WO2018086474A1 - 一种低温速冻冻干系统 - Google Patents

一种低温速冻冻干系统 Download PDF

Info

Publication number
WO2018086474A1
WO2018086474A1 PCT/CN2017/108891 CN2017108891W WO2018086474A1 WO 2018086474 A1 WO2018086474 A1 WO 2018086474A1 CN 2017108891 W CN2017108891 W CN 2017108891W WO 2018086474 A1 WO2018086474 A1 WO 2018086474A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
valve
low
drying
Prior art date
Application number
PCT/CN2017/108891
Other languages
English (en)
French (fr)
Inventor
公茂琼
赵延兴
郭浩
沈俊
董学强
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2018086474A1 publication Critical patent/WO2018086474A1/zh
Priority to US16/368,822 priority Critical patent/US10900713B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/28Disposition of valves, e.g. of on-off valves or flow control valves specially adapted for sorption cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the invention relates to the technical field of freeze drying, and in particular to a low temperature quick freeze lyophilization system.
  • Drying is one of the ways to keep the material from spoilage.
  • various methods for drying such as drying, boiling, drying, and spray drying, which are carried out at temperatures above 0 ° C or higher.
  • the product obtained by drying generally shrinks in size and hardens in texture. Some substances are oxidized, and most of the volatile components are lost.
  • the heat-sensitive substances such as proteins and vitamins are denatured, and microorganisms lose their vitality. And the dried material is not easily dissolved in water. Therefore, the dried product has a large difference in properties compared with that before drying.
  • Superheated steam drying has been used in some countries in recent years, but it is also not suitable for heat sensitive materials, because the temperature of over-vapor drying materials usually exceeds 100 ° C. Although the operation under vacuum conditions will lower the temperature, it will greatly increase the cost and operation of the equipment. Complexity.
  • Vacuum freeze-drying technology is especially suitable for heat-sensitive substances. It can keep heat-sensitive materials to retain heat-sensitive components after drying. Especially the nutrients in various levels of food, such as vitamin C, can be stored for more than 90%, but the initial investment of equipment is large. And the system has small processing capacity, low production efficiency and high energy consumption.
  • Vacuum freeze drying is referred to as lyophilization, and the drying process is mainly divided into two processes. The drying process is carried out at a low temperature and under vacuum. In this process, the drying of the material mainly relies on the sublimation of the ice crystals, so that it is also sublimated and dried. The purpose of the second stage of drying is to remove some of the bound water present in the product due to adsorption or the like.
  • Desorption is dry. Since the energy of adsorption is large, sufficient heat must be supplied to desorb the bound water. In the process of sublimation, on the one hand, the material needs to be frozen, on the other hand, the frozen material needs to be heated and dried under vacuum, and the energy consumption is very large when maintaining vacuum and heating and drying, and the heat exchange coefficient is low, and the consumption is low. It is longer.
  • most of the large-scale vacuum freeze-drying equipment at home and abroad adopts freezing and drying separation, that is, freezing is carried out by using a quick-freezing library, and then the frozen material is moved to a drying chamber for vacuum sublimation drying, so that a quick-freezing library must be separately constructed. The freeze-drying cost is increased.
  • Patent CN101140126B proposes a lyophilization system using liquid nitrogen refrigeration. Due to the use of liquid nitrogen refrigeration, the required heat needs to be additionally heated during the desorption process, and the source of liquid nitrogen is limited, and the application is inconvenient.
  • Patent CN1987314B proposes a vacuum freeze-drying machine that uses two-stage compression refrigeration. The cooling source and heat source of the refrigeration compressor unit are used to cool and heat the material, which can greatly reduce the total installed power. However, the system uses the belt for low temperature. The intermediate-cooled two-stage compressor does not effectively recover the refrigerant return air cooling capacity, and the cooling efficiency is limited. At the same time, the system only has a lyophilization process, no desorption process, and the moisture adsorbed in the material cannot be removed.
  • the present invention provides a low temperature quick freeze lyophilization system.
  • a low temperature quick freezing and lyophilizing system comprising: a refrigeration cycle, a quick freezing/freeze cycle, and a solution Suction drying loop, where:
  • the refrigeration cycle includes a compressor unit, a first heat exchanger, an air cooler, a second heat exchanger, a throttling element, a third heat exchanger, and a connecting pipe, and the high pressure refrigerant outlet of the compressor unit is connected a refrigerant high pressure inlet of the first heat exchanger, a refrigerant high pressure outlet of the first heat exchanger connected to an inlet of the air cooler, and an outlet of the air cooler connected to the second heat exchanger a high pressure refrigerant inlet, a high pressure refrigerant outlet of the second heat exchanger is connected to a refrigerant high pressure inlet of the throttling element, and a refrigerant low pressure outlet of the throttling element is connected to a refrigerant of the third heat exchanger An inlet, a refrigerant outlet of the third heat exchanger is connected to a refrigerant low pressure inlet of the second heat exchanger, and a refrigerant low pressure outlet of the second heat exchanger is connected to
  • the quick freezing/freeze-drying circulation circuit comprises a circulating fan connected in sequence, a drying chamber, a third valve, the third heat exchanger, a fourth valve and a connecting pipe, and the low-temperature low-humidity air A1 passes through the circulating fan
  • the moisture in the air B1 is absorbed in the drying chamber to form the humid air C1
  • the humid air C1 forms the air D1 through the third valve, after the gas-solid separation, and from the third heat exchange Cooling in the device to form low-humidity low-temperature air E1, and forming a low-temperature low-humidity air A1 through the fourth valve (V4) to complete the quick-freezing/freeze-drying loop;
  • the desorption drying cycle includes the circulation fan, the drying chamber, the second valve, the fourth heat exchanger, the third heat exchanger, the first heat exchanger, and the first a valve and a connecting pipe, the high-temperature air A2 is formed by the circulating fan B2, and the combined water in the high-temperature air A2 is absorbed in the drying chamber to form a humid air C2, and the wet air C2 passes through the second valve.
  • the gas-water separation and cooling process of the air state H to I is completed in the fourth heat exchanger and the air D2 is formed, and then the air D2 passes through the third heat exchanger to form the air E2 and the air E2.
  • air F is formed, and the air F forms air G through the first heat exchanger, and the air G passes through
  • the high temperature air A2 is formed after the first valve to complete the desorption drying cycle.
  • a control unit electrically connected to the first valve, the second valve, the third valve, and the fourth valve is further included, the control unit is configured to control the first valve, the second valve, Opening and closing of the third valve and the fourth valve.
  • the fourth heat exchanger is further connected to the first separator in a pipeline, and in the process of air state from H to I, initially cooling in the fourth heat exchanger, and then passing through the After a separator gas-liquid separation, the formed gas phase enters the fourth heat exchanger and is further cooled to the air state I, and the formed liquid phase is discharged through the liquid phase outlet of the first separator.
  • the third heat exchanger is further connected to the second separator by a second separator. After the air D1 is first subjected to gas-solid separation by the second separator, the formed gas phase enters the third heat exchange.
  • the low-humidity air E1 is formed by cooling, and the formed solid phase water is discharged through the solid phase outlet of the second separator.
  • the third heat exchanger further includes a cold storage material including a phase change cold storage material and a non-phase change cold storage material.
  • the phase change regenerator material is a solid-liquid phase change material having a phase transition temperature of from -60 ° C to -100 ° C, including octamethyltrisiloxane, decamethyltetrasiloxane, and ten Dimethylpentasiloxane, tetradecyl hexasiloxane, n-propylcyclohexane, vinyl toluene, butylbenzene, sec-butylbenzene, o-methylisopropylbenzene, p-methylisopropyl At least one of benzene, hexyl acetate, butyl valerate, perfluorohexane, 2H-perfluoropentane, 3H-perfluoropentane, or perfluoro-2-methyl-3-pentanone
  • the non-phase change material is stainless steel or aluminum.
  • an auxiliary heater is further disposed between the third heat exchanger and the fourth heat exchanger.
  • the low temperature quick freeze lyophilization system comprises: a compressor unit, a first heat exchanger, an air cooler, a second heat exchanger, a throttling element, a third heat exchanger, a circulation fan, a drying chamber, and a third
  • the valve, the fourth valve and the connecting pipe form the refrigeration cycle, the quick freezing/freeze-drying loop, and the desorption drying cycle, thereby realizing the low-temperature quick freezing and lyophilization of the material, and the invention adopts a heat exchanger with a cold storage function,
  • the refrigeration capacity of the compressor is stored and used intensively to achieve rapid cooling of the material.
  • the low-temperature quick-freeze freeze-drying system provided by the invention has a large heat transfer coefficient and high drying efficiency due to air forced circulation freeze-drying.
  • the low-temperature quick-freeze freeze-drying system provided by the invention has high integration degree, small equipment, simple process, high efficiency and energy saving.
  • Embodiment 1 is a schematic structural view of an ultra-low temperature quick freeze lyophilization system according to Embodiment 1 of the present invention
  • Embodiment 2 is a schematic structural view of a quick freeze/freeze operation mode provided by Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of a desorption drying operation mode according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a fourth heat exchanger HX4 with a first separator SEP1 according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic structural view of a fourth heat exchanger HX3 with a second separator SEP1 according to Embodiment 5 of the present invention.
  • Compressor unit (CU) 110 first heat exchanger (HX1) 120, second heat exchanger (HX2) 130, third heat exchanger (HX3) 140, fourth heat exchanger (HX4) 150, first Valve (V1) 160, second valve (V2) 170, third valve (V3) 180, fourth valve (V4) 190, throttle valve (JT) 210, air cooler (AC) 220, drying chamber (DC ) 230, circulating fan (FAN) 240, the first A separator (SEP1) 250, a second separator (SEP2) 260, and an auxiliary heater (HT) 270.
  • FIG. 1 is a schematic structural diagram of an ultra-low temperature quick-freeze freeze-drying system for drying a streptomycin drug according to a first embodiment of the present invention, and the working mode thereof is as follows:
