的 对比度, 进一步地, 本发明将波长转换材料置于第一空间光调制器之后, 照射 到波长转换材料上的光已经是经过第一空间光调制器调制后的第一图像光了, 由于第一图像光会根据图像灰阶值进行相应比例地减少, 例如, 第一空间光调 制器调制图像灰阶值为 100的像素对应的图像光, 则图像光与光源光的强度比大 致是 100: 255, 因此第一图像光的强度不可能比光源光的强度更大, 从而本发 明的方案可以减少不必要的光投射到波长转换材料上, 降低了照射到波长转换 材料上的光的强度, 延长了波长转换装置的使用寿命。 可以理解, 所述不必要 的光的量取决于第一空间光调制器进行图像调制所依据的图像数据中的图像灰 阶值, 例如, 第一空间光调制器调制图像灰阶值为 100的像素对应的图像光, 则 图像光与光源光的强度比大致是 100: 255, 不必要的光与源光的强度比大致是 1 55:255。
对附图的简要说明 附图说明
[0018] 图 1是一种可提高对比度的投影系统的结构示意图。
[0019] 图 2是本发明第一实施方式的投影系统的结构示意图。
[0020] 图 3是图 2所示投影系统的波长转换装置的平面结构示意图。
[0021] 图 4是本发明第二实施方式的投影系统的结构示意图。
[0022] 图 5是图 4所示投影系统的波长转换装置的平面结构示意图。
[0023] 图 6是图 5所述凹部的剖面结构示意图。
[0024] 图 7是本发明第三实施方式的投影系统的结构示意图。
[0025] 图 8是图 7所示投影系统的波长转换装置的平面结构示意图。
[0026]
[0027] 主要元件符号说明
[0028] 投影系统 100、 200、 300、 400
[0029] 光源装置 110、 210
[0030] 第一空间光调制器 120、 220、 320、
[0031] 第二空间光调制器 130、 230、 330、
[0032] 附属结构 140
[0033] 波长转换装置 240、 340、 440
[0034] 偏振分束器 217、 317、 417
[0035] 光偏振转换及回收装置 218
[0036] 激发光源 211
[0037] 反射镜 212
[0038] 匀光棒 213
[0039] 1/4波片 214
[0040] 偏振器 215
[0041] 反射片 216
[0042] 通孔 2121
[0043] 分段区域 R、 G、 B
[0044] 光转换元件 241、 341、 441 [0045] 准直元件 242、 342、 442
[0046] 第一二向色片 361、 461
[0047] 第二二向色片 362
[0048] 第一反射装置 363
[0049] 第二反射装置 364
[0050] 凹部 343、 434
[0051] 波长转换材料 344
[0052] 如下具体实施方式将结合上述附图进一步说明本发明。
本发明的实施方式
[0053] 请参阅图 1, 图 1是一种可提高图像对比度的投影系统的结构示意图。 所述投影 系统 100包括光源装置 110、 第一空间光调制器 120、 第二空间光调制器 130及附 属结构 140。 可以理解, 所述附属结构 140为投影系统 100在所述第二空间光调制 器 130后的部分, 可包括中继透镜、 投影镜头和屏幕等。 其中中继透镜可理解为 布置于光路上的透镜或透镜组, 用于对光束进行汇聚、 扩散或整形等处理, 使 得光束按照预定光斑大小和形状投射至指定投射面。
[0054] 所述光源装置 110发出光源光, 所述第一空间光调制器 120对光源光调制形成第 一图像光, 并将所述第一图像光投射到所述第二空间光调制器 130上, 所述第二 空间光调制器 130则进一步对第一图像光进行调制并形成第二图像光。 所述第一 空间光调制器 120和所述第二空间光调制器 130对入射光进行调制形成图像光之 夕卜, 还形成非图像光; 非图像光一般被吸光元件吸收。 图像光和非图像光的比 例取决于第一空间光调制器 120和第二空间光调制器 130调制吋所依据的图像数 据。
[0055] 其中, 可以理解, 所述第一空间光调制器 120与所述第二空间光调制器 130均包 括多个调制单元, 一个调制单元用于调制一个像素的图像光。 所述投影系统 100 最终调制出的图像的分辨率由所述第二空间光调制器 130所调制的图像的分辨率 决定; 一般所述第一空间光调制器 120所调制的图像的分辨率小于等于第二空间 光调制器 130所调制的图像的分辨率, 所述第一空间光调制器 120调制的一个像 素的图像光被投射到第二空间光调制器 130的多个调制单元上, 由该多个调制单 元进一步调制形成多个像素的图像光; 从而第一空间光调制器 120调制的一个像 素对应第二空间光调制器 130调制的一个或多个像素。
[0056] 进一步地, 空间光调制器的图像对比度可以理解为: 空间光调制器对均匀入射 到各调制单元上的入射光进行调制, 所形成的全白像素的图像光和全黑像素的 图像光的亮度比, 该亮度比等于全白像素对应的转换效率与全黑像素对应的转 换效率之比; 所谓全白像素对应的转换效率即为: 空间光调制形成的全白像素 的图像光与入射到空间光调制器的入射光的亮度比; 而所谓全黑像素对应的转 换效率即为: 空间光调制形成的全黑像素的图像光与入射到空间光调制器的入 射光的亮度比。 而空间光调制器的出光效率可以认为是全白像素对应的转换效 率。
