WO2018086151A1 - 一种具有防水功能的混合编码器 - Google Patents

一种具有防水功能的混合编码器 Download PDF

Info

Publication number
WO2018086151A1
WO2018086151A1 PCT/CN2016/106695 CN2016106695W WO2018086151A1 WO 2018086151 A1 WO2018086151 A1 WO 2018086151A1 CN 2016106695 W CN2016106695 W CN 2016106695W WO 2018086151 A1 WO2018086151 A1 WO 2018086151A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoder
insulating
hollow shaft
shaft
bearings
Prior art date
Application number
PCT/CN2016/106695
Other languages
English (en)
French (fr)
Inventor
金杰
Original Assignee
苏州博拉腾信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州博拉腾信息科技有限公司 filed Critical 苏州博拉腾信息科技有限公司
Publication of WO2018086151A1 publication Critical patent/WO2018086151A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to a hybrid encoder, and more particularly to a wind turbine hybrid encoder having a special waterproof function.
  • Hybrid encoders for wind turbines commonly used in the market mostly use insulated bearings to prevent the wind turbine shaft current from being conducted to the encoder body.
  • the insulating bearings are expensive, and the insulation performance is reduced or even lost under extreme temperatures.
  • the value of the shaft voltage to be broken is relatively low.
  • Others use the encoder insulation adapter shaft to achieve the purpose of insulation.
  • the encoder insulation adapter shaft is very complicated to install. It is necessary to add insulating connectors to increase the axial length and cost.
  • the technical problem to be solved by the present invention is to provide a hybrid encoder encoder having a waterproof function, which does not require expensive insulated bearings and a complicated encoder-insulated adapter shaft. It is used for speed feedback of wind turbines. It is not only easy to install, but also requires conventional bearings. It also enhances the insulation capacity, improves the breakdown voltage of the shaft, and improves the shaft current protection capability.
  • the present invention is implemented as follows:
  • a hybrid encoder encoder with waterproof function including a seal, an insulating sleeve, a bearing, an insulating gland, a thread pressing member, a mixing system, a grating plate, a support ring, a circuit board, a back cover, and a waterproof cable connector , encoder body, hollow shaft, fixed bracket, spacer.
  • the hollow shaft is fixed to the generator output shaft according to the accuracy matching requirement, and the grating plate is fixed on the hollow shaft by the support ring; the hollow shaft is connected by the seal, the double bearing, the insulating sleeve, the insulating gland, the thread pressing member and the encoder body ; a spacer between the two bearings; a hybrid system (including an illumination tube corresponding to the grating disc track, an indicator grating and a hybrid receiving element array), the circuit board is mounted on the encoder body; the encoder body is fixed by a fixing bracket On the generator base; cables and lines The boards are connected and output via a waterproof sealed cable connector.
  • the insulating sleeve and the insulating gland material may be: plastic, glass fiber, ceramic or a combination thereof.
  • the insulating sleeve and the insulating gland can be realized by an inexpensive casting or processing method.
  • the grating plate material may be: metal, glass, plastic.
  • the spacer is made of a metal material.
  • the hollow shaft and the inner ring of the bearing adopt an interference fit, and the hollow shaft is precisely processed according to the coaxiality and the like.
  • the matching accuracy between the encoder and the generator output shaft is mainly ensured by the machining accuracy of the encoder hollow shaft, which is easy to implement, and greatly relaxes the processing precision requirements of the insulating sleeve and the insulating gland, and can be realized by an inexpensive casting method.
  • the output shaft of the generator is driven to rotate synchronously by the encoder hollow shaft, and the luminous tube emits a constant beam in the hybrid system, and is irradiated on the grating plate, and the grating plate and the indicating grating are at the same pitch to form a grating.