  • the refrigerant enters the high-pressure refrigerant inlet of the first heat exchanger (HX1) 120 at the high-pressure refrigerant outlet of the compressor unit (CU) 110, and the high-pressure refrigerant of the first heat exchanger (HX1) 120
  • the outlet enters the inlet of the air cooler (AC) 220, enters the high pressure refrigerant inlet connected to the second heat exchanger (HX2) 130 via the air cooler (AC) 220, and is cooled by the high pressure of the second heat exchanger (HX2) 130.
  • the agent outlet enters the refrigerant high pressure inlet of the throttling element (JT) 210, and the refrigerant low pressure outlet of the throttling element (JT) 210 enters the refrigerant inlet of the third heat exchanger (HX3) 140 through the third heat exchanger ( The refrigerant outlet of HX3) 140 enters the refrigerant of the second heat exchanger (HX2) 130
  • the low pressure inlet enters the low pressure inlet of the compressor unit (CU) 110 through the low pressure outlet of the refrigerant of the second heat exchanger (HX2) 130 to form a complete circuit, and is stored in the third heat exchanger (HX3) 140 for cooling.
  • the streptomycin drug is placed in the drying chamber DC, and the quick freeze/lyophilization cycle is started.
  • FIG. 2 it is a quick freeze/freeze operation mode provided by the second embodiment of the present invention, and the working mode thereof is as follows:
  • the low temperature and low moisture content air A1 forms the air B1 through the circulation fan (FAN) 240, and absorbs the moisture in the air B1 in the drying chamber (DC) 230 to form the humid air C1, and the wet air C1 passes through the third valve (V3).
  • 180 forms air D1, after gas-solid separation, and cools from the third heat exchanger (HX3) 140 to form low-humidity low-temperature air E1, and after the fourth valve (V4) 190, forms low-temperature low-humidity air.
  • A1 completes the quick freeze/freeze cycle: A ⁇ B ⁇ C ⁇ D ⁇ E ⁇ J ⁇ A.
  • the quick freeze/lyophilization cycle can remove most of the moisture, remove the remaining adsorbed moisture, and start desorbing the dry circulation loop.
  • FIG. 3 is a desorption drying working mode according to Embodiment 3 of the present invention, and the working mode thereof is as follows:
  • the air A2 at 40 ° C forms B2 via a circulating fan (FAN) 240, and absorbs the combined water in the high temperature air A2 in the drying chamber (DC) 230 to form a humid air C2, which passes through the second valve (V2) After 170, the gas-water separation and cooling process of the air state H to I is completed in the fourth heat exchanger (HX4) 150 and the air D2 is formed, and then the air D2 is formed through the third heat exchanger (HX3) 140.
  • the air E2 and the air E2 form an air F through the fourth heat exchanger (HX4) 150, and the air F forms an air G through the first heat exchanger (HX1) 120, and the air G passes through the first valve (V1)
  • the desorption drying cycle is completed, and A ⁇ B ⁇ C ⁇ H ⁇ I ⁇ D ⁇ E ⁇ F ⁇ G ⁇ A, and the ultra-low temperature quick freezing and lyophilization process of the streptomycin drug is completed.
  • FIG. 4 it is a schematic structural diagram of a fourth heat exchanger HX4 with a first separator SEP1 according to Embodiment 4 of the present invention.
  • the first heat exchanger (HX4) 150 is initially cooled, and after the first separator (SEP1) 250 is gas-liquid separated, the formed gas phase enters the fourth exchange.
  • the heat exchanger (HX4) 150 is further cooled to the air state I, and the formed liquid phase is discharged through the liquid phase outlet of the first heat exchanger (HX1) 120.
  • FIG. 5 it is a schematic structural diagram of a third heat exchanger HX3 with a second separator SEP1 according to Embodiment 5 of the present invention.
  • the formed gas phase enters the third heat exchanger (HX3) 140, and the temperature is lowered to form the low-humidity low-temperature air E1 to form a solid.
  • the phase water is discharged through the solid phase outlet of the second separator (SEP2) 260.
  • the third heat exchanger (HX3) 140 further includes a cold storage material including a phase change cold storage material and a non-phase change cold storage material.
  • the phase change cold accumulating material is a solid liquid phase change material having a phase transition temperature of -60 ° C to -100 ° C, including octamethyltrisiloxane, decamethyltetrasiloxane, dodecylpentasiloxane Alkane, tetradecylhexasiloxane, n-propylcyclohexane, vinyl toluene, butylbenzene, sec-butylbenzene, o-methylisopropylbenzene, p-cymene, hexyl acetate At least one of butyl valerate, perfluorohexane, 2H-perfluoropentane, 3H-perfluoropentane, or perfluoro-2-methyl-3-pentanone
  • the low temperature quick freeze lyophilization system comprises: a compressor unit (CU) 110, a first heat exchanger (HX1) 120, an air cooler (AC) 220, and a second heat exchanger (HX2) 130.
  • the pipeline, the above components form a refrigeration cycle, a quick freeze/lyophilization cycle, and a desorption drying cycle, thereby realizing low temperature quick freeze lyophilization of the material, and the invention stores the refrigeration capacity of the compressor through a heat exchanger with a cold storage function. Centralized use, can achieve rapid cooling of materials.
  • the low-temperature quick-freeze freeze-drying system provided by the invention has a large heat transfer coefficient and high drying efficiency due to air forced circulation freeze-drying.
  • the low-temperature quick-freeze freeze-drying system provided by the invention has high integration degree, small equipment, simple process, high efficiency and energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种低温速冻冻干系统,包括制冷循环回路、速冻冻干循环回路和解析干燥循环回路。制冷循环回路包括压缩机单元(CU)、第一换热器(HX1)、空气冷却器(AC)、第二换热器(HX2)、节流元件(JT)、第三换热器(HX3)、循环风机(FAN)、干燥室(DC)、第三阀门(V3)、第四阀门(V4)及连接管道。该系统通过带蓄冷功能的换热器,将压缩机的制冷量储存起来集中使用,可以实现物料的急速冷却。

Description

一种低温速冻冻干系统 技术领域
本发明涉及冷冻干燥领域技术领域,尤其涉及一种低温速冻冻干系统。
背景技术
干燥是保持物质不致腐败变质的方法之一。干燥的方法有多种,如传统的方法有晒干、煮干、烘干和喷雾干燥等,这些干燥方法都是在0℃以上或更高的温度下进行。干燥所得的产品,一般会体积缩小、质地变硬,有些物质发生了氧化,一些易挥发的成分大部分会损失掉,而热敏性的物质,如蛋白质、维生素会发生变性,微生物会失去生物活力,且干燥后的物质不易在水中溶解。因此干燥后的产品与干燥前相比在性状上有很大的差别。过热蒸汽干燥近年来在一些国家得到应用,但是同样不适合热敏性物料,因为过蒸汽干燥物料温度通常超过100℃,在真空条件下操作虽会降低温度,但会极大地提高设备的成本和操作的复杂性。
真空冷冻干燥技术对热敏性物质特别适合,可以使热敏性的物料干燥后保留热敏成分,尤其是食品中的各级营养成分,例如维生素C,能保存90%以上,但是其设备初投资较大,并且系统处理量较小,生产效率低,能耗大。真空冷冻干燥简称冻干,其干燥过程主要分两个过程。一次干燥过程是在低温、真空下进行的,在这个过程中,物料干燥主要靠冰晶的升华逸出,因此也成升华干燥。第二阶段干燥的目的是除去部分因吸附等机理存在于制品中的结合水,也 称解吸干燥。由于吸附的能量很大,因此必须提供足够的热量,才能解吸结合水。在升华过程中,一方面需要对物料进行冷冻,另一方面需要将冷冻后的物料在真空状态下,进行加热干燥,维持真空和加热干燥时能量消耗非常大,且由于换热系数低,耗时较长。目前国内外的大型真空冷冻干燥设备大部分采用冷冻、干燥分离,即冷冻采用速冻库进行,然后将速冻后的物料移至干燥仓中进行真空升华干燥,这样就须单独配套建造速冻库,使冻干造价提高。而在解吸过程中,一方面为了避免温度过高损伤物料,需要一般不高于50摄氏度的加热温度,另一方面,由于要克服水分子的吸附能,又需要大量能量。目前一般采用电加热或蒸汽加热,造成系统的额外能量消耗。
专利CN101140126B提出一种采用液氮制冷的冻干系统,由于采用液氮制冷,在解吸过程中,所需热量还需要另外加热,且液氮来源受限制,应用不方便。专利CN1987314B提出一种采用双级压缩制冷的真空冷冻干燥一体机,利用制冷压缩机组的冷源与热源,对物料进行冷却和加热,可使总装机功率大大降低,然而该系统为了获取低温采用带中间冷却的双级压缩机,且无有效回收制冷剂回气冷量,制冷效率受限;同时,该系统仅有冻干过程,无解吸过程,吸附于物料中的水分无法去除。
发明内容
有鉴于此,为了克服现有技术的缺陷和问题,本发明提供一种低温速冻冻干系统。
为实现上述目的,本发明采用下述技术方案:
一种低温速冻冻干系统,包括:制冷循环回路、速冻/冻干循环回路、解 吸干燥循环回路,其中:
所述制冷循环回路包括压缩机单元、第一换热器、空气冷却器、第二换热器、节流元件、第三换热器及连接管道,所述压缩机单元的高压制冷剂出口连接所述第一换热器的制冷剂高压入口,所述第一换热器的制冷剂高压出口连接所述空气冷却器的入口,所述空气冷却器的出口连接所述第二换热器的高压制冷剂入口,所述第二换热器的高压制冷剂出口连接所述节流元件的制冷剂高压入口,所述节流元件的制冷剂低压出口连接所述第三换热器的制冷剂入口,所述第三换热器的制冷剂出口连接所述第二换热器的制冷剂低压入口,所述第二换热器的制冷剂低压出口连接所述压缩机单元的低压入口以形成所述制冷循环回路;
所述速冻/冻干循环回路包括依次管道连接的循环风机、干燥室、第三阀门、所述第三换热器、第四阀门及连接管道,低温低含湿量空气A1经所述循环风机后形成空气B1,在所述干燥室内吸收空气B1中物料水分形成湿空气C1、所述湿空气C1经所述第三阀门形成空气D1,经气固分离后,并从所述第三换热器内降温形成低含湿量低温空气E1,并经第四阀门(V4)后形成低温低含湿量空气A1完成所述速冻/冻干循环回路;
所述解吸干燥循环回路包括依次连接的所述循环风机、所述干燥室、第二阀门、第四换热器、所述第三换热器、所述第一换热器、所述第一阀门及连接管道,高温空气A2经所述循环风机形成B2,在所述干燥室内吸收所述高温空气A2中的结合水形成湿空气C2,所述湿空气C2经所述第二阀门后在所述第四换热器内完成空气状态H到I的气水分离和降温过程并形成空气D2,再由所述空气D2经所述第三换热器至形成空气E2、所述空气E2经所述第四换热器后形成空气F、所述空气F经所述第一换热器形成空气G,所述空气G经 所述第一阀门后形成所述高温空气A2完成所述解吸干燥循环回路。
在一些实施例中,还包括与所述第一阀门、第二阀门、第三阀门和第四阀门电性连接的控制单元,所述控制单元用于控制所述第一阀门、第二阀门、第三阀门和第四阀门的开闭。
在一些实施例中,所述第四换热器还管道连接有第一分离器,在空气状态由H到I过程中,先在所述第四换热器中初步冷却,再经过所述第一分离器气液分离后,形成的气相进入所述第四换热器中进一步冷却至空气状态I,形成的液相经所述第一分离器的液相出口排出。
在一些实施例中,所述第三换热器还管道连接有第二分离器,所述空气D1先经过所述第二分离器进行气固分离后,形成的气相进入所述第三换热器,降温形成所述低含湿量低温空气E1,形成的固相水经所述第二分离器的固相出口排出。
在一些实施例中,所述第三换热器还包括蓄冷材料,所述蓄冷材料包括相变蓄冷材料和非相变蓄冷材料。
在一些实施例中,所述相变蓄冷材料为相变温度在-60℃~-100℃内的固液相变材料,包括八甲基三硅氧烷、十甲基四硅氧烷、十二甲基五硅氧烷、十四甲基六硅氧烷、正丙基环己烷、乙烯基甲苯、丁基苯、仲丁基苯、邻甲基异丙基苯、对甲基异丙基苯、乙酸己酯、戊酸丁酯、全氟己烷、2H-全氟戊烷、3H-全氟戊烷和或者全氟-2-甲基-3-戊酮中至少一种,所述非相变材料为不锈钢或者铝。
在一些实施例中,所述第三换热器及第四换热器之间还设置有辅助加热器。
本发明采用上述技术方案的有益效果在于:
本发明提供的低温速冻冻干系统,包括:压缩机单元、第一换热器、空气冷却器、第二换热器、节流元件、第三换热器、循环风机、干燥室、第三阀门、第四阀门及连接管道,上述元件形成制冷循环回路、速冻/冻干循环回路、解吸干燥循环回路,从而实现了物料的低温速冻冻干,本发明通过带蓄冷功能的换热器,将压缩机的制冷量储存起来集中使用,可以实现物料的急速冷却。
此外,本发明提供的低温速冻冻干系统,由于采用空气强制循环冷冻干燥,换热系数大,干燥效率高。
同时,本发明提供的低温速冻冻干系统集成度高、设备小型化、工艺简单,高效节能。
附图说明
图1是本发明实施例一提供的超低温速冻冻干系统结构示意图;
图2是本发明实施例二提供的速冻/冻干工作模式的结构示意图;
图3是本发明实施例三提供的解吸干燥工作模式的结构示意图;
图4是本发明实施例四提供的带第一分离器SEP1的第四换热器HX4的结构示意图;
图5是本发明实施例五提供的带第二分离器SEP1的第四换热器HX3的结构示意图。
压缩机单元(CU)110、第一换热器(HX1)120、第二换热器(HX2)130、第三换热器(HX3)140、第四换热器(HX4)150、第一阀门(V1)160、第二阀门(V2)170、第三阀门(V3)180、第四阀门(V4)190、节流阀(JT)210、空气冷却器(AC)220、干燥室(DC)230、循环风机(FAN)240、第 一分离器(SEP1)250、第二分离器(SEP2)260、辅助加热器(HT)270。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例一
请参阅图1是本发明实施例一提供的超低温速冻冻干系统用于干燥链霉素药品的结构示意图,其工作方式如下:
制冷循环系统开机,制冷剂在压缩机单元(CU)110的高压制冷剂出口进入第一换热器(HX1)120的制冷剂高压入口,经第一换热器(HX1)120的制冷剂高压出口进入空气冷却器(AC)220的入口,经空气冷却器(AC)220进入连接第二换热器(HX2)130的高压制冷剂入口,经第二换热器(HX2)130的高压制冷剂出口进入节流元件(JT)210的制冷剂高压入口,节流元件(JT)210的制冷剂低压出口进入第三换热器(HX3)140的制冷剂入口,经第三换热器(HX3)140的制冷剂出口进入第二换热器(HX2)130的制冷剂 低压入口,经第二换热器(HX2)130的制冷剂低压出口进入压缩机单元(CU)110低压入口形成完整回路,并在第三换热器(HX3)140中蓄冷,待蓄冷材料冷却至-80℃,将链霉素药品放入干燥室DC,开启速冻/冻干循环回路。