[0057] 以所述第一空间光调制器 120的图像对比度为 a: l (a>l) 且出光效率为 c (0<c< 1) 、 以及所述第二空间光调制器 130的图像对比度为 b: l (b>l) 且出光效率为 d (0<d<l) 为例。 设所述光源光均匀入射到所述第一空间光调制器 120, 以及设 入射到所述第一空间光调制器 120的光源光的亮度为 1 ; 则经所述第一空间光调 制器 120调制形成的全白像素的图像光 WL的亮度为 l*c, 以及经所述第一空间光 调制器 120调制形成的全黑像素的图像光 BL的亮度为 l*c/a。 设所述第二空间光调 制器 130进一步将图像光 WL调制形成全白像素, 则调制形成的全白像素的图像 光的亮度为 l*c*d; 以及所述第二空间光调制器 130进一步将图像光 BL调制形成 全黑像素, 则调制形成的全黑像素的图像光的亮度为 (l*c/a)*d/b。 所述投影系统 100最终的对比度, 可以认为是所述第二空间光调制器 130形成的全白像素的图 像光与全黑像素的图像光的亮度比, 即为 a*b:l ; 投影系统的最终出光效率可认 为是所述第二空间光调制器 130形成的全白像素的图像光与光源光的亮度比, 即 为 c*d。
[0058] 由此可见, 采用两个空间光调制器, 所述投影系统 100的对比度可以得到大幅 提高, 然而, 所述投影系统 100的出光效率则降低较多。
[0059] 投影系统 100的光源装置 110包括激发光源以及波长转换装置 (图未示) , 激发 光源发出激发光 (例如蓝激光、 紫外激光等) , 波长转换装置位于激发光的光 路上, 激发光激发波长转换装置上的波长转换材料产生受激光, 受激光作为上 述的光源光投射至第一空间光调制器。
[0060] 所述投影系统 100的出光效率低, 此为第一方面的缺陷; 投影系统 100的第二方 面的缺陷为: 将波长转换装置设置于激发光源后以及第一空间光调制器 120之前 的光路上, 高强度的激发光照射到波长转换材料 (如荧光材料) 上, 长吋间的 照射会使波长转换材料老化, 光转换效率变低, 而更换波长转换装置会增加成 本。
[0061] 针对上述第一方面的缺陷, 本发明增设了回收利用第一空间光调制器调制形成 的非图像光的装置; 针对上述第二方面的缺陷, 本发明将波长转换材料置于第 一空间光调制器之后, 照射到波长转换材料上的光已经是经过第一空间光调制 器调制后的第一图像光了, 由于第一图像光会根据图像灰阶值进行相应比例地 减少, 例如, 第一空间光调制器调制图像灰阶值为 100的像素对应的图像光, 则 图像光与光源光的强度比大致是 100: 255, 因此第一图像光的强度不可能比光 源光的强度更大, 从而本发明的方案可以减少不必要的光投射到波长转换材料 上, 降低了照射到波长转换材料上的光的强度, 延长了波长转换装置的使用寿 命。 可以理解, 所述不必要的光的量取决于第一空间光调制器进行图像调制所 依据的图像数据中的图像灰阶值, 例如, 第一空间光调制器调制图像灰阶值为 1 00的像素对应的图像光, 则图像光与光源光的强度比大致是 100: 255, 不必要 的光与源光的强度比大致是 155:255。
[0062] 为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对本发 明的具体实施方式做详细的说明。
[0063] 在下面的描述中阐述了很多具体细节以便于充分理解本发明, 但是本发明还可 以采用其他不同于在此描述的其它方式来实施, 本领域技术人员可以在不违背 本发明内涵的情况下做类似应用, 因此本发明不受下面公幵的具体实施例的限 制。
[0064] 其次, 本发明结合示意图进行详细描述, 在详述本发明实施例吋, 为便于说明 , 表示器件结构的剖面图会不依一般比例作局部放大, 而且所述示意图只是示 例, 其在此不应限制本发明保护的范围。 此外, 在实际制作中应包含长度、 宽 度及深度的三维空间尺寸。
[0065] 下面通过实施例详细描述。
[0066] 请参阅图 2, 图 2是本发明第一实施方式的投影系统的结构示意图。 所述投影系 统 200包括光源装置 210、 第一空间光调制器 220、 第二空间光调制器 230、 波长 转换装置 240、 偏振分束器 217。 所述光源装置 210用于发出光源光, 所述第一空 间光调制器 220用于接收光源光并对所述光源光进行调制而输出第一图像光, 所 述波长转换装置 240用于接收所述第一图像光并射出遵循所述第一图像光的光强 分布的转换光, 所述第二空间光调制器 230用于对所述转换光进行图像调制而输 出第二图像光使得所述投影系统依据所述第二图像光产生投影图像。
[0067] 所述光源装置 210包括激发光源 211、 及光偏振转换及回收装置 218。 所述激发 光源 211用于射出激发光; 所述光偏振转换及回收装置 218用于将所述激发光转 换成第一偏振态的光并将所述第一偏振态的光引导至所述第一空间光调制器 220 ; 所述第一空间光调制器 220依据图像数据调制所述第一偏振态的光 (P光) , 将所述第一偏振态的光的一部分转换成第二偏振态 (S光) 的所述第一图像光以 及剩余所述第一偏振态的光的一部分未转换, 所述第二偏振态的第一图像光以 及未转换的第一偏振态的光出射至所述光偏振转换及回收装置 218; 所述光偏振 转换及回收装置 218将所述第二偏振态的第一图像光以及未转换的第一偏振态的 光分离, 并将所述第二偏振态的第一图像光引导至所述波长转换装置 240, 以及 将所述未转换的第一偏振态的光引导至所述第一空间光调制器 230, 可以理解, 所述光源光包括所述激发光转换成第一偏振态的光及所述未转换的第一偏振态 的光。