  • the grating disk rotates with the output shaft of the generator, and the grating modulates the beam to form a moire fringe, which is received by the hybrid receiving component and converted into an electrical signal, which is amplified, logically processed, and linearly driven by the cable output and angle. Corresponding electrical signal.
  • the output shaft of the generator is connected to the inner ring of the two bearings through the hollow shaft of the encoder.
  • the outer rings of the two bearings are connected to the main body of the encoder via an insulating sleeve and an insulating gland.
  • the insulation of the output shaft of the generator and the main body of the encoder is realized without insulating bearings. .
  • the insulating sleeve and the insulating gland have different thicknesses and different withstand voltage values.
  • the thickness of the insulating sleeve and the insulating gland can be selected according to the maximum shaft voltage generated by the generator.
  • the material of the insulating sleeve and the insulating gland is an engineering plastic with a dielectric strength of >170KV/mm.
  • the breakdown voltage of the encoder will be higher than 10,000 volts, which can meet the future wind turbine generator encoder. The need for increasing shaft current protection capabilities.
  • the insulating sleeve and the insulating gland are not thermally conductive, and the generator is prevented from transmitting heat to the encoder via the output shaft, thereby affecting the normal operation of the encoder.
  • the conventional bearing can be replaced by an insulated bearing, and the encoder can constitute an insulated redundant double insulation, which not only improves the withstand voltage strength, but also makes the encoder insulation due to the redundant design. Get a reliable guarantee.
  • the encoder adopts a sturdy aluminum alloy casing, long-life large bearing bearing, hybrid system, high-reliability processing circuit, sealing, surface anti-corrosion treatment and special waterproof function, which can meet the wind turbine under extremely harsh environmental conditions. The need for high reliability, long life work.
  • the insulating sleeve and the insulating gland can be either inexpensive cast or machined.
  • a hybrid encoder encoder with waterproof function including a sealing member 1, an insulating sleeve 2, a bearing
  • the insulating sleeve 2, the insulating gland 4 material may be: plastic, glass fiber, ceramic or a combination thereof.
  • the insulating sleeve 2, the insulating gland 4 can be realized by an inexpensive casting or processing method.
  • the inner and outer surfaces of the insulating sleeve 2 and the insulating gland 4 adopt a concave-convex strip structure.
  • the outer ring of the two bearings 3 and the insulating sleeve 2, the insulating sleeve 2 and the encoder body 12 are gap-fitted and fixed by glue.
  • the grating plate 7 may be made of metal, glass or plastic.
  • the spacer 15 is made of a metal material.
  • the hollow shaft 13 and the inner ring of the bearing 3 adopt an interference fit, and the hollow shaft 13 is precisely processed according to the coaxiality and the like.
  • the matching accuracy between the encoder and the generator output shaft is mainly ensured by the machining accuracy of the encoder hollow shaft, which is easy to realize, and greatly relaxes the processing precision requirements of the insulating sleeve 2 and the insulating gland 4, which can be realized by an inexpensive casting method. .
  • the generator output shaft drives the grating disk 7 to rotate synchronously via the encoder hollow shaft 13 , and the light-emitting tube of the hybrid system 6 emits a constant light beam, which is irradiated on the grating disk 7 , and the grating disk 7 and the indicating grating are the same
  • the pitch, which constitutes the grating the grating disk 7 rotates with the output shaft of the generator, and the grating corrects the beam to form a moire fringe, which is received by the hybrid receiving component and converted into an electrical signal, after being amplified, logically processed, and linearly driven.
  • the cable outputs an electrical signal corresponding to the angle (generally containing eight, B, I, six-phase signals).
  • the generator output shaft 17 is connected to the inner ring of the two bearings 3 via the encoder hollow shaft 13, and the outer rings of the two bearings 3 are connected to the encoder body 12 via the insulating sleeve 2 and the insulating gland 4, without the use of insulating bearings.
  • the generator output shaft 17 is insulated from the encoder body 12.
  • the insulating sleeve 2 and the insulating cap 4 have different thicknesses and different withstand voltage values.
  • the thickness of the insulating sleeve 2 and the insulating gland 4 can be selected according to the maximum shaft voltage generated by the generator.
  • the insulating sleeve 2 and the insulating gland 4 are made of an engineering plastic with a dielectric strength of >170 KV/mm.
  • the breakdown voltage of the encoder will be higher than 10,000 volts, which can meet the future wind turbine pair. The ever-increasing need for encoder shaft current protection.
  • the insulating sleeve 2 and the insulating gland 4 do not conduct heat, thereby avoiding heat transfer to the encoder through the generator output shaft and affecting the normal operation of the encoder.
  • the conventional bearing can be replaced with an insulating bearing, and the encoder can constitute an insulated redundant double insulation, which not only improves the withstand voltage strength, but also makes the encoder insulation due to the redundant design. Get a reliable guarantee.
  • the encoder adopts a sturdy aluminum alloy casing, long life bearing, hybrid system, high reliability processing circuit, sealing, surface anti-corrosion treatment and special waterproof function, which can meet the extremely harsh ring of wind power generator. The need for high reliability and long life in environmental conditions.
  • 1 is a schematic structural view of a waterproof encoder.
  • the waterproof encoder includes:
  • a bottom case 2 having a flat plate 21 having a cylindrical hollow boss 22 at the center of the top surface of the flat plate 21, and a shaft seat 23 extending from the center of the top surface of the hollow boss 22 to form a shaft seat 23, the shaft seat 23
  • the upper end surface has a concave cavity 24, the lower end surface of the shaft seat 23 has a concave cavity 25, the cylindrical hollow boss 22 is provided with two U-shaped grooves 26, 27 on the same circumference;
  • a knob 1 comprising a knob cover 11, a multi-pole magnetic ring 12 is fixed on the inner peripheral wall of the knob cover 11, and a shaft 13 is fixed in the knob cover 11 at the center of the top surface of the knob cover 11, the knob cover 11 sets are disposed outside the boss 22 of the bottom case 2, and the shaft 13 on the knob cover 11 penetrates the shaft seat 23 on the bottom case 2, and the lower end is in the cavity 25 of the lower end surface of the shaft seat 23 and is at the lower end of the shaft 13.
  • Set the snap ring 6, the cavity 25 of the lower end surface of the shaft seat 23 is mounted with a waterproof plug 7;
  • a control circuit board 3 is mounted in the hollow boss 22 of the bottom case 2; and two Hall elements 4, 4' are respectively mounted on the two U-shaped grooves 26 of the bottom case 2, 27, and connected to the control circuit board 3. Sequence table free content
  • the waterproof encoder further includes a knob positioning mechanism, and the knob positioning mechanism includes: a plurality of radial grooves 28 disposed on a top surface of the cylindrical hollow boss 22, disposed in the knob cover 11 a plurality of bumps 14 on the top surface, and elastic washers disposed on the shaft 12 of the knob 1; the elastic washer presses the top surface of the knob cover 11 against the top surface of the hollow boss 22, so that the bumps 14 on the knob cover 11
  • the groove 28 is embedded in the hollow boss 22 to achieve the purpose of positioning the knob.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

