WO2022037416A1 - 光回收组件及投影装置 - Google Patents
光回收组件及投影装置 Download PDFInfo
- Publication number
- WO2022037416A1 WO2022037416A1 PCT/CN2021/110770 CN2021110770W WO2022037416A1 WO 2022037416 A1 WO2022037416 A1 WO 2022037416A1 CN 2021110770 W CN2021110770 W CN 2021110770W WO 2022037416 A1 WO2022037416 A1 WO 2022037416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- assembly
- polarizer
- polarized
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/208—Homogenising, shaping of the illumination light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133526—Lenses, e.g. microlenses or Fresnel lenses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/005—Projectors using an electronic spatial light modulator but not peculiar thereto
- G03B21/006—Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2066—Reflectors in illumination beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2073—Polarisers in the lamp house
Definitions
- the present application relates to the technical field of optical instruments, in particular to a light recycling assembly and a projection device.
- the traditional LCD (Liquid Crystal Display, liquid crystal display) projector is very similar in principle to the traditional movie projector and slide projector, that is, in the position where the original movie film or slide is located, the LCD liquid crystal panel is used as the image source.
- the light bulb or LED Light Emitting Diode
- the light bulb or LED performs strong light projection, and then undergoes light shaping, imaging, and keystone correction. Users can obtain images of tens to hundreds of inches in size, and can obtain the effect and experience of watching movies.
- the existing LCD projection has problems such as too large volume, many optical components, and low efficiency.
- the illuminating light is generally polarized by a light-enhancing sheet in advance, which can effectively reduce the damage caused by the first polarizer 110 .
- the illumination light will pass through the black film 120 , the TFT electrode layer 130 , the liquid crystal 140 , the transparent electrode layer 150 , the color filter 160 and the second polarizer 170 successively.
- LCD projection has the problem of low efficiency in use, mainly for the following reasons:
- the LCD liquid crystal panel will be provided with two layers of black film 120 on the upper and lower layers, which also brings about the loss of light efficiency;
- the existing LCD liquid crystal panel divides a large pixel into three RGB small pixels through a color film and a black film on a large pixel to realize full-color display.
- the color filter can only transmit light of a specific color (spectrum), and the rest of the light will not be used by the subsequent optical system, which will eventually cause about 66% of energy efficiency loss and low utilization.
- Single DLP (Digital Light Processing) and LCOS (Liquid Crystal on Silicon) display technology can achieve full-color display without reducing light efficiency.
- Illumination light of three colors of RGB is output separately, and the spatial light modulator modulates the light of a specific color in time sequence to realize the full-color display of one frame of picture.
- this method will bring about the phenomenon that the RGB colors do not overlap at the edges of the color image, also known as the rainbow effect (color breakup).
- the reason for the formation of the rainbow effect is that in an image frame, the RGB sub-frame images displayed in time series cannot overlap the imaging positions on the retina of the human eye, which is more obvious for the moving color images on the screen, and will bring dizziness to the audience. make improvements.
- the purpose of the present application is to provide a light recycling assembly and a projection device to solve the above problems.
- the embodiments of the present application achieve the above objects through the following technical solutions.
- the embodiments of the present application provide a light recycling assembly, including a shaper and a polarizer assembly, wherein,
- the shaper is used for shaping the illumination light input to the light recycling assembly to form non-image light and image light having a preset spot shape, the image light irradiates the polarizer assembly, and the non-image light is irradiated to the polarizer assembly.
- the light is recovered by the shaper; the polarizer assembly is used for splitting the image light into a first polarized light and a second polarized light with a polarization state different from the first polarized light, the first polarized light
- the polarized light is used for optical modulation, and the second polarized light is recovered by the polarizer assembly; wherein, the non-image light and the second polarized light together constitute recovered light.
- the shaper is integral with the polarizer assembly.
- the shaper includes opposing first and second surfaces, the illumination light is incident from the first surface, and the image light is emitted from the second surface; the polarizer The device includes a third surface and a fourth surface, the image light is incident from the third surface, and the first polarized light is emitted from the fourth surface; the third surface abuts the second surface .
- the shaper further includes two symmetrically arranged reflection parts, each of the reflection parts is arranged and connected between the first surface and the second surface, each of the reflection parts is arranged and connected between the first surface and the second surface
- the part is used for reflecting the non-image light to the other reflecting part, and recovering the non-image light reflected by the other reflecting part.
- the shape of the second surface of the shaping device is a preset shape, and the illumination light is shaped to form the image light.
- the polarizer assembly includes two interconnected polarizing beam splitting prisms, each of the polarizing beam splitting prisms includes the third surface and the fourth surface, and is located on the third surface.
- the polarizing beam splitting film between the surface and the fourth surface, the two polarizing beam splitting films are perpendicular to each other and are arranged symmetrically with each other; each of the polarizing beam splitting films is used for transmitting the first polarized light, and for The second polarized light is reflected to the other polarizing beam splitting film, and the second polarized light reflected by the other polarizing beam splitting film is recovered.
- Embodiments of the present application further provide a projection system, including a light exit assembly, a light valve, and the above-mentioned light recovery assembly, wherein the light recovery assembly and the light valve are sequentially arranged on the light exit light path of the light exit assembly; wherein , the light emitting component is used for emitting the illuminating light and reflecting the recovered light to the light recovery component; the light valve includes a display surface for modulating the light irradiated on the display surface ; The light recycling assembly guides the first polarized light to the display surface, and guides the recycled light to the light exit assembly, wherein the preset spot shape of the first polarized light is the same as the The shape of the imaging surface is adapted.
- the light-emitting component includes a laser module and a color wheel
- the laser module is used for emitting excitation light
- the color wheel is arranged on the light-emitting light path of the laser module, and is used for receiving the excitation light and generating the illuminating light, and using Diffuse reflection of recycled light back to the color wheel.
- the color wheel includes a transparent substrate, a scattering sheet and a polarizer
- the transparent substrate includes a light incident surface of the substrate and a light exit surface of the substrate opposite to each other
- the scattering sheet is arranged on the light entrance surface of the substrate
- the polarizer is arranged on the light exit surface of the substrate
- the excitation light passes through the scattering plate and the polarizing plate in turn to form illumination light
- the polarizing plate is also used to split the recovered light recovered to the polarizing plate and then partially reflect it to the light recovery component.
- the color wheel includes a reflective substrate, a phosphor layer and a scattering sheet
- the reflective substrate includes a reflective surface of the substrate
- the phosphor layer and the scattering sheet are arranged on the reflective surface of the substrate, and excitation light is incident on the phosphor layer and excited to generate fluorescence
- the phosphor layer is also used to diffusely reflect the recovered light recovered to the phosphor layer
- the excitation light is incident on the scattering sheet and reflected to form illumination light
- the scattering sheet is also used to diffuse the recovered light recovered to the scattering sheet. reflection.
- the projection display device further includes a collection lens group, the collection lens group is arranged on the light path between the color wheel and the light recovery assembly, and is used for collecting the illumination light to the light recovery assembly, and for collecting the recovered light to the color wheel.
- the projection device further includes a microlens array, and the microlens array is disposed on the imaging surface.
- the light recovery component provided by the embodiment of the present application has both a shaper and a light deflection component, beam shaping and recovery can be realized through only one component, which reduces the volume of the entire optical path design, reduces the cost, and improves the performance of the optical system.
- the light utilization efficiency is improved, and it can be flexibly applied to various projection, lighting and other display scenarios; at the same time, in the projection system provided by the embodiment of the present application, the illumination light is shaped and split by the light recycling component to form a first light beam that is emitted to the display surface.
- the shape of the spot of the first polarized light is adapted to the shape of the display surface, all areas of the display surface can be illuminated by the light beam, and the light beam finally incident on the display surface has a specific polarization direction. light beam, which can effectively avoid the problem of color crosstalk.
- the light recycling component is also used to guide the rest of the illumination light to the light emitting component to form recycled light, and the recycled light can be re-incident to the light recycling component after being reflected by the light emitting component to realize light cycle, which effectively improves the utilization efficiency of light.
- FIG. 1 is a schematic structural diagram of an LCD liquid crystal panel in the related art.
- FIG. 2 is a schematic structural diagram of a projection apparatus provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of a projection of a light beam provided by an embodiment of the present application on a shaper.
- FIG. 4 is an exploded schematic diagram of the light recycling assembly provided by the embodiment of the present application.
- FIG. 5 is another schematic structural diagram of a projection apparatus provided by an embodiment of the present application.
- FIG. 6 is an optical path diagram of the projection device provided by the embodiment shown in FIG. 5 .
- FIG. 7 is a schematic structural diagram of a projection apparatus provided by another embodiment of the present application.
- FIG. 8 is an optical path diagram of the projection device provided by the embodiment shown in FIG. 7 .
- FIG. 2 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
- the projection device 200 includes a light output assembly 210, a light recovery assembly 220 and a light valve 230.
- the light recovery assembly 220 and the light valve 230 are sequentially arranged on the light output assembly. 210 on the light-emitting light path.
- the light valve 230 includes a display surface 231 for modulating the light incident on the display surface 231 to form an optical image.
- the light emitting component 210 is used for emitting the illumination light L 1
- the light recovery component 220 is used for shaping and splitting the illuminating light L 1 to form the first polarized light L 41 , which is emitted to the display surface 231 , and guides the rest of the illuminating light to the imaging surface 231 .
- the light emitting component 210 forms the recovered light L 3 , and the shape of the light spot of the first polarized light L 41 is adapted to the shape of the display surface 231 .
- the light emitting component 210 is also used to reflect the recovered light L 3 to the light recovery component 220 .
