WO2018086331A1 - 摄像头模组和终端设备 - Google Patents

摄像头模组和终端设备 Download PDF

Info

Publication number
WO2018086331A1
WO2018086331A1 PCT/CN2017/084885 CN2017084885W WO2018086331A1 WO 2018086331 A1 WO2018086331 A1 WO 2018086331A1 CN 2017084885 W CN2017084885 W CN 2017084885W WO 2018086331 A1 WO2018086331 A1 WO 2018086331A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical signal
camera module
reflected
rotatable
Prior art date
Application number
PCT/CN2017/084885
Other languages
English (en)
French (fr)
Inventor
谢振霖
秦振凯
冉坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17870166.0A priority Critical patent/EP3419277B1/en
Publication of WO2018086331A1 publication Critical patent/WO2018086331A1/zh
Priority to US16/408,098 priority patent/US20190265461A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • G02B13/007Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a camera module and a terminal device.
  • the dual-channel camera module refers to a camera module capable of capturing images on both sides.
  • the dual-channel camera module can capture the target on the first side to obtain the first side image or the target on the second side. Shoot and get the second side image.
  • the structure of the dual-channel camera module is generally as shown in FIG. 1A.
  • the dual-channel camera module includes a first mirror 101, a second mirror 102, a lens group 103, a housing 104 and an image sensor 105.
  • the first mirror The angle between the first mirror 071 and the second mirror 119 is 90°.
  • the reflective surfaces of the first mirror 101 and the second mirror 102 both face the lens group 103.
  • the second mirror 102 is not powered, it is a mirror, and the second mirror 102 is the first pair from the dual channel camera module.
  • the side light signal is reflected, and the reflected light signal is transmitted to the image sensor 105 through the lens group 103, and the first side image is generated by the image sensor 105.
  • the second mirror 102 is powered into a lens, and the first mirror 101 is opposite to the light from the second side of the two-channel camera module.
  • the signal is reflected, and the reflected light signal is transmitted to the image sensor 105 via the second mirror 102 and the lens group 103, and the second side image is generated by the image sensor 105.
  • the dual-channel camera module includes a double-sided mirror, and the two-sided mirror occupies a large space, resulting in the size of the dual-channel camera module. Larger, taking up more space.
  • the embodiment of the present application provides a camera module and a terminal device.
  • the technical solution is as follows:
  • a camera module comprising: a rotatable mirror, a lens group, a housing, and an image sensor;
  • the housing includes a first surface and a second surface, the first surface being opposite the second surface;
  • the first mirror surface of the rotatable mirror is a reflective surface, and the rotatable mirror is divided into a first reflective area and a second reflective area by a plane where the optical axis of the lens group is located, and the first mirror is located at the The portion of the first reflective area is a first sub-mirror;
  • the first mirror reflects the first optical signal entering from the first surface, and the reflected first optical signal is along the optical axis Transmitting in a linear direction to generate a corresponding image based on the reflected first optical signal, wherein the first reflective area is opposite to the first reflective position when the rotatable mirror is in the first position
  • the second reflective area is closer to the first surface, and the angle between the first sub-mirror and the transmission direction of the reflected first optical signal on the line where the optical axis is located is 135°. Transmitting a direction of the first optical signal perpendicular to the first surface;
  • the first mirror reflects a second optical signal entering from the second surface, and the reflected second optical signal is along the optical axis Transmitting in a linear direction to generate a corresponding image based on the reflected second optical signal, wherein the first reflective region is opposite to the second in the case where the rotatable mirror is in the second position a reflective area closer to the first surface, the first sub-mirror having an angle between the direction of transmission of the reflected second optical signal on a line on which the optical axis is located is 45°, the second The direction of transmission of the optical signal is perpendicular to the second surface.
  • the rotatable mirror further includes a second mirror surface opposite to the first mirror surface, and the second mirror surface is a reflective surface;
  • the second mirror reflects the second optical signal entering from the second surface, and the reflected second optical signal is along Transmitting in a linear direction in which the optical axis is located to generate a corresponding image according to the reflected second optical signal, wherein, in a case where the rotatable mirror is located at the second position, the first reflective area is opposite to The second reflective area is closer to the second surface, and the angle between the first sub-mirror and the transmission direction of the reflected second optical signal on the line where the optical axis is located is 135° The transmission direction of the second optical signal is perpendicular to the second surface.
  • the rotatable mirror further includes a second mirror surface opposite to the first mirror surface, and The second mirror surface is a reflective surface;
  • the first mirror surface and the second mirror surface are both flat, or
  • the first mirror surface and the second mirror surface are both convex; or
  • the first mirror surface and the second mirror surface are both concave; or
  • the first mirror surface is a plane, and the second mirror surface is a convex surface;
  • the first mirror surface is a plane, and the second mirror surface is a concave surface;
  • the first mirror surface is a concave surface
  • the second mirror surface is a convex surface
  • the first mirror surface is a concave surface, and the second mirror surface is a plane;
  • the first mirror surface is a convex surface
  • the second mirror surface is a concave surface
  • the first mirror surface is a convex surface
  • the second mirror surface is a flat surface
  • the camera module further includes a motor, the motor is configured to drive the rotatable mirror A rotation has occurred.
  • the motor includes a driving circuit and a motor shaft, and the rotatable mirror is disposed on the motor shaft
  • the driving circuit is configured to drive the motor shaft to rotate, thereby driving the rotatable mirror to rotate.
  • the camera module further includes a micro-electro-mechanical system (MEMS) micromirror mirror;
  • MEMS micro-electro-mechanical system
  • the reflected first optical signal is transmitted to the a MEMS micromirror mirror, wherein the reflected first optical signal is reflected by the MEMS micromirror mirror, and the re-reflected first optical signal is transmitted to the image sensor, and the image sensor is used by the image sensor Decoding the first optical signal to generate a corresponding image;
  • the reflected second optical signal is transmitted to the MEMS micromirror mirror, and the reflected by the MEMS micromirror mirror
  • the second optical signal is subjected to a reflection process, and the second optical signal that is reflected again is transmitted to the image sensor, and the image sensor generates a corresponding image according to the second optical signal that is reflected again.
  • the camera module further includes a motor group
  • the lens group includes N lenses sequentially arranged along a linear direction in which the optical axis is located, the motor group includes N motors, the N motors are in one-to-one correspondence with the N lenses, and each motor The lens for driving the corresponding lens moves along the linear direction of the optical axis to adjust the focal length of the lens group, and N is an integer greater than or equal to 1.
  • the plane of the image sensor is parallel to a line where the optical axis is located.
  • the camera module further includes a circuit board, where the rotatable mirror, the lens group, and the image sensor are located On the same surface of the circuit board.
  • the camera module further includes a distance sensor, where the distance sensor is disposed on the motor group;
  • the distance sensor is configured to detect a distance between the target and the distance sensor, and control at least one motor movement of the motor group according to the distance to adjust a focal length of the lens group, so that the adjusted focal length and the Distance matching.
  • the motor is a closed loop control motor.
  • the first surface is disposed on the first surface, and the second surface is provided with a second light incident lens, the first light signal The first optical lens is transmitted to the rotatable mirror, and the second optical signal is transmitted to the rotatable mirror through the second optical lens.
  • the motor controls the rotatable mirror to be sequentially rotated to a plurality of designated positions, and the image sensor generates and a plurality of images corresponding to the plurality of designated positions; synthesizing the plurality of images into a wide-angle image.
  • the reflected first optical signal will be Transmitting to the lens group and performing zoom processing by the lens group, the zoomed first light signal is transmitted to the image sensor to cause the image sensor to generate according to the zoomed first light signal Corresponding image;
  • the rotatable mirror is in the first position, after the reflected second optical signal is transmitted in a linear direction in which the optical axis is located, the reflected second optical signal is transmitted to The lens group is subjected to zoom processing by the lens group, and the zoomed second light signal is transmitted to the image sensor to cause the image sensor to generate a corresponding image according to the zoomed second light signal image.
  • a terminal device comprising the camera module and the memory according to the first aspect
  • the camera module is configured to capture an image
  • the memory is for storing the image.
  • the camera module provided by the embodiment of the present application includes a rotatable mirror, a lens group, a casing and an image sensor.
  • the first optical signal entering the first surface is obtained when the rotatable mirror is at the first position. Reflecting, the reflected first optical signal is transmitted along a linear direction in which the optical axis is located to generate a corresponding image according to the reflected first optical signal, and the rotating mirror is in the second position.
  • the second optical signal entering from the second surface is reflected, and the reflected second optical signal is transmitted along a linear direction in which the optical axis is located to generate a corresponding image according to the reflected second optical signal.
  • the rotatable mirror can capture both the first target and the second target, enabling dual-channel imaging. Moreover, since only one mirror is disposed in the camera module, the number of mirrors is reduced, thereby reducing the occupied space, reducing the size of the camera module, and saving the space occupied by the camera module.
  • first mirror surface and the second mirror surface of the rotatable mirror may both be reflective surfaces, and when the rotatable mirror is in the first position, the light signal is reflected by the first mirror surface, and the rotatable mirror is When in the second position, the optical signal may be reflected by the first specular surface or the second specular reflected light signal, that is, the rotatable mirror may be rotated from the first position to the second position.
  • the hour hand rotates and can also rotate counterclockwise for added flexibility.
  • the first mirror surface and the second mirror surface may each be a flat surface, a convex surface or a concave surface.
  • the camera module is rotated by the motor-driven rotatable mirror, so that the position of the rotatable mirror can be controlled.
  • the motor includes a driving circuit and a motor shaft, and the motor shaft can be rotated by the driving circuit to drive the rotatable mirror to rotate, thereby realizing precise control of the rotatable mirror.
  • the driving circuit can be a closed-loop driving circuit, which can reduce the probability of deviation of the rotation angle of the motor, and the motor can also have a locking function to ensure the position of the rotatable mirror is unchanged, thereby ensuring The direction of the light signal reflected by the rotatable mirror remains stable.
  • the camera module is provided with a MEMS micromirror mirror to ensure that the image sensor of the image sensor can receive the optical signal, and the plane of the image sensor is parallel to the line where the optical axis of the lens group is located, thereby reducing the camera.
  • the thickness of the module reduces the size of the camera module.
  • each motor in the motor module of the camera module is used to drive a corresponding lens to move along a linear direction of the optical axis to adjust a focal length of the lens group, so as to capture a distant target or The purpose of shooting near objects.
  • the camera module is provided with a distance sensor, which can quickly detect the distance between the target and the rotatable mirror, and control the movement of the motor group based on the distance to adjust the focal length of the lens group. , the adjusted focal length is matched with the distance, thereby achieving precise focusing and increasing the focusing speed.
  • the rotatable mirror, the lens group and the image sensor are located on the same surface of the circuit board, and can be electrically connected with the circuit board, which is convenient for design and reduces the process difficulty.
  • the rotatable mirror can be sequentially rotated to a plurality of designated positions, and a plurality of images corresponding to the plurality of designated positions can be generated to synthesize a wide-angle image to realize a wide-angle shooting function.
  • FIG. 1A is a schematic structural diagram of a camera module provided by the prior art
  • FIG. 1B is a schematic diagram of photographing a first side object provided by the prior art
  • 1C is a schematic diagram of photographing a second side object provided by the prior art
  • FIG. 2A is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • 2B is a schematic diagram of photographing a first side object according to an embodiment of the present application.
  • 2C is a schematic diagram of photographing a second side target provided by an embodiment of the present application.
  • 2D is a schematic diagram of photographing a second side target provided by an embodiment of the present application.
  • 2E is a schematic flow chart of a wide-angle shooting provided by an embodiment of the present application.
  • 2F is a schematic flow chart of a wide-angle shooting provided by an embodiment of the present application.
  • 3A is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • FIG. 3B is a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • FIG. 4A is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • 4B is a cross-sectional view of a camera module according to an embodiment of the present application.
  • 4C is a schematic diagram of photographing a first side target provided by an embodiment of the present application.
  • 4D is a schematic diagram of photographing a second side target provided by an embodiment of the present application.
  • 4E is a schematic diagram of a MEMS micromirror mirror provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a camera module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • FIG. 7A is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • FIG. 7B is a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a camera module according to an embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of a camera module according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a photographing method according to an embodiment of the present application.
  • FIG. 11 is a block diagram of a terminal device according to an embodiment of the present application.
  • the camera module includes a rotatable mirror 201, a lens group 202, a housing 203, and an image sensor 204.
  • the rotatable mirror 201 is configured to receive an optical signal formed by reflection of the object during the camera module capturing the object, and the lens group 202 includes at least one lens, and the lens group 202 can be adjusted by the at least one lens.
  • the focal length, and thus the focal length of the camera module is used to protect the camera module to prevent the internal components of the camera module from being exposed to dust.
  • the object is a target of the camera module, and may be a person, a plant, an animal, or the like.
  • the type of the object is not limited in the embodiment of the present application.
  • the image sensor 204 includes a photosensitive chip that is capable of converting an received optical signal into an electrical signal by a photosensitive chip to generate an image.
  • the photosensitive chip may be a charge coupled device (CCD), a metal oxide semiconductor device (CMOS), or the like.