[0068] 所述光偏振转换及回收装置 218包括反射镜 212、 匀光棒 213、 两个 1/4波片 214 、 偏振器 215、 反射片 216及偏振分束器 217。 值得注意的是, 在间隔有一定距离 的两个光学元件之间, 均可以设置中继透镜。 本申请没有对可布置于光路中的 所有的中继透镜作一一地介绍。
[0069] 所述激发光源 211可以为激光二极管 (LD) 或者发光二极管 (LED) 等。 所述 激发光可以为蓝色光、 紫色光或者紫外光等, 但并不以上述为限。 本实施方式 中, 所述激发光源 211为蓝色光半导体二极管, 用于发出蓝色激发光。 [0070] 所述反射镜 212包括通孔 2121, 所述通孔 2121可以位于所述反射镜 212的中心区 域, 所述激发光源 211发出的激发光经由所述通孔 2121射入所述匀光棒 213、 在 所述匀光棒 213内部反复反射、 并经由所述两个 1/4波片 214后射入所述偏振器 215 , 所述偏振器 215透射所述激发光中的第一偏振态的光并反射所述激发光中的第 二偏振态的光, 所述激发光中的第一偏振态的光被所述反射片 216引导至所述偏 振分束器 217并作为所述提供到所述第一空间光调制器 220的光源光, 所述激发 光中的第二偏振态的光被反射至所述两个 1/4波片并被所述两个 1/4波片转换为第 一偏振态的光, 从而进一步通过所述偏振器 215被利用。
[0071] 所述第一空间光调制器 220为 LCOS调制器, 其接收所述偏振分束器 217引导的 所述激发光中的第一偏振态的光, 并依据图像数据对所述激发光中的第一偏振 态的光进行图像调制而产生所述第一图像光并将所述第一图像光提供到所述偏 振分束器 217。 具体地, 所述第一空间光调制器 220包括多个第一调制单元, 每 个第一调制单元用于调制形成所述第一空间光调制器 220的一个像素的图像光, 其中每个第一调制单元可以为 LCOS调制器的一个像素区域。
[0072] 具体地, 所述第一空间光调制器 220根据图像数据对所述具有第一偏振态的光 进行调制, 将其中一部分转换为具有第二偏振态的光, 从所述第一空间光调制 器 220输出的调制后的光 (即所述第一图像光) 中一部分为第一偏振态的光, 另 一部分为第二偏振态的光, 第一偏振态的光与第二偏振态的光的比例由图像数 据中像素的灰阶值决定。 例如, 某一像素点的灰阶值为 100, 则针对该像素所调 制的光中第二偏振态的光与第一偏振态的光的比例为 100: (255-100)。
[0073] 所述偏振分束器 217进一步将所述第一空间光调制器 220的射出的第一图像光中 的第一偏振态的光和第二偏振态的光分离, 如将所述第一偏振态的光引导至 ( 如反射) 反射片 216, 以及将第二偏振态的光引导至 (如透射) 所述波长转换装 置 240。
[0074] 所述波长转换装置 240用于经由所述偏振分束器 217接收所述第一空间光调制器 输出的第一图像光并射出所述至少两种颜色的光。 所述波长转换装置 240包括光 转换元件 241与准直元件 242。 所述光转换元件 241接收所述第一图像光并射出所 述转换光, 所述转换光经由所述准直元件 242准直后被提供到所述第二空间光调 制器 230。 本实施方式中, 所述准直元件 242与所述光转换元件 241层叠设置于一 体, 所述准直元件 242可以为准直透镜。
[0075] 更进一步地, 在一种实施方式中, 所述光转换元件 241还包括位于第一图像光 入射侧的滤光片或滤光膜, 该滤光片或滤光膜透射第一图像光且反射受激光。
[0076] 请参阅图 3, 图 3是所述光转换元件 241的平面结构示意图。 所述光转换元件 241 为圆盘状的色轮, 其包括沿其圆周运动方向设置的至少两个分段区域 (如 R、 G 、 B) , 用于依序射出所述至少两种颜色的光, 其中每一分段区域 (如 R、 G、 B ) 射出一种颜色光。 所述至少两个分段区域中的至少一分段区域 (如 R、 G、 B ) 包括波长转换材料 (如荧光材料) , 所述波长转换材料被所述第一图像光激 发产生颜色不同于所述第一图像光的转换光 (即受激光) 。
[0077] 本实施方式中, 所述至少两个分段区域包括第一分段区域 R、 第二分段区域 G 及第三分段区域 B, 所述第一分段区域 B在所述第一图像光的照射下射出第一颜 色光, 所述第二分段区域 R在所述第一图像光的照射下射出第二颜色光, 所述第 三分段区域 G在所述第一图像光的照射下射出第三颜色光。
[0078] 在一种实施例中, 所述第一图像光为蓝色光, 所述第一颜色光为蓝色光, 所述 第二颜色光为绿色光, 所述第三颜色光为红色光。 所述第一分段区域 B为透射区 域, 所述第一图像光经由所述第一分段区域透射至所述第二空间光调制器 230。 所述第二分段区域 R设置有红色波长转换材料, 所述第一图像光激发所述红色波 长转换材料产生红色受激光, 所述第三分段区域 G设置有绿色波长转换材料, 所 述第一图像光激发所述绿色波长转换材料产生绿色受激光。 所述光转换元件 241 输出的转换光包括所述第一分段区域 B射出的蓝色的第一图像光、 所述第二分段 区域 R射出的红色受激光及所述第三分段区域 G射出的绿色受激光。
