WO2018086299A1 - 基于图像处理的绝缘子缺陷检测方法及系统 - Google Patents

基于图像处理的绝缘子缺陷检测方法及系统 Download PDF

Info

Publication number
WO2018086299A1
WO2018086299A1 PCT/CN2017/078686 CN2017078686W WO2018086299A1 WO 2018086299 A1 WO2018086299 A1 WO 2018086299A1 CN 2017078686 W CN2017078686 W CN 2017078686W WO 2018086299 A1 WO2018086299 A1 WO 2018086299A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
insulator
defect
area
region
Prior art date
Application number
PCT/CN2017/078686
Other languages
English (en)
French (fr)
Inventor
苏超
胡金磊
王丛
尹祖春
甄鸿俊
欧阳业
Original Assignee
广东电网有限责任公司清远供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司清远供电局 filed Critical 广东电网有限责任公司清远供电局
Publication of WO2018086299A1 publication Critical patent/WO2018086299A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing

Definitions

  • the present invention relates to the technical field of power equipment monitoring, and in particular to a method and system for detecting insulator defects based on image processing.
  • Insulators are a special type of insulation control that can play an important role in overhead transmission lines.
  • the insulator on the high voltage wire is a plurality of disk-shaped insulators attached to one end of the wire connecting tower, usually made of glass or ceramic. Insulator damage due to various electromechanical stresses caused by changes in environmental and electrical load conditions will damage the use and operating life of the entire line. Therefore, the detection of insulators on transmission lines is a very important task for electric power maintenance personnel.
  • a method for detecting insulator defects based on image processing comprising the following steps:
  • the insulator image is removed from the image obtained after the region growing operation to obtain a pseudo standard binary image
  • the image obtained after the region growing operation is closed, and the image obtained after the closing operation is compared with the pseudo standard binary image, and the insulator defect is judged according to the comparison result.
  • An insulator defect detection system based on image processing comprising:
  • a conversion module for converting an image containing an insulator from an RGB color space to an HSI color space, respectively dividing the hue and saturation channels to obtain a single-channel image of a hue component and a saturation component, and then dividing the obtained single-channel image Taking the intersection and extracting the contour image of the insulator;
  • the morphological processing module performs morphological corrosion, expansion operation, and region growing operation on the operation operator of the insulator contour image with an elliptical shape as a structural element, and performs a connected region label on the image obtained after the region growing operation;
  • a standard image obtaining module configured to remove an insulator image from an image obtained after the growing operation of the region according to an area size of each connected region, to obtain a pseudo standard binary image
  • the judging module is configured to perform a closing operation on the image obtained after the region growing operation, compare the image obtained after the closing operation with the pseudo standard binary image, and determine the insulator defect according to the comparison result.
  • the above-described image processing-based insulator defect detecting method and system thereof convert an image containing an insulator from an RGB color space to an HSI color space, and obtain a hue component and a saturation component. Single channel image. Then, the intersection is taken to extract the insulator profile, and then the operator operator is subjected to morphological corrosion, expansion operation, region growth, and connected region labeling by using an operator operator whose ellipse is a structural element. According to the area size of each of the connected regions, the insulator image is removed from the image obtained after the region growing operation, and a pseudo standard binary image is obtained. The image obtained after the closing operation is compared with the pseudo standard binary image, and the insulator defect is judged based on the comparison result.
  • the comparison method is easy to implement, the operation is simple, and the speed is fast. It is mainly realized by performing exclusive-OR logic operations on the corresponding pixel points of the two images one by one, and the accurate insulator defect judgment result can be obtained. Moreover, it is very convenient to have no maintenance personnel to observe at the scene.
  • FIG. 1 is a flow chart of an image defect-based insulator defect detecting method of an embodiment
  • FIG. 2 is a schematic view of an aerial view of an insulator
  • Figure 3 is a schematic diagram of an HSI color model
  • FIG. 4 is a schematic view of extracting an insulator profile in one embodiment
  • FIG. 5 is a schematic structural diagram of an image defect-based insulator defect detecting system according to an embodiment.
  • FIG. 1 there is shown a flow chart of an image processing based insulator defect detecting method of an embodiment.
  • the image processing based insulator defect detecting method comprises the following steps:
  • the insulator image is removed from the image obtained after the area growing operation, and a pseudo standard binary image is obtained;
  • the above-described image processing-based insulator defect detecting method converts an image containing an insulator from an RGB color space to an HSI color space, and divides a single-channel image of a hue component and a saturation component. Then, the intersection is taken to extract the insulator profile, and then the operator operator is subjected to morphological corrosion, expansion operation, region growth, and connected region labeling by using an operator operator whose ellipse is a structural element. According to the area size of each of the connected regions, the insulator image is removed from the image obtained after the region growing operation, and a pseudo standard binary image is obtained. The image obtained after the closing operation is compared with the pseudo standard binary image, and the insulator defect is judged based on the comparison result.
  • the comparison method is easy to implement, the operation is simple, and the speed is fast. It is mainly realized by performing exclusive-OR logic operations on the corresponding pixel points of the two images one by one, and the accurate insulator defect judgment result can be obtained.
  • the typical insulator aerial image is shown in Figure 2.
  • the insulator self-explosion defect is shown by the red mark.
  • the glass insulator has the following characteristics in the aerial image:
  • a single piece of glass insulator is often presented in an elliptical shape with a light green, translucent feature
  • Insulators generally appear in strings, the number of which varies according to the voltage level of the transmission line;
  • the physical shape of the insulator is the same.
  • the dimensions are basically the same, and the insulators in the insulator string are arranged at equal intervals;
  • step S101 the image containing the insulator is converted from the RGB color space to the HSI color space, and the hue and saturation channels are separately segmented to obtain a single-channel image of the hue component and the saturation component, and the single-channel image obtained by the segmentation is obtained. Take the intersection and extract the insulator outline image.
  • the color space is usually a three-dimensional coordinate system, and each color is represented by a dot.
  • the RGB color space is obtained by changing the three color channels of red (R), green (G), and blue (B), and the superposition of three channels to obtain different colors; hue (Hue) and saturation of HSI color space. (Saturation) and Intensity to describe color. Hue and saturation are often referred to collectively as chromaticity, used to indicate the type and depth of the color, and brightness is used to indicate the relative darkness of the color.
  • the HSI color model is shown in Figure 3.
  • the image containing the insulator is converted from the RGB color space to the HSI color space in the following manner:
  • R, G, and B are the red, green, and blue components of one pixel in the image, respectively
  • H, S, and I are the hue, saturation, and luminance components of one pixel in the image, respectively.
  • the glass insulator is generally light green and translucent. In the aerial image, the color is similar to that of the surface vegetation and the green lake. It is not good to directly use the G component in the RGB model to segment the insulator image.
  • the image is converted from the RGB color space to the HSI color space for processing.
  • the HIS color space separates the chrominance and brightness of the image and performs independently of each other. For a specific color, only the H and S components need to be analyzed and processed in the plane, which can reduce the influence of the intensity of the light in the single image on the foreground extraction.
  • the present invention first converts the image from the RGB color space to the HSI. In the color space, threshold segmentation is performed on the H and S channels respectively. Finally, the segmentation results are intersected, and the insulator contour image is extracted from the background, thereby greatly simplifying the workload of image analysis and processing, as shown in FIG.
  • the insulator operator is an operation operator whose ellipse is a structural element, performing morphological corrosion, expansion operation, and region growing operation, and performing communication region marking on the image obtained after the region growing operation;
  • the present invention uses mathematical morphology for processing.
  • Mathematical Morphology is a new approach applied to the field of image processing and pattern recognition. Morphological operations are mainly used for image preprocessing (denoising and simplifying shapes), enhancing object mechanisms (extracting bones, refining, roughening, convex hull and object marking), segmenting objects from the background, and quantitative description of objects (area, week) Length, projection, and Euler-Poincare features).
  • the present invention performs morphological corrosion, expansion operations, and region growing operations on the insulator profile image, wherein corrosion and expansion are the basis of morphological processing, and open operations, closed operations, and region growth are also based thereon.
  • the step of performing a morphological corrosion operation on an operation operator of the insulator profile image having an elliptical shape as a structural element includes:
  • the set of points is a corrosion image of S to A.
  • the step of performing a morphological expansion operation on an operation operator of the insulator contour image with an ellipse as a structural element includes:
  • the set of elements A and S on the image plane Z 2 of the insulator profile image is expanded by S using S. Referred to as which is:
  • Both the open operation and the closed operation are compounded by corrosion and expansion.
  • the open operation is first etched and then expanded, and the closed operation is first swelled and then etched.
  • the open operation smoothes the outline of the image, breaking narrow connections and eliminating fine burrs.
  • the closing operation also smoothes the outline, but contrary to the open operation, it usually bridges narrow gaps and fills small holes.
  • the step of performing a morphological region growing operation on the insulator operator image with an ellipse as an operational element includes:
  • Adjacent pixels having a difference in seed property from the seed point less than a preset value are attached to each seed point of the growth region, wherein the property includes a gray level or a specific color range.
  • Area growing is a process of aggregating pixels or sub-areas into larger areas according to pre-defined criteria.
  • the present invention begins with a set of seed points, appending adjacent pixels of similar nature to the seed point (such as a gray level or a specific range of colors) to each seed point of the growth region.
  • One or more starting points can be selected based on the nature of the problem being solved.
  • this process calculates the same set of features for each pixel, which is ultimately used to group pixels into a region during growth. If the results of these calculations present values for different clusters, then those pixels that are near the center of these clusters due to their nature can be used as seeds.
  • the choice of similarity criteria depends not only on the problem faced but also on the type of valid image data.
  • region growth can be formulated to describe a termination rule. Area growth stops when no pixels meet the conditions for joining an area. Gray scale, texture, and color criteria are local in nature and do not take into account the "history" of regional growth.
  • the criteria for increasing the processing power of other enhanced region growth algorithms utilize concepts such as the size and similarity between the pixels to be selected and the pixels that have been added to the growth region (such as the gray level of the candidate pixel and the average gray level of the growth region). Compare), and the shape of the growing area. The use of these types of descriptors is based on the assumption that at least a portion of the model that yields the expected results is valid.
  • the image is extracted through the foreground, most of the image background is filtered out, and the insulator outline image is extracted.
  • the insulator is a relatively complete circular and elliptical contour, and the overall outline of the insulator string is also full.
  • the present invention further morphologically etches the image by using an operation operator with an elliptical shape as a structural element.
  • the step of marking the connected region of the image obtained after the region growing operation comprises:
  • Step a performing a TV raster scan on the image obtained after the region growing operation, finding a pixel without an assigned mark, and assigning an unused mark to the pixel;
  • Step b comparing the difference in properties between the pixels of each allocated mark and other pixels in the 8 fields. If the comparison result is that the difference in properties is less than the preset value, the same mark is assigned to other pixels in the 8 fields until there is no property. a pixel whose difference is less than a preset value;
  • Step c repeating steps a and b for the image obtained after the region growing operation until all pixels are assigned a mark.
  • the area mark is required.
  • the area tag is to give each area a unique number (integer) to provide an index for the area.
  • the present invention employs a combination of sequential scanning and parallel propagation (8-connected occasions).
  • Step S103 according to the area size of each connected area, the insulator image is removed from the image obtained after the area growing operation, and a pseudo standard binary image is obtained;
  • the step of removing the insulator image from the image obtained after the region growing operation includes:
  • the connected area belongs to the insulator image.
  • the connected domain area of the insulator is large, so the insulator can be accurately extracted according to the area of the connected domain.
  • step S104 the image obtained after the region growing operation is closed, the image obtained after the closing operation is compared with the pseudo standard binary image, and the insulator is determined according to the comparison result. trap.
  • Image contrast is a synthesis technique that obtains an output image that satisfies the requirements by using two known input images, performing point-to-point addition, subtraction, multiplication, division, and exclusive-OR operations.
  • the effect of image addition is to average multiple images of the same scene, effectively reducing additive random noise; multiplication operation can use mask image to cover some part of the image; divide operation is a common method of image processing; If the same scene is taken at different times or the same scene is subtracted from the image in different bands, unnecessary parts such as image background and noise can be removed, and the difference information between the two pictures can be provided, and the required feature data can be retained.
  • the defect image is subjected to morphological processing to obtain a pseudo standard image, and then the two images are compared, according to both the pseudo standard and the binary image to be tested.
  • the difference in characteristics is used to determine whether the insulator in the graph to be tested may have defects.
  • the comparison method is easy to implement, the algorithm is simple, and the speed is fast, mainly by performing exclusive-OR logic operations on the corresponding pixel points of the two images one by one, and a more accurate defect detection result can be obtained.
  • the defect and void defect identification algorithm is further used: firstly, the binary image obtained by image segmentation is closed by mathematical morphology, that is, the same structural element is first expanded and then etched. This can fill the insulator defect and the cavity part, which can actually reduce the defect and void defect on the insulator, thus obtaining a binary pseudo standard image. Then, the image comparison method is used to XOR the segmented binary image and the pseudo standard binary image to obtain the difference between the two, thereby detecting the defect void defect of the insulator.
  • the binary image obtained by the segmentation will generate more burrs due to the gray level relationship, and the pseudo standard binary image obtained by the mathematical morphology closing operation will be relatively smooth. So, they differ not only in defects and voids, but also in some burrs.
  • the defect image to be tested is XORed with the pseudo standard image to obtain a preliminary defect target, due to the residual noise of the image to be tested, the comparison There are still false defects in the back image, so it is necessary to further post-process the contrasted defect map to remove false defects caused by noise and other interference factors.
  • comparing the image obtained after the closing operation with the pseudo standard binary image, and determining the insulator defect according to the comparison result includes:
  • the glitch and noise smaller than the threshold are filtered out, and the rest is the need to identify the defect defect image.
  • the invention realizes the insulator defect detection based on image processing, and the method can better extract the insulator foreground image, accurately extract the insulator profile and diagnose the fault.
  • the present invention detects insulators in different backgrounds and achieves good results, and the detection error is small. It can better extract the characteristics of the insulator, and better handle the insulation of the insulator, which has stronger adaptability.
  • the image is converted from the RGB space to the HSI space, the luminance component is ignored, and the H component and the S component are comprehensively used to obtain the foreground image of the insulator;
  • the image processing algorithm Directly using the image processing algorithm, the overall contour of the insulator string is obtained, the misdetected contour is filtered out, and the insulator is identified.
  • the self-explosion defect detection of the insulator realizes the self-explosion defect in the middle of the insulator string. Detection and positioning.
  • the present invention further provides an image defect-based insulator defect detecting system, as shown in FIG. 5, comprising:
  • the conversion module 10 is configured to convert an image containing an insulator from an RGB color space to an HSI color space, respectively segment the hue and saturation channels, obtain a single-channel image of the hue component and the saturation component, and then obtain a single channel obtained by the segmentation. Image intersection set, extracting insulator contour image;
  • the morphological processing module 20 performs morphological corrosion, expansion operation, and region growing operation on the operation operator of the insulator contour image with an elliptical shape as a structural element, and performs a connected region label on the image obtained after the region growing operation;
  • the standard image obtaining module 30 is configured to remove the insulator image from the image obtained after the region growing operation according to the area size of each connected region, to obtain a pseudo standard binary image;
  • the determining module 40 is configured to perform a closing operation on the image obtained after the region growing operation, compare the image obtained after the closing operation with the pseudo standard binary image, and determine the insulator defect according to the comparison result.
  • the above-described image processing-based insulator defect detecting system converts an image containing an insulator from an RGB color space to an HSI color space, and divides a single-channel image of a hue component and a saturation component. Then, the intersection is taken to extract the insulator profile, and then the operator operator is subjected to morphological corrosion, expansion operation, region growth, and connected region labeling by using an operator operator whose ellipse is a structural element. According to the area size of each of the connected regions, the insulator image is removed from the image obtained after the region growing operation, and a pseudo standard binary image is obtained. The image obtained after the closing operation is compared with the pseudo standard binary image, and the insulator defect is judged based on the comparison result.
  • the comparison method is easy to implement, the operation is simple, and the speed is fast. It is mainly realized by performing exclusive-OR logic operations on the corresponding pixel points of the two images one by one, and the accurate insulator defect judgment result can be obtained.
  • the determining module is further configured to obtain an image obtained after the closing operation Exchanging logical operations with corresponding pixel points of the pseudo standard binary image one by one, and acquiring an area of each successive difference pixel region of the image obtained after the closing operation and the pseudo standard binary image according to an exclusive OR logical operation result And if the area of the consecutive difference pixel area is greater than a preset determination threshold, determining that the continuous difference pixel area is a defect of an insulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于图像处理的绝缘子缺陷检测方法及其系统,将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分割得到色调分量和饱和度分量的单通道图像。再取交集来提取绝缘子轮廓,随后对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算、区域生长以及连通区域标记。根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像。将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷,容易实现,运算简单,速度较快。

Description

基于图像处理的绝缘子缺陷检测方法及系统 技术领域
本发明涉及电力设备监控的技术领域,特别是涉及一种基于图像处理的绝缘子缺陷检测方法及系统。
背景技术
绝缘子是一种特殊的绝缘控件,能够在架空输电线路中起到重要作用。高压电线上的绝缘子是电线连接塔的一端挂接的多个盘状的绝缘体,通常由玻璃或陶瓷制成。绝缘子由于环境和电负荷条件发生变化而导致的各种机电应力而损坏,就会损害整条线路的使用和运行寿命,因此对输电线路的绝缘子检测是电力维护人员一项非常重要的工作。
常规的输电线路绝缘子检测方法多是通过维护人员到现场进行观察,通过肉眼识别绝缘子是否损坏。然而由于部分输电线路上的电线连接塔非常高,维护人员在地面观察根本不能准确识别绝缘子是否损坏。部分电线连接塔的位置偏僻,维护人员到现场不便,也提高了绝缘子故障状况检测的难度。
发明内容
基于此,有必要针对绝缘子故障检测不方便,不准确的技术问题,提供一种基于图像处理的绝缘子缺陷检测方法及系统,以提高绝缘子故障检测的便利性和准确性。
一种基于图像处理的绝缘子缺陷检测方法,包括以下步骤:
将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色 调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像;
对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。
一种基于图像处理的绝缘子缺陷检测系统,包括:
转换模块,用于将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像;
形态处理模块,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
标准图像获取模块,用于根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
判断模块,用于对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。
上述基于图像处理的绝缘子缺陷检测方法及其系统,将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分割得到色调分量和饱和度分量 的单通道图像。再取交集来提取绝缘子轮廓,随后对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算、区域生长以及连通区域标记。根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像。将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。对比方法容易实现,运算简单,速度较快,主要是通过对两图像对应像素点逐个进行异或逻辑运算来实现,能得到较准确的绝缘子缺陷判断结果。并且,无需维护人员到现场观察,非常方便。
附图说明
图1为一个实施例的基于图像处理的绝缘子缺陷检测方法的流程图;
图2为一种绝缘子航拍示意图;
图3为一种HSI色彩模型示意图;
图4为一个实施例中提取绝缘子轮廓的示意图;
图5为一个实施例的基于图像处理的绝缘子缺陷检测系统的结构示意图。
具体实施方式
下面结合附图对本发明的行业用电需求预测方法和系统的具体实施方式作详细描述。
参考图1,图1所示为一个实施例的基于图像处理的绝缘子缺陷检测方法的流程图。
所述基于图像处理的绝缘子缺陷检测方法,包括以下步骤:
S101,将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像;
S102,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
S103,根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
S104,对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。
上述基于图像处理的绝缘子缺陷检测方法,将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分割得到色调分量和饱和度分量的单通道图像。再取交集来提取绝缘子轮廓,随后对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算、区域生长以及连通区域标记。根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像。将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。对比方法容易实现,运算简单,速度较快,主要是通过对两图像对应像素点逐个进行异或逻辑运算来实现,能得到较准确的绝缘子缺陷判断结果。
其中,典型的绝缘子航拍图像如图2所示,绝缘子自爆缺陷如红色标记所示,考虑无人机巡检输电线路的实际情况,玻璃绝缘子在航拍图像中具备以下特征:
1)单片玻璃绝缘子常呈现为椭圆形状,具有浅绿色、半透明特征;
2)绝缘子一般成串出现,其数量依据输电线路电压等级而不同;
3)绝缘子物理外形相同,在航拍图像中,尺寸基本一致,绝缘子串中各绝缘子等间距排列;
4)针对相互遮挡不明显的绝缘子航拍图像,当出现单片绝缘子自爆后,绝缘子串出现明显缺口,缺口长度大致相当于正常绝缘子片间距的2倍;
5)图像清晰,分辨率高,但背景中的地表植被、浅绿色地表水等常对绝缘子检测造成干扰。
在步骤S101中,将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像。
颜色空间通常是一个三维坐标系统,每一种颜色由一个点表示。RGB色彩空间是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化,以及三通道相互的叠加,得到不同的颜色;HSI色彩空间用色调(Hue)、饱和度(Saturation)和亮度(Intensity)来描述色彩。通常把色调和饱和度统称为色度,用来表示颜色的类别与深浅程度,用亮度指示颜色的相对明暗度。HSI色彩模型如图3所示。
在一种实施例中,按照以下方式将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间:
Figure PCTCN2017078686-appb-000001
其中,R、G、B分别为图像中一个像素的红色、绿色、蓝色分量,H、S、I分别为图像中一个像素的色调、饱和度和亮度分量。
玻璃绝缘子一般为浅绿色、半透明状,在航拍图像中,其颜色与地表植被、泛绿的湖水相似,直接运用RGB模型中的G分量对绝缘子图像进行分割效果不佳,而本发明是将图像从RGB色彩空间转换到HSI色彩空间进行处理。HIS色彩空间将图像的色度及亮度分开处理,且相互间独立进行。对于特定颜色,只需要针对H和S分量,在平面进行分析处理,能降低单幅图像中光线强弱对前景提取的影响。
由于受季节、天气变化以及无人机作业时间的影响,航拍图像受光照强度干扰明显,使绝缘子的统一色度在成像时存在一定的色散现象,本发明首先将图像从RGB色彩空间转换到HSI色彩空间,再分别对H和S通道进行阈值分割,最后对分割结果进行求交集,将绝缘子轮廓图像从背景中提取出来,从而大大简化图像分析和处理的工作量,如图4所示。
在步骤S102,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
为了滤除绝缘子分割图像中的噪声,准确地提取绝缘子,本发明采用数学形态学进行处理。数学形态学(Mathematical Morphology)是一种应用于图像处理和模式识别领域的新的方法。形态学运算主要用于图像预处理(去噪声和简化形状)、增强物体机构(抽取骨骼、细化、粗化、凸包以及物体标记)、从背景中分割物体、物体量化描述(面积、周长、投影以及Euler-Poincare特征)。
本发明对所述绝缘子轮廓图像进行形态学的腐蚀、膨胀运算以及区域生长操作,其中,腐蚀和膨胀是形态学处理的基础,开运算、闭运算以及区域生长也是以其为基础的。
在一个实施例中,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀运算的步骤包括:
让位于绝缘子轮廓图像的图像平面Z2的原点的结构元素S在整个图像平面Z2上移动,如果当结构元素S平移至z点时,结构元素S能够完全包含于A中,则获取z点构成的集合为S对A的腐蚀图像。
对绝缘子轮廓图像的图像平面Z2上元素的集合A和S,使用S对A进行腐蚀,记作AΘS,即:
Figure PCTCN2017078686-appb-000002
在一个实施例中,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的膨胀运算的步骤包括:
让位于绝缘子轮廓图像的图像平面Z2的原点的结构元素S在整个图像平面Z2上移动,当图像平面Z2的原点平移至z点时,如果结构元素S相对于图像平面Z2的原点的映像
Figure PCTCN2017078686-appb-000003
和A有公共的交集,则获取z点构成的集合为S对A的膨胀图像。
对绝缘子轮廓图像的图像平面Z2上元素的集合A和S,使用S对A进行膨胀。记作
Figure PCTCN2017078686-appb-000004
即:
Figure PCTCN2017078686-appb-000005
开运算和闭运算都由腐蚀和膨胀复合而成,开运算是先腐蚀后膨胀,而闭运算是先膨胀后腐蚀。开运算使图像的轮廓变得光滑,断开狭窄的连接和消除细毛刺。闭运算同样使轮廓变得光滑,但与开运算相反,它通常能够弥合狭窄的间断,填充小的孔洞。
在一个实施例中,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的区域生长操作的步骤包括:
在膨胀运算后的所述绝缘子轮廓图像中选定一组种子点;
将与所述种子点性质差异小于预设值的相邻像素附加到生长区域的每个种子点上,其中,所述性质包括灰度级或特定的颜色范围。
区域生长是一种根据事先定义的准则将像素或子区域聚合成更大区域的过程。本发明以一组种子点开始,将与种子点性质相似(诸如灰度级或颜色的特定范围)的相邻像素附加到生长区域的每个种子点上。并可根据解决问题的性质而选择一个或多个起点。当一个先验信息无效时,这一过程将对每个像素计算相同的特性集,最终这个特性集在生长过程中用于将像素归入某个区域。如果这些计算的结果呈现了不同簇的值,则那些由于自身的性质而处在这些簇中心附近的像素可以作为种子。相似性准则的选择不仅取决于面对的问题,还取决于有效图像数据的类型。
进一步地,区域生长可以用公式描述一个终止规则。在没有像素满足加入某个区域的条件时,区域生长就会停止。灰度级、纹理和颜色准则都是局部性质,都没有考虑到区域生长的“历史”。增加其他增强区域生长算法处理能力的准则利用了待选像素和已加入生长区的像素间的大小和相似性等概念(比如待选像素的灰度级和生长区域的平均灰度级之间的比较),以及生长区域的形状。这些类型的描绘子的使用是以假设能得到预期结果的模型至少有一部分有效为基础的。
经过步骤S101后,图像经过前景提取,大部分的图像背景被滤除,绝缘子轮廓图像被提取。但仍有部分色度与绝缘子相近的物体被误检为前景,影响了对绝缘子的检测。考虑到在前景连通区域中,绝缘子为相对完整的圆形、椭圆形轮廓,绝缘子串整体轮廓也较为饱满,本发明运用以椭圆形为结构元素的操作算子,对图像进一步进行形态学的腐蚀和膨胀运算,对前景图 像进行形态学滤波,减少了前景中连通域的数量,从而减少了算法需要处理的数据量,这对进一步依据连通域属性进行绝缘子的轮廓检测十分有利。
在一种实施例中,对区域生长操作后获得的图像进行连通区域标记的步骤包括:
步骤a,对区域生长操作后获得的图像进行TV光栅扫描,找出没有分配标记的像素,对所述像素分配一个没有使用过的标记;
步骤b,比较各个已分配标记的像素与其8领域内的其他像素的性质差异,如果比较结果为性质差异小于预设值,则对所述8领域内的其他像素分配相同的标记,直到没有性质差异小于预设值的像素;
步骤c,对所述区域生长操作后获得的图像重复执行步骤a和b,直到所有像素都被分配标记。
对于连通区域描述,区域标记是必需的。区域标记就是给每个区域标志一个唯一的数字(整数),为区域提供索引。本发明采用顺序扫描和并行传播组合起来的标记算法(8-连通的场合)。
步骤S103,根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
在一个实施例中,根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像的步骤包括:
当连通区域的面积大于预设面积阈值时,判断连通区域属于绝缘子图像。
在前景连通域中,绝缘子的连通域面积较大,因此依据连通域面积进行判断,即可准确地提取出绝缘子。
在步骤S104,对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺 陷。
图像对比是一种合成技术,它通过利用两幅己知输入图像,对其进行点对点的加减乘除异或等运算而获得满足需求的输出结果图像。图像相加的作用是对同一场景的多幅图像求平均,有效地降低加性随机噪声;乘运算可利用掩模图像来遮掉图像的某部分;除运算是摇撼图像处理常用方法;减运算对同一景物在不同时间拍摄图像或同一景物在不同波段图像相减,可去除图像背景和噪声等不需要部分,提供两图间的差异信息,保留需要的特征数据。
本发明在获得分割后的二值化待测缺陷图像后,由待测缺陷图像经过形态学处理来得到伪标准图像,然后将两幅图像比对,根据伪标准和待测二值图两者的特征差异来判断待测图中的绝缘子是否可能存在缺陷。该对比方法容易实现,算法简单,速度较快,主要是通过对两图像对应像素点逐个进行异或逻辑运算实现,能得到较准确的缺陷检测结果。
在一个实施例中,在判断绝缘子缺陷时,进一步使用缺损和空洞缺陷识别算法:首先运用数学形态学方法将图像分割得到的二值图像进行闭操作,也就是用同一个结构元素先膨胀后腐蚀,这样做可以填充绝缘子缺损和空洞的部分,这实际上就可以缩小绝缘子上的缺损和空洞缺陷,从而得到一个二值伪标准图像。然后利用图像对比的方法对分割得到的二值图像与伪标准二值图像进行异或,即可得出二者之间的差别,从而检测出绝缘子的缺损空洞缺陷。
分割得到的二值图像由于灰度级的关系会产生比较多的毛刺,而经数学形态学闭操作得到的伪标准二值图像会相对平滑一些。所以,它们的不同之处不仅包含缺损和空洞缺陷,还可能会包含一些毛刺。在待测缺陷图像与伪标准图像异或获得初步的缺陷目标之后,由于待测图像残留噪声影响,对比 后图像仍存在虚假缺陷,因此有必要对对比后的缺陷图进行进一步的后处理,去除由噪声等干扰因素引起的虚假缺陷。
在一个实施例中,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷的步骤包括:
将进行闭运算后获得的图像与所述伪标准二值图像的对应像素点逐个进行异或逻辑运算;
根据异或逻辑运算结果获取所述闭运算后获得的图像与所述伪标准二值图像的各个连续差异像素区域的面积,如果所述连续差异像素区域的面积大于预设的判断阈值,则判断所述连续差异像素区域为绝缘子的缺陷。
通过设置一个差异像素面积的判断阈值,滤除掉小于该阈值的毛刺和噪声,剩余的就是需要识别缺损缺陷图像。
本发明实现了基于图像处理的绝缘子缺陷检测,该方法能够较好地提取绝缘子前景图像,精准提取绝缘子轮廓和诊断故障。
通过matlab编程模拟发现,本发明检测不同背景下的绝缘子,取得了较好的效果,检测误差在较小。能更好的提取绝缘子特征,以及较好的处理绝缘子有无相互遮挡的情况,具有更强的适应性。
特别是针对无人机航拍图像中的玻璃绝缘子具备的特点,采用将图像从RGB空间转换到HSI空间,忽略亮度分量,综合运用H分量和S分量,获取绝缘子前景图像;针对绝缘子相互遮挡的情况,直接运用图像处理算法,获取了较为满意的绝缘子串的整体轮廓,滤除误检轮廓,实现绝缘子的识别;依据绝缘子自爆的特点,对绝缘子的自爆缺陷检测,实现了绝缘子串中部的自爆缺陷的检测和定位。
在一个实施例中,本发明还提供一种基于图像处理的绝缘子缺陷检测系统,如图5所示,包括:
转换模块10,用于将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像;
形态处理模块20,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
标准图像获取模块30,用于根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
判断模块40,用于对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。
上述基于图像处理的绝缘子缺陷检测系统,将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分割得到色调分量和饱和度分量的单通道图像。再取交集来提取绝缘子轮廓,随后对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算、区域生长以及连通区域标记。根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像。将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。对比方法容易实现,运算简单,速度较快,主要是通过对两图像对应像素点逐个进行异或逻辑运算来实现,能得到较准确的绝缘子缺陷判断结果。
在一种实施例中,所述判断模块进一步用于将进行闭运算后获得的图像 与所述伪标准二值图像的对应像素点逐个进行异或逻辑运算,根据异或逻辑运算结果获取所述闭运算后获得的图像与所述伪标准二值图像的各个连续差异像素区域的面积,如果所述连续差异像素区域的面积大于预设的判断阈值,则判断所述连续差异像素区域为绝缘子的缺陷。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于图像处理的绝缘子缺陷检测方法,其特征在于,包括以下步骤:
    将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像;
    对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
    根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
    对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。
  2. 根据权利要求1所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,按照以下方式将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间:
    Figure PCTCN2017078686-appb-100001
    其中,R、G、B分别为图像中一个像素的红色、绿色、蓝色分量,H、S、I分别为图像中一个像素的色调、饱和度和亮度分量。
  3. 根据权利要求1所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学 的腐蚀运算的步骤包括:
    让位于绝缘子轮廓图像的图像平面Z2的原点的结构元素S在整个图像平面Z2上移动,如果当结构元素S平移至z点时,结构元素S能够完全包含于A中,则获取z点构成的集合为S对A的腐蚀图像。
  4. 根据权利要求1所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的膨胀运算的步骤包括:
    让位于绝缘子轮廓图像的图像平面Z2的原点的结构元素S在整个图像平面Z2上移动,当图像平面Z2的原点平移至z点时,如果结构元素S相对于图像平面Z2的原点的映像
    Figure PCTCN2017078686-appb-100002
    和A有公共的交集,则获取z点构成的集合为S对A的膨胀图像。
  5. 根据权利要求1所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的区域生长操作的步骤包括:
    在膨胀运算后的所述绝缘子轮廓图像中选定一组种子点;
    将与所述种子点性质差异小于预设值的相邻像素附加到生长区域的每个种子点上,其中,所述性质包括灰度级或特定的颜色范围。
  6. 根据权利要求1所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,对区域生长操作后获得的图像进行连通区域标记的步骤包括:
    步骤a,对区域生长操作后获得的图像进行TV光栅扫描,找出没有分配标记的像素,对所述像素分配一个没有使用过的标记;
    步骤b,比较各个已分配标记的像素与其8领域内的其他像素的性质差异,如果比较结果为性质差异小于预设值,则对所述8领域内的其他像素分 配相同的标记,直到没有性质差异小于预设值的像素;
    步骤c,对所述区域生长操作后获得的图像重复执行步骤a和b,直到所有像素都被分配标记。
  7. 根据权利要求1所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,根据各个连通区域的面积大小,从所述区域生长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像的步骤包括:
    当连通区域的面积大于预设面积阈值时,判断连通区域属于绝缘子图像。
  8. 根据权利要求1至7任意一项所述的基于图像处理的绝缘子缺陷检测方法,其特征在于,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷的步骤包括:
    将进行闭运算后获得的图像与所述伪标准二值图像的对应像素点逐个进行异或逻辑运算;
    根据异或逻辑运算结果获取所述闭运算后获得的图像与所述伪标准二值图像的各个连续差异像素区域的面积,如果所述连续差异像素区域的面积大于预设的判断阈值,则判断所述连续差异像素区域为绝缘子的缺陷。
  9. 一种基于图像处理的绝缘子缺陷检测系统,其特征在于,包括:
    转换模块,用于将含有绝缘子的图像从RGB颜色空间转换到HSI颜色空间,分别对色调和饱和度通道进行分割,得到色调分量和饱和度分量的单通道图像,再将分割获得的单通道图像取交集,提取绝缘子轮廓图像;
    形态处理模块,对所述绝缘子轮廓图像以椭圆形为结构元素的操作算子,进行形态学的腐蚀、膨胀运算以及区域生长操作,并对区域生长操作后获得的图像进行连通区域标记;
    标准图像获取模块,用于根据各个连通区域的面积大小,从所述区域生 长操作后获得的图像中剔除非绝缘子图像,获得伪标准二值图像;
    判断模块,用于对区域生长操作后获得的图像进行闭运算,将进行闭运算后获得的图像与所述伪标准二值图像进行对比,根据对比结果判断绝缘子缺陷。
  10. 根据权利要求9所述的基于图像处理的绝缘子缺陷检测系统,其特征在于,所述判断模块进一步用于将进行闭运算后获得的图像与所述伪标准二值图像的对应像素点逐个进行异或逻辑运算,根据异或逻辑运算结果获取所述闭运算后获得的图像与所述伪标准二值图像的各个连续差异像素区域的面积,如果所述连续差异像素区域的面积大于预设的判断阈值,则判断所述连续差异像素区域为绝缘子的缺陷。
PCT/CN2017/078686 2016-11-11 2017-03-30 基于图像处理的绝缘子缺陷检测方法及系统 WO2018086299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611040881.5A CN106780438B (zh) 2016-11-11 2016-11-11 基于图像处理的绝缘子缺陷检测方法及系统
CN201611040881.5 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018086299A1 true WO2018086299A1 (zh) 2018-05-17

Family

ID=58975653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078686 WO2018086299A1 (zh) 2016-11-11 2017-03-30 基于图像处理的绝缘子缺陷检测方法及系统

Country Status (2)

Country Link
CN (1) CN106780438B (zh)
WO (1) WO2018086299A1 (zh)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712181A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 集成电路版图线网上开路关键面积的提取方法
CN109766831A (zh) * 2019-01-09 2019-05-17 深圳市三宝创新智能有限公司 一种道路色带识别方法、装置、计算机设备、及存储介质
CN109785316A (zh) * 2019-01-22 2019-05-21 湖南大学 一种芯片表观缺陷检测方法
CN110021012A (zh) * 2019-03-27 2019-07-16 安徽皓视光电科技有限公司 基于机器视觉技术的手机镜头视窗玻璃缺陷检测方法
CN110136158A (zh) * 2019-04-10 2019-08-16 西安理工大学 一种基于图像处理的对称体调平装置及调平方法
CN110175556A (zh) * 2019-05-24 2019-08-27 西安电子科技大学 基于Sobel算子的遥感图像云检测方法
CN110222683A (zh) * 2019-06-11 2019-09-10 云南电网有限责任公司曲靖供电局 一种基于深度卷积神经网络的输电线路绝缘子部件爆片缺陷识别定位方法
CN110264448A (zh) * 2019-06-06 2019-09-20 中南大学 一种基于机器视觉的绝缘子故障检测方法
CN110276747A (zh) * 2019-06-06 2019-09-24 中南大学 一种基于图像分析的绝缘子故障检测和故障评级方法
CN110288571A (zh) * 2019-06-06 2019-09-27 中南大学 一种基于图像处理的高铁接触网绝缘子异常检测方法
CN110298860A (zh) * 2019-05-31 2019-10-01 河池学院 一种基于机器视觉的高杆绣球检测计数系统
CN110751642A (zh) * 2019-10-18 2020-02-04 国网黑龙江省电力有限公司大庆供电公司 一种绝缘子裂缝检测方法和系统
CN110956590A (zh) * 2019-11-04 2020-04-03 中山市奥珀金属制品有限公司 一种虹膜图像的去噪装置、方法及存储介质
CN111081340A (zh) * 2019-12-04 2020-04-28 四川骏逸富顿科技有限公司 一种用于远程检测电子处方信息是否完整的方法
CN111080696A (zh) * 2019-10-25 2020-04-28 青岛农业大学 一种基于计算机视觉的水下海参识别及定位方法
CN111179289A (zh) * 2019-12-31 2020-05-19 重庆邮电大学 一种适用于网页长图宽图的图像分割方法
CN111311597A (zh) * 2020-03-27 2020-06-19 国网福建省电力有限公司龙岩供电公司 一种缺陷绝缘子的无人机巡检方法与系统
CN111523613A (zh) * 2020-05-09 2020-08-11 黄河勘测规划设计研究院有限公司 水利工程复杂环境下的图像分析抗干扰方法
CN111539302A (zh) * 2020-04-20 2020-08-14 山东理工大学 基于多尺度深层扰动神经网络的玻璃绝缘子自爆识别方法
CN111598889A (zh) * 2020-05-26 2020-08-28 南方电网数字电网研究院有限公司 均压环倾斜故障的识别方法、装置、计算机设备
CN111754465A (zh) * 2020-06-04 2020-10-09 四川大学 一种绝缘子定位与掉串检测方法
CN111767777A (zh) * 2020-01-08 2020-10-13 杭州健而控科技有限公司 一种基于图像处理算法的变电站隔离开关状态分析方法
CN111815600A (zh) * 2020-07-04 2020-10-23 博科视(苏州)技术有限公司 一种基于视觉的环形磁钢外观缺陷检测方法
CN112116579A (zh) * 2020-09-21 2020-12-22 东南大学 一种透明药瓶的缺陷检测方法和装置
CN112150500A (zh) * 2020-09-17 2020-12-29 西安工程大学 一种基于联合分量灰度化的绝缘子分割提取方法
CN112351247A (zh) * 2020-10-16 2021-02-09 国电大渡河枕头坝发电有限公司 一种基于图像处理的水电厂内电光闪光检测方法
CN112415013A (zh) * 2020-11-09 2021-02-26 上海圣之尧智能科技有限公司 一种铜箔缺陷检测系统
CN112435290A (zh) * 2020-09-29 2021-03-02 南京林业大学 基于饱和度分割的叶面积图像测量方法
CN112669295A (zh) * 2020-12-30 2021-04-16 上海电机学院 一种基于二次阈值分割理论的锂电池极片缺陷检测方法
CN112819812A (zh) * 2021-02-25 2021-05-18 西安铂力特增材技术股份有限公司 基于图像处理的粉末床缺陷检测方法
CN112837290A (zh) * 2021-02-03 2021-05-25 中南大学 一种基于种子填充算法的裂缝图像自动识别方法
CN113012124A (zh) * 2021-03-15 2021-06-22 大连海事大学 一种鞋印孔洞和嵌入物特征检测及描述方法
CN113034488A (zh) * 2021-04-13 2021-06-25 荣旗工业科技(苏州)股份有限公司 一种喷墨印刷品的视觉检测方法
CN113160163A (zh) * 2021-04-14 2021-07-23 大连亚明汽车部件股份有限公司 一种基于机器视觉的发动机缸体外观缺陷检测算法
CN113192027A (zh) * 2021-04-29 2021-07-30 华南理工大学 一种大功率led模组封装缺陷的检测方法及应用
CN113311289A (zh) * 2021-05-13 2021-08-27 中煤科工开采研究院有限公司 一种基于广域电流暂态分量的多级供电系统接地故障定位方法
CN113516193A (zh) * 2021-07-19 2021-10-19 中国农业大学 基于图像处理的红枣缺陷识别分类方法及装置
CN113538418A (zh) * 2021-08-27 2021-10-22 浙江工业大学 基于形态学分析的轮胎x射线图像缺陷提取模型构建方法
CN113554611A (zh) * 2021-07-19 2021-10-26 广东电网有限责任公司 一种绝缘子自爆缺陷检测方法、装置、终端和存储介质
CN113588654A (zh) * 2021-06-24 2021-11-02 宁波大学 一种发动机热交换器接口的三维视觉检测方法
CN113658098A (zh) * 2021-07-16 2021-11-16 江苏森标科技有限公司 一种太阳能电池片色斑检测的方法、系统及存储介质
CN113686876A (zh) * 2021-08-24 2021-11-23 华南农业大学 一种禽蛋裂纹检测方法、装置
CN114034706A (zh) * 2021-10-29 2022-02-11 武汉理工大学 一种碳纤维零件表面缺陷检测装置及方法
CN114155183A (zh) * 2021-08-30 2022-03-08 华北电力大学 一种气动执行器粘滞特性的检测和评估方法
CN114167889A (zh) * 2021-11-29 2022-03-11 内蒙古易飞航空科技有限公司 基于图像ai与大数据应用的智能巡检飞行平台
CN114202543A (zh) * 2022-02-18 2022-03-18 成都数之联科技股份有限公司 Pcb板脏污缺陷检测方法、装置、设备及介质
CN114359286A (zh) * 2022-03-21 2022-04-15 湖南应超智能计算研究院有限责任公司 一种基于人工智能的绝缘子缺陷识别方法、设备及介质
CN114359167A (zh) * 2021-12-15 2022-04-15 湖北工业大学 一种复杂场景下基于轻量化YOLOv4的绝缘子缺陷检测方法
CN114897770A (zh) * 2022-03-30 2022-08-12 大连大学 一种樱桃裂果样本的智能移植增强平衡方法
CN114998581A (zh) * 2020-12-22 2022-09-02 三峡大学 基于多阈值和k均值聚类的保护压板有效压板区域提取方法
CN115049637A (zh) * 2022-07-12 2022-09-13 北京奥乘智能技术有限公司 胶囊接缝图像获取方法、装置、存储介质和计算设备
CN115127479A (zh) * 2022-09-02 2022-09-30 西安西动智能科技有限公司 一种基于机器视觉的胶辊螺纹在线检测及修正方法
CN115330802A (zh) * 2022-10-17 2022-11-11 山东大学 一种碳纤维复合材料气瓶x射线图像脱粘缺陷提取方法
CN115546232A (zh) * 2022-10-12 2022-12-30 什维新智医疗科技(上海)有限公司 一种肝脏超声图像工作区域提取方法、系统及电子设备
CN115631205A (zh) * 2022-12-01 2023-01-20 阿里巴巴(中国)有限公司 图像分割及模型训练的方法、装置及设备
CN115661148A (zh) * 2022-12-26 2023-01-31 视睿(杭州)信息科技有限公司 一种晶圆晶粒排列检测方法及系统
CN115937549A (zh) * 2023-01-09 2023-04-07 肇庆学院 一种基于颜色和形状特征的木材数量计数方法
CN116051543A (zh) * 2023-03-06 2023-05-02 山东锦霖钢材加工有限公司 一种用于钢材剥皮的缺陷识别方法
CN116228746A (zh) * 2022-12-29 2023-06-06 摩尔线程智能科技(北京)有限责任公司 缺陷检测方法、装置、电子设备、存储介质和程序产品
CN116228778A (zh) * 2023-05-10 2023-06-06 国网山东省电力公司菏泽供电公司 一种基于多模态信息融合的绝缘子破裂的检测方法及系统
CN116630447A (zh) * 2023-07-24 2023-08-22 成都海风锐智科技有限责任公司 一种基于图像处理的天气预测方法
CN116630332A (zh) * 2023-07-26 2023-08-22 山东华航高分子材料有限公司 一种基于图像处理的pvc塑料管口缺陷检测方法
CN116645373A (zh) * 2023-07-27 2023-08-25 济宁名居木业有限公司 一种木材表面缺陷识别方法
CN116645364A (zh) * 2023-07-18 2023-08-25 金乡县金沪合金钢有限公司 一种基于图像数据的合金钢铸件气孔缺陷检测方法
CN116824586A (zh) * 2023-08-31 2023-09-29 山东黑猿生物科技有限公司 图像处理方法及应用该方法的黑蒜生产质量在线检测系统
CN116823804A (zh) * 2023-07-21 2023-09-29 北京化工大学 基于知识和数据联合驱动的输电通道安全监测方法
CN117197534A (zh) * 2023-08-04 2023-12-08 广州电缆厂有限公司 一种基于特征识别的电缆表面缺陷自动检测方法
CN117291911A (zh) * 2023-11-24 2023-12-26 山东通广电子股份有限公司 一种用于电力设备的缺陷检测方法及系统
CN117953401A (zh) * 2024-03-26 2024-04-30 国网浙江省电力有限公司电力科学研究院 一种复杂背景红外图像复合绝缘子发热缺陷自动识别方法及系统
WO2024087870A1 (zh) * 2022-10-26 2024-05-02 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 用于x射线焊缝图像的缺陷识别方法、设备和存储介质
CN117969548A (zh) * 2024-02-01 2024-05-03 余姚启望五金有限公司 用于配电电网的绝缘子的表面材料均匀分析系统

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545564A (zh) * 2017-07-20 2018-01-05 广东工业大学 电网输电线路绝缘子伞裙缺陷检测方法
CN107369162B (zh) * 2017-07-21 2020-07-10 华北电力大学(保定) 一种绝缘子候选目标区域的生成方法及系统
CN107727662B (zh) * 2017-09-28 2020-02-14 河北工业大学 一种基于区域生长算法的电池片el黑斑缺陷检测方法
CN107871320A (zh) * 2017-11-24 2018-04-03 国网内蒙古东部电力有限公司 一种绝缘纸板热老化程度的检测系统及方法
CN108108772B (zh) * 2018-01-06 2021-08-10 天津大学 一种基于配电线路航拍图像的绝缘子污闪状态检测方法
CN108362693B (zh) * 2018-01-12 2021-05-07 上海大学 一种基于图像处理的传送带上绝缘子合格率的检测方法
CN109544501B (zh) * 2018-03-22 2023-04-18 广东电网有限责任公司清远供电局 一种基于无人机多源图像特征匹配的输电设备缺陷检测方法
CN108665464A (zh) * 2018-04-03 2018-10-16 电子科技大学 一种基于形态学的高压电塔及高压电线的异物检测方法
CN108921828B (zh) * 2018-06-15 2022-04-22 湖南科技大学 一种复杂场景下不显著焊缝识别方法
CN109242819B (zh) * 2018-07-02 2022-02-11 广东工业大学 一种基于图像处理的表面擦伤缺陷联通的算法
CN109118476B (zh) * 2018-07-11 2020-11-24 华南理工大学广州学院 一种零部件边缘轮廓完整性检测方法及装置
CN109492569A (zh) * 2018-10-31 2019-03-19 国家电网有限公司 一种电缆线绝缘层缺损检测方法和装置
CN109242853B (zh) * 2018-11-05 2021-10-19 南京信息工程大学 一种基于图像处理的pcb缺陷智能检测方法
CN109544572B (zh) * 2018-11-19 2023-07-25 常州大学 一种果园图像中近大果实目标的获取方法
EP3680106B1 (de) 2019-01-11 2023-08-23 Heidelberger Druckmaschinen AG Mn-detektion im druckbild
CN109916914B (zh) * 2019-04-10 2021-07-02 清华大学深圳研究生院 一种产品缺陷检测方法及装置
CN110609204B (zh) * 2019-06-27 2021-11-02 杭州电子科技大学 基于形态学小波分析消噪的配电网单相接地故障定位方法
CN110361400A (zh) * 2019-07-01 2019-10-22 创新奇智(合肥)科技有限公司 一种铸铁工件的气泡检测方法及电子设备
CN110533653A (zh) * 2019-08-30 2019-12-03 国家电网有限公司 高压电气设备缺陷检测方法、装置及终端设备
CN110751648B (zh) * 2019-10-29 2023-02-28 国网黑龙江省电力有限公司电力科学研究院 基于图像处理技术的杆塔基础异常检测方法
CN111368854A (zh) * 2020-03-03 2020-07-03 东南数字经济发展研究院 一种批量提取航拍图像中颜色单一的同类目标轮廓的方法
CN111583258B (zh) * 2020-05-28 2024-03-15 常州节卡智能装备有限公司 缺陷检测方法、装置、系统及存储介质
CN112464756B (zh) * 2020-11-13 2023-05-02 上海电力大学 一种面向绝缘子缺陷识别的图像量化方法
CN112634216B (zh) * 2020-12-16 2024-02-09 西安理工大学 一种基于深度学习模型的绝缘子自爆检测方法
CN112907545B (zh) * 2021-02-25 2023-10-10 湖州师范学院 基于图像处理的种子芽长与根长检测方法
CN112802022B (zh) * 2021-04-14 2021-10-29 高视科技(苏州)有限公司 智能检测缺陷玻璃图像的方法、电子设备以及存储介质
CN113793322A (zh) * 2021-09-16 2021-12-14 上海安稷软件科技有限公司 一种对磁性材料自动检测的方法、电子设备和存储介质
CN113935970A (zh) * 2021-10-18 2022-01-14 南京航空航天大学 一种复材蒙皮零件表面树脂堆积的检测方法及装置
CN114219863A (zh) * 2021-12-16 2022-03-22 重庆傲雄在线信息技术有限公司 基于重建开操作的印章检测方法、存储介质及电子设备
CN114417990B (zh) * 2022-01-13 2024-08-23 广东双电科技有限公司 一种利用矩形框标注的瓷绝缘子红外图像分割方法
CN114625020B (zh) * 2022-05-12 2022-08-12 慕思健康睡眠股份有限公司 一种电器控制方法、装置及系统
CN116679171B (zh) * 2023-05-15 2023-11-10 江苏云峰科技股份有限公司 风力发电开关的绝缘件的绝缘状态判断系统
CN117571724A (zh) * 2024-01-16 2024-02-20 季华实验室 留置针缺陷检测方法、系统、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365581A (ja) * 1986-09-05 1988-03-24 Ngk Insulators Ltd 画像センシング方法
CN105160669A (zh) * 2015-08-21 2015-12-16 马鞍山市安工大工业技术研究院有限公司 一种无人机巡检输电线路图像中绝缘子缺陷的检测和定位方法
CN105976368A (zh) * 2016-04-28 2016-09-28 华北电力大学(保定) 一种绝缘子定位方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886610B (zh) * 2014-04-05 2016-08-17 东北电力大学 一种绝缘子图像缺陷检测方法
CN104483326B (zh) * 2014-12-19 2017-12-22 长春工程学院 基于深度信念网络的高压线绝缘子缺陷检测方法及系统
CN105513039A (zh) * 2015-07-10 2016-04-20 中国电力科学研究院 一种带电绝缘子串覆冰桥接度智能图像分析方法
CN105445283A (zh) * 2016-02-01 2016-03-30 成都通甲优博科技有限责任公司 一种绝缘子图像污秽状态检测方法
CN105931198A (zh) * 2016-04-14 2016-09-07 西安工程大学 一种基于小波变换的覆冰绝缘子图像增强方法
CN106097380A (zh) * 2016-08-03 2016-11-09 中国电力科学研究院 一种基于图像的绝缘子芯棒缺陷在线检测的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365581A (ja) * 1986-09-05 1988-03-24 Ngk Insulators Ltd 画像センシング方法
CN105160669A (zh) * 2015-08-21 2015-12-16 马鞍山市安工大工业技术研究院有限公司 一种无人机巡检输电线路图像中绝缘子缺陷的检测和定位方法
CN105976368A (zh) * 2016-04-28 2016-09-28 华北电力大学(保定) 一种绝缘子定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN, LIJUN ET AL.: "Identification of Insulator Contamination Grade Combining Color Features of Visual Image with Support Vector Machine", HIGH VOLTAGE APPARATUS, vol. 51, no. 2, 16 February 2015 (2015-02-16) *
SU , CHAO ET AL.: "Insulator Defect Detection Based on Image Processing", INDUSTRIAL CONTROL COMPUTER, vol. 29, no. 12, 25 December 2016 (2016-12-25) *