- the light valve 230 also known as a liquid crystal light valve, is a key device for modulating the illuminating light emitted from the light recycling component 220. Generally, the light valve 230 uses a light beam with a specific polarization direction. In this embodiment, the imaging surface 231 is used to modulate the first polarized light L 41 .
- the projection device 200 may further include a lens 240, and the light beam modulated and output by the display surface 231 can be projected onto a screen to form a projection image after being imaged by the lens 240.
- the display surface 231 is generally rectangular.
- the cross-sectional shape of the light spot is usually circular or approximately circular. If the entire imaging surface 231 is to be covered by the circular light beam, the light from the edge part of the light beam will be projected to the area outside the imaging surface 231. Since this part of the light cannot enter the imaging surface 231, resulting in The waste of light leads to low utilization efficiency of light.
- the projection device 200 shapes and splits the illumination light L 1 through the light recycling component 220 to form the first polarized light L 41 emitted to the display surface 231 . It is adapted so that all areas of the display surface 231 can be illuminated by the light beam, and the light beam finally incident on the display surface 231 is a light beam with a specific polarization direction, which can effectively avoid the problem of color crosstalk.
- the light recycling component 220 is also used to guide the rest of the illumination light to the light outputting component 210 to form the recycled light L3, and the recycled light L3 can be re - incident to the light recycling component 220 after being reflected by the light outputting component 210, so as to realize light circulation and effectively improve the light output. utilization efficiency. At the same time, since only one light recovery component is provided, beam shaping and recovery are realized at the same time, the volume of the entire optical path design is reduced, and the cost is reduced.
- the light recycling assembly 220 may include a shaper 221 and a polarizer assembly 222, wherein the shaper 221 is used to shape the illumination light input to the light recycling assembly 220 to form non-image light and image light with a preset spot shape, The image light is irradiated to the polarizer assembly 222, and the non-image light is recovered by the shaper 221.
- the polarizer assembly 222 is used to split the image light into a first polarized light and a second polarized light with a different polarization state from the first polarized light Light, the first polarized light is used for optical modulation, the second polarized light is recovered by the polarizer assembly 222, and the non-image light and the second polarized light together constitute recovered light.
- the shaper 221 is used to shape the illumination light L1 into the image light L22 emitted to the display surface 231 and the non - image light L21 emitted outside the display surface 231, and to transform at least part of the non-image light L22 Guided to the light exit assembly 210 as the recovered light L 3 .
- the polarizer assembly 222 is arranged on the light exit light path of the shaper 221, and is used for dividing the image light L 22 into a first polarized light L 41 and a second polarized light L 42 having a different polarization state from the first polarized light L 41 , and transmits the first polarized light L 41 to the developing surface 231 , and guides the second polarized light L 42 to the light emitting component 210 as the recovered light L 3 .
- FIG. 2 only shows a schematic diagram of light transmission of the upper half of the optical axis X of the light recycling assembly 220 , and the same is true for the symmetrical part.
- the light beam emitted from the light emitting component 210 to the light recycling component 220 includes the illumination light L 1 emitted by the light emitting component 210 and the recycled light reflected by the light recycling component 220 .
- the non-image light L 21 is a large-angle light beam in the light beam emitted by the light emitting element 210 to the light recovery element 220
- the image light L 22 is a small-angle light beam in the light beam emitted by the light output element 210 to the light recovery element 220 .
- the angle between the large angle light and the optical axis X of the light recovery component 220 may be greater than the set angle, and the angle between the small angle light and the optical axis X of the light recovery component 220 may be smaller than the set angle.
- the non-image light L 21 includes light in the A area and light in the C area, and the shaper 221 can only be used to guide the light in the A area to the light-emitting component 210 , that is, to be projected to the outside of the two sides in the length direction of the imaging surface 231 .
- the non-image light L 21 is guided to the light emitting assembly 210, so that the non-image light L 21 that cannot be projected to the developing surface 231 can be recycled to the light emitting assembly 210, and is reflected by the light emitting assembly 210 and then returned to the light recycling assembly 220.
- the recycling of light can improve the light efficiency.
- the shaper 221 can also be used to guide the light in the area A and the light in the C area to the light extraction component 210 , that is, to guide all the non-image light L 21 to the light extraction component 210 .
- the shaper 221 can also be used only to guide the light in the C area to the light-emitting component 210 , that is, to guide the non-image light L 21 projected on both sides in the width direction of the display surface 231 to the light-emitting component 210 .
- the image light L 22 is light in the B region, and the shaper 221 transmits the image light L 22 to the polarizer assembly 222 for splitting to form a first polarized light L 41 and a second polarized light L 42 , and the first polarized light L 41 completely covers the developing surface. 231, so that all areas on the imaging surface 231 can be visualized.
- the shape of the display surface 231 is a preset shape
- the light-emitting surface of the shaper 221 (that is, the second surface in the following) is set as a preset shape, so that the shaped first polarization
- the preset light spot shape of the light L 41 is a preset shape; when the shape of the display surface 231 is some other preset shapes such as a triangle or a trapezoid, the light emitting surface of the shaper 221 is set so that the shaped first polarization
- the preset light spot shape of the light L 41 is a corresponding triangle, a trapezoid or other preset shapes, and those skilled in the art can adaptively adjust the light-emitting surface of the shaper 221 according to the actual structure of the light valve 230, so that the first polarization after the shaping is adjusted.
- the preset spot shape of the light L 41 satisfies the requirements.
- the first polarized light L 41 may be P-polarized light or S-polarized light.
- the second polarized light L 42 is S-polarized light.
- the first polarized light L 41 is S polarized light
- the second polarized light L 42 is P polarized light.
- the light valve 230 is suitable for modulating P-polarized light
- the first polarized light L 41 is P-polarized light
- the second polarized light L 42 is S-polarized light.
- the shaper 221 includes a first surface 2211 and a second surface 2212 , the illumination light L 1 is incident from the first surface 2211 , and the image light L 22 is emitted from the second surface 2212 .
- the polarizer assembly 222 includes a third surface 2221 and a fourth surface 2222, the image light L 22 is incident from the third surface 2221, the first polarized light L 41 is emitted from the fourth surface 2222, and the third surface 2221 abuts against the second surface 2212.
- the shaper 221 and the polarizer assembly 222 are connected as a whole, which reduces the space occupied by the light recovery assembly 220, facilitates processing and manufacturing, and can avoid the damage between the shaper 221 and the polarizer assembly 222 when the temperature changes. Relative displacement or dislocation occurs between them.
- the area of the third surface 2221 may be greater than or equal to the area of the second surface 2212, so that the third surface 2221 can receive all the image light L 22 emitted from the second surface 2212, and the utilization rate of light energy is the highest.
- the third surface 2221 is adhered to the second surface 2212 by adhesive, and the adhesive may be adhesive with a refractive index similar to that of the shaper 221 and the polarizer assembly 222 .
- the light recovery assembly bracket can be used to fix the shaper 221 and the polarizer assembly 222 by external force, so as to enhance the light transmittance.
- FIG. 4 is an exploded schematic diagram of the light recovery assembly provided by the embodiment of the present application.
- the shaper 221 further includes two reflection parts 2213 symmetrical about the optical axis X of the light recovery assembly 220 .
- the parts 2213 are all disposed and connected between the first surface 2211 and the second surface 2212, and each reflecting part 2213 is used to reflect the non-image light L 21 to the other reflecting part 2213, and reflect the light reflected by the other reflecting part 2213.
- the non-image light L 21 is reflected to the light emitting component 210 . Thereby, recycling of the non-image light L 21 can be realized.
- the reflection part 2213 may be a flat surface or a serrated uneven surface, as long as it can reflect light.
- the reflection part 2213 may also be coated with a reflection enhancement film to enhance the reflection effect of the reflection part 2213 and reduce the loss of light energy during reflection.
- the reflection part 2213 is inclined at 45° relative to the optical axis X of the light recovery component 210 , so that the non-image light L 21 vertically incident on the first surface 2211 can be incident on the reflection part 2213 at 45° to the reflection part 2213 , and After being reflected by another reflecting portion 2213, it is emitted from the first surface 2211 in a direction perpendicular to the first surface 2211, that is, the non-image light L 21 can be recycled to the light-emitting component 210 after total reflection by the two reflecting portions 2213, effectively avoiding the light emission. waste, and further improve the utilization rate of light.
- the first surface 2211 and the second surface 2212 can be both rectangular, and the shape and size of the second surface 2212 are consistent with the shape and size of the display surface 231, so that the first polarized light L 41 can cover the display surface 231, and the display surface 231 can be covered by the first polarized light L 41.
- the entire area of the image plane 231 can be irradiated by the first polarized light L 41 , and at the same time, the projection of the first polarized light L 41 to the outside of the image plane 231 is avoided, thereby reducing the use efficiency of light.
- the shaper 221 further includes two connecting portions 2214 disposed opposite to each other, and the connecting portions 2214 may be flat surfaces or serrated concave-convex surfaces.
- Each connecting portion 2214 is connected between the first surface 2211 , the second surface 2212 and the two reflecting portions 2213 .
- the connecting portion 2214 may be perpendicular to the first surface 2211 and the second surface 2212 respectively, that is, the connecting portion 2214 is parallel to the optical axis X of the light recycling component 220 , so as to simplify the manufacturing process of the shaper 221 .
- the connecting portion 2214 can also be inclined at a predetermined angle relative to the optical axis X of the light recycling assembly 220, so that each connecting portion 2214 can also be used to reflect the light in the C region to the other connecting portion 2214, and the other connecting portion 2214.