[0079] 在另一种实施例中, 所述第一图像光为紫外光, 所述第一颜色光为蓝色光, 所 述第二颜色光为绿色光, 所述第三颜色光为红色光。 所述第一分段区域 B设置有 蓝色波长转换材料, 所述第一图像光激发所述蓝色波长转换材料产生蓝色受激 光。 所述第二分段区域 R设置有红色波长转换材料, 所述第一图像光激发所述红 色波长转换材料产生红色受激光, 所述第三分段区域 G设置有绿色波长转换材料 , 所述第一图像光激发所述绿色波长转换材料产生绿色受激光。 所述光转换元 件 241输出的转换光包括所述第一分段区域 B射出的蓝色受激光、 所述第二分段 区域 R射出的红色受激光及所述第三分段区域 G射出的绿色受激光。
[0080] 所述第二空间光调制器 23为 DMD调制器, 所述第二空间光调制器 230收所述波 长转换装置 240输出的准直后的转换光, 并根据图像数据对所述转换光进行图像 调制以射出第二图像光, 进而所述第二图像光可以经由所述投影系统 200的投影 镜头显示投影图像。 所述第二空间光调制器 230也可以包括多个第二调制单元, 每个第二调制单元用于调制形成所述第二空间光调制器 230的一个像素的图像光 , 所述第一空间光调制器 220的第一调制单元调制的一个像素的图像光经由所述 波长转换装置 240后被提供到所述第二空间光调制器 230的一个或多个第二调制 单元上。 本实施方式中, 所述第一空间光调制器 220的第一调制单元调制的一个 像素的第一图像光经由所述波长转换装置 240后被提供到所述第二空间光调制器 230的多个第二调制单元上。
[0081] 具体地, 一帧彩色图像调制吋段分为红光调制吋段、 绿光调制吋段和蓝光调制 吋段。 当然, 一帧彩色图像的调制吋段可以包含多组红光调制吋段、 绿光调制 吋段和蓝光调制吋段。 而一帧彩色图像一般包括红色帧图像数据、 绿色帧图像 数据和蓝色帧图像数据。 在一帧彩色图像的红光调制吋段内, 所述第一空间光 调制器 220和第二空间光调制器 230都根据该帧彩色图像的红色帧图像数据进行 调制; 而在该帧彩色图像的绿光调制吋段内, 所述第一空间光调制器 220和第二 空间光调制器 230都根据该帧彩色图像的绿色帧图像数据进行调制; 相同的, 在 该帧彩色图像的蓝光调制吋段内, 所述第一空间光调制器 220和第二空间光调制 器 230都根据该帧彩色图像的蓝色帧图像数据进行调制。 可以将各单色帧图像数 据进行处理, 降低图像的分辨率, 并将降低分辨率之后的各单色帧图像数据提 供给所述第一空间光调制器 220; 从而使得所述第一空间光调制器 220所调制的 图像数据的图像分辨率比第二空间光调制器 230低。 当然, 在变更实施方式中, 也可以不进行降低分辨率的处理, 即所述第一空间光调制器 220所调制的图像数 据的图像分辨率可以与所述第二空间光调制器 230相同。
[0082] 与现有技术相比较, 所述投影系统 200包括两个空间光调制器 220、 230, 所述 第二空间光调制器 230进一步对第一空间光调制器的光进行图像调制, 可以提高 所述投影系统 200的对比度。
[0083] 进一步地, 本发明投影系统 200将所述波长转换装置 240设置于所述两个空间光 调制器 220、 320之间的光路上, 相较于图 1将波长转换装置 140设置于激发光源 1 11后的光路上的方案来说, 现有技术中的高强度的激发光照射到波长转换材料
(如荧光材料) 上, 长吋间的照射会使波长转换材料老化, 光转换效率变低, 而更换波长转换装置 140会增加成本; 本发明将所述波长转换装置 240置于第一 空间光调制器 220之后, 照射到波长转换材料上的光已经是经过第一空间光调制 器 220调制后的第一图像光了, 由于第一图像光会根据图像灰阶值进行相应比例 地减少, 例如, 第一空间光调制器 220调制图像灰阶值为 100的像素对应的图像 光, 贝帽像光与光源光的强度比大致是 100: 255, 因此第一图像光的强度不可 能比光源光的强度更大, 从而本发明的方案可以减少不必要的光投射到波长转 换材料上, 降低了照射到波长转换材料上的光的强度, 延长了波长转换装置 240 的使用寿命。 可以理解, 所述不必要的光的量取决于第一空间光调制器 220进行 图像调制所依据的图像数据中的图像灰阶值, 例如, 第一空间光调制器 220调制 图像灰阶值为 100的像素对应的图像光, 贝帽像光与光源光的强度比大致是 100 : 255, 不必要的光与源光的强度比大致是 155:255。
[0084] 特别是, 若所述波长转换装置 240位于所述激发光源 211和反射镜 212的之间的 位置, 由于波长转换装置 240产生的转换光 (多为受激光) 较为发散而光束面积 较大, 将不利于波长转换装置 240产生的转换光通过所述反射镜 212的通孔 2121 ; 因此, 需要增设额外的聚集透镜组来使得转换光通过通孔 2121, 从而将增加 体积; 而本发明实施例中, 所述波长转换装置 240位于所述两个空间光调制器 22 0、 230之间, 则不存在这些问题。