  • the type of the photosensitive chip is not limited in the embodiment of the present application.
  • the housing 203 includes a first surface 2031 and a second surface 2032 opposite to the second surface 2032.
  • the rotatable mirror 201 includes a first mirror surface 2011 and a second mirror surface 2012, the first mirror surface 2011 is a reflective surface, and the rotatable mirror 201 is divided into a first reflective region 2013 and a second reflective light by the optical axis of the lens group 202.
  • the portion of the first mirror surface 2011 located in the first reflective area 2013 is the first sub-mirror surface.
  • the rotatable mirror 201 when the target is located on the first side of the camera module, that is, outside the first surface 2031 , the rotatable mirror 201 is located at the first position, and the first mirror 2011 faces the lens group 202 .
  • the first mirror surface 2011 reflects the first optical signal entering from the first surface 2031, and the reflected first optical signal is transmitted to the lens group 202 along the linear direction of the optical axis, and passes through the lens group 202.
  • the zooming process is performed, and the zoomed first light signal is transmitted to the image sensor 204, so that the image sensor 204 generates a corresponding image according to the zoomed first light signal, which is the captured target image. .
  • the first reflective region 2013 is closer to the first surface 2031 with respect to the second reflective region 2014, and the first sub-mirror is located at the optical axis
  • the angle between the transmission directions of the reflected first optical signals on the straight line is 135°, and the transmission direction of the first optical signals is perpendicular to the first surface.
  • the aforementioned “the angle between the first sub-mirror and the transmission direction of the first optical signal reflected on the line where the optical axis is located is 135°”, which should be according to those skilled in the art. It is understood that 135° herein does not mean that “the angle between the first sub-mirror and the direction of transmission of the first optical signal reflected on the line on which the optical axis is located” must be exactly 135°. Those skilled in the art should know that "the angle between the first sub-mirror and the transmission direction of the reflected first optical signal on the line where the optical axis is located” may slightly deviate from 135°, which is difficult to avoid based on the error.
  • the rotatable mirror 201 when the target is located on the second side of the camera module, that is, outside the second surface 2032, the rotatable mirror 201 is located at the second position, and the first mirror 2011 faces the lens group 202.
  • the first mirror surface 2011 reflects the second optical signal entering from the second surface 2032, and the reflected second optical signal is transmitted to the lens group 202 along the linear direction of the optical axis, and passes through the lens group 202.
  • the zooming process is performed, and the zoomed second light signal is transmitted to the image sensor 204, so that the image sensor 204 generates a corresponding image according to the zoomed second light signal, which is the captured target image. .
  • the first reflective region 2013 is closer to the first surface 2031 with respect to the second reflective region 2014, and the first sub-mirror is located at the optical axis
  • the angle between the transmission directions of the reflected second optical signals on the straight line is 45°, and the transmission direction of the second optical signals is perpendicular to the second surface.
  • the aforementioned “the angle between the first sub-mirror and the transmission direction of the second optical signal reflected on the line where the optical axis is located is 45°”, which should be according to those skilled in the art. It is understood that 45° herein does not mean that “the angle between the first sub-mirror and the direction of transmission of the second optical signal reflected on the line on which the optical axis is located” must be exactly 45°. Those skilled in the art should know that "the angle between the first sub-mirror and the transmission direction of the reflected second optical signal on the line where the optical axis is located” may be slightly deviated from 45°, which is still difficult to avoid based on the error.
  • the camera module adopts the same rotatable mirror 201 to capture the first side image or the second side image, it can be ensured that the captured first side image and the second side image have the same image quality.
  • a first entrance lens may be disposed on the first surface 2031, and a second advance may be disposed on the second surface 2032.
  • Optical lens In the process that the rotatable mirror 201 receives the first optical signal reflected by the target on the first side, the first optical signal can be transmitted to the rotatable mirror 201 through the first optical lens. Further, a first side image is generated. While the rotatable mirror 201 receives the second optical signal reflected by the target on the second side, the second optical signal can be transmitted to the rotatable mirror 201 through the second optical lens, and further A second side image is generated.
  • the first entrance lens and the second entrance lens are configured to receive an optical signal reflected by the target, and the imaging range of the camera module can be enlarged by the first entrance lens and the second entrance lens.
  • the rotatable mirror 201 further includes a second mirror surface 2012 opposite to the first mirror surface 2011, and the second mirror surface 2012 is a reflective surface.
  • the second mirror surface 2012 faces the lens group 202.
  • the second mirror surface 2012 reflects the second optical signal entering from the second surface 2032, and the reflected second optical signal is transmitted to the lens group 202 along the linear direction of the optical axis, and passes through the lens group 202.
  • the zoomed second light signal is transmitted to the image sensor 204 to cause the image sensor 204 to generate an image based on the zoomed second light signal, wherein the rotatable mirror 201 is located at the In the case of two positions, the first reflective area 2013 is closer to the second surface 2032 relative to the second reflective area 2014, and the first sub-mirror and the second optical signal reflected on the line where the optical axis is located The angle between the transmission directions is 135°.
  • the first point to be explained is that when the first mirror surface 2011 and the second mirror surface 2012 are both reflective surfaces, when the rotatable mirror is at the first position, the clock mirror can be rotated clockwise to the second position. It can be rotated counterclockwise to the second position.
  • first mirror surface 2011 and the second mirror surface 2012 can be any of a flat surface, a convex surface, and a concave surface, and the rotatable mirror 201 can be formed in any combination.
  • the first mirror surface 2011 and the second mirror surface 2012 are both planar, or the first mirror surface 2011 and the second mirror surface 2012 are both convex surfaces; or the first mirror surface 2011 and the second mirror surface 2012 are both Or the first mirror surface 2011 is a convex surface; or the second mirror surface 2012 is a concave surface; or the first mirror surface 2011 is a concave surface, or the first mirror surface 2011 is a concave surface,
  • the second mirror surface 2012 is a convex surface; or the first mirror surface 2011 is a concave surface, and the second mirror surface 2012 is a plane; or the first mirror surface 2011 is a convex surface, and the second mirror surface 2012 is a concave surface; or, the first mirror surface 2011
  • the convex surface is the plane of the second mirror 2012.
  • the rotatable mirror 201 can be sequentially rotated to a plurality of designated positions, and the image sensor 204 generates a plurality of images corresponding to the plurality of designated positions. And synthesizing the plurality of images into a wide-angle image.
  • the rotatable mirror 201 may be sequentially rotated to a specified position A, a specified position B, and a designated position C, and the image sensor 204 sequentially generates an image A corresponding to the specified position A, and the designation
  • the image B corresponding to the position B, and the image C corresponding to the specified position C, the image sensor 204 can combine the image A, the image B, and the image C into a wide-angle image, thereby realizing the function of wide-angle shooting.
  • the camera module provided by the embodiment of the present application includes a rotatable mirror, a lens group, a casing and an image sensor.
  • the first optical signal entering the first surface is obtained when the rotatable mirror is at the first position. Reflecting, the reflected first optical signal is transmitted along a linear direction in which the optical axis is located to generate a corresponding image according to the reflected first optical signal, and in a case where the rotatable mirror is located at the second position, A second optical signal entering from the second surface is reflected, and the reflected second optical signal is transmitted along a linear direction in which the optical axis is located to generate a corresponding image according to the reflected second optical signal.
  • the rotatable mirror can capture both the first side target and the second side target. The function of dual channel camera is now available. Moreover, since only one mirror is disposed in the camera module, the number of mirrors is reduced, thereby reducing the occupied space, reducing the size of the camera module, and saving the space occupied by the camera module.
  • the rotatable mirror may be sequentially rotated to a plurality of designated positions, and the image sensor generates a plurality of images corresponding to the plurality of designated positions, and the plurality of images are combined into a wide-angle image, thereby realizing a function of wide-angle shooting.
  • FIG. 3A is a schematic structural view of a camera module according to an embodiment of the present application, and FIG. 3A is a cross-sectional view along the A direction, as shown in FIG. 3B, and FIG. 3A and FIG. 3B, the basis of the camera module shown in FIG. 2A.
  • the camera module further includes a motor 205.
  • the camera module in order to meet the requirement of the camera module to capture the first side image and the second side image, it is necessary to control the position of the rotatable mirror. Therefore, the camera module is provided with a motor 205, and the motor 205 is used. The rotation of the rotatable mirror 201 is driven to rotate.
  • the motor 205 includes a motor shaft 2051 and a driving circuit 2052.
  • the rotating mirror 201 is disposed on the motor shaft 2051.
  • the driving circuit 2052 is configured to drive the motor shaft 2051 to rotate, thereby driving the rotatable mirror 201. Rotation occurs, that is, the rotatable mirror 201 rotates as the motor shaft 2051 rotates.
  • the driving circuit 2052 can control the position of the rotatable mirror 201 by controlling the rotation angle of the motor shaft 2051, and can capture the first side object and the second side object, thereby realizing the two-channel shooting.
  • the driving circuit 2052 can be a driver integrated circuit (Driver IC).
  • the motor shaft 2051 controls the rotatable mirror 201 to rotate to the first position, and the first optical signal passes through the lens group 202 and is transmitted to the image sensor 204.
  • the image sensor 204 generates an image based on the received optical signal, that is, the first side image.
  • the motor shaft 2051 controls the rotatable mirror 201 to rotate to the second position.
  • the second position is an angle capable of receiving the second optical signal reflected by the second side object, and the second optical signal is transmitted to the image sensor 204 via the lens group 202, and the image sensor 204 generates the light signal according to the received light signal.
  • the image is the second side image.
  • the drive circuit 2052 may be a closed-loop drive circuit capable of detecting a rotation angle.
  • the drive circuit 2052 may include a Hall sensor that detects a rotation angle of the motor shaft 2051.
  • the driving circuit 2052 controls the motor shaft 2051 to rotate by 20°, and the motor shaft 2051 rotates.
  • the driving circuit 2052 obtains the rotation angle of the motor shaft 2051 by the Hall sensor at this time is 18°.
  • the driving circuit The 2052 controls the motor shaft 2051 to rotate 2° again to ensure the accuracy of the rotation angle and improve the accuracy.
  • the motor 205 can have a locking function, that is, when the motor shaft 2051 is rotated, the driving circuit 2052 can fix the position of the motor shaft 2051.
  • the motor shaft 2051 The position is unchanged, thereby ensuring that the position of the rotatable mirror 201 is constant, ensuring that the direction of the light signal reflected by the rotatable mirror 201 remains stable.
  • FIG. 4A is a schematic structural view of a camera module according to an embodiment of the present application.
  • FIG. 4A is a cross-sectional view along the A direction, as shown in FIG. 4B. Referring to FIG. 4A and FIG. 4B, the basis of the camera module shown in FIG. 2A.
  • the camera module further includes a Micro-Electro-Mechanical System (MEMS) micromirror mirror 206.
  • MEMS Micro-Electro-Mechanical System
  • the zoomed first optical signal is transmitted to The MEMS micromirror mirror 206 is configured to reflect the reflected first optical signal by the MEMS micromirror mirror 206, and the re-reflected first optical signal is transmitted to the image sensor 204, and the image sensor 204 is The first light signal that is reflected again generates an image.
  • the reflected second optical signal will be transmitted to the MEMS micromirror mirror 206, which is reflected by the MEMS micromirror mirror 206.
  • the second optical signal is subjected to reflection processing, and the second optical signal that is reflected again is transmitted to the image sensor 204, and the image sensor 204 generates an image based on the second optical signal that is reflected again.
  • the MEMS micromirror mirror 206 is opposite to the photo sensor of the image sensor 204 for changing the transmission direction of the optical signal to ensure that the photo sensor of the image sensor 204 can receive the optical signal.
  • the MEMS The micromirror mirror 206 reflects the optical signal, and the direction of the reflected light signal is perpendicular to the plane of the image sensor 204, so that the re-reflected optical signal can be transmitted to the photosensitive chip of the image sensor 204.
  • the light sensitive chip of the image sensor 204 receives the reflected light signal and can generate an image based on the reflected light signal.
  • the plane of the image sensor 105 is perpendicular to the line of the optical axis of the lens group 103 . Then, the thickness of the camera module is large, resulting in a large size and space occupied by the camera module. Larger.
  • the plane of the image sensor 204 is parallel to the line where the optical axis of the lens group 202 is located. Since the MEMS micromirror mirror 206 changes the transmission direction of the optical signal, the optical signal after changing the transmission direction can be transmitted to the photosensitive chip of the image sensor 204, so that the photosensitive chip of the image sensor 204 can receive the object reflection. The light signal, thereby generating an image of the object. Moreover, when the plane of the image sensor 204 is parallel to the line where the optical axis is located, the thickness of the camera module can be reduced, compared with the case where the plane of the image sensor 204 is perpendicular to the line where the optical axis is located. The size of the camera module is reduced.
  • the MEMS micromirror mirror 206 may include at least one micromirror, and control the rotation angle of the corresponding micromirror by controlling the current intensity through each micromirror so that the focus of each micromirror is located in the image sensor 204. On the sensor chip.
  • the rotatable mirror 201 is in the first position or the second position, when the at least one micromirror receives the plurality of optical signals, the received optical signal can be reflected based on the corresponding rotation angle to be reflected
  • the focus of the optical signal is located on a designated area of the image sensor 204, thereby implementing a focusing function to ensure that the image generated by the image sensor 204 is clear.
  • the rotation angle is also different, for example, the greater the current intensity passed, the larger the angle of rotation.
  • the MEMS micromirror mirror 206 includes four micromirrors, and the rotation intensity of the four micromirrors is controlled by the current intensity of the four micromirrors, as shown in FIG. 4E.
  • the focus of the four micromirrors is located on a designated area of the image sensor 204.
  • the lens group 202 can realize the focusing function by using at least one lens, and when the camera module includes the MEMS micromirror mirror 206, the MEMS micromirror mirror 206 can also serve as a lens, and the lens group 202 At least one of the lenses cooperates to achieve a focusing function, and the number of lenses included in the lens group 202 can be reduced at this time, thereby further compressing the size of the camera module.