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712181A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 集成电路版图线网上开路关键面积的提取方法
CN109712181B (zh) * 2018-12-26 2022-12-06 西安电子科技大学 集成电路版图线网上开路关键面积的提取方法
CN109766831A (zh) * 2019-01-09 2019-05-17 深圳市三宝创新智能有限公司 一种道路色带识别方法、装置、计算机设备、及存储介质
CN109785316A (zh) * 2019-01-22 2019-05-21 湖南大学 一种芯片表观缺陷检测方法
CN109785316B (zh) * 2019-01-22 2022-12-02 湖南大学 一种芯片表观缺陷检测方法
CN110021012A (zh) * 2019-03-27 2019-07-16 安徽皓视光电科技有限公司 基于机器视觉技术的手机镜头视窗玻璃缺陷检测方法
CN110021012B (zh) * 2019-03-27 2023-09-26 安徽皓视光电科技有限公司 基于机器视觉技术的手机镜头视窗玻璃缺陷检测方法
CN110136158A (zh) * 2019-04-10 2019-08-16 西安理工大学 一种基于图像处理的对称体调平装置及调平方法
CN110136158B (zh) * 2019-04-10 2022-10-11 西安理工大学 一种基于图像处理的对称体调平装置及调平方法
CN110175556A (zh) * 2019-05-24 2019-08-27 西安电子科技大学 基于Sobel算子的遥感图像云检测方法
CN110175556B (zh) * 2019-05-24 2022-12-06 西安电子科技大学 基于Sobel算子的遥感图像云检测方法
CN110298860A (zh) * 2019-05-31 2019-10-01 河池学院 一种基于机器视觉的高杆绣球检测计数系统
CN110288571A (zh) * 2019-06-06 2019-09-27 中南大学 一种基于图像处理的高铁接触网绝缘子异常检测方法
CN110264448B (zh) * 2019-06-06 2021-04-23 中南大学 一种基于机器视觉的绝缘子故障检测方法
CN110288571B (zh) * 2019-06-06 2021-03-23 中南大学 一种基于图像处理的高铁接触网绝缘子异常检测方法
CN110276747B (zh) * 2019-06-06 2021-03-23 中南大学 一种基于图像分析的绝缘子故障检测和故障评级方法
CN110264448A (zh) * 2019-06-06 2019-09-20 中南大学 一种基于机器视觉的绝缘子故障检测方法
CN110276747A (zh) * 2019-06-06 2019-09-24 中南大学 一种基于图像分析的绝缘子故障检测和故障评级方法
CN110222683A (zh) * 2019-06-11 2019-09-10 云南电网有限责任公司曲靖供电局 一种基于深度卷积神经网络的输电线路绝缘子部件爆片缺陷识别定位方法
CN110751642A (zh) * 2019-10-18 2020-02-04 国网黑龙江省电力有限公司大庆供电公司 一种绝缘子裂缝检测方法和系统
CN111080696B (zh) * 2019-10-25 2023-08-08 青岛农业大学 一种基于计算机视觉的水下海参识别及定位方法
CN111080696A (zh) * 2019-10-25 2020-04-28 青岛农业大学 一种基于计算机视觉的水下海参识别及定位方法
CN110956590A (zh) * 2019-11-04 2020-04-03 中山市奥珀金属制品有限公司 一种虹膜图像的去噪装置、方法及存储介质
CN110956590B (zh) * 2019-11-04 2023-11-17 张杰辉 一种虹膜图像的去噪装置、方法及存储介质
CN111081340B (zh) * 2019-12-04 2023-11-03 四川骏逸富顿科技有限公司 一种用于远程检测电子处方信息是否完整的方法
CN111081340A (zh) * 2019-12-04 2020-04-28 四川骏逸富顿科技有限公司 一种用于远程检测电子处方信息是否完整的方法
CN111179289A (zh) * 2019-12-31 2020-05-19 重庆邮电大学 一种适用于网页长图宽图的图像分割方法
CN111767777A (zh) * 2020-01-08 2020-10-13 杭州健而控科技有限公司 一种基于图像处理算法的变电站隔离开关状态分析方法
CN111311597A (zh) * 2020-03-27 2020-06-19 国网福建省电力有限公司龙岩供电公司 一种缺陷绝缘子的无人机巡检方法与系统
CN111311597B (zh) * 2020-03-27 2023-04-18 国网福建省电力有限公司龙岩供电公司 一种缺陷绝缘子的无人机巡检方法与系统
CN111539302A (zh) * 2020-04-20 2020-08-14 山东理工大学 基于多尺度深层扰动神经网络的玻璃绝缘子自爆识别方法
CN111539302B (zh) * 2020-04-20 2022-09-09 山东理工大学 基于多尺度深层扰动神经网络的玻璃绝缘子自爆识别方法
CN111523613A (zh) * 2020-05-09 2020-08-11 黄河勘测规划设计研究院有限公司 水利工程复杂环境下的图像分析抗干扰方法
CN111523613B (zh) * 2020-05-09 2023-03-24 黄河勘测规划设计研究院有限公司 水利工程复杂环境下的图像分析抗干扰方法
CN111598889A (zh) * 2020-05-26 2020-08-28 南方电网数字电网研究院有限公司 均压环倾斜故障的识别方法、装置、计算机设备
CN111754465B (zh) * 2020-06-04 2023-06-09 四川大学 一种绝缘子定位与掉串检测方法
CN111754465A (zh) * 2020-06-04 2020-10-09 四川大学 一种绝缘子定位与掉串检测方法
CN111815600A (zh) * 2020-07-04 2020-10-23 博科视(苏州)技术有限公司 一种基于视觉的环形磁钢外观缺陷检测方法
CN111815600B (zh) * 2020-07-04 2024-04-02 博科视(苏州)技术有限公司 一种基于视觉的环形磁钢外观缺陷检测方法
CN112150500B (zh) * 2020-09-17 2023-12-26 西安工程大学 一种基于联合分量灰度化的绝缘子分割提取方法
CN112150500A (zh) * 2020-09-17 2020-12-29 西安工程大学 一种基于联合分量灰度化的绝缘子分割提取方法
CN112116579B (zh) * 2020-09-21 2024-02-13 东南大学 一种透明药瓶的缺陷检测方法和装置
CN112116579A (zh) * 2020-09-21 2020-12-22 东南大学 一种透明药瓶的缺陷检测方法和装置
CN112435290A (zh) * 2020-09-29 2021-03-02 南京林业大学 基于饱和度分割的叶面积图像测量方法
CN112351247A (zh) * 2020-10-16 2021-02-09 国电大渡河枕头坝发电有限公司 一种基于图像处理的水电厂内电光闪光检测方法
CN112415013A (zh) * 2020-11-09 2021-02-26 上海圣之尧智能科技有限公司 一种铜箔缺陷检测系统
CN114998581A (zh) * 2020-12-22 2022-09-02 三峡大学 基于多阈值和k均值聚类的保护压板有效压板区域提取方法
CN112669295A (zh) * 2020-12-30 2021-04-16 上海电机学院 一种基于二次阈值分割理论的锂电池极片缺陷检测方法
CN112837290A (zh) * 2021-02-03 2021-05-25 中南大学 一种基于种子填充算法的裂缝图像自动识别方法
CN112819812A (zh) * 2021-02-25 2021-05-18 西安铂力特增材技术股份有限公司 基于图像处理的粉末床缺陷检测方法
CN112819812B (zh) * 2021-02-25 2024-05-31 西安铂力特增材技术股份有限公司 基于图像处理的粉末床缺陷检测方法
CN113012124A (zh) * 2021-03-15 2021-06-22 大连海事大学 一种鞋印孔洞和嵌入物特征检测及描述方法
CN113012124B (zh) * 2021-03-15 2024-02-23 大连海事大学 一种鞋印孔洞和嵌入物特征检测及描述方法
CN113034488A (zh) * 2021-04-13 2021-06-25 荣旗工业科技(苏州)股份有限公司 一种喷墨印刷品的视觉检测方法
CN113034488B (zh) * 2021-04-13 2024-04-19 荣旗工业科技(苏州)股份有限公司 一种喷墨印刷品的视觉检测方法
CN113160163A (zh) * 2021-04-14 2021-07-23 大连亚明汽车部件股份有限公司 一种基于机器视觉的发动机缸体外观缺陷检测算法
CN113160163B (zh) * 2021-04-14 2023-10-31 大连亚明汽车部件股份有限公司 一种基于机器视觉的发动机缸体外观缺陷检测算法
CN113192027B (zh) * 2021-04-29 2023-03-24 华南理工大学 一种大功率led模组封装缺陷的检测方法及应用
CN113192027A (zh) * 2021-04-29 2021-07-30 华南理工大学 一种大功率led模组封装缺陷的检测方法及应用
CN113311289A (zh) * 2021-05-13 2021-08-27 中煤科工开采研究院有限公司 一种基于广域电流暂态分量的多级供电系统接地故障定位方法
CN113588654B (zh) * 2021-06-24 2024-02-02 宁波大学 一种发动机热交换器接口的三维视觉检测方法
CN113588654A (zh) * 2021-06-24 2021-11-02 宁波大学 一种发动机热交换器接口的三维视觉检测方法
CN113658098A (zh) * 2021-07-16 2021-11-16 江苏森标科技有限公司 一种太阳能电池片色斑检测的方法、系统及存储介质
CN113658098B (zh) * 2021-07-16 2024-03-15 江苏森标科技有限公司 一种太阳能电池片色斑检测的方法、系统及存储介质
CN113554611A (zh) * 2021-07-19 2021-10-26 广东电网有限责任公司 一种绝缘子自爆缺陷检测方法、装置、终端和存储介质
CN113516193B (zh) * 2021-07-19 2024-03-01 中国农业大学 基于图像处理的红枣缺陷识别分类方法及装置
CN113554611B (zh) * 2021-07-19 2024-02-02 广东电网有限责任公司 一种绝缘子自爆缺陷检测方法、装置、终端和存储介质
CN113516193A (zh) * 2021-07-19 2021-10-19 中国农业大学 基于图像处理的红枣缺陷识别分类方法及装置
CN113686876A (zh) * 2021-08-24 2021-11-23 华南农业大学 一种禽蛋裂纹检测方法、装置
CN113538418A (zh) * 2021-08-27 2021-10-22 浙江工业大学 基于形态学分析的轮胎x射线图像缺陷提取模型构建方法
CN114155183A (zh) * 2021-08-30 2022-03-08 华北电力大学 一种气动执行器粘滞特性的检测和评估方法
CN114034706A (zh) * 2021-10-29 2022-02-11 武汉理工大学 一种碳纤维零件表面缺陷检测装置及方法
CN114167889B (zh) * 2021-11-29 2023-03-07 内蒙古易飞航空科技有限公司 基于图像ai与大数据应用的智能巡检飞行平台
CN114167889A (zh) * 2021-11-29 2022-03-11 内蒙古易飞航空科技有限公司 基于图像ai与大数据应用的智能巡检飞行平台
CN114359167A (zh) * 2021-12-15 2022-04-15 湖北工业大学 一种复杂场景下基于轻量化YOLOv4的绝缘子缺陷检测方法
CN114202543B (zh) * 2022-02-18 2022-04-26 成都数之联科技股份有限公司 Pcb板脏污缺陷检测方法、装置、设备及介质
CN114202543A (zh) * 2022-02-18 2022-03-18 成都数之联科技股份有限公司 Pcb板脏污缺陷检测方法、装置、设备及介质
CN114359286A (zh) * 2022-03-21 2022-04-15 湖南应超智能计算研究院有限责任公司 一种基于人工智能的绝缘子缺陷识别方法、设备及介质
CN114897770A (zh) * 2022-03-30 2022-08-12 大连大学 一种樱桃裂果样本的智能移植增强平衡方法
CN115049637A (zh) * 2022-07-12 2022-09-13 北京奥乘智能技术有限公司 胶囊接缝图像获取方法、装置、存储介质和计算设备
CN115127479A (zh) * 2022-09-02 2022-09-30 西安西动智能科技有限公司 一种基于机器视觉的胶辊螺纹在线检测及修正方法
CN115546232A (zh) * 2022-10-12 2022-12-30 什维新智医疗科技(上海)有限公司 一种肝脏超声图像工作区域提取方法、系统及电子设备
CN115330802A (zh) * 2022-10-17 2022-11-11 山东大学 一种碳纤维复合材料气瓶x射线图像脱粘缺陷提取方法
WO2024087870A1 (zh) * 2022-10-26 2024-05-02 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 用于x射线焊缝图像的缺陷识别方法、设备和存储介质
CN115631205A (zh) * 2022-12-01 2023-01-20 阿里巴巴(中国)有限公司 图像分割及模型训练的方法、装置及设备
CN115631205B (zh) * 2022-12-01 2023-03-21 阿里巴巴(中国)有限公司 图像分割及模型训练的方法、装置及设备
CN115661148A (zh) * 2022-12-26 2023-01-31 视睿(杭州)信息科技有限公司 一种晶圆晶粒排列检测方法及系统
CN116228746A (zh) * 2022-12-29 2023-06-06 摩尔线程智能科技(北京)有限责任公司 缺陷检测方法、装置、电子设备、存储介质和程序产品
CN115937549B (zh) * 2023-01-09 2023-08-04 肇庆学院 一种基于颜色和形状特征的木材数量计数方法
CN115937549A (zh) * 2023-01-09 2023-04-07 肇庆学院 一种基于颜色和形状特征的木材数量计数方法
CN116051543A (zh) * 2023-03-06 2023-05-02 山东锦霖钢材加工有限公司 一种用于钢材剥皮的缺陷识别方法
CN116228778B (zh) * 2023-05-10 2023-09-08 国网山东省电力公司菏泽供电公司 一种基于多模态信息融合的绝缘子破裂的检测方法及系统
CN116228778A (zh) * 2023-05-10 2023-06-06 国网山东省电力公司菏泽供电公司 一种基于多模态信息融合的绝缘子破裂的检测方法及系统
CN116645364B (zh) * 2023-07-18 2023-10-27 金乡县金沪合金钢有限公司 一种基于图像数据的合金钢铸件气孔缺陷检测方法
CN116645364A (zh) * 2023-07-18 2023-08-25 金乡县金沪合金钢有限公司 一种基于图像数据的合金钢铸件气孔缺陷检测方法
CN116823804A (zh) * 2023-07-21 2023-09-29 北京化工大学 基于知识和数据联合驱动的输电通道安全监测方法
CN116823804B (zh) * 2023-07-21 2024-02-09 北京化工大学 基于知识和数据联合驱动的输电通道安全监测方法
CN116630447B (zh) * 2023-07-24 2023-10-20 成都海风锐智科技有限责任公司 一种基于图像处理的天气预测方法
CN116630447A (zh) * 2023-07-24 2023-08-22 成都海风锐智科技有限责任公司 一种基于图像处理的天气预测方法
CN116630332B (zh) * 2023-07-26 2023-09-26 山东华航高分子材料有限公司 一种基于图像处理的pvc塑料管口缺陷检测方法
CN116630332A (zh) * 2023-07-26 2023-08-22 山东华航高分子材料有限公司 一种基于图像处理的pvc塑料管口缺陷检测方法
CN116645373A (zh) * 2023-07-27 2023-08-25 济宁名居木业有限公司 一种木材表面缺陷识别方法
CN116645373B (zh) * 2023-07-27 2023-10-20 济宁名居木业有限公司 一种木材表面缺陷识别方法
CN117197534B (zh) * 2023-08-04 2024-04-05 广州电缆厂有限公司 一种基于特征识别的电缆表面缺陷自动检测方法
CN117197534A (zh) * 2023-08-04 2023-12-08 广州电缆厂有限公司 一种基于特征识别的电缆表面缺陷自动检测方法
CN116824586B (zh) * 2023-08-31 2023-12-01 山东黑猿生物科技有限公司 图像处理方法及应用该方法的黑蒜生产质量在线检测系统
CN116824586A (zh) * 2023-08-31 2023-09-29 山东黑猿生物科技有限公司 图像处理方法及应用该方法的黑蒜生产质量在线检测系统
CN117291911B (zh) * 2023-11-24 2024-02-09 山东通广电子股份有限公司 一种用于电力设备的缺陷检测方法及系统
CN117291911A (zh) * 2023-11-24 2023-12-26 山东通广电子股份有限公司 一种用于电力设备的缺陷检测方法及系统
CN117969548A (zh) * 2024-02-01 2024-05-03 余姚启望五金有限公司 用于配电电网的绝缘子的表面材料均匀分析系统
CN117953401A (zh) * 2024-03-26 2024-04-30 国网浙江省电力有限公司电力科学研究院 一种复杂背景红外图像复合绝缘子发热缺陷自动识别方法及系统

Also Published As

Publication number Publication date
CN106780438A (zh) 2017-05-31
CN106780438B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2018086299A1 (zh) 基于图像处理的绝缘子缺陷检测方法及系统
CN107578035B (zh) 基于超像素-多色彩空间的人体轮廓提取方法
CN109978890B (zh) 基于图像处理的目标提取方法、装置及终端设备
CN111260616A (zh) 一种基于Canny算子二维阈值分割优化的绝缘子裂纹检测方法
CN109191432B (zh) 基于域变换滤波多尺度分解的遥感图像云检测方法
CN105913421B (zh) 基于自适应形状暗通道的遥感图像云检测方法
CN104504722B (zh) 一种利用灰色点校正图像颜色的方法
Gothwal et al. Color image segmentation algorithm based on RGB channels
CN106408025B (zh) 基于图像处理的航拍图像绝缘子分类识别方法
WO2019076326A1 (zh) 监控视频图像的阴影检测方法及其系统、阴影去除方法
Narkhede et al. Color image segmentation using edge detection and seeded region growing approach for CIELab and HSV color spaces
CN110175556B (zh) 基于Sobel算子的遥感图像云检测方法
CN109978895B (zh) 一种舌体图像分割方法和装置
CN109064419A (zh) 一种基于wls滤波和多尺度稀疏表达的单幅图像去雨方法
CN106558044B (zh) 影像模组的解像力测量方法
CN111008967B (zh) 一种绝缘子rtv涂层缺陷识别方法
CN110852207A (zh) 基于面向对象影像分类技术的蓝色屋顶建筑物提取方法
CN108711160A (zh) 一种基于hsi增强性模型的目标分割方法
CN113643281B (zh) 一种舌体图像分割方法
CN109741337B (zh) 基于Lab色彩空间的区域合并分水岭彩色遥感影像分割方法
CN109934152B (zh) 一种针对手语图像的改进小弯臂图像分割方法
CN105528795B (zh) 一种利用环形最短路径的红外人脸分割方法
CN103870827A (zh) 一种结合颜色与纹理的车牌检测方法
CN109493361B (zh) 一种火灾烟雾图像分割方法
Yang et al. A self-adapted threshold-based region merging method for remote sensing image segmentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868868

Country of ref document: EP

Kind code of ref document: A1