一种具有防水功能的混合编码器,包括密封件、绝缘套、轴承、绝缘压盖、螺纹压紧件、光电系统、光栅盘、支撑环、线路板、后盖、防水电缆接头、编码器主体、空心轴、固定支架、隔圈,空心轴按精度匹配要求与发电机输出轴固连,光栅盘由支撑环固定在空心轴上;空心轴经密封件、双轴承、绝缘套、绝缘压盖、螺纹压紧件和编码器主体连接;双轴承之间设有隔圈;含与光栅盘码道相对应的发光管、指示光栅和光电接收元件阵列的光电系统、线路板安装在编码器主体上;编码器主体通过固定支架固定在发电机机座上;电缆与线路板相连,经防水密封电缆接头输出。上述编码器不用价格昂贵的绝缘轴承和安装繁杂的编码器绝缘适配轴,用于风力电机速度反馈不仅安装方便,仅需常规轴承,而且增强了绝缘能力,提高了被击穿的轴电压值,提升了轴电流防护能力。

Description

一种具有防水功能的混合编码器 技术领域
[0001] 本发明涉及一种混合编码器、 尤其涉及一种特殊防水功能的风力发电机混合编 码器。
背景技术
[0002] 市面上常见的风力发电机用混合编码器, 大多采用绝缘轴承的方法防止风力发 电机轴电流传导到编码器主体, 而绝缘轴承价格昂贵、 在极端温度下绝缘性能 降低甚至丧失, 防止被击穿的轴电压值比较低。 随着风力发电机功率日益增加 , 对编码器的绝缘要求越来越高, 原来的绝缘轴承越来越难以适应。 而另外一 些则采用编码器绝缘适配轴的方法达到绝缘的目的, 编码器绝缘适配轴安装很 繁杂, 要附加绝缘连接件, 增加轴向长度, 成本高。
技术问题
问题的解决方案
技术解决方案
[0003] 本发明所要解决的技术问题是提供一种具有防水功能混合编码器编码器, 不用 价格昂贵的绝缘轴承和安装繁杂的编码器绝缘适配轴。 用于风力电机速度反馈 不仅安装方便, 仅需常规轴承, 而且增强了绝缘能力, 提高了被击穿的轴电压 值, 提升了轴电流防护能力。
[0004] 本发明是这样实现的:
[0005] 一种具有防水功能混合编码器编码器, 包括密封件、 绝缘套、 轴承、 绝缘压盖 、 螺纹压紧件、 混合系统、 光栅盘、 支撑环、 线路板、 后盖、 防水电缆接头、 编码器主体、 空心轴、 固定支架、 隔圈。 空心轴按精度匹配要求与发电机输出 轴固连, 光栅盘由支撑环固定在空心轴上; 空心轴经密封件、 双轴承、 绝缘套 、 绝缘压盖、 螺纹压紧件和编码器主体连接; 双轴承之间设有隔圈; 混合系统( 含与光栅盘码道相对应的发光管、 指示光栅和混合接收元件阵列)、 线路板安装 在编码器主体上; 编码器主体通过固定支架固定在发电机机座上; 电缆与线路 板相连, 经防水密封电缆接头输出。
[0006] 所述绝缘套、 绝缘压盖材质可以为: 塑料、 玻璃纤维、 陶瓷或其组合。
[0007] 所述绝缘套、 绝缘压盖可以采用廉价的铸塑或加工方法实现。
[0008] 所述绝缘套和绝缘压盖内外表面采用凹凸条结构。
[0009] 两轴承外环与绝缘套, 绝缘套与编码器主体之间采用间隙配合, 用胶固定。
[0010] 所述光栅盘材质可以为: 金属、 玻璃、 塑料。
[0011] 所述隔圈为金属材质。
[0012] 所述空心轴与轴承内环采用过盈配合, 空心轴按同轴度等要求精密加工。 编码 器与发电机输出轴的匹配精度主要由编码器空心轴加工精度保证, 易于实现, 并较大地放宽了绝缘套、 绝缘压盖的加工精度要求, 采用廉价的铸塑方法就可 实现。
[0013] 在使用的吋候: 发电机输出轴经编码器空心轴带动光栅盘同步旋转, 混合系统 中发光管发出恒定光束, 照射在光栅盘上, 光栅盘和指示光栅同节距, 构成光 栅付, 光栅盘随发电机输出轴旋转, 光栅付对光束进行调制, 形成莫尔条纹, 经混合接收元件接收并转换成电信号, 经放大、 逻辑处理、 线性驱动电路后由 电缆输出与角度相对应的电信号。 发电机输出轴经编码器空心轴与两个轴承内 环连接, 两个轴承外环经绝缘套、 绝缘压盖与编码器主体连接, 不用绝缘轴承 实现了发电机输出轴与编码器主体的绝缘。
[0014] 绝缘套和绝缘压盖的厚度不同, 耐电压值不同。 设计中可根据发电机产生的最 高轴电压的大小, 选择绝缘套和绝缘压盖的厚度。 如绝缘套和绝缘压盖的材质 选择一种工程塑料, 介电强度〉 170KV/mm, 当厚度 = 2mm吋, 编码器的击穿电 压将高于万伏, 可满足未来风力发电机对编码器轴电流防护能力不断增长的需 要。
[0015] 绝缘套和绝缘压盖不导热, 避免了发电机经输出轴将热量传到编码器而影响编 码器正常工作。
[0016] 在绝缘性能要求特别高的场合, 可将常规轴承换成绝缘轴承, 本编码器就可构 成绝缘冗余双绝缘, 不仅提高了耐电压强度, 也因冗余设计使编码器绝缘性得 到可靠保证。 [0017] 本编码器采用坚固的铝合金机壳、 长寿命大承载轴承、 混合系统、 高可靠处理 电路、 密封、 表面防腐处理和特殊的防水功能, 可满足风力发电机在极恶劣环 境条件下高可靠、 长寿命工作的需要。
发明的有益效果
有益效果
[0018] 1.采用特殊防水功能, 用常规轴承, 不用价格昂贵的绝缘轴承, 就可实现编码 器主体与发电机输出轴的电绝缘。
[0019] 2.对绝缘套和绝缘压盖材料、 厚度的选择, 可大幅度提高击穿电压值。
[0020] 3.同吋对双轴承的外环与编码器的主体绝缘, 结构简单、 安装方便、 安装免调 试。
[0021] 4.因绝缘轴承种类少, 采用常规轴承可拓宽轴承选择范围。 如有的风力发电机 要求在 -50°C条件下工作, 绝缘轴承很难满足, 本发明则容易实现。
[0022] 5.绝缘套和绝缘压盖既可采用廉价的铸塑成型又可采用机械加工。
[0023] 6.隔离了发电机热量对编码器的影响。
[0024] 7.风力发电机功率日益增加, 对编码器的绝缘要求越来越高, 本发明可较好地 满足风机进一步发展对轴电流防护的要求。
[0025] 一种具有防水功能混合编码器编码器, 包括密封件 1、 绝缘套 2、 轴承
[0026] 3、 绝缘压盖 4、 螺纹压紧件 5、 混合系统 6、 光栅盘 7、 支撑环 8、 线路板 9、 后 盖 10、 防水电缆接头 11、 编码器主体 12、 空心轴 13、 固定支架 14、 隔圈 15。 空 心轴 13按精度匹配要求与发电机输出轴 17固连, 光栅盘 7由支撑环 8固定在空心 轴 13上; 空心轴 13经密封件 1、 双轴承 3、 绝缘套 2、 绝缘压盖 4、 螺纹压紧件 5和 编码器主体 12连接; 双轴承之间设有隔圈 15; 混合系统 6(含与光栅盘码道相对应 的发光管、 指示光栅和混合接收元件阵列)、 线路板 9安装在编码器主体 12上; 编 码器主体 12通过固定支架 14固定在风力发电机 16机座上; 电缆与线路板 9相连, 经防水密封电缆接头 11输出。
[0027] 所述绝缘套 2、 绝缘压盖 4材质可以为: 塑料、 玻璃纤维、 陶瓷或其组合。
[0028] 所述绝缘套 2、 绝缘压盖 4可以采用廉价的铸塑或加工方法实现。
[0029] 所述绝缘套 2和绝缘压盖 4内外表面采用凹凸条结构。 [0030] 两轴承 3外环与绝缘套 2, 绝缘套 2与编码器主体 12之间采用间隙配合, 用胶固 定。
[0031] 所述光栅盘 7材质可以为: 金属、 玻璃、 塑料。
[0032] 所述隔圈 15为金属材质。
[0033] 所述空心轴 13与轴承 3内环采用过盈配合, 空心轴 13按同轴度等要求精密加工