  • the camera module can include the image sensor 204 and a common mirror.
  • the transmission direction of the first optical signal or the second optical signal can still be changed, so that the image sensor 204 can receive the optical signal reflected by the target, thereby generating an image of the target.
  • the thickness of the camera module can be reduced, and the size of the camera module can be reduced.
  • FIG. 5 is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • the camera module further includes a motor group 207 on the basis of the camera module illustrated in FIG. 2A .
  • the lens group 202 is configured to change a focal length.
  • the lens group 202 includes N lenses arranged in a line along a direction in which the optical axis is located.
  • the motor group 207 includes N motors, and the N motors and the N lenses are one by one.
  • each motor is used to drive the corresponding lens to move along the linear direction of the optical axis to adjust the focal length of the lens group, N is an integer greater than or equal to 1, and FIG. 5 is a case where N is one.
  • each lens may comprise a convex lens or a concave lens.
  • the focal length of the lens group 202 can be increased or shortened, and the focal length of the camera module can be adjusted, so that both the distant object and the near target can be captured. the goal of.
  • Each of the motors may be a stepping motor, and may be an ultrasonic motor, a voice coil motor, or other types of motors, which is not limited in this embodiment.
  • the camera module further includes a distance sensor 208 disposed on the motor group 207.
  • a clear image of the target is captured, in the embodiment of the present application, in the N motors.
  • a distance sensor 208 is provided, which can quickly detect the distance between the target and the distance sensor 208, and based on the distance, control the movement of the motor group 208 to adjust The focal length of the lens group 202 matches the adjusted focal length with the distance, thereby achieving precise focusing and increasing the focusing speed.
  • the distance sensor 208 acquires the distance, determines at least one motor in the motor group 207 that needs to be moved, and a moving direction and a moving distance of the at least one motor that needs to be moved, and controls at least one motor that needs to move according to the movement.
  • the direction and the moving distance are moved to drive at least one lens movement corresponding to the at least one motor that needs to be moved, that is, by the distance sensor 208, the relative position of at least one lens in the lens group 202 can be changed, thereby making the The focal length of lens group 202 matches this distance.
  • setting the distance sensor inside the camera module can reduce the overall size of the camera module and the distance sensor, avoiding the extra space occupied by the distance sensor, and making the structure of the camera module more Integrated.
  • FIG. 7A is a schematic structural view of a camera module according to an embodiment of the present application, and FIG. 7A is a cross-sectional view along the A direction, as shown in FIG. 7B, and FIG. 7A and FIG. 7B, the basis of the camera module shown in FIG. 2A.
  • the camera module further includes a circuit board 209.
  • the rotatable mirror 201, the lens group 202 and the image sensor 204 are all located on the same surface of the circuit board 209.
  • the circuit board 209 may be a printed circuit board (PCB), a flexible printed circuit (FPC), or another type of circuit board, which is not limited in this embodiment.
  • PCB printed circuit board
  • FPC flexible printed circuit
  • the rotatable mirror 201, the lens group 202 and the image sensor 204 can be physically connected to the circuit board 209. .
  • the physical connection may include bonding or soldering, and the bonding may be glue bonding or bonding of other materials.
  • the welding may be laser welding or other welding methods, which is not limited in the embodiment of the present application.
  • the rotatable mirror 201, the lens group 202, and the image sensor 204 and the circuit board 209 can be electrically connected, which is convenient for design and reduces the process difficulty.
  • the camera module can adopt a sealing structure, thereby reducing the loss generated by the optical signal reflected by the target in the process of being transmitted to the image sensor 204, so that the image generated by the image sensor 204 is more clear.
  • the camera module may include a connector 2010 that is soldered to the circuit board 209 to form a unitary structure, the rotatable mirror 201 , the lens group 202 , and the Image sensor 204 can be coupled to an external power source and control circuit through the connector 2010.
  • the structure of the camera module can be as shown in FIG. 9.
  • the camera module includes: a rotatable mirror 201, a lens group 202, a housing 203, and an image sensor 204.
  • FIG. 10 is a flowchart of a photographing method provided by an embodiment of the present application.
  • the application embodiment is applied to the camera module shown in FIG. 2A.
  • the camera module includes at least: a rotatable mirror, a lens group, a housing, an image sensor, and a motor, and the housing includes a first surface and a second surface.
  • the first surface is opposite to the second surface;
  • the first mirror surface of the rotatable mirror is a reflective surface, and the rotatable mirror is divided into a first reflective area and a second reflective area by a plane where the optical axis of the lens group is located
  • the portion of the first mirror surface located in the first reflective area is a first sub-mirror surface.
  • the method includes:
  • the motor controls the rotatable mirror to rotate to the first position.
  • the first mirror reflects a first optical signal entering from the first surface, and the reflected first optical signal is transmitted to the lens group along a linear direction of the optical axis, and is performed by the lens group.
  • the zoomed first light signal is transmitted to the image sensor such that the image sensor generates a corresponding image based on the zoomed first light signal.
  • the first reflective area is closer to the first surface relative to the second reflective area, and the first sub-mirror is on a line along the optical axis
  • the angle between the transmission directions of the reflected first optical signals is 135°, and the transmission direction of the first optical signals is perpendicular to the first surface.
  • the motor controls the rotatable mirror to rotate to the second position.
  • the first mirror reflects a second optical signal entering from the second surface, and the reflected second optical signal is transmitted to the lens group along a linear direction of the optical axis, and is performed by the lens group.
  • the zoomed second light signal is transmitted to the image sensor such that the image sensor generates a corresponding image based on the zoomed second light signal.
  • the first reflective area is closer to the first surface relative to the second reflective area, the first sub-mirror and the line on the optical axis
  • the angle between the transmission directions of the reflected second optical signals is 45°, and the transmission direction of the second optical signals is perpendicular to the second surface.
  • the method provided by the embodiment of the present application uses only one rotatable mirror to control the rotation of the rotatable mirror to a first position, and reflects a first optical signal entering the first surface, and the reflected first optical signal Transmitted to the lens group, subjected to zoom processing by the lens group, and the first optical signal that is zoomed is transmitted to the image sensor, so that the image sensor generates An image of one side object, controlling rotation of the rotatable mirror to a second position, reflecting a second optical signal entering from the second surface, and transmitting the reflected second optical signal to the lens group
  • the lens group performs zoom processing, and the zoomed second optical signal is transmitted to the image sensor, so that the image sensor generates an image of the second side target, and the first side object or the second side object may be photographed. , realizes the function of dual channel camera.
  • the number of mirrors is reduced, because a mirror occupies less space, which reduces the size of the camera module and saves space.
  • FIG. 11 is a block diagram of a terminal device according to an embodiment of the present application, where the terminal device includes a camera module and a memory in any of the embodiments shown in FIG. 1 to FIG.
  • the camera module is used to capture an image
  • the memory is used to store the image
  • the terminal device may also include other devices.
  • the terminal device may include a mobile phone, a tablet computer, a personal digital assistant (PDA), a point of sales (POS), a car computer, and the like.
  • PDA personal digital assistant
  • POS point of sales
  • FIG. 11 is a block diagram showing a part of the structure of the mobile phone 100 related to the embodiment of the present application.
  • the mobile phone 100 includes a radio frequency (RF) circuit 110, a memory 120, other input devices 130, a display screen 140, a sensor 150, an audio circuit 160, an I/O subsystem 170, a processor 180, and a power supply. 190 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 11 does not constitute a limitation on the mobile phone, and may include more or less components than those illustrated, or combine some components, or split some components, or Different parts are arranged.
  • display 140 is a User Interface (UI) and that handset 100 may include a user interface that is smaller than shown or less.
  • UI User Interface
  • the RF circuit 110 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 180 processes the data. In addition, the uplink data is designed to be sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 110 can also communicate with the network and other devices via wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Pack
  • the memory 120 can be used to store software programs and modules, and the processor 180 executes various functional applications and data processing of the mobile phone 100 by running software programs and modules stored in the memory 120.
  • the memory 120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to The data created by the use of the mobile phone 100 (such as audio data, phone book, etc.) and the like.
  • memory 120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • Other input devices 130 can be used to receive input numeric or character information, as well as generate key signal inputs related to user settings and function controls of the handset 100.
  • the other input devices 130 may include, but are not limited to, a physical keyboard, function keys (such as a volume control button, a switch button, etc.), a trackball, a mouse, a joystick, and a light mouse.
  • function keys such as a volume control button, a switch button, etc.
  • a trackball such as a volume control button, a switch button, etc.
  • a mouse such as a mouse, a joystick, and a light mouse.
  • Other input devices 130 are coupled to other input device controllers 171 of I/O subsystem 170 for signal interaction with processor 180 under the control of other device input controllers 171.
  • the display screen 140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone 100, and can also accept user input.
  • the specific display screen 140 may include a display panel 141 and a touch panel 142.
  • the display panel 141 can be configured by using a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 142 also referred to as a touch screen, a touch sensitive screen, etc., can collect contact or non-contact operations on or near the user (eg, the user uses any suitable object or accessory such as a finger, a stylus, etc. on the touch panel 142.
  • the operation in the vicinity of the touch panel 142 may also include a somatosensory operation; the operation includes a single-point control operation, a multi-point control operation, and the like, and the corresponding connection device is driven according to a preset program.
  • the touch panel 142 may include two parts: a touch detection device and a touch controller. Wherein, the touch detection device detects the touch orientation and posture of the user, and detects a signal brought by the touch operation, and transmits a signal to the touch controller; the touch controller receives the touch information from the touch detection device, and converts the signal into a processor. The processed information is sent to the processor 180 and can receive commands from the processor 180 and execute them.
  • the touch panel 142 can be implemented by using various types such as resistive, capacitive, infrared, and surface acoustic waves, and the touch panel 142 can be implemented by any technology developed in the future.
  • the touch panel 142 can cover the display panel 141, and the user can display the content according to the display panel 141 (the display content includes, but is not limited to, a soft keyboard, a virtual mouse, a virtual button, an icon, etc.) on the display panel 141. Operation is performed on or near the covered touch panel 142.
  • the touch panel 142 After detecting the operation thereon or nearby, the touch panel 142 transmits to the processor 180 through the I/O subsystem 170 to determine user input, and then the processor 180 according to the user The input provides a corresponding visual output on display panel 141 via I/O subsystem 170.
  • the touch panel 142 and the display panel 141 are used as two separate components to implement the input and input functions of the mobile phone 100 in FIG. 11, in some embodiments, the touch panel 142 may be integrated with the display panel 141. The input and output functions of the mobile phone 100 are implemented.
  • the handset 100 can also include at least one type of sensor 150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 141 according to the brightness of the ambient light, and the proximity sensor may close the display panel 141 when the mobile phone 100 moves to the ear. / or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.
  • the mobile phone 100 can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, here Let me repeat.
  • the audio circuit 160, the speaker 161, and the microphone 162 can provide an audio interface between the user and the handset 100.
  • the audio circuit 160 can transmit the converted audio data to the speaker 161 for conversion to the sound signal output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into a signal, which is received by the audio circuit 160.
  • the audio data is converted to audio data, which is then output to the RF circuit 108 for transmission to, for example, another mobile phone, or the audio data is output to the memory 120 for further processing.
  • the I/O subsystem 170 is used to control external devices for input and output, and may include other device input controllers 171, sensor controllers 172, and display controllers 173.
  • one or more other input control device controllers 171 receive signals from other input devices 130 and/or send signals to other input devices 130.
  • Other input devices 130 may include physical buttons (press buttons, rocker buttons, etc.) , dial, slide switch, joystick, click wheel, light mouse (light mouse is not obvious A touch-sensitive surface that exhibits a visual output, or an extension of a touch-sensitive surface formed by a touch screen. It is worth noting that other input control device controllers 171 can be connected to any one or more of the above devices.
  • Display controller 173 in I/O subsystem 170 receives signals from display 140 and/or transmits signals to display 140. After the display 140 detects the user input, the display controller 173 converts the detected user input into an interaction with the user interface object displayed on the display screen 140, ie, implements human-computer interaction. Sensor controller 172 can receive signals from one or more sensors 150 and/or send signals to one or more sensors 150.
  • the processor 180 is the control center of the handset 100, connecting various portions of the entire handset with various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and recalling data stored in the memory 120, The various functions and processing data of the mobile phone 100 are executed to perform overall monitoring of the mobile phone.
  • the processor 180 may include one or more processing units; preferably, the processor 180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 180.
  • the handset 100 also includes a power source 190 (such as a battery) that supplies power to the various components.
  • a power source 190 such as a battery
  • the power source can be logically coupled to the processor 180 via a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • the mobile phone 100 may further include a Bluetooth module and the like, and details are not described herein again.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种摄像头模组和终端设备,属于电子技术领域。摄像头模组包括:可旋转反光镜、透镜组、壳体和图像传感器;壳体包括第一表面和第二表面;可旋转反光镜的第一镜面为反光面,第一镜面位于第一反光区域的部分为第一子镜面;在可旋转反光镜位于第一位置的情况下,第一镜面对第一光信号进行反射,被反射的第一光信号沿光轴所在的直线传输后生成图像,在可旋转反光镜位于第二位置的情况下,第一镜面对第二光信号进行反射,被反射的第二光信号沿光轴所在的直线传输后生成图像。本申请实施例提供的摄像头模组,只采用一个可旋转反光镜,实现了双通道摄像的功能,减小了反光镜的数量,缩小了尺寸,节省了占用的空间。