- the light reflected by the connecting portion 2214 is reflected to the light emitting component 210 to realize the recycling of the light in the C area, so that all the non-image light L 21 can be recovered, so as to further improve the light recovery efficiency of the projection device 200 .
- the connecting portion 2214 may be inclined by 45° with respect to the optical axis X of the light recycling assembly 220 .
- the connecting portion 2214 is an isosceles trapezoid plane
- the lower base of the isosceles trapezoid plane is connected to the first surface 2211
- the upper base of the isosceles trapezoid is connected to the second surface 2212
- the waists of the isosceles trapezoid are respectively connected to the two surfaces. reflector 2213.
- a truncated truncated prism can be used as the shaper 221 , the upper bottom surface of the truncated truncated prism is the second surface 2212 , the lower bottom surface is the first surface 2211 , and each side surface is two reflection parts 2213 and two Connection part 2214.
- the polarizer assembly 222 includes two polarizing beam splitting prisms 223 connected to each other, and the two polarizing beam splitting prisms 223 are connected as a whole, so as to avoid the occurrence of relative positions between the two polarizing beam splitting prisms 223 when the temperature changes. or misplaced.
- the two polarizing beam splitting prisms 223 may be adhered by adhesive, and the adhesive may be adhesive with a refractive index similar to that of the material of the polarizing beam splitting prism 223 .
- the two polarizing beam splitting prisms 223 can also be fixed by external force through the polarizer bracket without providing glue, so as to enhance the light transmittance.
- Each polarizing beam splitting prism 223 includes a third surface 2221 and a fourth surface 2222, and a polarizing beam splitting film 2231 located between the third surface 2221 and the fourth surface 2222, the two polarizing beam splitting films 2231 are perpendicular to each other, and are related to light recovery
- the optical axis X of the assembly 210 is arranged symmetrically.
- the image light L 22 is split by the polarizing beam splitting films 2231 to form the first polarized light L 41 and the second polarized light L 42 , each of which is used for transmitting the first polarized light L 41 to the developing surface 231 and for
- the second polarized light L 42 is reflected to the other polarizing beam splitting film 2231 , and the second polarized light L 42 reflected by the other polarizing beam splitting film 2231 is reflected to the light emitting component 210 .
- the polarizer assembly 222 can realize the recovery and polarization of light at the same time through the two polarizing beam splitting prisms, few optical elements are used, and the structure design is simple and practical.
- the polarizing beam splitting prism 223 may include two right angle prisms 224, the inclined surfaces of the two right angle prisms 224 are glued to each other, and a polarization beam splitting film 2231 is provided on the inclined surface of one right angle prism 224.
- the third surface 2221 is the right-angle side of one of the right-angle prisms 224 facing the shaper 221
- the fourth surface 2222 is the right-angle side of the other right-angle prism 224 facing away from the shaper 221 .
- the light valve 230 is suitable for modulating P-polarized light
- the polarizing beam splitting film 2231 can be a dielectric film with the functions of transmitting P-polarized light and reflecting S-polarized light, so that the P-polarized light can pass completely, and the S-polarized light can be The total reflection occurs between the two polarizing beam splitting films 2231 and then incident to the light emitting component 210, which effectively avoids the waste of light and further improves the utilization rate of light.
- FIG. 5 is another schematic structural diagram of the projection device provided by the embodiment of the present application.
- the light emitting assembly 210 includes a laser module 211 and a color wheel 212 .
- the laser module 211 uses After emitting the excitation light L 0 , the color wheel 212 is arranged on the light-emitting light path of the laser module 211 , for receiving the excitation light L 0 and generating the illumination light L 1 , and for diffusing the recovered light recovered to the color wheel 212 , the diffusely reflected recovered light can be incident on the light recovery component 220 for reuse.
- the diffuse reflection effect of the color wheel 212 can convert the second polarized light L 42 into natural light without polarization direction. After the natural light without polarization direction passes through the action of the collection lens group 250, the light with a large angle is irradiated to the shaper 221, and the light with a small angle is irradiated to the shaper 221. The light passes through the shaper 221 and is irradiated to the polarizer assembly 222 for splitting to form a first polarized light incident on the display surface 231, so that it can be reused.
- the color wheel 212 can be a rotating color wheel, a belt-shaped barrel wheel, or a periodic translation plate, etc., as long as the device can excite the fluorescence and reflect the recovered light back into the optical path, it belongs to the scope of protection of the concept of the present application.
- the laser module 211 may include three laser generators 2111 arranged in an array in sequence, and each laser generator 2111 is used to emit blue excitation light L 0 .
- the light emitting assembly 210 may also include a homogenizing device 213 and a positive lens 214.
- the number of the homogenizing devices 213 and the positive lens 214 is consistent with the number of the laser generators 2111, and the excitation light L 0 emitted by each laser generator 2111 passes through the homogenizing device 213. After shaping, it is incident on the positive lens 214 and then imaged on the color wheel 212 by the positive lens 214.
- the positive lens 214 can converge the excitation light L 0 to reduce the divergence angle of the excitation light L 0 .
- the color wheel 212 can be a transmissive color wheel, the color wheel 212 can include a transparent substrate 2121, a scattering sheet 2122 and a polarizer 2123, the transparent substrate 2121 includes a light incident surface 2127 and a light exit surface 2128 of the substrate opposite, and the light incident surface 2127 of the substrate Facing the laser module 211, the scattering sheet 2122 is arranged on the light incident surface 2127 of the substrate, and the polarizer 2123 is arranged on the light exit surface 2128 of the substrate. It is also used to split the recovered light recovered to the polarizer 2123 and then partially reflect it to the light recovery component 220 .
- the scattering sheet 2122 is used to scatter the incident excitation light L 0 , and the excitation light L 0 can pass through the scattering sheet 2122 to form divergent outgoing light, and has the effect of eliminating laser speckle.
- the polarizer 2123 can be a polarizing beam splitter with the functions of transmitting P-polarized light and reflecting S-polarized light. When the recovered light is recycled to the polarizer 2123, it will split to generate P-polarized light and S-polarized light, and the S-polarized light can be separated by the polarizer. 2123 is reflected to the light recycling component 220 for reuse, and the P-polarized light will pass through the polarizer 2123 to form useless light.
- the polarizer 2123 is used for recycling S-polarized light, avoiding waste of S-polarized light and P-polarized light passing through the scattering sheet 2122 at the same time to form useless light, which can realize as much light circulation as possible, and further improve the utilization efficiency of light.
- the color wheel 212 may further include a phosphor layer 2124, the phosphor layer 2124 is disposed on the transparent substrate 2121, and the excitation light L 0 is excited through the phosphor layer 2124 to generate fluorescence as the illumination light L 1 .
- the phosphor layer 2124 has a rough surface, and the phosphor layer 2124 is also used to diffusely reflect the recovered light recovered to the phosphor layer 2124 and then re-enter the light recovery component 220 to realize light reuse.
- the phosphor layer 2124 may include a red phosphor layer 2125 and a green phosphor layer 2126, and the red phosphor layer 2125, the green phosphor layer 2126 and the scattering plate 2122 (or the polarizer 2123) are arranged concentrically and correspond to a laser generator respectively 2111.
- the blue excitation light L 0 emitted by one of the laser generators 2111 passes through the red phosphor layer 2125 to generate red illumination light L 1
- the blue excitation light L 0 emitted by the other laser generator 2111 passes through the green phosphor layer.
- the light emitting component 210 can generate illumination lights of three different colors that are spatially separated from each other.
- the projection device 200 may further include a collection lens group 250, the collection lens group 250 is arranged on the optical path between the light exit assembly 210 and the light recovery assembly 220, and is used for collecting the illumination light L1 emitted by the light exit assembly 210 to the light recovery assembly 220, and Used to collect the recovered light reflected by the light recovery component 220 to the color wheel 212 .
- the collection lens group 250 is used to reduce the divergence angle of the light beams to realize the convergence of the light beams.
- the collecting lens group 250 may include two elliptical collecting lenses, wherein one collecting lens is close to the light recovery assembly 220, and the other collecting lens is close to the light emitting assembly 210, so as to achieve better light collecting effect.
- the light beams of the three colors generated by the light emitting component 210 are incident on the light recovery component 220 after passing through the collection lens group 250, and the light beams of the three colors are superimposed on the incident surface of the light recovery component 220, and the light beams of the three colors are in angular space. Separated from each other, the spatial solid angles do not overlap with each other, but in surface space, because the propagation distance is not far enough, the beams of these three colors will overlap each other in the near field to form white light.
- the non-image light L 21 is a large-angle light beam in the light beam emitted by the color wheel 212 to the light recovery assembly 220
- the image light L 22 is a small angle light beam in the light beam emitted by the color wheel 212 to the light recovery assembly 220
- the angle between the large angle light and the optical axis X of the light recovery assembly 220 may be greater than the set angle ⁇
- the angle between the small angle light and the optical axis X of the light recovery assembly 220 may be smaller than the set angle ⁇ .
- the red phosphor layer 2125 is located at the innermost side of the color wheel 212, the first end point is set at the side of the red phosphor layer 2125 close to the center of the color wheel 212, and the second end point is located at the center of the color wheel 212.
- the set angle ⁇ can be approximately equal to the angle value between the connection line between the first end point and the second end point and the optical axis X of the light recovery assembly 220, so as to ensure The light with the largest angle can be completely recycled and reused, which further improves the light utilization efficiency.
- the non-image light L 21 returns to the collection lens group after the shaper 221 has two total reflections 250, and then image the respective light-emitting surfaces.