[0085] 进一步地, 所述准直元件 242设置于所述光转换元件 241与所述第二空间光调制 器 230之间的光路上, 对提供到所述第二空间光调制器 230的转换光进行准直, 减少所述波长转换装置 240输出的转换光的散射, 使得所述波长转换装置 240射 出的转换光更遵循所述第一图像光的光强分布, 保证所述第一空间光调制器 220 的第一调制单元调制的一个像素的第一图像光对应的转换光的绝大部分均被提 供到所述第二空间光调制器 230对应的一个或多个第二调制单元, 而不会发生调 制光错乱的情形, 本发明投影系统 200的投影效果更佳。
[0086] 此外, 所述光源装置 210设置有反射镜 212、 所述 1/4波片 214、 偏振器 215、 反 射片 216、 及偏振分束器 217, 且所述第一空间光调制器 220采用 LCOS调制器, 可使得不符合偏振态的光进一步反射回所述 1/4波片 214转换为符合偏振态的光被 利用起来, 从而在到达所述 LCOS调制器之前实现了光回收与利用, 提高了所述 光源装置 210的出光效率, 从而所述投影系统 200的出光效率较高、 亮度也较高
[0087] 请参阅图 4及图 5, 图 4是本发明第二实施方式的投影系统的结构示意图, 图 5是 图 4所示投影系统的波长转换装置的平面结构示意图。 所述投影系统 300与所述 投影系统 200的结构基本相同, 也就是说, 上述针对所述投影系统 200的描述基 本上均可以用于所述投影系统 300, 二者的主要差别在于: 所述第二实施方式的 光转换元件 341为半反射式波长转换装置, 其结构与光转换元件 341有所不同, 此外, 所述投影系统 300还包括第一二向色片 361、 第二二向色片 362、 第一反射 装置 363及第二反射装置 364, 所述投影系统 300在偏振分束器 317之后的光路与 投影系统 200也有所不同。
[0088] 具体地, 所述第一图像光经由所述第一二向色片 361被引导至所述波长转换装 置 340。 本实施方式中, 所述第一图像光为第一颜色光 (如蓝色光) , 所述光转 换元件 341的第一分段区域 B为透射第一颜色光的透射式区域。 所述第一图像光 被所述第一分段区域 B透射至所述第一反射装置 363, 并进一步经由所述第二反 射装置 364反射至所述第二二向色片 362。
[0089] 第二分段区域 R包括波长转换材料且在所述第一图像光的照射下产生第二颜色 光 (即红色受激光) , 第三分段区域 G包括波长转换材料且在所述第一图像光的 照射下产生第三颜色光 (即绿色受激光) , 所述第二分段区域 R还将所述第二颜 色光反射至所述第一二向色片 361, 所述第三分段区域 G还将所述第二颜色光反 射至所述第一二向色片 361, 所述第一二向色片 361还将所述第二颜色光与第三 颜色光 (即红色受激光与绿色受激光, 也是所述光转换元件 341产生的受激光) 反射至所述第二二向色片 362。
[0090] 所述第二二向色片 362将所述第二反射装置 364提供的所述第一图像光、 以及所 述第一二向色片 361提供的所述第二颜色光与第三颜色光 (即所述光转换元件 34 1产生的受激光) 均引导至所述第二空间光调制器 330。
[0091] 所述波长转换装置 340的准直元件 342设置于邻近第一空间光调制器 320的一侧 , 所述第一空间光调制器 320射出的第一图像光依序经由所述第一二向色片 361 、 所述准直元件 342被提供至所述光转换元件 341, 所述光转换元件 341产生的受 激光经由所述准直元件 342准直后再被提供到所述第一二向色片 361。 所述第二 分段区域 R及第三分段区域 B上还设置有凹部 343, 所述凹部 343的内表面为反射 面, 用于对所述光转换元件 341射出受激光进行汇集以使所述受激光的光遵循所 述第一图像光的光强分布。 所述凹部 343可以布满所述第二分段区域 R及第三分 段区域 B, 相邻凹部 343之间具有间隙区域, 所述间隙区域为平面。 优选地, 所 述间隙区域的宽度尽可能小, 即相邻两个凹部 343之间的距离尽量小, 至少小于 所述凹部 343的宽度 (如为所述凹部 43的宽度的 1/4) , 在一种实施例中, 相邻凹 部 343的边缘可以相接。
[0092] 请参阅图 6, 图 6是图 5所述凹部 343的剖面结构示意图。 波长转换材料 344设置 于所述凹部 343中, 所述凹部 343可呈球形但不限于球形, 还可以为锥形、 多面 菱形或倒梯台形等形状, 具体地, 所述波长转换材料 344可以涂覆于所述凹部 34 3的内表面从而覆盖于所述凹部 343的整个内表面并形成凹陷状的反射式波长转 换材料表面。
[0093] 其中, 每一凹部 343对应接收并转换所述第一空间光调制器 320的一个或多个第 一调制单元射出的第一图像光, 优选地, 每一凹部 343对应接收并转换所述第一 空间光调制器 320的一个调制单元射出的第一图像光。 在一种实施方式中, 向一 个凹部 343提供第一图像光的第一调制单元的数量至多等于图像像素个数的 1/20
[0094] 进一步地, 每一凹部 343还向所述第二空间光调制器 330的至少一个第二调制单 元提供所述受激光。 若一个凹部接收第一空间光调制器 320的一个第一调制单元 射出的第一图像光, 则一个凹部向第二空间光调制器 330的几个第二调制单元提 供受激光, 具体所述第二调制单元的数量取决于两个空间光调制器 320、 330进 行空间光调制所依据的图像数据的分辨率之比。 [0095] 本实施方式中, 若第一空间光调制器 320进行图像调制所依据的图像数据的分 辨率比第二空间光调制器 330进行图像调制所依据的图像数据的分辨率低, 则每 一凹部 343出射的受激光被提供给所述第二空间光调制器 330的多个第二调制单 元。
[0096] 请参阅图 7及图 8, 图 7是本发明第三实施方式的投影系统的结构示意图, 图 8是 图 7所示投影系统的波长转换装置的平面结构示意图。 所述投影系统 400与所述 投影系统 300的结构基本相同, 也就是说, 上述针对所述投影系统 300的描述基 本上均可以用于所述投影系统 400, 二者的主要差别在于: 所述第三实施方式的 光转换元件 441为反射式波长转换装置, 其结构与光转换元件 341有所不同, 此 夕卜, 所述投影系统 400还包括第一二向色片 461, 所述投影系统 400在偏振分束器 417之后的光路与投影系统 300也有所不同。
[0097] 所述光转换元件 441的第一分段区域 B为反射区域, 所述第一图像光为紫外光, 所述第一分段区域 B具有波长转换材料, 第一空间光调制器 420经由所述第一二 向色片 461提供的第一图像光激发所述第一分段区域 B的波长转换材料产生第一 颜色光, 所述第一颜色光被所述第一分段区域 B反射且经由准直元件 442被提供 至所述第一二向色片 461, 所述第一二向色片 461将所述第一颜色光引导至第二 空间光调制器 430。 所述第一分段区域 B上也设置有凹部 443, 所述凹部 443与第 三实施方式中的凹部 343的结构基本相同, 所述凹部 443上也可以设置有用于产 生所述第一颜色光的波长转换材料。
[0098] 上述第二及第三实施方式中, 设置波长转换材料的表面形成这样的凹部 343、 4 43, 有助于聚拢入射至凹部区域的第一图像光所激发的受激光, 使得出射的受 激光的发散角变小。 如果设置波长转换材料的表面整个形成平面的话, 出射的 受激光的发散角很大, 使得受激光的光强分布难于遵循第一图像光的光强分布 。 进一步地, 优选将波长转换材料表面布满所述凹部 343、 443的整个内表面, 且第一图像光大致从垂直于凹部 343、 443入口的方向入射至凹部 343、 443, 从 凹部 343、 443出射受激光的主要部分大致沿第一图像光入射方向的相反方向出 射, 光强高的第一图像光激发形成的受激光也相对光强高, 而且没有大范围的 发散, 而是集中从大致垂直于凹部入口的方向出射, 从而可以使得光转换元件 3 41、 441出射的受激光的光强分布基本上遵循第一图像光的光强分布。
[0099] 因此, 由上述可知, 所述凹部 343、 443可以进一步对所述波长转换装置 340、 4 40射出的受激光进行汇聚, 减少所述波长转换装置 340、 440输出的受激光的散 射, 使得所述波长转换装置 340、 440射出的受激光更遵循所述第一图像光的光 强分布, 保证所述第一空间光调制器 220、 320的第一调制单元调制的一个像素 的图像光对应的受激光的绝大部分均被提供到所述第二空间光调制器 330、 430 对应的一个或多个第二调制单元, 而不会发生调制光错乱的情形, 本发明投影 系统 300、 400的投影效果更佳。 进一步地, 上述第二及第三实施方式中不仅与 第一实施方式一样, 通过波长转转装置位置以及光源装置的设计提高了投影系 统的出光效率, 还可以获得利用两个空间光调制器所得到的高图像对比度, 本 发明的投影系统出光效率、 亮度及对比度均较高。
[0100] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
1.一种投影系统, 其特征在于: 所述投影系统包括第一空间光调制器
、 第二空间光调制器及波长转换装置, 所述第一空间光调制器用于接 收光源光并对所述光源光进行调制而输出第一图像光, 所述波长转换 装置用于接收所述第一图像光并射出遵循所述第一图像光的光强分布 的转换光, 所述光转换元件包括设置有波长转换材料的分段区域, 所 述波长转换材料被所述第一图像光激发产生颜色不同于所述第一图像 光的受激光, 所述转换光包括所述受激光, 所述第二空间光调制器用 于对所述转换光进行图像调制而输出第二图像光, 所述第二图像光用 于显示投影图像。
2.如权利要求 1所述的投影系统, 其特征在于: 所述波长转换装置包 括光转换元件及准直元件, 所述光转换元件接收所述第一图像光并射 出所述转换光, 所述转换光经由所述准直元件准直后被提供到所述第 二空间光调制器。
3.如权利要求 2所述的投影系统, 其特征在于: 所述准直元件与所述 光转换元件层叠设置于一体。
4.如权利要求 3所述的投影系统, 其特征在于: 所述光转换元件从一 侧接收所述第一图像光并从另外一侧射出所述转换光, 所述准直元件 设置于所述光转换元件的所述另外一侧并对所述转换光进行准直。
5.如权利要求 4所述的投影系统, 其特征在于: 所述光转换元件还包 括位于第一图像光入射侧的滤光片或滤光膜, 该滤光片或滤光膜透射 第一图像光且反射所述受激光。
6.如权利要求 3所述的投影系统, 其特征在于: 所述第一图像光经由 所述准直元件被提供到所述光转换元件, 所述光转换元件从一侧接收 所述第一图像光并从该侧射出所述受激光, 所述受激光经由所述准直 元件准直后射出。
7.如权利要求 6所述的投影系统, 其特征在于: 所述受激光经由所述 准直元件准直后输出, 所述投影系统还包括二向色片, 所述第一图像 光经由所述二向色片被引导至所述波长转换装置, 所述受激光被反射 且准直后被所述二向色片引导至所述第二空间光调制器。