Description

摄像头模组和终端设备
本申请要求于2016年11月9日提交中国专利局、申请号为201610986372.5、申请名称为“摄像头模组和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种摄像头模组和终端设备。
背景技术
双通道摄像头模组是指能拍摄两侧图像的摄像头模组,通过双通道摄像头模组既可以对第一侧的目标物进行拍摄,得到第一侧图像,也可以对第二侧的目标物进行拍摄,得到第二侧图像。
双通道摄像头模组的结构通常如图1A所示,该双通道摄像头模组包括第一反光镜101、第二反光镜102、透镜组103、壳体104和图像传感器105,该第一反光镜101和该第二反光镜102与透镜组103的光轴之间的角度为45°,且该第一反光镜101与该第二反光镜102之间的角度为90°。且该第一反光镜101和该第二反光镜102的反光面均面向透镜组103。其中,在针对第一侧的目标物拍摄图像的情况下,如图1B所示,第二反光镜102不上电时为反光镜,该第二反光镜102对来自双通道摄像头模组第一侧的光信号进行反射,被反射的光信号经过透镜组103传输至图像传感器105,通过图像传感器105生成第一侧图像。在针对第二侧的目标物进行拍摄图像的情况下,如图1C所示,该第二反光镜102上电成为透镜,则第一反光镜101对来自双通道摄像头模组第二侧的光信号进行反射,被反射的光信号经过第二反光镜102和透镜组103传输至图像传感器105,通过图像传感器105生成第二侧图像。
在实现本申请的过程中,申请人发现现有技术至少存在以下问题:该双通道摄像头模组包括两面反光镜,该两面反光镜占用了较大的空间,导致该双通道摄像头模组的尺寸较大,占用的空间也较大。
发明内容
为了解决现有技术的问题,本申请实施例提供了一种摄像头模组和终端设备。所述技术方案如下:
第一方面,提供了一种摄像头模组,所述摄像头模组包括:可旋转反光镜、透镜组、壳体和图像传感器;
所述壳体包括第一表面和第二表面,所述第一表面和所述第二表面相对;
所述可旋转反光镜的第一镜面为反光面,所述可旋转反光镜被所述透镜组的光轴所在的平面分成第一反光区域和第二反光区域,所述第一镜面位于所述第一反光区域的部分为第一子镜面;
在所述可旋转反光镜位于第一位置的情况下,所述第一镜面对自所述第一表面进入的第一光信号进行反射,被反射的第一光信号沿所述光轴所在的直线方向传输,以便根据所述被反射的第一光信号生成相应的图像,其中,在所述可旋转反光镜位于所述第一位置的情况下,所述第一反光区域相对于所述第二反光区域更靠近所述第一表面,所述第一子镜面与在所述光轴所在的直线上所述被反射的第一光信号的传输方向之间的夹角为135°,所述第一光信号的传输方向垂直于所述第一表面;
在所述可旋转反光镜位于第二位置的情况下,所述第一镜面对自所述第二表面进入的第二光信号进行反射,被反射的第二光信号沿所述光轴所在的直线方向传输,以便根据被反射的第二光信号生成相应的图像,其中,在所述可旋转反光镜位于所述第二位置的情况下,所述第一反光区域相对于所述第二反光区域更靠近所述第一表面,所述第一子镜面在所述光轴所在的直线上所述被反射的第二光信号的传输方向之间的夹角为45°,所述第二光信号的传输方向垂直于所述第二表面。
结合第一方面,在第一方面的第一种可能实现方式中,所述可旋转反光镜还包括与所述第一镜面相对的第二镜面,且所述第二镜面为反光面;
在所述可旋转反光镜位于所述第二位置的情况下,所述第二镜面对自所述第二表面进入的所述第二光信号进行反射,被反射的第二光信号沿所述光轴所在的直线方向传输,以便根据被反射的第二光信号生成相应的图像,其中,在所述可旋转反光镜位于所述第二位置的情况下,所述第一反光区域相对于所述第二反光区域更靠近所述第二表面,所述第一子镜面与在所述光轴所在的直线上所述被反射的第二光信号的传输方向之间的夹角为135°,所述第二光信号的传输方向垂直于所述第二表面。
结合第一方面或第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,所述可旋转反光镜还包括与所述第一镜面相对的第二镜面,且所述第二镜面为反光面;
所述第一镜面和所述第二镜面均为平面,或者,
所述第一镜面和所述第二镜面均为凸面;或者,
所述第一镜面和所述第二镜面均为凹面;或者,
所述第一镜面为平面,所述第二镜面为凸面;或者,
所述第一镜面为平面,所述第二镜面为凹面;或者,
所述第一镜面为凹面,所述第二镜面为凸面;或者,
所述第一镜面为凹面,所述第二镜面为平面;或者,
所述第一镜面为凸面,所述第二镜面为凹面;或者,
所述第一镜面为凸面,所述第二镜面为平面。
结合第一方面或第一方面的第一种可能实现方式,在第一方面的第三种可能实现方式中,所述摄像头模组还包括电机,所述电机用于驱动所述可旋转反光镜发生旋转。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式中,所述电机包括驱动电路和电机轴,所述可旋转反光镜设置于所述电机轴上,所述驱动电路用于驱动所述电机轴转动,进而带动所述可旋转反光镜发生旋转。
结合上述任一种可能实现方式,在第一方面的第五种可能实现方式中,所述摄像头模组还包括微机电系统(Micro-Electro-Mechanical System,MEMS)微镜反光镜;
在所述可旋转反光镜位于所述第一位置的情况下,所述被反射的第一光信号传输到所述 MEMS微镜反光镜,由所述MEMS微镜反光镜对所述被反射的第一光信号进行反射处理,被再次反射的第一光信号传输到所述图像传感器,由所述图像传感器根据所述被再次反射的第一光信号生成相应的图像;
在所述可旋转反光镜位于所述第二位置的情况下,所述被反射的第二光信号传输到所述MEMS微镜反光镜,由所述MEMS微镜反光镜对所述被反射的第二光信号进行反射处理,被再次反射的第二光信号传输到所述图像传感器,由所述图像传感器根据所述被再次反射的第二光信号生成相应的图像。
结合上述任一种可能实现方式,在第一方面的第六种可能实现方式中,所述摄像头模组还包括马达组;
所述透镜组包括沿着所述光轴所在的直线方向依次排列的N个透镜,所述马达组包括N个马达,所述N个马达与所述N个透镜一一对应,且每一马达用于驱动对应的透镜沿所述光轴所在直线方向移动,以调节所述透镜组的焦距,N为大于或等于1的整数。
结合上述任一种可能实现方式,在第一方面的第七种可能实现方式中,所述图像传感器所在的平面平行于所述光轴所在的直线。
结合上述任一种可能实现方式,在第一方面的第八种可能实现方式中,所述摄像头模组还包括电路板,所述可旋转反光镜、所述透镜组和所述图像传感器均位于所述电路板的同一表面上。
结合在第一方面的第六种可能实现方式,在第一方面的第九种可能实现方式中,所述摄像头模组还包括距离传感器,所述距离传感器设置于所述马达组上;
所述距离传感器用于检测目标物与所述距离传感器之间的距离,根据所述距离控制所述马达组的至少一个马达移动,以调节所述透镜组的焦距,使被调节的焦距与所述距离匹配。
结合第一方面的第三种可能实现方式,在第一方面的第十种可能实现方式中,所述电机为闭环式控制电机。
结合第一方面,在第一方面的第十种可能实现方式中,所述第一表面上设置第一进光透镜,所述第二表面上设置第二进光透镜,所述第一光信号通过所述第一进光透镜传输至所述可旋转反光镜上,所述第二光信号通过所述第二进光透镜传输至所述可旋转反光镜上。
结合第一方面的第四种可能实现方式,在第一方面的第十一种可能实现方式中,所述电机控制所述可旋转反光镜依次旋转至多个指定位置,由所述图像传感器生成与所述多个指定位置对应的多个图像;将所述多个图像合成为广角图像。
结合上述任一种可能实现方式,在第一方面的第十二种可能实现方式中,
在所述可旋转反光镜位于所述第一位置的情况下,在所述被反射的第一光信号沿所述光轴所在的直线方向传输之后,所述被反射的第一光信号将被传输到所述透镜组,并被所述透镜组进行变焦处理,被变焦的第一光信号将被传输到所述图像传感器,以使所述图像传感器根据所述被变焦的第一光信号生成相应的图像;
在所述可旋转反光镜位于所述第一位置的情况下,在被反射的第二光信号沿所述光轴所在的直线方向传输之后,所述被反射的第二光信号将被传输到所述透镜组,并被所述透镜组进行变焦处理,被变焦的第二光信号将被传输到所述图像传感器,以使所述图像传感器根据所述被变焦的第二光信号生成相应的图像。
第二方面,提供了一种终端设备,所述终端设备包括如第一方面所述的摄像头模组和存储器;
所述摄像头模组用于拍摄图像;
所述存储器用于存储所述图像。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的摄像头模组,包括可旋转反光镜、透镜组、壳体和图像传感器,在该可旋转反光镜位于第一位置的情况下,对由第一表面进入的第一光信号进行反射,被反射的第一光信号沿所述光轴所在的直线方向传输,以便根据所述被反射的第一光信号生成相应的图像,而在该可旋转反光镜位于第二位置的情况下,对自该第二表面进入的第二光信号进行反射,被反射的第二光信号沿所述光轴所在的直线方向传输,以便根据被反射的第二光信号生成相应的图像。通过该可旋转反光镜既可以拍摄第一侧目标物,也可以拍摄第二侧目标物,实现了双通道摄像的功能。而且由于该摄像头模组中仅设置一个反光镜,减小了反光镜的数量,从而减小了占用的空间,缩小了摄像头模组的尺寸,节省了摄像头模组占用的空间。
进一步地,该可旋转反光镜的第一镜面和第二镜面均可为反光面,则在该可旋转反光镜位于第一位置时,由第一镜面反射光信号,而在该可旋转反光镜位于第二位置时,既可以由该第一镜面反射光信号,也可以由该第二镜面反射光信号,也即是,该可旋转反光镜从第一位置旋转至第二位置时既可以顺时针旋转,也可以逆时针旋转,提高了灵活性。而且,该第一镜面和该第二镜面均可以为平面、凸面或凹面中的任一种。
进一步地,该摄像头模组通过电机驱动可旋转反光镜发生旋转,从而可以控制该可旋转反光镜的位置。具体地,该电机包括驱动电路和电机轴,可以通过驱动电路驱动电机轴转动,从而带动可旋转反光镜发生旋转,实现了对可旋转反光镜的精确控制。优选地,该驱动电路可以为闭环式驱动电路,可以降低该电机旋转角度出现偏差的概率,该电机还可以具有锁止功能,能够保证该可旋转反光镜的位置不变,从而保证了经过该可旋转反光镜反射的光信号方向保持稳定。
进一步地,该摄像头模组设置MEMS微镜反光镜,保证该图像传感器的感光芯片能够接收到光信号的前提下,该图像传感器所在的平面平行于透镜组光轴所在的直线,减小该摄像头模组的厚度,缩小了该摄像头模组的尺寸。
进一步地,该摄像头模组中的马达组中的每一马达用于驱动对应的透镜沿该光轴所在直线方向移动,以调节该透镜组的焦距,达到既可以拍摄远处目标物,又可以拍摄近处目标物的目的。
进一步地,该摄像头模组设置距离传感器,该距离传感器能够快速地检测目标物与该可旋转反光镜之间的距离,以该距离为基准,控制该马达组移动,以调节该透镜组的焦距,使调节的焦距与该距离匹配,从而实现了精确对焦,并提高了对焦速度。
进一步地,该可旋转反光镜、该透镜组和该图像传感器位于电路板的同一表面上,可以与该电路板可以实现电气连接,便于设计,降低了工艺难度。
进一步地,在电机的控制下,该可旋转反光镜可以依次旋转至多个指定位置,能够生成与该多个指定位置对应的多个图像,从而合成广角图像,实现广角拍摄的功能。
附图说明
图1A是现有技术提供的一种摄像头模组的结构示意图;
图1B是现有技术提供的一种拍摄第一侧目标物的示意图;
图1C是现有技术提供的一种拍摄第二侧目标物的示意图;
图2A是本申请实施例提供的一种摄像头模组的结构示意图;
图2B是本申请实施例提供的一种拍摄第一侧目标物的示意图;
图2C是本申请实施例提供的一种拍摄第二侧目标物的示意图;
图2D是本申请实施例提供的一种拍摄第二侧目标物的示意图;
图2E是本申请实施例提供的一种广角拍摄的流程示意图;
图2F是本申请实施例提供的一种广角拍摄的流程示意图;
图3A是本申请实施例提供的一种摄像头模组的结构示意图;