。 编码器与发电机输出轴的匹配精度主要由编码器空心轴加工精度保证, 易于 实现, 并较大地放宽了绝缘套 2、 绝缘压盖 4的加工精度要求, 采用廉价的铸塑 方法就可实现。
[0034] 在使用的吋候: 发电机输出轴经编码器空心轴 13带动光栅盘 7同步旋转, 混合 系统 6中发光管发出恒定光束, 照射在光栅盘 7上, 光栅盘 7和指示光栅同节距, 构成光栅付, 光栅盘 7随发电机输出轴旋转, 光栅付对光束进行调制, 形成莫尔 条纹, 经混合接收元件接收并转换成电信号, 经放大、 逻辑处理、 线性驱动电 路后由电缆输出与角度相对应的电信号 (一般含八、 B、 I、 六相信号)。
[0035] 发电机输出轴 17经编码器空心轴 13与两个轴承 3内环连接, 两个轴承 3外环经绝 缘套 2、 绝缘压盖 4与编码器主体 12连接, 不用绝缘轴承实现了发电机输出轴 17 与编码器主体 12的绝缘。
[0036] 绝缘套 2和绝缘压盖 4的厚度不同, 耐电压值不同。 设计中可根据发电机产生的 最高轴电压的大小, 选择绝缘套 2和绝缘压盖 4的厚度。 如绝缘套 2和绝缘压盖 4 的材质选择一种工程塑料, 介电强度〉 170KV/mm, 当厚度 = 2mm吋, 编码器的 击穿电压将高于万伏, 可满足未来风力发电机对编码器轴电流防护能力不断增 长的需要。
[0037] 绝缘套 2和绝缘压盖 4不导热, 避免了经发电机输出轴将热量传到编码器而影响 编码器正常工作。
[0038] 在绝缘性能要求特别高的场合, 可将常规轴承换成绝缘轴承, 本编码器就可构 成绝缘冗余双绝缘, 不仅提高了耐电压强度, 也因冗余设计使编码器绝缘性得 到可靠保证。
[0039] 本编码器采用坚固的铝合金机壳、 长寿命大承载轴承、 混合系统、 高可靠处理 电路、 密封、 表面防腐处理和特殊的防水功能, 可满足风力发电机在极恶劣环 境条件下高可靠、 长寿命工作的需要。
对附图的简要说明
附图说明
[0040] 图 1为防水编码器的结构示意图。
本发明的实施方式
[0041] 参照图 1, 本防水编码器, 包括:
[0042] 一个底壳 2, 它具有一个平板 21, 平板 21上面中部有一个圆柱形空心突台 22, 空心突台 22顶面中心处向突台 22内延伸形成一个轴座 23, 轴座 23上端面有一个 凹腔 24, 轴座 23下端面有一个凹腔 25, 所述圆柱形空心突台 22内在同一圆周上 设置两个 U形槽 26、 27;
[0043] 一个旋钮 1, 它包括一个旋钮盖 11, 旋钮盖 11内周壁固装一个多极磁环 12, 旋 钮盖 11内于旋钮盖 11顶面中心处固装一个轴 13, 所述旋钮盖 11套设于所述底壳 2 的突台 22外, 旋钮盖 11上的轴 13贯穿底壳 2上的轴座 23后下端处于轴座 23下端面 的凹腔 25中并于轴 13的下端设置卡环 6, 轴座 23下端面的凹腔 25安装一个防水塞 7;
[0044] 一个控制电路板 3, 安装于所述底壳 2的空心突台 22内; 以及两个霍尔元件 4、 4 ', 分别安装于所述底壳 2的两个 U形槽 26、 27内, 并与所述控制电路板 3连接。 序列表自由内容
[0045] 本防水编码器还包括旋钮定位机构, 该旋钮定位机构包括: 设置于所述圆柱形 空心突台 22的顶面上的若干径向凹槽 28, 设置于所述旋钮盖 11的内顶面的若干 突点 14, 以及设置于所述旋钮 1的轴 12上的弹性垫圈; 弹性垫圈使旋钮盖 11顶面 压向空心突台 22顶面, 从而使旋钮盖 11上的突点 14嵌入空心突台 22上的凹槽 28 中, 达到对旋钮定位的目的。

Claims

权利要求书
一种具有防水功能混合编码器编码器, 其特征在于: 包括密封件、 绝 缘套、 轴承、 绝缘压盖、 螺纹压紧件、 光电系统、 光栅盘、 支撑环、 线路板、 后盖、 防水电缆接头、 编码器主体、 空心轴、 固定支架、 隔 圈, 空心轴按精度匹配要求与发电机输出轴固连, 光栅盘由支撑环固 定在空心轴上; 空心轴经密封件、 双轴承、 绝缘套、 绝缘压盖、 螺纹 压紧件和编码器主体连接; 双轴承之间设有隔圈; 光电系统 (含与光 栅盘码道相对应的发光管、 指示光栅和光电接收元件阵列)、 线路板 安装在编码器主体上; 编码器主体通过固定支架固定在发电机机座上 ; 电缆与线路板相连, 经防水密封电缆接头输出。
根据权利要求 1所述的一种具有防水功能混合编码器编码器, 其特征 在: 所述绝缘套和绝缘压盖内外表面采用凹凸条结构。
根据权利要求 1所述的一种具有防水功能混合编码器编码器, 其特征 在: 所述空心轴与轴承内环采用过盈配合, 空心轴按同轴度等要求精 密加工。
根据权利要求 1所述的一种具有防水功能混合编码器编码器, 其特征 在: 两轴承外环与绝缘套, 绝缘套与编码器主体之间采用间隙配合, 用胶固定。
根据权利要求 1所述的一种具有防水功能混合编码器编码器, 其特征 在: 所述光栅盘材质可以为: 金属、 玻璃、 塑料。
根据权利要求 1所述的一种具有防水功能混合编码器编码器, 其特征 在: 所述隔圈为金属材质。
PCT/CN2016/106695 2016-11-08 2016-11-22 一种具有防水功能的混合编码器 WO2018086151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610976939.0 2016-11-08
CN201610976939.0A CN108063524A (zh) 2016-11-08 2016-11-08 一种具有防水功能的混合编码器

Publications (1)

Publication Number Publication Date
WO2018086151A1 true WO2018086151A1 (zh) 2018-05-17

Family

ID=62109069

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/106696 WO2018086152A1 (zh) 2016-11-08 2016-11-22 一种绝缘旋转编码器
PCT/CN2016/106695 WO2018086151A1 (zh) 2016-11-08 2016-11-22 一种具有防水功能的混合编码器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106696 WO2018086152A1 (zh) 2016-11-08 2016-11-22 一种绝缘旋转编码器

Country Status (2)

Country Link
CN (1) CN108063524A (zh)
WO (2) WO2018086152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117870741A (zh) * 2024-03-13 2024-04-12 长春禹衡光学有限公司 一种光栅编码器防护系统及编码器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201680851U (zh) * 2010-05-07 2010-12-22 深圳市英科达光电技术有限公司 风力发电机专用增量式光电编码器
CN102255434A (zh) * 2011-04-14 2011-11-23 深圳市英科达光电技术有限公司 一种特殊绝缘结构的风力发电机专用光电编码器
US20130169120A1 (en) * 2012-01-04 2013-07-04 Watts C. Cutter, III Drilling motor optical encoder mounting apparatus and method of installation
CN203423585U (zh) * 2013-04-03 2014-02-05 深圳市英科达光电技术有限公司 一种特殊绝缘结构的风力发电机专用光电编码器
CN204286465U (zh) * 2014-12-30 2015-04-22 长春博辰光电技术有限公司 高防护式旋转编码器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869991B2 (ja) * 2000-01-31 2007-01-17 アルプス電気株式会社 回転型エンコーダ、及びその製造方法
CN101886931B (zh) * 2009-05-15 2012-01-11 深圳市鑫汇科科技有限公司 防水编码器
CN102565446A (zh) * 2011-12-27 2012-07-11 温州奇玺电器科技有限公司 旋转编码器
CN202404112U (zh) * 2011-12-27 2012-08-29 温州奇玺电器科技有限公司 旋转编码器
CN203385435U (zh) * 2013-08-23 2014-01-08 叶建丰 旋转编码器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201680851U (zh) * 2010-05-07 2010-12-22 深圳市英科达光电技术有限公司 风力发电机专用增量式光电编码器
CN102255434A (zh) * 2011-04-14 2011-11-23 深圳市英科达光电技术有限公司 一种特殊绝缘结构的风力发电机专用光电编码器
US20130169120A1 (en) * 2012-01-04 2013-07-04 Watts C. Cutter, III Drilling motor optical encoder mounting apparatus and method of installation
CN203423585U (zh) * 2013-04-03 2014-02-05 深圳市英科达光电技术有限公司 一种特殊绝缘结构的风力发电机专用光电编码器
CN204286465U (zh) * 2014-12-30 2015-04-22 长春博辰光电技术有限公司 高防护式旋转编码器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117870741A (zh) * 2024-03-13 2024-04-12 长春禹衡光学有限公司 一种光栅编码器防护系统及编码器
CN117870741B (zh) * 2024-03-13 2024-05-17 长春禹衡光学有限公司 一种光栅编码器防护系统及编码器

Also Published As

Publication number Publication date
CN108063524A (zh) 2018-05-22
WO2018086152A1 (zh) 2018-05-17

Similar Documents

Publication Publication Date Title
CN105048235A (zh) 一种光电气组合滑环
CN102255434A (zh) 一种特殊绝缘结构的风力发电机专用光电编码器
WO2018086151A1 (zh) 一种具有防水功能的混合编码器
CN110838660A (zh) 一种高速长寿命旋转电连接器
CN203423585U (zh) 一种特殊绝缘结构的风力发电机专用光电编码器
CN108072393A (zh) 一种绝缘旋转编码器
US3295083A (en) Apparatus comprising a wound rotor and a rotor housing and bearing structure
EP2803114B1 (en) Connector, electronic device and illuminating device having the connector
CN103644927A (zh) 可调分辨率无级别光电绝对值编码器
CN115764472A (zh) 一种基于弹簧接触结构的精密导电滑环
CN205303910U (zh) 一种雷达汇流环多槽功率环组件
CN101825262B (zh) 一种防滑转嵌件结构
SE7510838L (sv) Endforslutningsisolatorgarnityr for starkstromskablar
CN106787473B (zh) 一种可持续供电旋转电机
CN204030785U (zh) 伺服电机专用制动器及伺服电机
CN204007932U (zh) 一种变压器绕组测温装置
CN209747874U (zh) 导电滑环
CN216385693U (zh) 角度编码器
CN214669276U (zh) 能够输出数字信号的三余度旋转电位器
CN202362084U (zh) 用于真空断路器的数字式测温传感器
CN211656026U (zh) 一种含环形导电膜的旋转超声电机组件
CN216794743U (zh) 一种伺服电机
CN219624930U (zh) 一种高效散热防爆型温度变送器
GB928599A (en) Electromagnetic clutches
CN218633612U (zh) 编码器安装结构及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921226

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16921226

Country of ref document: EP

Kind code of ref document: A1