8.如权利要求 6所述的投影系统, 其特征在于: 所述光转换元件包括 多个凹部, 所述波长转换材料设置于所述凹部中, 所述凹部的内表面 为反射表面, 所述凹部用于对所述受激光进行汇集以使所述受激光的 光遵循对应的所述第一图像光的光强分布。
9.如权利要求 8所述的投影系统, 其特征在于: 所述多个凹部布满所 述光转换元件射出所述受激光的分段区域, 相邻凹部的边缘相接。 10如权利要求 9所述的投影系统, 其特征在于: 所述波长转换材料覆 盖于所述凹部的内表面从而形成凹陷状的波长转换材料表面。
11.如权利要求 1所述的投影系统, 其特征在于: 所述第一空间光调制 器为 LCOS调制器; 所述投影系统还包括激发光源和光偏振转换及回 收装置;
所述激发光源用于射出所述激发光;
所述光偏振转换及回收装置用于将所述激发光转换成第一偏振态的光 并将所述第一偏振态的光引导至所述第一空间光调制器;
所述第一空间光调制器依据图像数据调制所述第一偏振态的光, 将所 述第一偏振态的光的一部分转换成第二偏振态的所述第一图像光以及 剩余所述第一偏振态的光的一部分未转换, 所述第二偏振态的第一图 像光以及未转换的第一偏振态的光出射至所述光偏振转换及回收装置 所述光偏振转换及回收装置将所述第二偏振态的第一图像光以及未转 换的第一偏振态的光分离, 并将所述第二偏振态的第一图像光引导至 所述波长转换装置, 以及将所述未转换的第一偏振态的光引导至所述 第一空间光调制器, 所述光源光包括所述激发光转换成第一偏振态的 光及所述未转换的第一偏振态的光。
12.如权利要求 11所述的投影系统, 其特征在于: 所述光偏振转换及 回收装置包括反射镜、 匀光棒、 两个 1/4波片、 偏振器及偏振分束器 , 所述偏振器透射具有第一偏振态的光, 所述激发光经由所述反射镜 的通孔射入所述匀光棒、 在所述匀光棒内部反复反射、 并经由所述两 个 1/4波片后射入所述偏振器, 所述偏振器透射所述激发光中的第一 偏振态的光并反射所述激发光中的第二偏振态的光, 所述偏振分束器 反射具有第一偏振态的偏振光线并且透射具有第二偏振态的偏振光线 , 所述激发光中的第一偏振态的光被引导至所述偏振分束器并进一步 被反射至所述第一空间光调制器, 所述激发光中的第二偏振态的光被 反射至所述两个 1/4波片并被所述两个 1/4波片转换为第一偏振态的光
PCT/CN2017/109329 2016-11-09 2017-11-03 投影系统 WO2018086484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610989054.4 2016-11-09
CN201610989054.4A CN108061995B (zh) 2016-11-09 2016-11-09 投影系统

Publications (1)

Publication Number Publication Date
WO2018086484A1 true WO2018086484A1 (zh) 2018-05-17

Family

ID=62109448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109329 WO2018086484A1 (zh) 2016-11-09 2017-11-03 投影系统

Country Status (2)

Country Link
CN (1) CN108061995B (zh)
WO (1) WO2018086484A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048324A1 (zh) * 2020-09-05 2022-03-10 成都极米科技股份有限公司 一种混合光源系统及投影设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106349B2 (ja) * 2018-05-15 2022-07-26 キヤノン株式会社 光源装置および画像投射装置
CN110837199B (zh) * 2018-08-16 2021-10-12 深圳光峰科技股份有限公司 显示设备
CN113721414A (zh) * 2020-05-25 2021-11-30 深圳光峰科技股份有限公司 棱镜组件、发光装置和投影系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722074A (zh) * 2012-03-02 2012-10-10 深圳市光峰光电技术有限公司 偏振光发光装置、发光装置和投影机
US20120262676A1 (en) * 2011-04-12 2012-10-18 Ushio Denki Kabushiki Kaisha Light source device
CN102748715A (zh) * 2012-06-11 2012-10-24 深圳市绎立锐光科技开发有限公司 光源、投影显示装置和灯具
CN102854731A (zh) * 2012-07-24 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103713455A (zh) * 2012-09-28 2014-04-09 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