图3B是本申请实施例提供的一种摄像头模组的剖面示意图;
图4A是本申请实施例提供的一种摄像头模组的结构示意图;
图4B是本申请实施例提供的一种摄像头模组的剖面示意图;
图4C是本申请实施例提供的一种拍摄第一侧目标物的示意图;
图4D是本申请实施例提供的一种拍摄第二侧目标物的示意图;
图4E是本申请实施例提供的一种MEMS微镜反光镜的示意图;
图5是本申请实施例提供的一种摄像头模组的结构示意图;
图6是本申请实施例提供的一种摄像头模组的结构示意图;
图7A是本申请实施例提供的一种摄像头模组的结构示意图;
图7B是本申请实施例提供的一种摄像头模组的剖面示意图;
图8是本申请实施例提供的一种摄像头模组的结构示意图;
图9是本申请实施例提供的一种摄像头模组的剖面示意图;
图10是本申请实施例提供的一种拍摄方法的流程图;
图11是本申请实施例提供的一种终端设备的框图。
具体实施方式
图2A是本申请实施例提供的一种摄像头模组的结构示意图,参见图2A,该摄像头模组包括:可旋转反光镜201、透镜组202、壳体203和图像传感器204。
在该摄像头模组拍摄目标物的过程中,该可旋转反光镜201用于接收目标物反射形成的光信号,该透镜组202包括至少一个透镜,通过该至少一个透镜可以调整该透镜组202的焦距,进而调整该摄像头模组的焦距,该壳体203用于保护该摄像头模组,防止该摄像头模组的内部器件蒙受尘土。该目标物是指该摄像头模组拍摄的目标,可以为人、植物、动物等,本申请实施例对该目标物的类型不做限定。该图像传感器204包括感光芯片,该图像传感器204能够通过感光芯片,将接收的光信号转换为电信号,从而生成图像。该感光芯片可以为电荷耦合元件(Charge Coupled Device,CCD)、金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)等,本申请实施例对该感光芯片的类型不做限定。
其中,该壳体203包括第一表面2031和第二表面2032,该第一表面2031和第二表面2032相对。
该可旋转反光镜201包括第一镜面2011和第二镜面2012,该第一镜面2011为反光面,该可旋转反光镜201被该透镜组202的光轴分成第一反光区域2013和第二反光区域2014,该第一镜面2011位于该第一反光区域2013的部分为第一子镜面。
具体地,参见图2B,目标物位于该摄像头模组的第一侧,即该第一表面2031外侧时,该可旋转反光镜201位于第一位置,该第一镜面2011面向透镜组202。该第一镜面2011对自该第一表面2031进入的第一光信号进行反射,被反射的第一光信号沿该光轴所在的直线方向,传输到该透镜组202,并经该透镜组202进行变焦处理,被变焦的第一光信号将被传输到该图像传感器204,以使该图像传感器204根据该被变焦的第一光信号生成相应的图像,该图像即为拍摄到的目标物图像。其中,该可旋转反光镜201位于第一位置的情况下,该第一反光区域2013相对于该第二反光区域2014更靠近该第一表面2031,该第一子镜面与在该光轴所在的直线上该被反射的第一光信号的传输方向之间的夹角为135°,该第一光信号的传输方向垂直于该第一表面。
值得注意的是,前述的“该第一子镜面与在该光轴所在的直线上该被反射的第一光信号的传输方向之间的夹角为135°”,应当按照本领域技术人员的理解予以解释,此处的135°并不表示“该第一子镜面与在该光轴所在的直线上该被反射的第一光信号的传输方向之间的夹角”必须正好是135°,本领域技术人员应当知道,“该第一子镜面与在该光轴所在的直线上该被反射的第一光信号的传输方向之间的夹角”可以稍稍偏离135°,基于误差尚且难以避免,此处更不宜僵化地理解为必须是135°,而应当按照本领域技术人员的惯常理解予以解释,夹角稍稍偏离135°但也能够实现本申请申请目的的技术方案,也应当在本专利的保护范围之内。
参见图2C,目标物位于该摄像头模组的第二侧,即该第二表面2032外侧时,该可旋转反光镜201位于第二位置,该第一镜面2011面向透镜组202。该第一镜面2011对自该第二表面2032进入的第二光信号进行反射,被反射的第二光信号沿该光轴所在的直线方向,传输到该透镜组202,并经该透镜组202进行变焦处理,被变焦的第二光信号将被传输到该图像传感器204,以使该图像传感器204根据该被变焦的第二光信号生成相应的图像,该图像即为拍摄到的目标物图像。其中,该可旋转反光镜201位于第二位置的情况下,该第一反光区域2013相对于该第二反光区域2014更靠近该第一表面2031,该第一子镜面与在该光轴所在的直线上该被反射的第二光信号的传输方向之间的夹角为45°,该第二光信号的传输方向垂直于该第二表面。
值得注意的是,前述的“该第一子镜面与在该光轴所在的直线上该被反射的第二光信号的传输方向之间的夹角为45°”,应当按照本领域技术人员的理解予以解释,此处的45°并不表示“该第一子镜面与在该光轴所在的直线上该被反射的第二光信号的传输方向之间的夹角”必须正好是45°,本领域技术人员应当知道,“该第一子镜面与在该光轴所在的直线上该被反射的第二光信号的传输方向之间的夹角”可以稍稍偏离45°,基于误差尚且难以避免,此处更不宜僵化地理解为必须是45°,而应当按照本领域技术人员的惯常理解予以解释,夹角稍稍偏离45°但也能够实现本申请申请目的的技术方案,也应当在本专利的保护范围之内。
需要说明的是,由于该摄像头模组采用同一个可旋转反光镜201拍摄第一侧图像或者第二侧图像,可以保证拍摄到的第一侧图像和第二侧图像具有相同的画质。
可选地,该第一表面2031上可以设置第一进光透镜,第二表面2032上可以设置第二进 光透镜。那么,在该可旋转反光镜201接收第一侧的目标物反射的第一光信号的过程中,该第一光信号可以通过该第一进光透镜,传输至该可旋转反光镜201上,进而生成第一侧图像。而在该可旋转反光镜201接收第二侧的目标物反射的第二光信号的过程中,该第二光信号可以通过该第二进光透镜,传输至该可旋转反光镜201上,进而生成第二侧图像。该第一进光透镜和该第二进光透镜用于接收目标物反射的光信号,而且,通过该第一进光透镜和该第二进光透镜,可以扩大该摄像头模组的拍摄范围。
可选地,参见图2D,该可旋转反光镜201还包括与该第一镜面2011相对的第二镜面2012,且该第二镜面2012为反光面。
在该可旋转反光镜201位于该第二位置的情况下,该第二镜面2012面向透镜组202。该第二镜面2012对自该第二表面2032进入的第二光信号进行反射,被反射的第二光信号沿该光轴所在的直线方向,传输到该透镜组202,并经该透镜组202进行变焦处理,被变焦的第二光信号将被传输到该图像传感器204,以使该图像传感器204根据该被变焦的第二光信号生成图像,其中,在该可旋转反光镜201位于该第二位置的情况下,该第一反光区域2013相对于该第二反光区域2014更靠近该第二表面2032,该第一子镜面与在该光轴所在的直线上该被反射的第二光信号的传输方向之间的夹角为135°。
需要说明的第一点是,该第一镜面2011和该第二镜面2012均为反光面时,在该可旋转反光镜位于第一位置的情况下,既可以顺时针旋转到第二位置,也可以逆时针旋转到第二位置。
需要说明的第二点是,该第一镜面2011和该第二镜面2012的类型均可以为平面、凸面、凹面中的任一种,并可以以任意结合的方式形成该可旋转反光镜201。
也即是,该第一镜面2011和该第二镜面2012均为平面,或者,该第一镜面2011和该第二镜面2012均为凸面;或者,该第一镜面2011和该第二镜面2012均为凹面;或者,该第一镜面2011为平面,该第二镜面2012为凸面;或者,该第一镜面2011为平面,该第二镜面2012为凹面;或者,该第一镜面2011为凹面,该第二镜面2012为凸面;或者,该第一镜面2011为凹面,该第二镜面2012为平面;或者,该第一镜面2011为凸面,该第二镜面2012为凹面;或者,该第一镜面2011为凸面,该第二镜面2012为平面。
在图2A所示实施例的基础上,为了拍摄处于不同位置的目标物,该可旋转反光镜201可以依次旋转至多个指定位置,该图像传感器204生成与该多个指定位置对应的多个图像,将该多个图像合成为广角图像。
例如,参见图2E和图2F,该可旋转反光镜201可以依次旋转至指定位置A、指定位置B、指定位置C,该图像传感器204依次生成与该指定位置A对应的图像A,与该指定位置B对应的图像B,该指定位置C对应的图像C,那么,该图像传感器204可以将该图像A、图像B和图像C合成为广角图像,从而实现广角拍摄的功能。
本申请实施例提供的摄像头模组,包括可旋转反光镜、透镜组、壳体和图像传感器,在该可旋转反光镜位于第一位置的情况下,对由第一表面进入的第一光信号进行反射,被反射的第一光信号沿该光轴所在的直线方向传输,以便根据该被反射的第一光信号生成相应的图像,而在该可旋转反光镜位于第二位置的情况下,对自该第二表面进入的第二光信号进行反射,被反射的第二光信号沿该光轴所在的直线方向传输,以便根据被反射的第二光信号生成相应的图像。通过该可旋转反光镜既可以拍摄第一侧目标物,也可以拍摄第二侧目标物,实 现了双通道摄像的功能。而且由于该摄像头模组中仅设置一个反光镜,减小了反光镜的数量,从而减小了占用的空间,缩小了摄像头模组的尺寸,节省了摄像头模组占用的空间。
进一步地,该可旋转反光镜可以依次旋转至多个指定位置,该图像传感器生成与该多个指定位置对应的多个图像,将该多个图像合成为广角图像,从而实现广角拍摄的功能。
图3A是本申请实施例提供的一种摄像头模组的结构示意图,图3A沿A方向的剖面图如图3B所示,参见图3A和图3B,在图2A所示的摄像头模组的基础上,该摄像头模组还包括电机205。
本申请实施例中,为了满足该摄像头模组拍摄第一侧图像和第二侧图像的需求,需要控制该可旋转反光镜所在的位置,因此该摄像头模组设置有电机205,该电机205用于驱动该可旋转反光镜201发生旋转。
具体地,该电机205包括电机轴2051和驱动电路2052,该可旋转反光镜201设置于该电机轴2051上,该驱动电路2052用于驱动该电机轴2051转动,进而带动该可旋转反光镜201发生旋转,也即是,该可旋转反光镜201会随着该电机轴2051的旋转而旋转。该驱动电路2052通过控制该电机轴2051的旋转角度,可以控制该可旋转反光镜201所在的位置,既可以拍摄第一侧目标物,又可以拍摄第二侧目标物,实现了双通道拍摄的功能。
其中,该驱动电路2052可以为驱动芯片集成电路(Driver integrated circuit,Driver IC)。
当目标物位于该摄像头模组的第一侧时,该电机轴2051控制该可旋转反光镜201旋转至第一位置,第一光信号经过透镜组202,传输至图像传感器204上,该图像传感器204根据接收到的光信号生成图像,即为第一侧图像。
当目标物位于该摄像头模组的第二侧时,该电机轴2051控制该可旋转反光镜201旋转至第二位置。该第二位置为能够接收到由第二侧目标物反射的第二光信号的角度,第二光信号经过透镜组202,传输至图像传感器204上,该图像传感器204根据接收到的光信号生成图像,即为第二侧图像。
另外,为了降低该电机轴2051的旋转角度出现偏差的概率,该驱动电路2052可以为能够检测旋转角度的闭环式驱动电路。该驱动电路2052可以包括霍尔传感器,由该霍尔传感器检测该电机轴2051的旋转角度。
例如,该驱动电路2052控制该电机轴2051旋转20°,而该电机轴2051旋转,该驱动电路2052通过霍尔传感器获取该电机轴2051此时的旋转角度为18°,此时,该驱动电路2052控制该电机轴2051再次旋转2°,以保证旋转角度的准确性,提高了精确度。
另外,该电机205可以具有锁止功能,也即是,在电机轴2051旋转结束,该驱动电路2052可以固定该电机轴2051的位置,当该摄像头模组震动、摇晃时,该电机轴2051的位置不变,从而保证该可旋转反光镜201的位置不变,保证了经过该可旋转反光镜201反射的光信号方向保持稳定。