- the red light will return to the red phosphor layer 2125 , diffusely reflect and exit, and be reused by the light recycling component 220 .
- the green light will return to the green phosphor layer 2126 , and then diffusely reflect and exit, and be reused by the light recycling component 220 .
- the blue light will return to the polarizer 2123 to be split to form P-polarized light and S-polarized light.
- the S-polarized light will be reflected to the collection lens group 250 and reused by the light recycling component 220.
- the P-polarized light will pass through the polarizer 2123, forming a useless Light.
- the shaped light L3 entering the polarizer assembly 222 is split to form a first polarized light L41 (eg, P polarized light) and a second polarized light L42 (eg, S polarized light), and the second polarized light L42 is reflected twice Then, it returns to the collection lens group 250, and then returns to the respective light-emitting areas on the color wheel 212, and then exits through the diffuse reflection of the red phosphor layer 2125 and the green phosphor layer 2126 to form natural light that can be reused to realize light recycling.
- the light beam reflected to the polarizer 2123 is split and emitted, and the S-polarized light therein can be reused.
- the projection device 200 may further include a microlens array, which is disposed on the imaging surface of the light valve 230 , and the microlens array may include a plurality of microlenses, each of which covers at least two pixels on the light valve 230 .
- the incident light of the three colors separated from each other in angular space will undergo face angle conversion after passing through the microlens array, that is, after passing through the microlens array, the light separated in angular space will be separated in face space, so that the light beams of different colors It will illuminate the corresponding liquid crystal pixels to avoid the TFT wires in the light valve 230, thereby effectively reducing the loss of light efficiency caused by the TFT wires, improving the utilization efficiency of light, increasing the maximum output brightness, and reducing the light valve.
- the heat on 230 increases the reliability of the light valve 230.
- the color wheel 212 may be a reflective color wheel, and the color wheel 212 may include a reflective substrate 2171 , a phosphor layer 2172 and a scattering sheet 2173, the reflective substrate 2171 includes a substrate reflecting surface 2176, the phosphor layer 2172 and the scattering sheet 2173 are arranged on the substrate reflecting surface 2176, the excitation light L 0 is incident on the phosphor layer 2172 and excited to generate fluorescence as illumination
- the light L 1 and the phosphor layer 2172 are also used to diffusely reflect the light beam recovered to the phosphor layer 2172 , so that the light beam can be re-incident to the light recovery component 220 to realize light recycling.
- the excitation light L 0 is also incident on the scattering sheet 2173 and reflected to form the illumination light L 1 , and the scattering sheet 2173 is also used to diffusely reflect the recovered light recovered to the scattering sheet 2173, so that the light beam can be re-incident to the light recovery assembly 220 to achieve light cycle.
- the reflective surface 2176 of the substrate can be coated with a material with diffuse reflection properties
- the phosphor layer 2172 and the scattering sheet 2173 are provided on the reflective surface 2176 of the substrate
- the phosphor layer 2172 can include a red phosphor layer 2174 and a green phosphor layer 2175.
- the powder layer 2174, the green phosphor layer 2175 and the scattering sheet 2173 are arranged concentrically.
- the collecting lens group 250 is disposed on the optical path between the color wheel 212 and the light recycling assembly 220 for collecting the illumination light to the light recycling assembly 220 and for collecting the light beams of the light reflected by the light recycling assembly 220 Collect to color wheel 212.
- the laser module 211 can be a laser generator for emitting blue excitation light L 0 .
- the light emitting component 210 may further include a light homogenizing device 215 and a reflecting mirror 216.
- the light homogenizing device 215 and the reflecting mirror 216 are sequentially arranged on the light exit light path of the laser module 211, and the blue excitation light emitted by the laser module 211
- L 0 is incident on the homogenizing device 215 , it is shaped into three blue excitation light beams L 0 with different exit directions, which are then reflected by the mirror 216 to the collection lens group 250 , and then imaged on the color wheel 212 .
- the homogenizing device 215 can be a fly-eye lens, which is formed by a combination of a series of small lenses, which can obtain high light energy utilization rate and uniform illumination of a large area.
- the reflection mirror 216 can be a polarized coated glass sheet, and the reflection mirror 216 is located outside the optical path between the collection lens group 250 and the light recovery component 220 to prevent the transmission path of the illumination light from being blocked.
- the laser module 211 may also include three laser generators, and the three laser generators are used to generate three blue laser beams with different exit directions.
- three blue laser beams with different emitting directions pass through the collecting lens group 250 and then form images on the red phosphor layer 2174 , the green phosphor layer 2175 and the diffusing sheet 2173 respectively.
- the red phosphor layer 2174 is excited to generate red illumination light
- another blue laser beam is excited at the green phosphor layer 2175 to generate green illumination light
- the remaining blue laser beam is reflected on the scattering sheet 2173 to generate blue illumination Light.
- the light emitting component 210 can generate illumination lights of three different colors that are spatially separated from each other.
- the three-color illumination light generated by the light-emitting component 210 is incident on the light-recovery component 220 after passing through the collection lens group 250, and the three-color light beams are superimposed on the incident surface of the light-recovery component 220. They are separated from each other in space, and the solid angles of space do not overlap each other, but in surface space, because the propagation distance is not far enough, the light beams of these three colors will overlap each other in the near field to form white light.
- FIG. 8 is an optical path diagram of the projection device provided by the embodiment shown in FIG. 7 .
- the non-image light returns to the collection lens group 250 after two total reflections by the shaper 221 , and is then imaged on the respective Glowing face.
- the red light will return to the red phosphor layer 2174 , and then diffusely reflect and exit, and be reused by the light recycling component 220 .
- the green light will return to the green phosphor layer 2175 , and then diffusely reflect and exit, and be reused by the light recycling component 220 .
- the blue light will return to the diffusing sheet 2173 , diffusely reflect and exit, and be reused by the light recycling component 220 .
- the shaped light entering the polarizer assembly 222 is split to form a first polarized light (eg, P polarized light) and a second polarized light (eg, S polarized light), and the second polarized light is incident on the collection lens group 250 after being reflected twice, The light is then incident on the respective light-emitting areas on the color wheel 212, and then exits through diffuse reflection to form natural light that can be reused, thereby realizing light circulation.
- a first polarized light eg, P polarized light
- a second polarized light eg, S polarized light
- the light recovery component provided by the embodiment of the present application has both a shaper and a light deflection component, beam shaping and recovery can be realized through only one component, which reduces the volume of the entire optical path design, reduces the cost, and improves the The light utilization efficiency is improved, and it can be flexibly applied to various projection, lighting and other display scenarios; at the same time, in the projection system provided by the embodiment of the present application, the illumination light is shaped and split by the light recycling component to form a first light beam that is emitted to the display surface.
- the shape of the spot of the first polarized light is adapted to the shape of the display surface, all areas of the display surface can be illuminated by the light beam, and the light beam finally incident on the display surface has a specific polarization direction. light beam, which can effectively avoid the problem of color crosstalk.