US20160227178A1 (en) * 2013-10-28 2016-08-04 Dell Products, Lp Hybrid Light Engine for Projector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120262676A1 (en) * 2011-04-12 2012-10-18 Ushio Denki Kabushiki Kaisha Light source device
CN102722074A (zh) * 2012-03-02 2012-10-10 深圳市光峰光电技术有限公司 偏振光发光装置、发光装置和投影机
CN102748715A (zh) * 2012-06-11 2012-10-24 深圳市绎立锐光科技开发有限公司 光源、投影显示装置和灯具
CN102854731A (zh) * 2012-07-24 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103713455A (zh) * 2012-09-28 2014-04-09 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
US20160227178A1 (en) * 2013-10-28 2016-08-04 Dell Products, Lp Hybrid Light Engine for Projector
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048324A1 (zh) * 2020-09-05 2022-03-10 成都极米科技股份有限公司 一种混合光源系统及投影设备

Also Published As

Publication number Publication date
CN108061995B (zh) 2020-05-15
CN108061995A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
US9081268B2 (en) Lighting device and projection-type display apparatus including lighting device
US9740088B2 (en) Light source apparatus and projection display apparatus provided with same including waveplate and dichroic prism
US10257480B2 (en) Projection display apparatus and projection method for projection display apparatus
WO2018086484A1 (zh) 投影系统
CN112147836B (zh) 一种光源系统及显示设备
US8944606B2 (en) Projector having color separation optical system with reflecting curved surface
US11822221B2 (en) Light source system and projection apparatus
WO2020057299A1 (zh) 光源系统及投影设备
JP6406736B2 (ja) プロジェクタおよび画像表示方法
US20180329282A1 (en) Light source apparatus and projector
US11402735B2 (en) Projection system for projection display
JP2015108758A (ja) 照明装置、投射型映像表示装置、照明方法、および投射型映像表示方法
JP2020516930A (ja) 表示システム
JP2011215531A (ja) プロジェクター
JP2007065412A (ja) 照明装置及び投写型映像表示装置
KR100975057B1 (ko) 투사형 화상표시장치
WO2018133501A1 (zh) 一种投影显示系统
JP2017032631A (ja) プロジェクタ
JP2001005097A (ja) 反射型カラープロジェクター
JP6862904B2 (ja) 光源装置およびプロジェクター
WO2022037416A1 (zh) 光回收组件及投影装置
CN112213909B (zh) 光源系统与显示设备
US20220128894A1 (en) Wavelength conversion apparatus, light source system and display device
KR100698752B1 (ko) 프로젝션 디스플레이의 광학계
JPH10319351A (ja) 投射装置用照明装置及び投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868681

Country of ref document: EP

Kind code of ref document: A1