图4A是本申请实施例提供的一种摄像头模组的结构示意图,图4A沿A方向的剖面图如图4B所示,参见图4A和图4B,在图2A所示的摄像头模组的基础上,该摄像头模组还包括微机电系统(Micro-Electro-Mechanical System,MEMS)微镜反光镜206。
参见图4C,在该可旋转反光镜201位于第一位置的情况下,被变焦的第一光信号传输到 该MEMS微镜反光镜206,由该MEMS微镜反光镜206对该被反射的第一光信号进行反射处理,被再次反射的第一光信号传输到该图像传感器204,由该图像传感器204根据该被再次反射的第一光信号生成图像。
参见图4D,在该可旋转反光镜201位于第二位置的情况下,被反射的第二光信号将被传输到该MEMS微镜反光镜206,由该MEMS微镜反光镜206对该被反射的第二光信号进行反射处理,被再次反射的第二光信号传输到该图像传感器204,由该图像传感器204根据该被再次反射的第二光信号生成图像。
该MEMS微镜反光镜206与该图像传感器204的感光芯片相对,用于改变光信号的传输方向,保证该图像传感器204的感光芯片能够接收到光信号,当透镜组202射出光信号,该MEMS微镜反光镜206对该光信号进行反射处理,被再次反射的光信号的方向与该图像传感器204所在的平面垂直,从而能够保证该被再次反射的光信号传输至该图像传感器204的感光芯片所在的区域。该图像传感器204的感光芯片在接收到该被再次反射的光信号,能够根据该被再次反射的光信号生成图像。
参见图1A,现有技术中,图像传感器105所在的平面垂直于透镜组103的光轴所在的直线,那么,摄像头模组的厚度较大,导致该摄像头模组的尺寸较大,占用的空间较大。
而在本申请实施例中,该图像传感器204所在的平面平行于透镜组202的光轴所在的直线。由于该MEMS微镜反光镜206改变了光信号的传输方向,能够将改变传输方向后的光信号传输至该图像传感器204的感光芯片,以使该图像传感器204的感光芯片能够接收到目标物反射的光信号,从而生成目标物的图像。而且,与该图像传感器204所在的平面垂直于该光轴所在的直线的情况相比,该图像传感器204所在的平面平行于该光轴所在的直线时,可以减小该摄像头模组的厚度,缩小了该摄像头模组的尺寸。
进一步地,该MEMS微镜反光镜206可以包括至少一个微镜,通过控制通过每一微镜的电流强度,控制相应微镜的旋转角度,以使每一微镜的焦点均位于该图像传感器204的感光芯片上。
那么,无论该可旋转反光镜201位于第一位置还是第二位置,该至少一个微镜接收到多条光信号时,能够基于对应的旋转角度对接收到的光信号进行反射,以使被反射的光信号的焦点位于该图像传感器204的指定区域上,从而实现了对焦功能,保证该图像传感器204生成的图像清晰。其中,对于每个微镜来说,该微镜上通过的电流强度不同时,旋转角度也不同,例如通过的电流强度越大,旋转的角度越大。
例如,参见图4E,该MEMS微镜反光镜206包括4个微镜,通过控制该4个微镜通过的电流强度,以使该4个微镜的旋转角度如图4E所示,此时该4个微镜的焦点位于该图像传感器204的指定区域上。
实际应用中,该透镜组202可以通过至少一个透镜实现对焦功能,而当该摄像头模组包括MEMS微镜反光镜206时,该MEMS微镜反光镜206也可以作为一个透镜,与该透镜组202中的至少一个透镜共同实现对焦功能,此时可以减少透镜组202中包括的透镜数量,从而进一步压缩了该摄像头模组的尺寸。
在另一种可能的实现方式中,该摄像头模组可以包括该图像传感器204和普通反光镜。采用该普通反光镜,仍然可以改变该第一光信号或该第二光信号的传输方向,以使该图像传感器204能够接收到目标物反射的光信号,从而生成目标物的图像。在这种情况下,仍然可 以保证该图像传感器204所在的平面平行于透镜组202的光轴所在的直线,仍然可以减小该摄像头模组的厚度,缩小了该摄像头模组的尺寸。
图5是本申请实施例提供的一种摄像头模组的结构示意图,参见图5,在图2A所示的摄像头模组的基础上,该摄像头模组还包括马达组207。
该透镜组202用于改变焦距,该透镜组202包括沿着该光轴所在的直线方向依次排列的N个透镜,该马达组207包括N个马达,该N个马达与该N个透镜一一对应,且每一马达用于驱动对应的透镜沿该光轴所在直线方向移动,以调节该透镜组的焦距,N为大于或等于1的整数,图5为以N为一的情况进行说明。
其中,每个透镜可以包括凸透镜或者凹透镜。通过改变该透镜组202中每个透镜的相对位置,能够增长或缩短该透镜组202的焦距,进而调整该摄像头模组的焦距,达到既可以拍摄远处目标物,又可以拍摄近处目标物的目的。
每个马达可以为步进马达,可以为超声波马达、音圈马达,或者为其他种类的马达,本实施例对此不做限定。
在一种可能的实现方式中,参见图6,该摄像头模组还包括距离传感器208,该距离传感器208设置于该马达组207上。
由于不同的目标物与该透镜组202的距离的不同,为了使得该透镜组202的焦距与该距离匹配,以拍摄到清晰的目标物图像,本申请实施例中,在该N个马达中的靠近可旋转反光镜201的马达上,设置距离传感器208,该距离传感器208能够快速地检测目标物与该距离传感器208之间的距离,以该距离为基准,控制该马达组208移动,以调节该透镜组202的焦距,使调节的焦距与该距离匹配,从而实现了精确对焦,并提高了对焦速度。
具体地,该距离传感器208获取该距离,确定该马达组207中需要移动的至少一个马达,和该需要移动的至少一个马达的移动方向和移动距离,控制该需要移动的至少一个马达按照该移动方向和移动距离进行移动,从而驱动与该需要移动的至少一个马达对应的至少一个透镜移动,也即是,通过该距离传感器208,能够改变透镜组202中至少一个透镜的相对位置,从而使得该透镜组202的焦距与该距离匹配。
与单独在摄像头模组外部设置距离传感器相比,在摄像头模组内部设置距离传感器,可以减小摄像头模组和距离传感器总体的尺寸,避免距离传感器占用额外的空间,使得摄像头模组的结构更加集成化。
图7A是本申请实施例提供的一种摄像头模组的结构示意图,图7A沿A方向的剖面图如图7B所示,参见图7A和图7B,在图2A所示的摄像头模组的基础上,该摄像头模组还包括电路板209,该可旋转反光镜201、该透镜组202和该图像传感器204均位于该电路板209的同一表面上。
其中,该电路板209可以为印制电路板(Printed Circuit Board,PCB)、柔性线路板(Flexible Printed Circuit,FPC),也可以为其他类型的电路板,本实施例对此不做限定。
为了使得该可旋转反光镜201、该透镜组202和该图像传感器204固定于该电路板209上,该可旋转反光镜201、该透镜组202和该图像传感器204可以与该电路板209物理连接。 其中,该物理连接可以包括黏结或者焊接等方式,该黏接可以为胶水黏接或者其他材料的黏接,该焊接可以为激光焊接或者为其他焊接方式,本申请实施例对此不做限定。另外,当采用焊接方式时,该可旋转反光镜201、该透镜组202和该图像传感器204与该电路板209可以实现电气连接,便于设计,降低了工艺难度。
其中,该摄像头模组可以采用密封结构,从而减少了目标物反射的光信号在传输至该图像传感器204的过程中产生的损耗,使得该图像传感器204生成的图像更加清晰。
参见图8,在一种可能的实现方式中,该摄像头模组可以包括连接器2010,该连接器2010与电路板209焊接形成一体式结构,该可旋转反光镜201、该透镜组202和该图像传感器204均可以通过该连接器2010与外部电源和控制电路连接。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
结合上述多种可能实现方式,该摄像头模组的结构示意图可以如图9所示,结合图9,该摄像头模组包括:可旋转反光镜201、透镜组202、壳体203、图像传感器204、电机205、MEMS微镜反光镜206、马达组207、距离传感器208和电路板209。
图10是本申请实施例提供的一种拍摄方法的流程图。该申请实施例应用于图2A所示的摄像头模组中,该摄像头模组至少包括:可旋转反光镜、透镜组、壳体、图像传感器和电机,该壳体包括第一表面和第二表面,该第一表面和该第二表面相对;该可旋转反光镜的第一镜面为反光面,该可旋转反光镜被该透镜组的光轴所在的平面分成第一反光区域和第二反光区域,该第一镜面位于该第一反光区域的部分为第一子镜面。
参见图10,该方法包括:
1001、电机控制可旋转反光镜旋转至第一位置。
1002、该第一镜面对自该第一表面进入的第一光信号进行反射,被反射的第一光信号沿该光轴所在的直线方向,传输到该透镜组,并经该透镜组进行变焦处理,被变焦的第一光信号将被传输到该图像传感器,以使该图像传感器根据该被变焦的第一光信号生成相应的图像。其中,在该可旋转反光镜位于该第一位置的情况下,该第一反光区域相对于该第二反光区域更靠近该第一表面,该第一子镜面与在该光轴所在的直线上该被反射的第一光信号的传输方向之间的夹角为135°,该第一光信号的传输方向垂直于该第一表面。
1003、电机控制可旋转反光镜旋转至第二位置。
1004、该第一镜面对自该第二表面进入的第二光信号进行反射,被反射的第二光信号沿该光轴所在的直线方向,传输到该透镜组,并经该透镜组进行变焦处理,被变焦的第二光信号将被传输到该图像传感器,以使该图像传感器根据该被变焦的第二光信号生成相应的图像。其中,在该可旋转反光镜位于该第二位置的情况下,该第一反光区域相对于该第二反光区域更靠近该第一表面,该第一子镜面与在该光轴所在的直线上该被反射的第二光信号的传输方向之间的夹角为45°,该第二光信号的传输方向垂直于该第二表面。
本申请实施例提供的方法,只采用一个可旋转反光镜,通过控制该可旋转反光镜旋转至第一位置,对由第一表面进入的第一光信号进行反射,被反射的第一光信号传输到透镜组,经透镜组进行变焦处理,被变焦的第一光信号传输到该图像传感器,以使图像传感器生成第 一侧目标物的图像,控制该可旋转反光镜旋转至第二位置,对自该第二表面进入的第二光信号进行反射,被反射的第二光信号传输到该透镜组,并经该透镜组进行变焦处理,被变焦的第二光信号传输到该图像传感器,以使该图像传感器生成第二侧目标物的图像,既可以拍摄第一侧目标物,也可以拍摄第二侧目标物,实现了双通道摄像的功能。而且由于该摄像头模组中仅设置一个反光镜,减小了反光镜的数量,因为一个反光镜占用的空间较小,缩小了摄像头模组的尺寸,节省了占用的空间。
图11是本申请实施例提供的一种终端设备的框图,该终端设备包括如上述图1-图10所示的任一实施例中的摄像头模组和存储器。该摄像头模组用于拍摄图像,该存储器用于存储该图像,另外该终端设备还可以包括其他器件。
该终端设备可以包括手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、销售终端(Point of Sales,POS)、车载电脑等。
以终端设备为手机为例,图11示出的是与本申请实施例相关的手机100的部分结构的框图。参考图11,手机100包括:射频(Radio Frequency,RF)电路110、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、I/O子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图11中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏140属于用户界面(User Interface,UI),且手机100可以包括比图示或者更少的用户界面。
下面结合图11对手机100的各个构成部件进行具体的介绍:
RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器180处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路110还可以通过无线通信与网络和其他设备通信。该无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器120可用于存储软件程序以及模块,处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机100的各种功能应用以及数据处理。存储器120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机100的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其他输入设备130可用于接收输入的数字或字符信息,以及产生与手机100的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备130可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视 输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备130与I/O子系统170的其他输入设备控制器171相连接,在其他设备输入控制器171的控制下与处理器180进行信号交互。
显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机100的各种菜单,还可以接受用户输入。具体的显示屏140可包括显示面板141,以及触控面板142。其中显示面板141可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板141。触控面板142,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板142上或在触控面板142附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板142可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位、姿势,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成处理器能够处理的信息,再送给处理器180,并能接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板142,也可以采用未来发展的任何技术实现触控面板142。进一步的,触控面板142可覆盖显示面板141,用户可以根据显示面板141显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板141上覆盖的触控面板142上或者附近进行操作,触控面板142检测到在其上或附近的操作后,通过I/O子系统170传送给处理器180以确定用户输入,随后处理器180根据用户输入通过I/O子系统170在显示面板141上提供相应的视觉输出。虽然在图11中,触控面板142与显示面板141是作为两个独立的部件来实现手机100的输入和输入功能,但是在某些实施例中,可以将触控面板142与显示面板141集成而实现手机100的输入和输出功能。
手机100还可包括至少一种传感器150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板141的亮度,接近传感器可在手机100移动到耳边时,关闭显示面板141和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路160、扬声器161,麦克风162可提供用户与手机100之间的音频接口。音频电路160可将接收到的音频数据转换后的信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,麦克风162将收集的声音信号转换为信号,由音频电路160接收后转换为音频数据,再将音频数据输出至RF电路108以发送给比如另一手机,或者将音频数据输出至存储器120以便进一步处理。
I/O子系统170用来控制输入输出的外部设备,可以包括其他设备输入控制器171、传感器控制器172、显示控制器173。可选的,一个或多个其他输入控制设备控制器171从其他输入设备130接收信号和/或者向其他输入设备130发送信号,其他输入设备130可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显 示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)。值得说明的是,其他输入控制设备控制器171可以与任一个或者多个上述设备连接。该I/O子系统170中的显示控制器173从显示屏140接收信号和/或者向显示屏140发送信号。显示屏140检测到用户输入后,显示控制器173将检测到的用户输入转换为与显示在显示屏140上的用户界面对象的交互,即实现人机交互。传感器控制器172可以从一个或者多个传感器150接收信号和/或者向一个或者多个传感器150发送信号。
处理器180是手机100的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机100的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器180可包括一个或多个处理单元;优选的,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。
手机100还包括给各个部件供电的电源190(比如电池),优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,手机100还可以包括蓝牙模块等,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种摄像头模组,其特征在于,所述摄像头模组包括:可旋转反光镜、透镜组、壳体和图像传感器;
    所述壳体包括第一表面和第二表面,所述第一表面和所述第二表面相对;
    所述可旋转反光镜的第一镜面为反光面,所述可旋转反光镜被所述透镜组的光轴所在的平面分成第一反光区域和第二反光区域,所述第一镜面位于所述第一反光区域的部分为第一子镜面;
    在所述可旋转反光镜位于第一位置的情况下,所述第一镜面对自所述第一表面进入的第一光信号进行反射,被反射的第一光信号沿所述光轴所在的直线方向传输,以便根据所述被反射的第一光信号生成相应的图像,其中,在所述可旋转反光镜位于所述第一位置的情况下,所述第一反光区域相对于所述第二反光区域更靠近所述第一表面,所述第一子镜面与在所述光轴所在的直线上所述被反射的第一光信号的传输方向之间的夹角为135°,所述第一光信号的传输方向垂直于所述第一表面;
    在所述可旋转反光镜位于第二位置的情况下,所述第一镜面对自所述第二表面进入的第二光信号进行反射,被反射的第二光信号沿所述光轴所在的直线方向传输,以便根据被反射的第二光信号生成相应的图像,其中,在所述可旋转反光镜位于所述第二位置的情况下,所述第一反光区域相对于所述第二反光区域更靠近所述第一表面,所述第一子镜面与在所述光轴所在的直线上所述被反射的第二光信号的传输方向之间的夹角为45°,所述第二光信号的传输方向垂直于所述第二表面。
  2. 根据权利要求1所述的摄像头模组,其特征在于,所述可旋转反光镜还包括与所述第一镜面相对的第二镜面,且所述第二镜面为反光面;
    在所述可旋转反光镜位于所述第二位置的情况下,所述第二镜面对自所述第二表面进入的所述第二光信号进行反射,被反射的第二光信号沿所述光轴所在的直线方向传输,以便根据被反射的第二光信号生成相应的图像,其中,在所述可旋转反光镜位于所述第二位置的情况下,所述第一反光区域相对于所述第二反光区域更靠近所述第二表面,所述第一子镜面与在所述光轴所在的直线上所述被反射的第二光信号的传输方向之间的夹角为135°。
  3. 根据权利要求1或2所述的摄像头模组,其特征在于,所述可旋转反光镜还包括与所述第一镜面相对的第二镜面,且所述第二镜面为反光面;
    所述第一镜面和所述第二镜面均为平面,或者,
    所述第一镜面和所述第二镜面均为凸面;或者,
    所述第一镜面和所述第二镜面均为凹面;或者,
    所述第一镜面为平面,所述第二镜面为凸面;或者,
    所述第一镜面为平面,所述第二镜面为凹面;或者,
    所述第一镜面为凹面,所述第二镜面为凸面;或者,
    所述第一镜面为凹面,所述第二镜面为平面;或者,
    所述第一镜面为凸面,所述第二镜面为凹面;或者,
    所述第一镜面为凸面,所述第二镜面为平面。
  4. 根据权利要求1或2所述的摄像头模组,其特征在于,所述摄像头模组还包括电机,所述电机用于驱动所述可旋转反光镜发生旋转。
  5. 根据权利要求4所述的摄像头模组,其特征在于,所述电机包括驱动电路和电机轴,所述可旋转反光镜设置于所述电机轴上,所述驱动电路用于驱动所述电机轴转动,进而带动所述可旋转反光镜发生旋转。
  6. 根据权利要求1至5任一项所述的摄像头模组,其特征在于,所述摄像头模组还包括微机电系统MEMS微镜反光镜;
    在所述可旋转反光镜位于所述第一位置的情况下,所述被反射的第一光信号传输到所述MEMS微镜反光镜,由所述MEMS微镜反光镜对所述被反射的第一光信号进行反射处理,被再次反射的第一光信号传输到所述图像传感器,由所述图像传感器根据所述被再次反射的第一光信号生成相应的图像;
    在所述可旋转反光镜位于所述第二位置的情况下,所述被反射的第二光信号传输到所述MEMS微镜反光镜,由所述MEMS微镜反光镜对所述被反射的第二光信号进行反射处理,被再次反射的第二光信号传输到所述图像传感器,由所述图像传感器根据所述被再次反射的第二光信号生成相应的图像。
  7. 根据权利要求1至5任一项所述的摄像头模组,其特征在于,所述摄像头模组还包括马达组;
    所述透镜组包括沿着所述光轴所在的直线方向依次排列的N个透镜,所述马达组包括N个马达,所述N个马达与所述N个透镜一一对应,且每一马达用于驱动对应的透镜沿所述光轴所在直线方向移动,以调节所述透镜组的焦距,N为大于或等于1的整数。
  8. 根据权利要求1至7任一项所述的摄像头模组,其特征在于,所述图像传感器所在的平面平行于所述光轴所在的直线。
  9. 根据权利要求1至8任一项所述的摄像头模组,其特征在于,所述摄像头模组还包括电路板,所述可旋转反光镜、所述透镜组和所述图像传感器均位于所述电路板的同一表面上。
  10. 一种终端设备,其特征在于,包括如权利要求1至9任一项所述的摄像头模组和存储器;
    所述摄像头模组用于拍摄图像;
    所述存储器用于存储所述图像。
PCT/CN2017/084885 2016-11-09 2017-05-18 摄像头模组和终端设备 WO2018086331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17870166.0A EP3419277B1 (en) 2016-11-09 2017-05-18 Camera module and terminal device
US16/408,098 US20190265461A1 (en) 2016-11-09 2019-05-09 Camera module and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610986372.5A CN106550181B (zh) 2016-11-09 2016-11-09 摄像头模组和终端设备
CN201610986372.5 2016-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/408,098 Continuation US20190265461A1 (en) 2016-11-09 2019-05-09 Camera module and terminal device