实施例二
如图2所示,是本发明实施例二提供的速冻/冻干工作模式,其工作方式如下:
低温低含湿量空气A1经循环风机(FAN)240后形成空气B1,在干燥室(DC)230内吸收空气B1中物料水分形成湿空气C1、所述湿空气C1经第三阀门(V3)180形成空气D1,经气固分离后,并从第三换热器(HX3)140内降温形成低含湿量低温空气E1,并经第四阀门(V4)190后形成低温低含湿量空气A1完成所述速冻/冻干循环回路:A→B→C→D→E→J→A。
可以理解,由于-80℃时,空气的饱和含湿量为3.9×10-4g/kg,因此速冻/冻干循环可除去大部分水分,去除剩余吸附水分,开始解吸干燥循环回路。
实施例三
请参阅图3,为本发明实施例三提供的解吸干燥工作模式,其工作方式如下:
40℃的空气A2经循环风机(FAN)240形成B2,在干燥室(DC)230内吸收所述高温空气A2中的结合水形成湿空气C2,所述湿空气C2经第二阀门(V2)170后在第四换热器(HX4)150内完成空气状态H到I的气水分离和降温过程并形成空气D2,再由所述空气D2经第三换热器(HX3)140至形成 空气E2、所述空气E2经第四换热器(HX4)150后形成空气F、所述空气F经第一换热器(HX1)120形成空气G,所述空气G经第一阀门(V1)160后形成所述高温空气A2完成所述解吸干燥循环回路,A→B→C→H→I→D→E→F→G→A,完成链霉素药品的超低温速冻、冻干过程。
实施例四
请参阅图4,是本发明实施例四提供的带第一分离器SEP1的第四换热器HX4的结构示意图。
优选地,在空气状态由H到I过程中,先在第四换热器(HX4)150中初步冷却,再经过第一分离器(SEP1)250气液分离后,形成的气相进入第四换热器(HX4)150中进一步冷却至空气状态I,形成的液相经第一换热器(HX1)120的液相出口排出。
实施例五
请参阅图5,是本发明实施例五提供的带第二分离器SEP1的第三换热器HX3的结构示意图。
优选地,空气D1先经过第二分离器(SEP2)260进行气固分离后,形成的气相进入第三换热器(HX3)140,降温形成所述低含湿量低温空气E1,形成的固相水经第二分离器(SEP2)260的固相出口排出。
优选地,第三换热器(HX3)140还包括蓄冷材料,所述蓄冷材料包括相变蓄冷材料和非相变蓄冷材料。所述相变蓄冷材料为相变温度在-60℃~-100℃内的固液相变材料,包括八甲基三硅氧烷、十甲基四硅氧烷、十二甲基五硅氧 烷、十四甲基六硅氧烷、正丙基环己烷、乙烯基甲苯、丁基苯、仲丁基苯、邻甲基异丙基苯、对甲基异丙基苯、乙酸己酯、戊酸丁酯、全氟己烷、2H-全氟戊烷、3H-全氟戊烷和或者全氟-2-甲基-3-戊酮中至少一种,所述非相变材料为不锈钢或者铝。
本发明上述实施例提供的低温速冻冻干系统,包括:压缩机单元(CU)110、第一换热器(HX1)120、空气冷却器(AC)220、第二换热器(HX2)130、节流阀(JT)210、第三换热器(HX3)140、循环风机(FAN)240、干燥室(DC)230、第三阀门(V3)180、第四阀门(V4)190及连接管道,上述元件形成制冷循环回路、速冻/冻干循环回路、解吸干燥循环回路,从而实现了物料的低温速冻冻干,本发明通过带蓄冷功能的换热器,将压缩机的制冷量储存起来集中使用,可以实现物料的急速冷却。
此外,本发明提供的低温速冻冻干系统,由于采用空气强制循环冷冻干燥,换热系数大,干燥效率高。
同时,本发明提供的低温速冻冻干系统集成度高、设备小型化、工艺简单,高效节能。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

  1. 一种低温速冻冻干系统,其特征在于,包括:制冷循环回路、速冻/冻干循环回路、解吸干燥循环回路,其中:
    所述制冷循环回路包括压缩机单元、第一换热器、空气冷却器、第二换热器、节流元件、第三换热器及连接管道,所述压缩机单元的高压制冷剂出口连接所述第一换热器的制冷剂高压入口,所述第一换热器的制冷剂高压出口连接所述空气冷却器的入口,所述空气冷却器的出口连接所述第二换热器的高压制冷剂入口,所述第二换热器的高压制冷剂出口连接所述节流元件的制冷剂高压入口,所述节流元件的制冷剂低压出口连接所述第三换热器的制冷剂入口,所述第三换热器的制冷剂出口连接所述第二换热器的制冷剂低压入口,所述第二换热器的制冷剂低压出口连接所述压缩机单元的低压入口以形成所述制冷循环回路;
    所述速冻/冻干循环回路包括依次管道连接的循环风机、干燥室、第三阀门、所述第三换热器、第四阀门及连接管道,低温低含湿量空气A1经所述循环风机后形成空气B1,在所述干燥室内吸收空气B1中物料水分形成湿空气C1、所述湿空气C1经所述第三阀门形成空气D1,经气固分离后,并从所述第三换热器内降温形成低含湿量低温空气E1,并经第四阀门(V4)后形成低温低含湿量空气A1完成所述速冻/冻干循环回路;
    所述解吸干燥循环回路包括依次连接的所述循环风机、所述干燥室、第二阀门、第四换热器、所述第三换热器、所述第一换热器、所述第一阀门及连接管道,高温空气A2经所述循环风机形成B2,在所述干燥室内吸收所述高温空气A2中的结合水形成湿空气C2,所述湿空气C2经所述第二阀门后在所述第四 换热器内完成空气状态H到I的气水分离和降温过程并形成空气D2,再由所述空气D2经所述第三换热器至形成空气E2、所述空气E2经所述第四换热器后形成空气F、所述空气F经所述第一换热器形成空气G,所述空气G经所述第一阀门后形成所述高温空气A2完成所述解吸干燥循环回路。
  2. 如权利要求1所述的低温速冻冻干系统,其特征在于,还包括与所述第一阀门、第二阀门、第三阀门和第四阀门电性连接的控制单元,所述控制单元用于控制所述第一阀门、第二阀门、第三阀门和第四阀门的开闭。
  3. 如权利要求1所述的低温速冻冻干系统,其特征在于,所述第四换热器还管道连接有第一分离器,在空气状态由H到I过程中,先在所述第四换热器中初步冷却,再经过所述第一分离器气液分离后,形成的气相进入所述第四换热器中进一步冷却至空气状态I,形成的液相经所述第一分离器的液相出口排出。
  4. 如权利要求1所述的低温速冻冻干系统,其特征在于,所述第三换热器还管道连接有第二分离器S,所述空气D1先经过所述第二分离器进行气固分离后,形成的气相进入所述第三换热器,降温形成所述低含湿量低温空气E1,形成的固相水经所述第二分离器的固相出口排出。
  5. 如权利要求1所述的低温速冻冻干系统,其特征在于,所述第三换热器还包括蓄冷材料,所述蓄冷材料包括相变蓄冷材料和非相变蓄冷材料。
  6. 如权利要求5所述的低温速冻冻干系统,其特征在于,所述相变蓄冷材料为相变温度在-60℃~-100℃内的固液相变材料,包括八甲基三硅氧烷、十甲基四硅氧烷、十二甲基五硅氧烷、十四甲基六硅氧烷、正丙基环己烷、乙烯基甲苯、丁基苯、仲丁基苯、邻甲基异丙基苯、对甲基异丙基苯、乙酸己酯、戊酸丁酯、全氟己烷、2H-全氟戊烷、3H-全氟戊烷和或者全氟-2-甲基-3-戊酮中至少 一种,所述非相变材料为不锈钢或者铝。
  7. 如权利要求1所述的低温速冻冻干系统,其特征在于,所述第三换热器及第四换热器之间还设置有辅助加热器。
PCT/CN2017/108891 2016-11-11 2017-11-01 一种低温速冻冻干系统 WO2018086474A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/368,822 US10900713B2 (en) 2016-11-11 2019-03-28 Low-temperature quick-freezing freeze-drying system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610997926.1 2016-11-11
CN201610997926.1A CN106352664B (zh) 2016-11-11 2016-11-11 一种低温速冻冻干系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/368,822 Continuation US10900713B2 (en) 2016-11-11 2019-03-28 Low-temperature quick-freezing freeze-drying system

Publications (1)

Publication Number Publication Date
WO2018086474A1 true WO2018086474A1 (zh) 2018-05-17

Family

ID=57861709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108891 WO2018086474A1 (zh) 2016-11-11 2017-11-01 一种低温速冻冻干系统

Country Status (3)

Country Link
US (1) US10900713B2 (zh)
CN (1) CN106352664B (zh)
WO (1) WO2018086474A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352664B (zh) * 2016-11-11 2019-01-15 中国科学院理化技术研究所 一种低温速冻冻干系统
CN107502298A (zh) * 2017-08-23 2017-12-22 中国人民解放军军事医学科学院野战输血研究所 一种低温固‑液相变蓄冷剂及其制备方法与应用
CN109764641B (zh) * 2019-01-11 2020-10-27 中国科学院理化技术研究所 一种冷冻干燥系统
CN111726971A (zh) * 2020-07-15 2020-09-29 浙江工业大学 一种浸没式液态相变冷却介质及其在电子设备的冷却系统中的应用
CN115451663B (zh) * 2022-08-30 2023-10-13 中国科学院理化技术研究所 利用循环风吸附脱水的冷冻干燥系统及方法
CN115342603A (zh) * 2022-08-30 2022-11-15 中国科学院理化技术研究所 循环风冷冻干燥系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743023A (en) * 1996-09-06 1998-04-28 Fay; John M. Method and apparatus for controlling freeze drying process
CN1361400A (zh) * 2000-12-28 2002-07-31 中国科学院低温技术实验中心 利用多元混合工质节流与低温涡流膨胀制冷的内复叠循环制冷系统
JP2003194459A (ja) * 2001-12-26 2003-07-09 Kobe Steel Ltd 凍結乾燥機
CN2611840Y (zh) * 2003-03-21 2004-04-14 十堰邦本科工贸有限公司 蓄冷式压缩空气冷冻干燥机
WO2006134447A1 (en) * 2005-06-14 2006-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Lyophilization unit with liquid nitrogen cooling
CN101140126A (zh) * 2006-09-08 2008-03-12 普莱克斯技术有限公司 用于冻干的低温制冷系统
CN104296502A (zh) * 2013-07-19 2015-01-21 北京四环科学仪器厂有限公司 一种可不间断运行带自动化霜功能的真空冷冻干燥机制冷系统
CN104534729A (zh) * 2014-06-13 2015-04-22 楚天科技股份有限公司 一种冻干机制冷系统及该制冷系统的控制方法
EP3015804A1 (en) * 2013-06-27 2016-05-04 Mayekawa Mfg. Co., Ltd. Freeze-drying system and freeze-drying method
CN106352664A (zh) * 2016-11-11 2017-01-25 中国科学院理化技术研究所 一种低温速冻冻干系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210861A (en) * 1962-03-30 1965-10-12 Gerber Prod Freeze drying
US4353222A (en) * 1979-07-04 1982-10-12 Kyowa Vacuum Engineering, Ltd. Vacuum apparatus
US5035065A (en) * 1988-06-03 1991-07-30 Parkinson Martin C Method and apparatus using molecular sieves for freeze drying
US6327866B1 (en) * 1998-12-30 2001-12-11 Praxair Technology, Inc. Food freezing method using a multicomponent refrigerant
WO2006134417A1 (en) 2005-06-14 2006-12-21 Renault Trucks Method of controlling a vehicle seat
JP2010054064A (ja) * 2008-08-26 2010-03-11 Kyowa Shinku Gijutsu Kk 凍結乾燥方法及び凍結乾燥装置
CN102106591B (zh) * 2011-01-05 2012-07-18 江苏戚伍水产发展股份有限公司 一种真空冷冻干燥虾仁的制备
CN202172804U (zh) * 2011-07-11 2012-03-28 华中农业大学 一种适用于食品的干燥装置
CN102342565B (zh) * 2011-09-28 2013-02-27 福建农林大学 一种联合干燥方法
CN105533392A (zh) * 2016-01-13 2016-05-04 王继明 一种中药材冻干加工方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743023A (en) * 1996-09-06 1998-04-28 Fay; John M. Method and apparatus for controlling freeze drying process
CN1361400A (zh) * 2000-12-28 2002-07-31 中国科学院低温技术实验中心 利用多元混合工质节流与低温涡流膨胀制冷的内复叠循环制冷系统
JP2003194459A (ja) * 2001-12-26 2003-07-09 Kobe Steel Ltd 凍結乾燥機
CN2611840Y (zh) * 2003-03-21 2004-04-14 十堰邦本科工贸有限公司 蓄冷式压缩空气冷冻干燥机
WO2006134447A1 (en) * 2005-06-14 2006-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Lyophilization unit with liquid nitrogen cooling
CN101140126A (zh) * 2006-09-08 2008-03-12 普莱克斯技术有限公司 用于冻干的低温制冷系统
EP3015804A1 (en) * 2013-06-27 2016-05-04 Mayekawa Mfg. Co., Ltd. Freeze-drying system and freeze-drying method
CN104296502A (zh) * 2013-07-19 2015-01-21 北京四环科学仪器厂有限公司 一种可不间断运行带自动化霜功能的真空冷冻干燥机制冷系统
CN104534729A (zh) * 2014-06-13 2015-04-22 楚天科技股份有限公司 一种冻干机制冷系统及该制冷系统的控制方法
CN106352664A (zh) * 2016-11-11 2017-01-25 中国科学院理化技术研究所 一种低温速冻冻干系统

Also Published As

Publication number Publication date
US20190226761A1 (en) 2019-07-25
US10900713B2 (en) 2021-01-26
CN106352664A (zh) 2017-01-25
CN106352664B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2018086474A1 (zh) 一种低温速冻冻干系统
CN109458793B (zh) 一种真空冷冻耦合余热循环节能干燥机
CN102095305B (zh) 冷阱可自循环再生的冷冻干燥机
CN104534729B (zh) 一种冻干机制冷系统及该制冷系统的控制方法
KR100669257B1 (ko) 히트펌프 방식을 이용한 동결건조 장치 및 방법
CN111561810B (zh) 真空冷冻干燥装置
CN210625130U (zh) 一种复叠冻干机制冷装置
CN107691629A (zh) 一种干冰果蔬冻干制冷系统
CN204261543U (zh) 一种分体式压缩空气冷干机
CN204006776U (zh) 一种冻干箱制冷系统
CN112197517B (zh) 一种多层次冷热共用真空冻干系统
CN108592526A (zh) 一种叶菜真空脱水预冷装置及预冷方法
CN105859093B (zh) 一种能量回收利用的低能耗污泥冷冻真空干燥方法
CN207019385U (zh) 冷冻干燥机
CN209791236U (zh) 冷凝热鼓风吸附式干燥机
CN106468500B (zh) 一种节能的冷冻干燥装置的冷冻干燥方法
KR20150041856A (ko) 동결건조기
KR890001696Y1 (ko) 냉각제습 건조장치
CN203196515U (zh) 蒸汽压缩式热泵与转轮吸附除湿耦合运行干燥机
CN106907875B (zh) 冻干机的集中供冷系统
KR200405742Y1 (ko) 히트펌프 방식을 이용한 동결건조 장치
CN104344584A (zh) 一种冷冻干燥装置
TWM552092U (zh) 冷凍乾燥機之節能裝置
CN115451663B (zh) 利用循环风吸附脱水的冷冻干燥系统及方法
TWI629442B (zh) 冷凍乾燥機之節能裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869827

Country of ref document: EP

Kind code of ref document: A1