- the light recycling component is also used to guide the rest of the illumination light to the light emitting component to form recycled light, and the recycled light can be re-incident to the light recycling component after being reflected by the light emitting component to realize light cycle, which effectively improves the utilization efficiency of light.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Projection Apparatus (AREA)
Abstract
一种光回收组件(220)及投影装置(200),光回收组件(220)包括整形器(221)和起偏器组件(222),整形器(221)用于将照明光整形为图像光(L 22)和具有预设光斑形状的非图像光(L 21),图像光(L 22)照射至起偏器组件(222),非图像光(L 21)被整形器(221)回收;起偏器组件(222)将图像光(L 22)分光为第一偏振光及与第一偏振光的偏振态相异的第二偏振光,第一偏振光用于光学调制,第二偏振光被起偏器组件(222)回收,非图像光(L 21)与第二偏振光共同构成回收光(L 3)。投影系统(200)还包括出光组件(210)、光阀(230)和光回收组件(220),出光组件(210)用于发出照明光以及将回收光(L 3)反射至光回收组件(220),光阀(230)包括显像面,第一偏振光的预设光斑形状与显像面的形状相适配。这一光回收组件(220)及投影系统(200)能够对照明光进行整形和回收,实现光循环,有效提高光利用效率。
Description
本申请涉及光学仪器技术领域,具体涉及一种光回收组件及投影装置。
传统的LCD(Liquid Crystal Display,液晶显示器)投影仪跟传统的电影放映机和幻灯机的原理非常相似,即在原来电影胶片或幻灯片所在的位置,采用LCD液晶面板作为显像源,经背部大功率灯泡或LED(Light Emitting Diode,发光二极管)进行强光投射,再经过光线整形、显像、梯形校正,最后经投影仪镜头将LCD液晶面板上的图像放大投射到白幕或白墙上,使用户获得几十至上百寸大小的影像,可获得观看电影的效果及体验。
然而,现有的LCD投影存在体积过大、光学元件多、效率低等问题。如图1所示,现有的LCD液晶面板100在使用时,为了提高面板的透过率,一般会把照明光预先通过增光片起偏,这样能有效减小第一片偏光片110带来的光损失,而后照明光会先后通过黑色膜120、TFT电极层130、液晶140、透明电极层150、彩膜160与第二片偏光片170。LCD投影在使用时存在效率低的问题,主要有下列几个原因:
1.当前消费者对投影仪的要求主要是便携(小体积)与高分辨率,对LCD液晶面板提出了更高的要求。然而,现有主流的加工工艺只能实现长度12微米,宽度3.5微米的TFT(Thin Film Transistor,薄膜晶体管)导线尺寸,且TFT导线尺寸不会因为像素的减小而变小,导致现有的LCD液晶面板的开口率(光线 能透过的有效区域比例)一般都在50%以下,影响光效;
2.为了防止不同颜色像素的串扰,并保护透明电极和TFT导线,LCD液晶面板上会设置有上下两层黑色膜120,这也带来了光效上的损失;
3.现有的LCD液晶面板在一个大像素上通过彩膜与黑色膜把一个大像素切分为三个RGB小像素,实现全彩显示。然而,由于背光源为白光,彩膜只能让特定颜色(光谱)的光透过,其余的光都不会被后续光学系统利用,最终会造成约66%的能效损失,利用率低。
单DLP(Digital Light Processing,数字光处理)与LCOS(Liquid Crystal on Silicon,液晶附硅)显示技术能够在实现全彩显示的同时不降低光效率,具体地,其通过光源在时序上(一帧内)分别输出RGB三种颜色的照明光,空间光调制器在时序上对特定颜色的光进行调制,实现一帧画面的全彩显示。然而,这种方法会带来彩色图像边沿出现RGB色彩不重合的现象,也称为彩虹效应(color breakup)。彩虹效应形成的原因在于一个图像帧内,时序显示的RGB子帧图像在人眼视网膜上成像位置不能重合,对于屏幕上运动的彩色图像更为明显,并会给观众带来眩晕感,仍需进行改善。
发明内容
本申请的目的在于提供一种光回收组件及投影装置,以解决上述问题。本申请实施例通过以下技术方案来实现上述目的。
本申请实施例提供了一种光回收组件,包括整形器和起偏器组件,其中,
所述整形器用于对输入所述光回收组件的照明光进行整形,以形成非图像光以及具有预设光斑形状的图像光,所述图像光照射至所述起偏器组件,所述非图像光被所述整形器回收;所述起偏器组件用于将所述图像光分光为第一偏振 光及与所述第一偏振光的偏振态相异的第二偏振光,所述第一偏振光用于光学调制,所述第二偏振光被所述起偏器组件回收;其中,所述非图像光与所述第二偏振光共同构成回收光。
在一种实施方式中,所述整形器与所述起偏器组件一体设置。
在一种实施方式中,所述整形器包括相对的第一表面和第二表面,所述照明光自所述第一表面入射,所述图像光自所述第二表面出射;所述起偏器组件包括第三表面和第四表面,所述图像光自所述第三表面入射,所述第一偏振光自所述第四表面出射;所述第三表面抵接于所述第二表面。
在一种实施方式中,所述整形器还包括两个对称设置的反射部,每个所述反射部设置并连接于所述第一表面和所述第二表面之间,每个所述反射部用于将所述非图像光反射至另一个所述反射部,并将另一个所述反射部所反射的所述非图像光回收。
在一种实施方式中,所述整形器件的第二表面的形状为预设形状,对所述照明光进行整形,以形成所述图像光。
在一种实施方式中,所述起偏器组件包括两个相互连接的偏振分光棱镜,每个所述偏振分光棱镜均包括所述第三表面和所述第四表面,以及位于所述第三表面和所述第四表面之间的偏振分光膜,两个所述偏振分光膜相互垂直,且相互对称设置;每个所述偏振分光膜用于将所述第一偏振光透射,以及用于将所述第二偏振光反射至另一个所述偏振分光膜,并将另一个所述偏振分光膜所反射的所述第二偏振光回收。
本申请实施例还提供了一种投影系统,包括出光组件、光阀和以上所述的光回收组件,所述光回收组件和所述光阀依次设置在所述出光组件的出光光路上;其中,所述出光组件用于发出所述照明光以及将所述回收光反射至所述光回收 组件;所述光阀包括显像面,用于对照射到所述显像面上的光进行调制;所述光回收组件将所述第一偏振光引导至所述显像面,并将所述回收光引导至所述出光组件,其中,所述第一偏振光的预设光斑形状与所述显像面的形状相适配。
在一种实施方式中,出光组件包括激光模组和色轮,激光模组用于发出激发光;色轮设置在激光模组的出光光路上,用于承接激发光并产生照明光,以及用于对回收至色轮的回收光进行漫反射。
在一种实施方式中,色轮包括透明基板、散射片和偏振片,透明基板包括相背的基板入光面和基板出光面,散射片设于基板入光面,偏振片设置于基板出光面,激发光依次透过散射片和偏振片形成照明光,偏振片还用于将回收至偏振片的回收光进行分光后部分反射至光回收组件。
在一种实施方式中,色轮包括反射基板、荧光粉层和散射片,反射基板包括基板反射面,荧光粉层和散射片设于基板反射面,激发光入射至荧光粉层并激发产生荧光作为照明光,荧光粉层还用于将回收至荧光粉层的回收光进行漫反射;激发光入射至散射片并反射形成照明光,散射片还用于将回收至散射片的回收光进行漫反射。
在一种实施方式中,投影显示装置还包括收集透镜组,收集透镜组设置于色轮和光回收组件之间的光路上,用于将照明光收集至光回收组件,以及用于将回收光收集至色轮。
在一种实施方式中,投影装置还包括微透镜阵列,微透镜阵列设置于显像面。
相对于现有技术,本申请实施例提供的光回收组件由于同时具备整形器和光偏转组件,能够仅通过一个组件实现光束整形和回收,减小了整个光路设计的体积,并降低了成本,提高了光利用效率,可以灵活应用于各种投影、照明等显示场景;同时,本申请实施例提供的投影系统中通过光回收组件对照明光进行整 形和分光后形成出射至显像面的第一偏振光,由于第一偏振光的光斑形状与显像面的形状相适配,使得显像面的所有区域都能够被光束照到,且最终入射至显像面的光束为具有特定偏光方向的光束,能够有效避免颜色串扰问题。光回收组件还用于将其余的照明光引导至出光组件形成回收光,回收光经出光组件反射后可以重新入射至光回收组件实现光循环,有效提高了光的利用效率。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中LCD液晶面板的结构示意图。
图2是本申请实施例提供的投影装置的结构示意图。
图3是本申请实施例提供的光束在整形器的投影示意图。
图4是本申请实施例提供的光回收组件的爆炸示意图。
图5是本申请实施例提供的投影装置的另一结构示意图。
图6是图5所示的实施例提供的投影装置的光路图。
图7是本申请另一实施例提供的投影装置的结构示意图。
图8是图7所示的实施例提供的投影装置的光路图。
为了便于理解本申请实施例,下面将参照相关附图对本申请实施例进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不 同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
需要说明的是,本申请实施例中提供的光回收组件可以独立使用,并不需要依托于任何投影装置,以下仅从其在投影装置中的实际运用进行详细描述,旨在使本领域技术人员能够更清晰的理解本申请。
图2是本申请实施例提供的投影装置的结构示意图,请参阅图2所示,投影装置200包括出光组件210、光回收组件220和光阀230,光回收组件220和光阀230依次设置在出光组件210的出光光路上。光阀230包括显像面231,显像面231用于对入射到所述显像面231上的光进行调制,以形成光学影像。出光组件210用于发出照明光L
1,光回收组件220用于将照明光L
1进行整形和分光后形成出射至显像面231的第一偏振光L
41,并将其余的照明光引导至出光组件210形成回收光L
3,第一偏振光L
41的光斑形状与显像面231的形状相适配。出光组件210还用于将回收光L
3反射至光回收组件220。
光阀230又称液晶光阀,是调制从光回收组件220发出的照明光的关键器件,通常情况下,光阀230利用的是特定偏光方向的光束。本实施例中,显像面231用于调制第一偏振光L
41。投影装置200还可以包括镜头240,显像面231调制输出的光束经镜头240成像后可以投影到屏幕上形成投影图像。
图3是本申请实施例提供的光束在整形器的投影示意图,参阅图2和图3所示,显像面231通常为矩形,当出光组件210为荧光光源时,由于荧光发光特性为朗伯发光,光斑的截面形状通常为圆形或近似圆形。若要让整个显像面231 都覆盖在圆形光束的照射中,则会使得光束中边缘部分的光线投射到显像面231以外的区域,由于该部分光线无法进入显像面231,造成了光线的浪费,导致光线的利用效率较低。若要缩小光束的截面面积,让圆形光束全部都透射到显像面231内,则会使得显像面231的部分区域不能被光束照到,从而使得该部分区域不能显像,无法最大化的实现显像面的调制功能。
投影装置200通过光回收组件220对照明光L
1进行整形和分光后形成出射至显像面231的第一偏振光L
41,由于第一偏振光L
41的光斑形状与显像面231的形状相适配,使得显像面231的所有区域都能够被光束照到,且最终入射至显像面231的光束为具有特定偏光方向的光束,能够有效避免颜色串扰问题。光回收组件220还用于将其余的照明光引导至出光组件210形成回收光L
3,回收光L
3经出光组件210反射后可以重新入射至光回收组件220,实现光循环,有效提高了光的利用效率。同时,由于仅设置了一个光回收组件,就同时实现了光束的整形和回收,减小了整个光路设计的体积,并降低了成本。
光回收组件220可以包括整形器221和起偏器组件222,其中,整形器221用于对输入光回收组件220的照明光进行整形,以形成非图像光以及具有预设光斑形状的图像光,图像光照射至起偏器组件222,非图像光被整形器221回收,起偏器组件222用于将图像光分光为第一偏振光及与第一偏振光的偏振态相异的第二偏振光,第一偏振光用于光学调制,第二偏振光被起偏器组件222回收,并且非图像光与第二偏振光共同构成回收光。
具体的,整形器221用于将照明光L
1整形为出射到显像面231的图像光L
22和出射到显像面231外的非图像光L
21,并将至少部分非图像光L
22引导至出光组件210作为回收光L
3。起偏器组件222设置在整形器221的出光光路上,用于将图像光L
22分为第一偏振光L
41以及与第一偏振光L
41的偏振态相异的第二 偏振光L
42,并将第一偏振光L
41透射至显像面231,将第二偏振光L
42引导至出光组件210作为回收光L
3。
需要说明的是,图2仅示出光回收组件220的光轴X上半部分的光线传输示意图,对称部分同理。
本实施例中,出光组件210出射至光回收组件220的光束包括出光组件210发出的照明光L
1以及光回收组件220所反射的回收光。非图像光L
21为出光组件210出射至光回收组件220的光束中的大角度光线,图像光L
22为出光组件210出射至光回收组件220的光束中的小角度光线。其中,大角度光线与光回收组件220的光轴X的夹角可以大于设定夹角,小角度光线与光回收组件220的光轴X的夹角可以小于设定夹角。
在本实施例中,非图像光L
21包括A区光线和C区光线,整形器221可以仅用于将A区光线引导至出光组件210,即将投射到显像面231长度方向两侧外的非图像光L
21引导至出光组件210,使得原来不能投射到显像面231的非图像光L
21能够被回收到出光组件210,并经出光组件210反射后回到光回收组件220,实现了光的循环利用,能够提高光效。
在一些实施方式中,整形器221也可以用于将A区光线和C区光线引导至出光组件210,即将全部非图像光L
21引导至出光组件210。当然,整形器221也可以仅用于将C区光线引导至出光组件210,即将投射到显像面231宽度方向两侧外的非图像光L
21引导至出光组件210。
图像光L
22为B区光线,整形器221透射图像光L
22至起偏器组件222分光形成第一偏振光L
41和第二偏振光L
42,第一偏振光L
41完全覆盖显像面231,使得显像面231上的所有区域都能够显像。
需要说明的是,当显像面231的形状为预设形状时,设置所述整形器221的 出光面(也即后文中的第二表面)为预设形状,以使整形后的第一偏振光L
41的预设光斑形状为预设形状;当显像面231的形状为三角形或者梯形等其他一些预设形状时,设置所述整形器221的出光面,以使整形后的第一偏振光L
41的预设光斑形状为对应的三角形或者梯形或其他预设形状,本领域技术人员可以根据光阀230的实际结构适应性调整整形器221的出光面,以使整形后的第一偏振光L
41的预设光斑形状满足要求。
第一偏振光L
41可以为P偏振光,也可以为S偏振光。当第一偏振光L
41为P偏振光时,第二偏振光L
42为S偏振光。当第一偏振光L
41为S偏振光时,第二偏振光L
42为P偏振光。本实施例中,光阀230适用于调制P偏振光,第一偏振光L
41为P偏振光,第二偏振光L
42为S偏振光。
本实施例中,整形器221包括第一表面2211和第二表面2212,照明光L
1自第一表面2211入射,图像光L
22自第二表面2212出射。起偏器组件222包括第三表面2221和第四表面2222,图像光L
22自第三表面2221入射,第一偏振光L
41自第四表面2222出射,第三表面2221抵接于第二表面2212。由此,整形器221和起偏器组件222连接为一体,减小光回收组件220占用的空间大小,方便进行加工制造,同时能够避免在温度变化时,整形器221和起偏器组件222之间产生相对位移或者错位。
第三表面2221的面积可以大于或者等于第二表面2212的面积,以使得第三表面2221能够接收全部自第二表面2212出射的图像光L
22,光能利用率最高。
在一些实施方式中,第三表面2221通过粘胶粘合于第二表面2212,粘胶可以采用与整形器221和起偏器组件222的材质折射率相接近的粘胶。当然,也可以不设置粘胶,而是采用光回收组件支架通过外力固定整形器221和起偏器组件222,以增强光透过率。
图4是本申请实施例提供的光回收组件的爆炸示意图,结合图2和图4所示,整形器221还包括两个关于光回收组件220的光轴X对称的反射部2213,每个反射部2213均设置并连接于第一表面2211和第二表面2212之间,每个反射部2213用于将非图像光L
21反射至另一个反射部2213,并将另一个反射部2213所反射的非图像光L
21反射至出光组件210。由此,可以实现非图像光L
21的回收利用。
反射部2213可以是平面,也可以是带锯齿状的凹凸面,只要能够反射光线即可。反射部2213也可以涂布有增反膜,以增强反射部2213的反光效果,减少反射时的光能量损失。
本实施例中,反射部2213相对光回收组件210的光轴X倾斜45°,使得垂直入射至第一表面2211的非图像光L
21可以与反射部2213成45°入射至反射部2213,并经另一个反射部2213反射后以垂直第一表面2211的方向自第一表面2211出射,即非图像光L
21可以在两个反射部2213发生全反射后回收至出光组件210,有效避免光的浪费,进一步提高光的利用率。
第一表面2211和第二表面2212可以均为矩形,且第二表面2212的形状大小与显像面231的形状大小一致,以使第一偏振光L
41可以覆盖显像面231,在使显像面231的全部区域都能够被第一偏振光L
41照射到的同时,避免第一偏振光L
41投射到显像面231外,降低光的使用效率。
整形器221还包括两个相对设置的连接部2214,连接部2214可以是平面,也可以是带锯齿状的凹凸面。每个连接部2214均连接于第一表面2211、第二表面2212以及两个反射部2213之间。连接部2214可以分别与第一表面2211和第二表面2212垂直,即连接部2214与光回收组件220的光轴X平行,以简化整形器221的制作工艺。
在一些实施方式中,连接部2214也可以相对光回收组件220的光轴X倾斜预定角度,使得每个连接部2214还能够用于将C区光线反射至另一个连接部2214,并将另一个连接部2214所反射的光线反射至出光组件210,实现C区光线的循环利用,由此可以回收全部非图像光L
21,以进一步提高投影装置200的光回收效率。作为一种示例,连接部2214可以相对光回收组件220的光轴X倾斜45°。
本实施例中,连接部2214为等腰梯形平面,等腰梯形平面的下底连接于第一表面2211,等腰梯形的上底连接于第二表面2212,等腰梯形的腰分别连接于两个反射部2213。
在一些实施方式中,可以采用四棱台棱镜作为整形器221,四棱台棱镜的上底面为第二表面2212,下底面为第一表面2211,各侧面分别为两个反射部2213和两个连接部2214。
在本实施例中,起偏器组件222包括两个相互连接的偏振分光棱镜223,两个偏振分光棱镜223连接为一体,能够避免在温度变化时,两个偏振分光棱镜223之间产生相对位于或者错位。
在一些实施方式中,两个偏振分光棱镜223可以通过粘胶进行粘连,粘胶可以采用与偏振分光棱镜223的材质折射率相接近的胶。当然,也可以不设置粘胶,通过起偏器支架通过外力固定两个偏振分光棱镜223,以增强光透过率。
每个偏振分光棱镜223均包括第三表面2221和第四表面2222,以及位于第三表面2221和第四表面2222之间的偏振分光膜2231,两个偏振分光膜2231相互垂直,且关于光回收组件210的光轴X对称设置。
图像光L
22经偏振分光膜2231分光形成第一偏振光L
41和第二偏振光L
42,每个偏振分光膜2231用于将第一偏振光L
41透射至显像面231,以及用于将第 二偏振光L
42反射至另一个偏振分光膜2231,并将另一个偏振分光膜2231所反射的第二偏振光L
42反射至出光组件210。起偏器组件222通过两个偏振分光棱镜能够同时实现光的回收和起偏,使用到的光学元件少,结构设计简单实用。
偏振分光棱镜223可以包括两个直角棱镜224,两个直角棱镜224的斜面相互胶合,其中一个直角棱镜224的斜面上设有偏振分光膜2231。第三表面2221为其中一个直角棱镜224朝向整形器221的直角边面,第四表面2222为另一个直角棱镜224背离整形器221的直角边面。
本实施例中,光阀230适用于调制P偏振光,偏振分光膜2231可以是具有透射P偏振光,反射S偏振光功能的介质膜,以使P偏振光完全通过,而S偏振光可以在两个偏振分光膜2231之间发生全反射后入射至出光组件210,有效避免光的浪费,进一步提高光的利用率。
图5是本申请实施例提供的投影装置的另一结构示意图,结合图2和图5所示,在本实施例中,出光组件210包括激光模组211和色轮212,激光模组211用于发出激发光L
0,色轮212设置在激光模组211的出光光路上,用于承接激发光L
0并产生照明光L
1,以及用于对回收至色轮212的回收光进行漫反射,被漫反射的回收光可以入射至光回收组件220重新利用。
色轮212的漫反射作用可以将第二偏振光L
42转变为无偏振方向的自然光,无偏振方向的自然光经过收集透镜组250的作用后,其中大角度的光线照射到整形器221,小角度的光线透过整形器221照射到起偏器组件222进行分光形成第一偏振光入射到显像面231,从而能够被重新利用。
色轮212可以是旋转色轮、带状桶轮或者周期性平移片等器件,只要能够将荧光激发并将回收光反射回光路中的器件均属于本申请构思要保护的范围。
激光模组211可以包括三个依次阵列化排列的激光发生器2111,每个激光 发生器2111均用于发出蓝色的激发光L
0。
出光组件210还可以包括匀光器件213和正透镜214,匀光器件213和正透镜214的数量与激光发生器2111的数量一致,每个激光发生器2111发出的激发光L
0透过匀光器件213进行整形后入射至正透镜214,再由正透镜214成像于色轮212,正透镜214可以汇聚激发光L
0,以减小激发光L
0的发散角度。
色轮212可以为透射式色轮,色轮212可以包括透明基板2121、散射片2122和偏振片2123,透明基板2121包括相背的基板入光面2127和基板出光面2128,基板入光面2127朝向激光模组211,散射片2122设置于基板入光面2127,偏振片2123设置于基板出光面2128,激发光L
0依次透过散射片2122和偏振片2123形成照明光L
1,偏振片2123还用于将回收至偏振片2123的回收光进行分光后部分反射至光回收组件220。
具体地,散射片2122用于对入射的激发光L
0进行散射,激发光L
0透过散射片2122可以形成发散的出射光,且具有消除激光散斑的作用。偏振片2123可以为具有透射P偏振光、反射S偏振光功能的偏振分光片,当回收光回收至偏振片2123时,会分光产生P偏振光和S偏振光,同时S偏振光可以被偏振片2123反射至光回收组件220实现重新利用,P偏振光的会透过偏振片2123形成无用光。偏振片2123用于回收S偏振光,避免S偏振光和P偏振光同时透过散射片2122形成无用光造成浪费,能够实现尽可能多的光循环,进一步提高光的利用效率。
色轮212还可以包括荧光粉层2124,荧光粉层2124设于透明基板2121,激发光L
0透过荧光粉层2124激发产生荧光作为照明光L
1。荧光粉层2124具有粗糙表面,荧光粉层2124还用于将回收至荧光粉层2124的回收光进行漫反射后重新入射至光回收组件220,实现光的重新利用。
荧光粉层2124可以包括红色荧光粉层2125和绿色荧光粉层2126,红色荧光粉层2125、绿色荧光粉层2126和散射片2122(或偏振片2123)同心设置,且分别对应于一个激光发生器2111。其中一个激光发生器2111发出的蓝色激发光L
0透过红色荧光粉层2125激发产生红色的照明光L
1,另一个激光发生器2111发出的蓝色激发光L
0透过绿色荧光粉层2126激发产生绿色的照明光L
1,剩下的一个激光发生器2111发出的蓝色激发光L
0依次透过散射片2122和偏振片2123后产生蓝色的照明光L
1。由此,出光组件210可以产生三种不同颜色且在空间上彼此分离的照明光。
投影装置200还可以包括收集透镜组250,收集透镜组250设于出光组件210和光回收组件220之间的光路上,用于将出光组件210发出的照明光L
1收集至光回收组件220,以及用于将光回收组件220所反射的回收光收集至色轮212。收集透镜组250用于缩小光束的发散角度,实现光束的会聚。
收集透镜组250可以包括两个椭圆收集透镜,其中一个收集透镜靠近光回收组件220,另外一个收集透镜靠近出光组件210,以实现更好的收光效果。
出光组件210产生的三种颜色的光束通过收集透镜组250后入射至光回收组件220,在光回收组件220的入射面上三种颜色的光束互相叠加,这三种颜色的光束在角空间上彼此分离,空间立体角彼此不交叠,但在面空间上,由于传播距离不足够远,所以这三种颜色的光束会在近场互相叠加,形成白光。
本实施例中,非图像光L
21为色轮212出射至光回收组件220的光束中的大角度光线,图像光L
22为出色轮212出射至光回收组件220的光束中的小角度光线。其中,大角度光线与光回收组件220的光轴X的夹角可以大于设定夹角α,小角度光线与光回收组件220的光轴X的夹角可以小于设定夹角α。在不设置收集透镜组250的情况下,假设红色荧光粉层2125位于色轮212的最内侧,设 定第一端点位于红色荧光粉层2125靠近色轮212中心的一侧,第二端点位于反射部2213与起偏器组件222的连接处,设定夹角α可以大致等于第一端点和第二端点之间的连线与光回收组件220的光轴X的夹角值,以确保最大角度的光线能够被完全回收再利用,进一步提高光利用效率。
图6是图5所示的实施例提供的投影装置的光路图,请参阅图2、图5和图6所示,非图像光L
21在整形器221发生两次全反射后返回收集透镜组250,再成像于各自发光面。具体地,红色光会返回红色荧光粉层2125,再漫反射出射,被光回收组件220重新利用。绿色光会返回绿色荧光粉层2126,再漫反射出射,被光回收组件220重新利用。蓝色光会返回偏振片2123被分光形成P偏振光和S偏振光,S偏振光会被反射至收集透镜组250,被光回收组件220重新利用,P偏振光会透过偏振片2123,形成无用光。
进入起偏器组件222的整形光L
3被分光形成第一偏振光L
41(例如P偏振光)和第二偏振光L
42(例如S偏振光),第二偏振光L
42经过两次反射后返回收集透镜组250,再回到色轮212上各自的发光区域,再通过红色荧光粉层2125和绿色荧光粉层2126的漫反射出射,形成可以被重新利用的自然光,实现光循环。另外,反射至偏振片2123的光束被分光后出射,其中的S偏振光可以被重新利用。
投影装置200还可以包括微透镜阵列,微透镜阵列设于光阀230的显像面上,微透镜阵列可以包括多个微透镜,每个微透镜覆盖光阀230上至少两个像素。角空间上彼此分离的三种颜色的入射光在经过微透镜阵列后会进行面角转换,即在经过微透镜阵列后,角空间上分离的光会在面空间上分离,使得不同颜色的光束会照到对应的液晶像素上,以避开光阀230中的TFT导线,从而有效减少TFT导线带来的光效损失,提高了光的利用效率,增加最大输出亮度,同 时减小了光阀230上的热,提高了光阀230的可靠性。
图7是本申请另一实施例提供的投影装置的结构示意图,参阅图2和图7所示,在本实施例中,色轮212可以为反射式色轮,色轮212可以包括反射基板2171、荧光粉层2172和散射片2173,反射基板2171包括基板反射面2176,荧光粉层2172和散射片2173设于基板反射面2176,激发光L
0入射至荧光粉层2172并激发产生荧光作为照明光L
1,荧光粉层2172还用于将回收至荧光粉层2172的光束进行漫反射,以使光束可以重新入射至光回收组件220,实现光循环。激发光L
0还入射至散射片2173并反射形成照明光L
1,散射片2173还用于将回收至散射片2173的回收光进行漫反射,以使光束可以重新入射至光回收组件220,实现光循环。
基板反射面2176可以涂布有具有漫反射性能的材料,荧光粉层2172和散射片2173设于基板反射面2176,荧光粉层2172可以包括红色荧光粉层2174和绿色荧光粉层2175,红色荧光粉层2174、绿色荧光粉层2175和散射片2173同心设置。
在本实施例中,收集透镜组250设于色轮212和光回收组件220之间的光路上,用于将照明光收集至光回收组件220,以及用于将光回收组件220所反射光的光束收集至色轮212。
激光模组211可以为激光发生器,用于发出蓝色的激发光L
0。
本实施例中,出光组件210还可以包括匀光器件215和反射镜216,匀光器件215和反射镜216依次设于激光模组211的出光光路上,激光模组211发出的蓝色激发光L
0入射至匀光器件215被整形成三束出射方向不同的蓝色激发光L
0,再经过反射镜216反射至收集透镜组250,再成像于色轮212。
匀光器件215可以为复眼透镜,复眼透镜由一系列小透镜组合形成,可以 获得高的光能利用率和大面积的均匀照明。
反射镜216可以采用偏振镀膜玻璃片,反射镜216位于收集透镜组250和光回收组件220之间的光路外,以防止遮挡照明光的传输路径。
在一些实施例中,激光模组211也可以包括三个激光发生器,三个激光发生器用于产生三束出射方向不同的蓝色激光束。
在本实施例中,三束出射方向不同的蓝色激光束透过收集透镜组250后分别成像于红色荧光粉层2174、绿色荧光粉层2175和散射片2173,其中一束蓝色激光束在红色荧光粉层2174激发产生红色的照明光,另一束蓝色激光束在绿色荧光粉层2175激发产生绿色的照明光,剩余的一束蓝色激光束在散射片2173反射产生蓝色的照明光。由此,出光组件210可以产生三种不同颜色且在空间上彼此分离的照明光。
出光组件210产生的三种颜色的照明光透过收集透镜组250后入射至光回收组件220,在光回收组件220的入射面上三种颜色的光束互相叠加,这三种颜色的光束在角空间上彼此分离,空间立体角彼此不交叠,但在面空间上,由于传播距离不足够远,所以这三种颜色的光束会在近场互相叠加,形成白光。
图8是图7所示的实施例提供的投影装置的光路图,结合图7和图8所示,非图像光在整形器221发生两次全反射后返回收集透镜组250,再成像于各自发光面。具体地,红色光会返回红色荧光粉层2174,再漫反射出射,被光回收组件220重新利用。绿色光会返回绿色荧光粉层2175,再漫反射出射,被光回收组件220重新利用。蓝色光会返回散射片2173,再漫反射出射,被光回收组件220重新利用。
进入起偏器组件222的整形光被分光形成第一偏振光(例如P偏振光)和第二偏振光(例如S偏振光),第二偏振光经过两次反射后入射至收集透镜组 250,再入射到色轮212上各自的发光区域,再通过漫反射出射,形成可以被重新利用的自然光,从而实现光循环。
可以理解的是,本申请实施例提供的光回收组件,由于同时具备整形器和光偏转组件,能够仅通过一个组件实现光束整形和回收,减小了整个光路设计的体积,并降低了成本,提高了光利用效率,可以灵活应用于各种投影、照明等显示场景;同时,本申请实施例提供的投影系统中通过光回收组件对照明光进行整形和分光后形成出射至显像面的第一偏振光,由于第一偏振光的光斑形状与显像面的形状相适配,使得显像面的所有区域都能够被光束照到,且最终入射至显像面的光束为具有特定偏光方向的光束,能够有效避免颜色串扰问题。光回收组件还用于将其余的照明光引导至出光组件形成回收光,回收光经出光组件反射后可以重新入射至光回收组件实现光循环,有效提高了光的利用效率。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (12)
- 一种光回收组件,其特征在于,包括整形器和起偏器组件,其中,所述整形器用于对输入所述光回收组件的照明光进行整形,以形成非图像光以及具有预设光斑形状的图像光,所述图像光照射至所述起偏器组件,所述非图像光被所述整形器回收;所述起偏器组件用于将所述图像光分光为第一偏振光及与所述第一偏振光的偏振态相异的第二偏振光,所述第一偏振光用于光学调制,所述第二偏振光被所述起偏器组件回收;其中,所述非图像光与所述第二偏振光共同构成回收光。
- 根据权利要求1所述的光回收组件,其特征在于,所述整形器与所述起偏器组件一体设置。
- 根据权利要求1所述的光回收组件,其特征在于,所述整形器包括相对的第一表面和第二表面,所述照明光自所述第一表面入射,所述图像光自所述第二表面出射;所述起偏器组件包括第三表面和第四表面,所述图像光自所述第三表面入射,所述第一偏振光自所述第四表面出射;所述第三表面抵接于所述第二表面。
- 根据权利要求3所述的光回收组件,其特征在于,所述整形器还包括两个对称设置的反射部,每个所述反射部设置并连接于所述第一表面和所述第二表面之间,每个所述反射部用于将所述非图像光反射至另一个所述反射部,并将另一个所述反射部所反射的所述非图像光回收。
- 根据权利要求3所述的光回收组件,其特征在于,所述整形器件的第二表面的形状为预设形状,对所述照明光进行整形,以形成所述图像光。
- 根据权利要求3任一项所述的光回收组件,其特征在于,所述起偏器组件 包括两个相互连接的偏振分光棱镜,每个所述偏振分光棱镜均包括所述第三表面和所述第四表面,以及位于所述第三表面和所述第四表面之间的偏振分光膜,两个所述偏振分光膜相互垂直,且相互对称设置;每个所述偏振分光膜用于将所述第一偏振光透射,以及用于将所述第二偏振光反射至另一个所述偏振分光膜,并将另一个所述偏振分光膜所反射的所述第二偏振光回收。
- 一种投影系统,其特征在于,包括出光组件、光阀和权利要求1-6任一项所述的光回收组件,所述光回收组件和所述光阀依次设置在所述出光组件的出光光路上,其中,所述出光组件用于发出所述照明光以及将所述回收光反射至所述光回收组件;所述光阀包括显像面,用于对照射到所述显像面上的光进行调制;所述光回收组件将所述第一偏振光引导至所述显像面,并将所述回收光引导至所述出光组件,其中,所述第一偏振光的预设光斑形状与所述显像面的形状相适配。
- 根据权利要求7所述的投影装置,其特征在于,所述出光组件包括:激光模组,用于发出激发光;色轮,设置在所述激光模组的出光光路上,用于承接所述激发光并产生所述照明光,以及用于对回收至所述色轮的所述回收光进行漫反射。
- 根据权利要求8所述的投影装置,其特征在于,所述色轮包括透明基板、散射片和偏振片,所述透明基板包括相背的基板入光面和基板出光面,所述散射片设于所述基板入光面,所述偏振片设置于所述基板出光面,所述激发光依次透过所述散射片和所述偏振片形成所述照明光,所述偏振片还用于将回收至所述偏振片的所述回收光进行分光后部分反射至所述光回收组件。
- 根据权利要求8所述的投影装置,其特征在于,所述色轮包括反射基板、荧光粉层和散射片,所述反射基板包括基板反射面,所述荧光粉层和所述散射片设于所述基板反射面,所述激发光入射至所述荧光粉层并激发产生荧光作为所述照明光,所述荧光粉层还用于将回收至所述荧光粉层的所述回收光进行漫反射;所述激发光入射至所述散射片并反射形成所述照明光,所述散射片还用于将回收至所述散射片的所述回收光进行漫反射。
- 根据权利要求8所述的投影装置,其特征在于,所述投影显示装置还包括收集透镜组,所述收集透镜组设置于所述色轮和所述光回收组件之间的光路上,用于将所述照明光收集至所述光回收组件,以及用于将所述回收光收集至所述色轮。
- 根据权利要求7所述的投影装置,其特征在于,所述投影装置还包括微透镜阵列,所述微透镜阵列设置于所述显像面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010841943.2A CN114077135A (zh) | 2020-08-20 | 2020-08-20 | 光回收组件及投影装置 |
CN202010841943.2 | 2020-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022037416A1 true WO2022037416A1 (zh) | 2022-02-24 |
Family
ID=80281938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/110770 WO2022037416A1 (zh) | 2020-08-20 | 2021-08-05 | 光回收组件及投影装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114077135A (zh) |
WO (1) | WO2022037416A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101044430A (zh) * | 2004-10-22 | 2007-09-26 | 皇家飞利浦电子股份有限公司 | 投影显示器件 |
CN103186020A (zh) * | 2011-12-29 | 2013-07-03 | 深圳市光峰光电技术有限公司 | 激光模组和发光光源 |
CN203909462U (zh) * | 2014-04-02 | 2014-10-29 | 李艳龙 | 基于激光光源的双投影机3d投影装置及3d投影系统 |
WO2017013862A1 (ja) * | 2015-07-17 | 2017-01-26 | 日本電気株式会社 | 投射装置、投射方法およびプログラム記憶媒体 |
CN108345160A (zh) * | 2017-01-22 | 2018-07-31 | 深圳市光峰光电技术有限公司 | 一种投影显示系统 |
CN108693687A (zh) * | 2017-04-06 | 2018-10-23 | 深圳市光峰光电技术有限公司 | 一种显示系统 |
CN109388004A (zh) * | 2017-08-04 | 2019-02-26 | 深圳光峰科技股份有限公司 | 投影系统 |
CN110928121A (zh) * | 2018-09-20 | 2020-03-27 | 深圳光峰科技股份有限公司 | 光源系统及投影设备 |
-
2020
- 2020-08-20 CN CN202010841943.2A patent/CN114077135A/zh active Pending
-
2021
- 2021-08-05 WO PCT/CN2021/110770 patent/WO2022037416A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101044430A (zh) * | 2004-10-22 | 2007-09-26 | 皇家飞利浦电子股份有限公司 | 投影显示器件 |
CN103186020A (zh) * | 2011-12-29 | 2013-07-03 | 深圳市光峰光电技术有限公司 | 激光模组和发光光源 |
CN203909462U (zh) * | 2014-04-02 | 2014-10-29 | 李艳龙 | 基于激光光源的双投影机3d投影装置及3d投影系统 |
WO2017013862A1 (ja) * | 2015-07-17 | 2017-01-26 | 日本電気株式会社 | 投射装置、投射方法およびプログラム記憶媒体 |
CN108345160A (zh) * | 2017-01-22 | 2018-07-31 | 深圳市光峰光电技术有限公司 | 一种投影显示系统 |
CN108693687A (zh) * | 2017-04-06 | 2018-10-23 | 深圳市光峰光电技术有限公司 | 一种显示系统 |
CN109388004A (zh) * | 2017-08-04 | 2019-02-26 | 深圳光峰科技股份有限公司 | 投影系统 |
CN110928121A (zh) * | 2018-09-20 | 2020-03-27 | 深圳光峰科技股份有限公司 | 光源系统及投影设备 |
Also Published As
Publication number | Publication date |
---|---|
CN114077135A (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI322324B (en) | Projector | |
US7172290B2 (en) | Light pipe based projection engine | |
JPH11271744A (ja) | カラー液晶表示装置 | |
US20080192205A1 (en) | Projection Display Device | |
US11669001B2 (en) | Projection display system | |
CN104251464A (zh) | 显示模块与光导引装置 | |
CN216595871U (zh) | 三色激光光源及激光投影设备 | |
JP3174812U (ja) | 小型プロジェクター用光学エンジン | |
TW201833653A (zh) | 投影系統 | |
CN211506154U (zh) | 一种lcos投影显示系统 | |
US11953699B2 (en) | Image display apparatus | |
WO2011103807A1 (zh) | 图像投影系统及其光路合成器 | |
WO2023030016A1 (zh) | 激光投影设备 | |
WO2022037416A1 (zh) | 光回收组件及投影装置 | |
JP4610577B2 (ja) | 投射型表示装置 | |
JP4172532B2 (ja) | 投射型液晶表示装置 | |
KR0184364B1 (ko) | 반사형 광모듈레이터를 이용한 투사형 입체화상표시장치 | |
CN220171390U (zh) | 光学系统和投影设备 | |
CN221281397U (zh) | 合像装置和投影仪 | |
CN216310513U (zh) | 照明系统及投影装置 | |
KR100359728B1 (ko) | 액정 프로젝터의 광학 장치 | |
KR0141548B1 (ko) | 액정 투사형 화상표시 장치 | |
JP3274824B2 (ja) | 液晶プロジェクター | |
JPH10260313A (ja) | 反射型偏光変調素子用光源装置 | |
JP2001305485A (ja) | プロジェクタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21857511 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21857511 Country of ref document: EP Kind code of ref document: A1 |