Publications (1)

Publication Number Publication Date
WO2018086331A1 true WO2018086331A1 (zh) 2018-05-17

Family

ID=58394372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084885 WO2018086331A1 (zh) 2016-11-09 2017-05-18 摄像头模组和终端设备

Country Status (4)

Country Link
US (1) US20190265461A1 (zh)
EP (1) EP3419277B1 (zh)
CN (1) CN106550181B (zh)
WO (1) WO2018086331A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106550181B (zh) * 2016-11-09 2020-01-03 华为机器有限公司 摄像头模组和终端设备
CN106973203B (zh) * 2017-04-21 2020-11-17 华为机器有限公司 摄像头模组
CN107172336B (zh) 2017-06-26 2019-01-11 维沃移动通信有限公司 一种摄像头模组、移动终端及其控制方法
CN107426565A (zh) * 2017-06-30 2017-12-01 上海与德科技有限公司 一种摄像头的校准方法
CN107948470B (zh) * 2017-11-22 2020-07-10 德淮半导体有限公司 摄像头模块和移动设备
CN108449546B (zh) * 2018-04-04 2020-03-31 维沃移动通信有限公司 一种拍照方法及移动终端
CN109889635A (zh) * 2019-03-27 2019-06-14 德淮半导体有限公司 双摄像头手机
CN112187971A (zh) * 2019-07-05 2021-01-05 北京小米移动软件有限公司 潜望式摄像头模组及终端设备
CN112312055B (zh) * 2019-07-26 2021-11-09 华为技术有限公司 电子设备及图像处理方法
JP7286024B2 (ja) * 2019-12-14 2023-06-02 グラス イメージング インコーポレイテッド 回転可能なリフレクターを備えた撮像システム
CN111064876B (zh) * 2019-12-30 2021-08-10 维沃移动通信有限公司 电子设备、拍摄控制方法及装置、计算机可读存储介质
KR102389192B1 (ko) * 2020-03-16 2022-04-22 삼성전기주식회사 폴디드 모듈 및 이를 포함하는 휴대용 전자기기
CN111884722A (zh) * 2020-07-06 2020-11-03 Oppo(重庆)智能科技有限公司 一种信息传输方法及终端、存储介质
CN112217991B (zh) * 2020-09-28 2022-02-15 北京环境特性研究所 一种图像采集装置、焦点调节装置及焦点调节方法
CN114442310A (zh) * 2020-10-31 2022-05-06 华为技术有限公司 一种光反射组件、光开关和拍摄装置
CN113126238B (zh) * 2021-03-26 2022-03-25 中国科学院西安光学精密机械研究所 次镜调焦方法、空间光学相机及其设计方法
CN113395447B (zh) * 2021-05-31 2023-04-04 江西晶浩光学有限公司 防抖机构、摄像装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652696A (zh) * 2007-04-02 2010-02-17 奥林巴斯株式会社 光学装置
CN103246134A (zh) * 2013-04-12 2013-08-14 广东欧珀移动通信有限公司 一种拍照装置及系统
CN203136024U (zh) * 2013-04-11 2013-08-14 广东欧珀移动通信有限公司 一种移动终端的摄像头结构
JP2014036298A (ja) * 2012-08-08 2014-02-24 Ricoh Co Ltd 撮像装置
CN106550181A (zh) * 2016-11-09 2017-03-29 华为机器有限公司 摄像头模组和终端设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326104B2 (ja) * 2000-03-14 2009-09-02 パナソニック株式会社 画像入力装置
SE519734C2 (sv) * 2000-07-07 2003-04-01 Axis Ab Bildförändringsanordning för en bildalstrande apparat samt metod och digitalkamera till densamma
CN2689628Y (zh) * 2003-07-19 2005-03-30 鸿富锦精密工业(深圳)有限公司 数码相机成像模组
CN2636265Y (zh) * 2003-07-19 2004-08-25 鸿富锦精密工业(深圳)有限公司 数码相机模组
CN2665732Y (zh) * 2003-11-22 2004-12-22 鸿富锦精密工业(深圳)有限公司 数码相机模组
CN2672676Y (zh) * 2003-11-24 2005-01-19 鸿富锦精密工业(深圳)有限公司 数码相机镜头模组
US20140055624A1 (en) * 2012-08-23 2014-02-27 Microsoft Corporation Switchable camera mirror apparatus
CN103259933B (zh) * 2013-04-28 2014-12-17 广东欧珀移动通信有限公司 一种移动终端的双向摄像系统及其控制方法
DE102014213371B3 (de) * 2014-07-09 2015-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur erfassung eines objektbereichs
WO2016081567A1 (en) * 2014-11-19 2016-05-26 Orlo James Fiske Thin optical system and camera
CN105527782A (zh) * 2015-02-13 2016-04-27 福州瑞芯微电子股份有限公司 便携式电子设备,及其中的摄像结构与获取影像的方法
CN105093486A (zh) * 2015-07-10 2015-11-25 上海臻恒光电系统有限公司 一种具有双光路系统的全景成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652696A (zh) * 2007-04-02 2010-02-17 奥林巴斯株式会社 光学装置
JP2014036298A (ja) * 2012-08-08 2014-02-24 Ricoh Co Ltd 撮像装置
CN203136024U (zh) * 2013-04-11 2013-08-14 广东欧珀移动通信有限公司 一种移动终端的摄像头结构
CN103246134A (zh) * 2013-04-12 2013-08-14 广东欧珀移动通信有限公司 一种拍照装置及系统
CN106550181A (zh) * 2016-11-09 2017-03-29 华为机器有限公司 摄像头模组和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419277A4 *

Also Published As

Publication number Publication date
EP3419277B1 (en) 2020-08-26
CN106550181A (zh) 2017-03-29
US20190265461A1 (en) 2019-08-29
EP3419277A4 (en) 2019-06-12
EP3419277A1 (en) 2018-12-26
CN106550181B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2018086331A1 (zh) 摄像头模组和终端设备
RU2762887C1 (ru) Оконечное устройство и способ макросъемки
CN108600453B (zh) 电子设备
US10757322B2 (en) Method of setting initial position of camera, camera, and camera system
CN111182095B (zh) 弹出和旋转式相机以及包括该相机的电子装置
US9413968B2 (en) Camera apparatus and wireless communication terminal including the same
CN109218481B (zh) 成像模组、终端设备及变焦方法
WO2020220973A1 (zh) 拍摄方法及移动终端
KR20170057058A (ko) 이동 단말기 및 이의 제어방법
CN112653828B (zh) 摄像模组、电子设备及其控制方法和控制装置
CN114762314A (zh) 用于控制相机运动的电子装置和方法
CN111064876B (zh) 电子设备、拍摄控制方法及装置、计算机可读存储介质
US11598929B2 (en) Terminal device, lens adjustment method and computer-readable storage medium
CN117136555A (zh) 包括图像稳定组件的相机模块及包括相机模块的电子装置
CN112422777B (zh) 终端设备、终端设备的拍摄方法及存储介质
CN221202679U (zh) 摄像模组及电子设备
JP2002277723A (ja) 携帯情報端末機
CN221227649U (zh) 摄像模组及电子设备
WO2024066729A1 (zh) 一种潜望式摄像模组、光学防抖方法及相关设备
CN113596223B (zh) 电子设备及其控制方法
CN215344778U (zh) 摄像模组及移动终端
CN111953814B (zh) 一种镜头模组及终端设备
CN118355668A (zh) 相机模块和包括该相机模块的电子装置
JP2014057242A (ja) ファインダ装置、並びにこれを搭載するデジタルカメラ及び携帯端末装置
JP2023051392A (ja) ブレ補正装置、撮像装置、ブレ補正方法、及びブレ補正プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017870166

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017870166

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE