WO2018086080A1 - 完全频谱共享的频谱资源分配方法及装置 - Google Patents

完全频谱共享的频谱资源分配方法及装置 Download PDF

Info

Publication number
WO2018086080A1
WO2018086080A1 PCT/CN2016/105531 CN2016105531W WO2018086080A1 WO 2018086080 A1 WO2018086080 A1 WO 2018086080A1 CN 2016105531 W CN2016105531 W CN 2016105531W WO 2018086080 A1 WO2018086080 A1 WO 2018086080A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal
spectrum
base station
score
Prior art date
Application number
PCT/CN2016/105531
Other languages
English (en)
French (fr)
Inventor
高全中
覃燕敏
周琳
司法忠
杨丽萍
叶济宇
肖淑琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/105531 priority Critical patent/WO2018086080A1/zh
Priority to JP2019524166A priority patent/JP6812631B2/ja
Priority to KR1020197016339A priority patent/KR102169766B1/ko
Priority to BR112019009465A priority patent/BR112019009465A2/pt
Priority to CN201680090637.1A priority patent/CN109983825B/zh
Priority to EP16921327.9A priority patent/EP3531792B1/en
Publication of WO2018086080A1 publication Critical patent/WO2018086080A1/zh
Priority to US16/407,391 priority patent/US11012930B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a spectrum resource allocation method and apparatus for full spectrum sharing.
  • the embodiments of the present invention provide a spectrum resource allocation method and apparatus for full spectrum sharing.
  • an embodiment of the present invention provides a spectrum resource allocation method for full spectrum sharing, including:
  • the base station obtains, in real time, a network access request message sent by the terminal, where the network access request message includes at least one of the following: a network standard supported by the terminal, an access service of the terminal, and the access service. Quality of service QoS;
  • the base station dynamically allocates spectrum resources to different network standards according to the network access request message
  • the base station sends a first network standard access indication message to the terminal, so that the terminal accesses the service according to the first network standard access indication message through a corresponding network standard.
  • the method further includes:
  • the base station sends a plurality of different network standard signals to the terminal, where the signals of the multiple different network standards work on the same spectrum resource;
  • the base station communicates with the terminal through the same spectrum resource.
  • the base station dynamically allocates spectrum resources to different network standards according to the network access request message, including:
  • the base station acquires time-frequency resources occupied by the different network standards when accessing the service according to the access service of the terminal and the QoS of the access service;
  • the base station allocates spectrum resources to the different network standards according to time-frequency resources occupied by different network standards.
  • the base station dynamically allocates spectrum resources to different network standards according to the network access request message
  • the base station acquires network priorities of different network standards according to the network access request message
  • the base station allocates spectrum resources to the different network standards according to the sequence of the network priorities.
  • the method further includes:
  • the base station acquires measurement information sent by the terminal
  • the base station determines that the communication quality of the terminal cannot meet the QoS of the access service according to the measurement information, the base station allocates spectrum resources according to the network system with different network priorities;
  • the base station sends a second network standard access indication message to the terminal, so that the terminal accesses the service according to the second network standard access indication message through a corresponding network standard.
  • the acquiring the network priority of different network standards includes:
  • the base station separately obtains weights corresponding to the spectrum resource score, the access service priority score, and the user importance index score respectively;
  • the base station performs weights corresponding to the spectrum resource score, the access service priority score, and the user importance index score, and the spectrum resource score, the access service priority score, and the user importance index score respectively. , calculate the network priority of different network standards.
  • the method further includes:
  • the base station performs interference processing on the first uplink data and the second uplink data, respectively.
  • the embodiment of the present invention further provides a spectrum resource allocation apparatus for full spectrum sharing, including:
  • a receiver configured to acquire, in real time, a network access request message sent by the terminal, where the network access request message includes at least one of the following: a network standard supported by the terminal, an access service of the terminal, and a location Describe the quality of service QoS of the access service;
  • a processor configured to dynamically allocate spectrum resources to different network standards according to the network access request message
  • a transmitter configured to send a first network standard access indication message to the terminal, so that the terminal accesses the service according to the first network standard access indication message by using a corresponding network standard.
  • the transmitter is further configured to send, to the terminal, a plurality of different network standard signals, where the signals of the multiple different network standards work on the same spectrum resource;
  • the processor is further configured to communicate with the terminal by using the same spectrum resource.
  • the processor is further configured to: according to the access service of the terminal and the QoS of the access service, respectively Obtaining time-frequency resources occupied by the different network standards when accessing the service;
  • the processor is further configured to allocate spectrum resources to the different network standards according to time-frequency resources occupied by different network standards.
  • the receiver is further configured to acquire network priorities of different network standards according to the network access request message;
  • the processor is further configured to allocate spectrum resources to the different network standards according to a sequence of the network priorities.
  • the receiver is further configured to acquire measurement information sent by the terminal;
  • the processor is further configured to: when determining that the communication quality of the terminal cannot meet the QoS of the access service according to the measurement information, allocate a spectrum resource according to the network system with different network priorities;
  • the base station sends a second network standard access indication message to the terminal, so that the terminal accesses the service according to the second network standard access indication message through a corresponding network standard.
  • the receiver is further configured to separately obtain a spectrum resource score, an access service priority score, and a user importance index score used by each network standard in the network standard supported by the terminal;
  • the receiver is further configured to obtain a weight corresponding to the spectrum resource score, the access service priority score, and the user importance index score respectively;
  • the processor is further configured to perform, according to the spectrum resource score, the access service priority score, and a user importance index score, and the spectrum resource score, the access service priority score, and a user importance index.
  • the scores correspond to the weights, and the network priorities of different network standards are calculated.
  • the receiver is further configured to separately acquire the first uplink data sent by the terminal by using the first network standard, and the second uplink data that is sent by the terminal by using the second network standard, and the spectrum resource used by the first network standard Partially or completely overlapping with the spectrum resources used by the second network standard;
  • the processor is further configured to perform interference processing on the first uplink data and the second uplink data, respectively.
  • FIG. 1 is a schematic diagram of partitioning static resources
  • FIG. 2 is a schematic diagram of partitioning a semi-static spectrum resource
  • FIG. 3 is a schematic diagram of partial spectrum resource sharing according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a complete spectrum sharing combination according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of full spectrum sharing according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of experience management of an access state user according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of experience management of a connected state user according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of timing relationships of different system systems according to an embodiment of the present invention.
  • FIG. 9a is a schematic diagram of frequency division of different system systems at different times according to an embodiment of the present invention.
  • 9b is a schematic diagram of frequency division of different system systems at different times according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of mutual interference between systems according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of co-channel interference cancellation according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a package provided according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a GSM camouflage signal according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a dynamic filter according to an embodiment of the present invention.
  • LTE Long Term Evolution of LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the terminal high/low system is a mobile communication system that is distinguished according to the spectrum efficiency.
  • the early spectrum efficiency system is a low system
  • the later spectrum efficiency system is a high system.
  • the concept is a relative definition, and the specific system it refers to will change as the communication system evolves.
  • FIG. 1 is a schematic diagram of static resource allocation.
  • a pair of spectrum resources in the prior art are statically divided, and the spectrum resources used in the system that compresses the spectrum resources are mainly used to divide the spectrum resources more reasonably.
  • the operator has a total of 12M spectrum resources.
  • most of the spectrum resources are used for LTE, for example, 10M is used for LTE. Maximize spectral efficiency.
  • the spectrum resources of LTE can be compressed from using 10M, for example, compression of 0.8M to GSM leads to performance loss of LTE.
  • the more LTE bandwidth compression the more resources that can be saved for GSM, and the less the benefit of spectrum resources.
  • the spectrum can only be fixedly allocated to high-standard and low-standard uses. If the high standard is much higher, the low standard may have insufficient resources when busy; if the high standard is less, the spectrum resources will be wasted when the low system is idle.
  • FIG. 2 is a schematic diagram of a semi-static spectrum resource division.
  • the prior art solution 2 is an improvement of the prior art scheme 1 to solve the spectrum efficiency problem when the traffic is busy.
  • This scheme divides the spectrum resources differently according to the traffic peaks of high and low standards.
  • the low-standard traffic busy high-standard traffic idle time the low-standard allocation is relatively large, and the high-standard allocation allocates a large bandwidth resource; when the low-standard traffic idle high-standard traffic is busy, the low-standard allocation is relatively small and high.
  • the system allocates resources of smaller bandwidth.
  • the division of the two spectrum resources is performed simply, corresponding to two traffic situations.
  • the bandwidth conversion causes the radio unit or the cell to restart, and the frequency of switching between the two spectrum resource schemes is very low.
  • GSM and LTE use 12M spectrum resources.
  • GSM uses 7M and LTE uses 5M spectrum resources.
  • LTE uses 5M spectrum resources.
  • GSM traffic is small, and LTE data services demand is large.
  • FIG. 3 is a schematic diagram of partial spectrum resource sharing.
  • the prior art scheme 3 is a scheme for sharing part of spectrum resources.
  • the technology divides the total spectrum into three segments, and the two ends are respectively exclusive spectrums of high and low standards. There is also a section for sharing between high and low standards.
  • the same GSM and LTE use 12M spectrum resources, 2M spectrum as GSM exclusive spectrum, 8M spectrum as LTE exclusive spectrum, and 2M as a shared spectrum resource for GSM and LTE.
  • 2M shares the spectrum resources for GSM use; when the GSM service is idle, the 2M shares the spectrum resources for LTE.
  • the shared spectrum is allocated in real time as needed and is more flexible.
  • the prior art 3 Compared with the prior art one or two, the prior art 3 has been relatively flexible, and is also in line with the actual network service situation, but the prior art 3 is still difficult to meet the needs of current operators. Since the resources that can share spectrum are limited in the total spectrum resources, the benefits of sharing are very limited. In particular, the total spectrum resources of operators are often limited. Even if the existing technology 3 is used, it is difficult for operators to improve the spectrum efficiency and commercial competitiveness while using high standards, and it is difficult to take into account the feelings of some low-end terminal users. Experience.
  • the present invention proposes that multiple mobile networks of multiple standards are completely in the same spectrum resource.
  • a solution for resource sharing By using this technology, the spectrum can be fully shared among the various systems by combining the characteristics of the operator's spectrum bandwidth and using advanced filters, anti-/anti-interference techniques, and joint scheduling resource management between standards. For example, the same spectrum GUL, GL5G, UL5G are completely shared.
  • Embodiment 1 of the present invention is a diagrammatic representation of Embodiment 1 of the present invention.
  • the operator's spectrum resources are just able to be networked and meet the minimum bandwidth requirements of each system.
  • the most common FDD network of the mobile communication network mainly considered in the first embodiment is the case where GSM, UMTS and LTE exist simultaneously.
  • the first embodiment of the present invention considers that the total spectrum of the operator is 5 MHz, and can simultaneously deploy three standard systems of GSM/UMTS/LTE. So there is The complex interference relationship between the various systems on the limited spectrum determines that it is impossible to implement based on the existing networking technology.
  • the present invention will break through the current technical limitations and perform spectrum resource sharing in multiple formats within a limited spectrum.
  • FIG. 4 is a schematic diagram of a complete spectrum sharing combination according to an embodiment of the present invention. As shown in FIG. 4, the present invention will start from the following aspects to solve the interference problem between the various systems and achieve true full spectrum sharing:
  • FIG. 5 is a schematic diagram of full spectrum sharing according to an embodiment of the present invention. Referring to FIG. 5, the main content of the present invention will be described in detail.
  • the system can divide the resources from the frequency domain, and frequency division can be performed first to reduce the interference between systems.
  • spectrum resources cannot be subdivided, the priority of spectrum resource usage must first be determined, which will be the basis for resolving resource or performance conflicts.
  • the priority of spectrum resource usage is determined based on factors such as spectrum efficiency, service characteristics, and network performance considerations of operators.
  • the network side will score the comprehensive spectrum priority for each system, which can be judged according to the following formula:
  • Spectrum priority score a * system occupied spectrum resource score + b * system business priority score + c * system user importance score
  • each system system must score each indicator, and then comprehensively score according to the above formula.
  • the score is determined by the system occupied resource bandwidth and the system spectrum efficiency.
  • the system occupies the spectrum resource score system spectrum efficiency/system regular service occupies the spectrum resource bandwidth, and the spectrum efficiency is universally defined as the per-band transmission channel per second. Number of bits in bits/s/Hz; system occupancy
  • the resource bandwidth is the bandwidth of the spectrum resource allocated by a typical service.
  • the score is scored according to the importance of the business specified by the operator and the priority of each system carrying different services.
  • the score is mainly determined by the proportion of important users in each system. If the proportion of important users is large, the spectrum priority is higher.
  • a, b, and c are the weighting factors of the three scoring items, which can be adjusted according to different network operation strategies and user marketing strategies of the operator.
  • GUL system occupies spectrum resource score SpectrumScore
  • the system priority weight factor b takes a larger value, followed by a, and finally c, assuming that a, b, and c are respectively specified.
  • the spectrum priority score of the GUL system is SpectrumPriorityScore:
  • the GSM system has the highest spectrum resource usage priority, followed by LTE, and finally UMTS.
  • the user can initially access or establish a connection with the network. Switch to the most appropriate system to provide users with a stable and stable business environment, reduce unnecessary inter-system switching, and provide users with the best business experience.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • FIG. 6 is a schematic diagram of the experience management of an access mode user according to an embodiment of the present invention.
  • the user has not established a connection with the network side base station, and the user initiates a service request and establishes a connection with the mobile network.
  • the user is connected to the most appropriate system to provide the best service to the user. The detailed process is as follows:
  • the end user when it needs to establish a wireless connection with the network, first send an access network request to the base station, and at the same time carry the terminal type (which system system is supported), the service type (voice, data or other), etc.
  • the terminal type which system system is supported
  • the service type voice, data or other
  • QoS quality of service
  • the multi-mode base station (the base station system shared by the multiple system) first selects the network to be evaluated according to the terminal support system type, and according to the current running conditions of each support system, The QoS requirements of the user's service, calculate the time-frequency resources that need to be allocated for different system systems, and then send the preliminary estimated results to the user experience management server.
  • the user experience management server saves the current spectrum resource occupancy of each system. After receiving the preliminary estimation result sent by the base station, it calculates the most suitable combination of the occupied spectrum resource condition, the inter-system interference, and the user quality requirement. The system is carried and notified to the base station.
  • the base station After receiving the system selected by the user experience management server, the base station prepares to access the radio resources required by the user in the corresponding system, and compares the time-frequency information of the corresponding accessed radio resources. The system frame, access channel number, etc. are notified to the user.
  • the terminal user accesses the specified system according to the indication of the network side, and the multi-mode base station notifies the user experience management server to save the current spectrum occupation.
  • LTE has occupied about 3M of the spectrum.
  • one user initiates voice service.
  • the user accesses the network, it tells the network side that it is a three-mode terminal supporting GUL and needs to initiate voice service when accessing the request.
  • the bearer policy of the voice service on the network side is that the voice service is only carried by the GSM or UMTS network
  • the network side separately allocates resource estimation for the GSM or UMTS bearer voice service user, and can allocate a channel on the 200k carrier frequency for GSM.
  • UMTS allocates a CS64K code channel and occupies 5M bandwidth (if a narrowband filter is used, UMTS can also To reduce the spectrum resource occupation).
  • the base station transmits the information to the user experience management server.
  • the server stores the spectrum occupancy of the previous systems, and analyzes the interference status of each system in combination with the estimated resource occupancy of the base station.
  • the base station will prepare the GSM radio resources and notify the user of the access.
  • the user will access the GSM system according to the time and channel indicated by the base station, and the multi-mode base station will then inform the server to save the state of the GSM system resource.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • FIG. 7 is a schematic diagram of experience management of a connected state user according to an embodiment of the present invention, where a detailed process is as follows:
  • the terminal when the user moves in the connected state or the current service system network status changes, the user will periodically or meet certain service quality conditions (such as voice service quality, data service error rate, etc.), the terminal will measure itself.
  • the measurement information such as the signal receiving level strength and the signal quality of the serving cell and the neighboring area of the system and the adjacent system of the system are reported to the multimode base station of the service.
  • the multi-mode base station receives the measurement information reported by the user, and evaluates whether the current user is in a relatively reasonable working state according to the current status of the system, the wireless resource of the different system, the load, and the like, whether the service meets the requirement, and if not, the service will not be performed. Any processing; if the requirements are not met, it is evaluated whether it is necessary to switch to a new cell or system to meet the user's needs, and the results of the preliminary evaluation of the resource occupancy are simultaneously sent to the user experience management server.
  • the multi-mode base station transmits the initially estimated resources required by other system bearers to the user experience management server, and when the user experience management server receives the estimated result of the base station, it will combine the saved Each system has occupied the most suitable bearer system by occupying spectrum resource conditions, inter-system interference, and user quality requirements, and notifies the base station.
  • the User Experience Management Server considers the continuous coverage of each system and minimizes unnecessary inter-system handover.
  • the multimode base station will initiate a handover request to the target neighbor or system according to the indication.
  • the target neighbor or system accepts the request, it is ready to switch the required resources.
  • the target base station will notify the currently serving base station, and the base station will send the access information required by the user handover (similar to the information required when the user accesses) to the terminal.
  • the corresponding base station will notify the user experience management server of the latest spectrum resource occupancy. Save the latest spectrum resource occupancy status.
  • the management of the user experience of the connected user is similar to that of the access mode.
  • the specific embodiment is not described here.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • the main body of the joint resource management is a base station, and the terminal in the active state in the network needs to occupy the channel according to the radio resources allocated by the base station. If the terminal needs to switch the frequency band or the standard due to coverage and capacity, etc., the specific network bearer strategy determines the decision condition and its flow, and does not start here.
  • the multi-system system completely shares a spectrum.
  • the spectrum resources need to be frequency-divided according to different system systems.
  • Resource requirements dynamically segment spectrum resources into different systems. Priority is given to the high-priority system to allocate the required spectrum resources, and other low-priority systems are staggered from the frequency domain to use different frequency resources.
  • the resource joint scheduling steps of the multi-system system of this sector/site are as follows:
  • Step 1 The base station prioritizes the scheduling of each sector/site.
  • Step 2 The base station determines the minimum scheduling time-frequency unit required by the current highest priority system, and checks whether there is currently available resources greater than or equal to the unit, and if so, allocate resources to the users to be scheduled according to the following principles; Step 3.
  • the base station When performing resource scheduling, the base station follows the principle of the first-time domain and the frequency domain, and tries to keep the spectrum used by users in each system continuous or centralized.
  • the base station needs to select some unallocated time-frequency according to the time difference between the various system systems and the frame structure characteristics. Resources to use.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • FIG. 8 is a schematic diagram of timing relationships of different system systems according to an embodiment of the present invention.
  • the relationship between each system resource scheduling can be calculated based on frame timing differences of relative absolute time of each system. It can be judged at which time each system occupies spectrum resources.
  • Step 3 The base station deletes the system for completing the resource allocation from the system priority list.
  • Step 4 If there is no system to be scheduled in the system priority list, go to the fifth step, otherwise go to the second step.
  • the order of priority of the system from high to low is GSM, LTE and UMTS.
  • the resource allocation in the above row direction is taken as an example. It is assumed that when a certain scheduling time comes, the GSM service in a certain sector needs to occupy two full-rate channels, and firstly allocates the same carrier adjacent to it.
  • Two time slots if the LTE service requires a total of 25 RB resources, the independent RB resources are allocated according to the service priority order, and then some time-frequency resources on the RBs with the same frequency as GSM are allocated; if the UMTS also has wireless The resource needs, and the base station judges that there is no available time-frequency resource in the current scheduling period, and the UMTS user has to wait until the next period to be scheduled.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • FIG. 9a is a schematic diagram of frequency division of different system systems at different times according to an embodiment of the present invention. As shown in FIG. 9a, the spectrum resources are differently subdivided according to the requirements of each system at different times. This ensures that while sharing the same spectrum resources, the interference of frequency overlap between systems is staggered in time.
  • the foregoing addresses the problem of resource joint scheduling within a sector or within a station.
  • the interference relationship with the surrounding sectors/sites should be considered in the joint scheduling of resources.
  • FIG. 9 is provided in the embodiment of the present invention.
  • reducing the transmit power strength of the same-frequency multiplex system can reduce the interference between the mutual systems, so that the two systems can safely share the same spectrum resources.
  • the GSM cell A and the LTE cell B belong to two sectors of the adjacent station respectively. If the cell A and the cell B need to share part of the spectrum resources, the two cell scheduling steps are as follows:
  • the base station marks the exclusive spectrum and the shared spectrum of the two cells A and B according to the GSM and LTE spectrum configuration and usage.
  • Step 2 The base station determines the load status of the two cells A and B in real time (higher than LoadThreshold, otherwise low load), the third step of the low load state, and the fourth step of the high load state.
  • Step 3 In the low load state, the base station only allocates exclusive spectrum for the user, and goes to the seventh step.
  • Step 4 After entering the high load state, the base station determines the location of the user according to the current cell level and the neighboring cell level value measured by the terminal.
  • the current cell level value SCellRxLev>SCellRxLevThreshold1 is a near-point user
  • SCellRxLev ⁇ SCellRxLevThreshold2 is a far-end user
  • SCellRxLevThreshold1 ⁇ SCellRxLev ⁇ SCellRxLevThreshold2 the user location class is determined according to the neighboring cell level value NCellRxLev measured by the terminal.
  • NCellRxLev may be a heterogeneous intra-frequency level measurement between the two cells A and B, or may be a neighboring cell level value in a system that measures the same coverage with the other party; for example, cell A may directly measure cell B. It is also possible to measure the GSM cell C in the same sector as cell B, and vice versa. If NCellRxLev ⁇ NCellRxLevThreshold, it is a near-point user, otherwise it is a far-end user.
  • Step 5 The base station allocates resources to the user according to the location of the user. For remote users, only exclusive spectrum resources can be allocated; for near-point users, all available spectrum resources can be allocated.
  • Step 6 If there are still users to be scheduled, go to the second step; otherwise, go to the seventh step.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • the UMTS/LTE/5G can be used to enable multiple carriers.
  • the part with the same frequency as other technologies can be used as the secondary carrier of the CA/DC/MC.
  • the spectrum resources of the secondary carrier part can be occupied or released in real time according to the interference change status.
  • the secondary carrier can also be used to reduce the interference to the shared spectrum without transmitting the control channel. At this time, the joint scheduling of resources between the LTE/5G and other system systems becomes more flexible and convenient.
  • two sectors SectorA and SectorB of the adjacent station respectively use UMTS and LTE to use the same spectrum F1, if the two sectors have other non-same frequency points UMTS F2 and LTE F3 in the system respectively.
  • F1 can be used as the secondary carrier of F2 and F3.
  • the base station determines whether to use the secondary carrier and its transmit power according to the load condition and the location of the user.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • FIG. 10 is a schematic diagram of inter-system mutual interference according to an embodiment of the present invention.
  • a multi-standard full spectrum sharing is used for interference and interference between any one of the system systems and other standard systems.
  • As an interference system it is necessary to consider minimizing interference to other systems; as an interfered system, it is necessary to enhance the interference capability against other systems.
  • Multi-standard systems can be divided into co-channel interference and adjacent-frequency interference according to the simultaneously occupied spectrum conditions.
  • Co-channel interference refers to the partial or complete overlapping of spectrum resources used between multiple systems; adjacent-frequency interference refers to the spectrum between systems. Overlapping, but getting closer, interference still exists due to diffusion between the spectrum. Therefore, in addition to the rational allocation and use of the aforementioned resources, spectrum sharing must also enable the multi-system system to work normally during spectrum sharing by combining the interference-dissipation and anti-jamming techniques, and can play a multi-standard system. Increased spectral efficiency of spectrum sharing. For each system itself, it is necessary to reduce the interference to other systems as much as possible, and also to improve the ability to resist interference from other systems.
  • FIG. 11 is a schematic diagram of co-channel interference cancellation according to an embodiment of the present invention.
  • the no-channel is a base station or a terminal, if the interference and the interference are disturbed for the receiver, as shown in FIG.
  • the signal uses the same RF channel at the same time, when receiving the useful signal of the system of this system, the interference signal of the other system of the received system is demodulated and reconstructed, and then the interference signal can be eliminated.
  • the GUL standard is also shared by the same frequency. Because GSM occupies less spectrum resources and only occupies 200 kHz in the 5M spectrum, it is possible to stagger the GSM and UMTS or LTE co-channel interference by frequency division, but UMTS and LTE systems The occupied spectrum resources are wide, and there is inevitably a spectrum overlap. For UMTS or LTE systems, LTE or UMTS systems are co-channel interference signals. In order to be able to separate its own useful signal from the interference signal, it is necessary to do the joint co-channel interference cancellation of UMTS and LTE.
  • the signals of UMTS and LTE are received by the same 5M bandwidth filter, and the received signal first performs the first demodulation of the UMTS system signal, and simultaneously reconstructs the interference of UMTS to LTE and sends it to LTE.
  • the same-frequency signal cancellation module of the system; the other received signal first performs the first demodulation of the LTE system signal, and simultaneously reconstructs the interference of the LTE to the UMTS and sends it to the same-frequency signal cancellation module of the UMTS system.
  • the useful signals of the UMTS and LTE systems are obtained, and then respectively sent to the respective demodulation modules for the second signal demodulation, so that the interference system signals are suppressed from the co-channel interference signals. Separate useful signals. Making intra-frequency reception of UMTS and LTE possible.
  • FIG. 12 is a schematic diagram of an assembled filter according to an embodiment of the present invention, which is combined with FIG.
  • the broadcast and control channels of each system are key channel information.
  • the time-frequency resources corresponding to the key channels affecting the high-priority system such as pilot and control channels, can be filtered out. . Reducing interference to other systems by losing the performance of some of its own systems.
  • the control channel and pilot channel are distributed over the full system bandwidth. Since UMTS and LTE are broadband systems with respect to GSM, the power spectral density of GSM is much higher than that of UMTS or LTE.
  • time-frequency resources corresponding to UMTS or LTE critical channels can be screened out from GSM.
  • the following figure shows the time-frequency relationship between a GSM (orange block) and LTE. The GSM screen out the time-frequency resources overlapping with the LTE pilot, which can reduce the interference and improve the LTE pilot performance.
  • a multi-system system shares spectrum resources, if one of the systems does not have a service bearer at some time and does not need to transmit broadcast or pilot information, it can use the time-frequency resources in these time periods to transmit signals of other system systems.
  • the user of the system resides while improving the performance of other system systems.
  • one carrier occupies a 200 kHz spectrum, and there are 8 time slots.
  • an empty information power (Dummy Burst) is originally transmitted. It is a co-channel interference for other systems.
  • control channels or data information of LTE or UMTS on the corresponding frequency resources may be transmitted on these idle time slots. As shown in Figure 13:
  • Dynamic filter isolates adjacent-channel interference between different systems
  • the filter is added on the network side or the terminal side, the range of the signal spectrum can be limited from the transmission direction, and the interference of the spectrum system to other system systems can be controlled; from the receiving direction, the filtering can also suppress the interference of other received system systems.
  • the filtering can also suppress the interference of other received system systems.
  • the multi-standard spectrum is completely shared, the spectrum cannot be statically split, and the appropriate filter needs to be dynamically enabled according to the spectrum resource of the service.
  • the dynamic filter can better divide the frequency domain using spectrum resources for each system, and control the interference between adjacent systems of the spectrum.
  • FIG. 14 is a schematic diagram of a dynamic filter according to an embodiment of the present invention.
  • a dynamic filter of GUL full spectrum sharing is given as an example.
  • T1 At time T1, at this time, according to the traffic volume of each system, only UMTS users need to occupy. In GSM and LTE systems, only some common control channels are transmitted. At this time, UMTS users can occupy the entire 5M spectrum; at time T2, 5M spectrum resources are divided. Used for GSM and LTE, and because GSM is busy at this time, it is relatively more divided; at time T3, 5M spectrum resources are still allocated to GSM and LTE, and GSM traffic is reduced, allowing more spectrum resources to be used for LTE.
  • the spectrum resources are allocated to UMTS and LTE.
  • a 5M and a small bandwidth such as a 2.4M filter, are used to dynamically switch the filter according to the service requirement; for the LTE system at the time of T2 and T3, in order to isolate between LTE and GSM.
  • the interference is also dynamically switched between the two filters.
  • Embodiment 2 of the present invention is a diagrammatic representation of Embodiment 2 of the present invention.
  • the current most common FDD system is taken as an example to illustrate that the multi-standard system can be completely shared on the same spectrum resource.
  • Other FDD systems such as CDMA and TDD systems such as TD-SCDMA systems can also be applied in the first embodiment.
  • Technology enables complete sharing of spectrum resources. Again, for the gradual rise Future communication systems are also common.
  • Embodiment 3 of the present invention is a diagrammatic representation of Embodiment 3 of the present invention.
  • the present invention implements an emphasis on the minimum requirements of an integrated GSM/UMTS/LTE system, full spectrum sharing on 5 MHz spectrum resources.
  • the operator's spectrum resource is more than 5 MHz, the technique in the embodiment of the present invention is equally applicable.
  • the spectrum resources are sufficiently loose between multiple system systems, part of the spectrum resources can be shared, making resource utilization more reasonable and providing users with better services.
  • the invention is a complete spectrum sharing in the true sense, and can be applied to various mainstream frequency bands of current mobile communication and applied to different spectrum bandwidths.
  • the invention combines the scheduling and management resources among multiple communication system systems in combination with the terminal type, service requirements and operator requirements; and utilizes the characteristics of the current base station and the terminal to simultaneously transmit and receive multiple system systems, realizes some co-channel interference reconstruction elimination, and sieves Filters, signal camouflage, dynamic filters, etc. reduce interference to other systems and improve the anti-interference ability of useful signals.
  • Spectrum resources have always been the most valuable resource for mobile communication systems.
  • operators can be deployed to deploy multiple standard communication systems within the most limited spectrum resources. It can not only provide the most basic services for the needs of the old end users, but also can meet the new business and brand competitiveness requirements, and effectively use the spectrum resources to open high-efficiency system systems and maximize the efficiency of spectrum resources.
  • the base station in the embodiment of the present invention transmits multiple standard signals, and multiple systems work on the same frequency spectrum.
  • Signals from multiple system systems can be shared concurrently across the same spectrum.
  • each system screens or deducts the corresponding data or control/synchronization channels that affect the spectrum system being used to reduce interference effects.
  • the system that is using shared resources can masquerade to transmit signals of other standards in the time domain to reduce the impact on other formats.
  • Multiple systems jointly manage and manage spectrum resources in conjunction with inter-system interference and inter-station interference of the cell/home station at the time of concurrency.
  • the spectrum resource of the complete spectrum sharing provided in the embodiment of the present invention is divided into The allocation method and device may be implemented for the network side base station or the user side terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明关于一种完全频谱共享的频谱资源分配方法及装置,其方法包括:基站实时获取所述终端发送的网络接入请求消息,所述网络接入请求消息包括下述的至少一种:所述终端支持的网络制式、所述终端的接入业务和所述接入业务的服务质量QoS;所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;所述基站向所述终端发送第一网络制式接入指示消息,以使所述终端根据所述第一网络制式接入指示消息通过对应的网络制式接入业务。

Description

完全频谱共享的频谱资源分配方法及装置 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种完全频谱共享的频谱资源分配方法及装置。
背景技术
随着智能终端普及、万物互联及各种移动宽带(Mobile broadband,MBB)业务、虚拟现实(Virtual Reality,VR)/增强现实(Augmented Reality,AR)业务的兴起,移动通信技术迅猛发展,快速地从2G/3G向4G演进,5G部署也提上日程。然而频谱资源始终是运营商最宝贵的资源,特别是当前移动系统使用的频段相对将来5G的高频/超高频段在传播特性上有明显的优势,依然会在未来的5G时代炙手可热。如何合理利用频谱资源,最大程度地提升频谱效率将是永恒的主题。
当前对于频谱资源充分利用及频谱效率提升已经有一些研究,比如:利用非标准带宽对高、低制式间使用的频谱进行固定划分;利用高低制式话务负荷不同,在不同时间段进行高低制式使用频谱的半静态划分;在频谱中拿出一小部分资源来进行高低制式之间的动态共享。这些频谱共享技术都起到了一定的作用,但是由于共享的要么不够灵活,要么共享粒度很有限,难以满足运营商最大化频谱效率的诉求。
发明内容
为克服现有技术中存在的上述问题,本发明实施例提供一种完全频谱共享的频谱资源分配方法及装置。
第一方面,本发明实施例提供了一种完全频谱共享的频谱资源分配方法,包括:
基站实时获取所述终端发送的网络接入请求消息,所述网络接入请求消息包括下述的至少一种:所述终端支持的网络制式、所述终端的接入业务和所述接入业务的服务质量QoS;
所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;
所述基站向所述终端发送第一网络制式接入指示消息,以使所述终端根据所述第一网络制式接入指示消息通过对应的网络制式接入业务。
在本发明实施例提供的一种可能的实现方式中,还包括:
所述基站向所述终端发送多种不同网络制式信号,所述多种不同网络制式的信号工作在同一频谱资源上;
所述基站通过所述同一频谱资源与所述终端通信。
在本发明实施例提供的一种可能的实现方式中,所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式,包括:
所述基站根据所述终端的接入业务和所述接入业务的QoS,分别获取所述不同的网络制式在接入业务时占用的时频资源;
所述基站根据不同的网络制式占用的时频资源,为所述不同的网络制式分配频谱资源。
在本发明实施例提供的一种可能的实现方式中,所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;
所述基站根据所述网络接入请求消息,获取不同的网络制式的网络优先级;
所述基站按照所述网络优先级的先后顺序,将频谱资源分配给所述不同的网络制式。
在本发明实施例提供的一种可能的实现方式中,还包括:
所述基站获取所述终端发送的测量信息;
所述基站在根据所述测量信息判断到所述终端的通信质量不能满足所述接入业务的QoS时,根据所述网络优先级为不同的网络制式分配频谱资源;
所述基站向所述终端发送第二网络制式接入指示消息,以使所述终端根据所述第二网络制式接入指示消息通过对应的网络制式接入业务。
在本发明实施例提供的一种可能的实现方式中,所述获取不同的网络制式的网络优先级,包括:
所述基站分别获取所述终端支持的网络制式中各个网络制式使用的频谱资源评分、所述接入业务优先级评分和用户重要性指数评分;
所述基站分别获取频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重;
所述基站根据所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分,以及所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重,计算不同的网络制式的网络优先级。
在本发明实施例提供的一种可能的实现方式中,还包括:
所述基站分别获取所述终端通过第一网络制式发送的第一上行数据及所述终端通过第二网络制式发送的第二上行数据,所述第一网络制式使用的频谱资源与所述第二网络制式使用的频谱资源有部分或者全部重叠;
所述基站分别对所述第一上行数据和所述第二上行数据进行干扰处理。
第二方面,本发明实施例还提供了一种完全频谱共享的频谱资源分配装置,包括:
接收器,用于实时获取所述终端发送的网络接入请求消息,所述网络接入请求消息包括下述的至少一种:所述终端支持的网络制式、所述终端的接入业务和所述接入业务的服务质量QoS;
处理器,用于根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;
发送器,用于向所述终端发送第一网络制式接入指示消息,以使所述终端根据所述第一网络制式接入指示消息通过对应的网络制式接入业务。
在本发明实施例提供的一种可能的实现方式中,
所述发送器,还用于向所述终端发送多种不同网络制式信号,所述多种不同网络制式的信号工作在同一频谱资源上;
所述处理器,还用于通过所述同一频谱资源与所述终端通信。
在本发明实施例提供的一种可能的实现方式中,
所述处理器,还用于根据所述终端的接入业务和所述接入业务的QoS,分别 获取所述不同的网络制式在接入业务时占用的时频资源;
所述处理器,还用于根据不同的网络制式占用的时频资源,为所述不同的网络制式分配频谱资源。
在本发明实施例提供的一种可能的实现方式中,
所述接收器,还用于根据所述网络接入请求消息,获取不同的网络制式的网络优先级;
所述处理器,还用于按照所述网络优先级的先后顺序,将频谱资源分配给所述不同的网络制式。
在本发明实施例提供的一种可能的实现方式中,
所述接收器,还用于获取所述终端发送的测量信息;
所述处理器,还用于在根据所述测量信息判断到所述终端的通信质量不能满足所述接入业务的QoS时,根据所述网络优先级为不同的网络制式分配频谱资源;
所述基站向所述终端发送第二网络制式接入指示消息,以使所述终端根据所述第二网络制式接入指示消息通过对应的网络制式接入业务。
在本发明实施例提供的一种可能的实现方式中,
所述接收器,还用于分别获取所述终端支持的网络制式中各个网络制式使用的频谱资源评分、所述接入业务优先级评分和用户重要性指数评分;
所述接收器,还用于获取频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重;
所述处理器,还用于根据所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分,以及所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重,计算不同的网络制式的网络优先级。
在本发明实施例提供的一种可能的实现方式中,
所述接收器,还用于分别获取所述终端通过第一网络制式发送的第一上行数据及所述终端通过第二网络制式发送的第二上行数据,所述第一网络制式使用的频谱资源与所述第二网络制式使用的频谱资源有部分或者全部重叠;
所述处理器,还用于分别对所述第一上行数据和所述第二上行数据进行干扰处理。
附图说明
图1为本静态资源划分示意图;
图2为为半静态频谱资源划分示意图;
图3为本发明实施例提供的部分频谱资源共享示意图;
图4为本发明实施例提供的完全频谱共享组合示意图;
图5为本发明实施例提供的完全频谱共享示意图;
图6为本发明实施例提供的接入态用户的体验管理示意图;
图7为本发明实施例提供的连接态用户的体验管理示意图;
图8为本发明实施例提供的不同制式系统的时序关系示意图;
图9a为本发明实施例提供的不同制式系统在不同时间上的频分示意图;
图9b为本发明实施例提供的不同制式系统在不同时间上的频分示意图;
图10为本发明实施例提供的系统间互干扰示意图;
图11为本发明实施例提供的同频干扰对消示意图;
图12为本发明实施例提供的提供的装滤波器示意图;
图13为本发明实施例提供的GSM伪装信号示意图;
图14为本发明实施例提供的动态滤波器示意图。
具体实施方式
缩略语和关键术语定义
GSM Global System for Mobile Communication全球移动通信系统
LTE Long Term Evolution(LTE)长期演进
UMTS Universal Mobile Telecommunications System(UMTS)通用移动通讯系统
CDMA Code Division Multiple Access码分多址接入
TD-SCDMA Time Division-Synchronous Code Division Multiple Access时分-同步码多址接入
QoS Quality of Service业务质量
FDD Frequency Division Duplex频分双工
TDD Time Division Duplex时分双工
VR/AR Virtual Reality虚拟现实/Augmented Reality增强现实
MBB mobile broadband移动宽带
UE user equipment用户设备
CA Carrier Aggregation载波聚合
DC/MC Dural-carrier/Multi-carrier双载波/多载波
高/低制式系统本文终端高/低制式系统是根据频谱效率高低来区分的移动通信系统,通常早出现的频谱效率低的系统为低制式系统,后面出现的频谱效率高的系统为高制式系统。该概念为相对而言的定义,随着通信系统发展其所指的具体系统也将发生变化。
现有技术一的技术方案
图1为静态资源划分示意图,如图1所示,现有技术一对频谱资源进行静态的划分,主要利用压缩占频谱资源多的制式所使用的频谱资源,来更加合理地对频谱资源进行划分。比如:对于GSM和LTE同频段共存的场景,运营商总共有12M的频谱资源,随着GSM的业务下降、LTE业务需求增多,将大部分频谱资源给LTE使用,比如拿出10M给LTE,这样可以最大化频谱效率。但是由于GSM的用户还没有下降那么快,这样剩余的资源给GSM使用在GSM业务忙时将出现拥塞。因此可将LTE的频谱资源从使用10M进行压缩,比如压缩出0.8M给GSM然导致LTE的性能损失,LTE带宽压缩越多,可以给GSM省出的资源越多,频谱资源的收益越少。
现有技术一的缺点
现有技术一只能将频谱固定划分给高制式和低制式使用。如果给高制式分得多,低制式就可能在忙时出现资源不够;如果给高制式分得少,在低制式话务闲时就会浪费频谱资源。
与本发明相关的现有技术二
现有技术二的技术方案
图2为半静态频谱资源划分示意图,如图2所示,现有技术方案二是针对现有技术方案一的改进,解决话务忙闲时的频谱效率问题。这种方案根据高低制式的话务错峰对频谱资源进行不同划分。在低制式话务忙高制式话务闲时给低制式分配相对较多、高制式分配较大带宽的资源;在低制式话务闲高制式话务忙时给低制式分配相对较少、高制式分配较小带宽的资源。通常简单进行两种频谱资源的划分,分别对应两种话务情况。由于涉及某个系统的带宽转换,带宽转换又会导致射频单元或小区重启,两种频谱资源方案的切换的频度很低。比如同样是GSM和LTE使用12M的频谱资源,在白天为了满足GSM忙业务的需求,GSM使用7M、LTE使用5M频谱资源;在夜间GSM业务量较少,LTE的数据业务需求较大,则GSM使用2M、LTE使用10M频谱资源。在夜间GSM话务量下降及接近清晨GSM话务量上升时进行两种频谱方案的切换。
现有技术二的缺点
与现有技术一类似,半静态频谱资源划分的灵活性较差,只能将频谱资源相对静态给高低制式使用,这种方案适用于高低制式的话务明显差异、并且时间粒度非常粗的场景。现网中每个小区的话务模型都有差异,这样的频谱分配很难有应用场景。
与本发明相关的现有技术三
现有技术三的技术方案
图3为部分频谱资源共享示意图,如图3所示,现有技术方案三为部分频谱资源共享的方案,该技术将总频谱分成三段,两端分别是高、低制式的独享频谱,还有一段用来给高低制式共享。根据一定的共享原则,并结合话务实时变化情况,确定共享频谱资源是给高制式使用、还是给低制式使用。比如:同样是GSM和LTE使用12M的频谱资源,2M频谱作为GSM独享频谱,8M频谱作为 LTE独享频谱,还有2M作为GSM和LTE的共享频谱资源。在GSM业务忙LTE闲时,2M共享频谱资源给GSM使用;在GSM业务闲LTE忙时,2M共享频谱资源给LTE使用。共享频谱实时根据需要进行分配,比较灵活。
现有技术三的缺点
相对现有技术一、二,现有技术三已经比较灵活,也符合网络实际业务情况,但是现有技术三还很难满足当前运营商的需求。由于能够进行频谱共享的资源在总频谱资源的占比很有限,共享的收益也非常有限。特别是往往运营商的总频谱资源很有限,即使运用了现有技术三,也不能满足运营商在使用高制式提升频谱效率和商业竞争力的同时,很难兼顾到一些低制式终端用户的感受、体验。
本发明技术方案的详细阐述
本发明所要解决的技术问题
随着新兴的4G/5G技术的出现,老的2G/3G业务需求日益减少,但是旧的终端用户在短时间内不会完全退去,即存在“长尾效应”。针对现有的频谱资源有效利用技术的局限性,以及满足运营商对最大化频谱效率、带来更多商业价值的需求,本发明提出了在同一段频谱资源上,多个制式的移动网络完全进行资源共享的方案。运用本技术,可以结合运营商频谱带宽的特点,利用先进的滤波器、降/抗/避干扰技术、制式间联合调度资源管理等实现频谱在各制式间的完全共享。比如:同一段频谱GUL、GL5G、UL5G完全共享等。
本发明技术实现的具体实施例
本发明实施例一:
运营商频谱资源正好能够组网、且满足各制式最小带宽要求。实施例一主要考虑的移动通信网络最通用的FDD网络:GSM、UMTS、LTE同时存在的情况。GSM系统每个载频带宽200kHz,但是GSM有一定的频率复用度要求,比如需要满足4*3的频率复用度,则如果满足每小区一个载频,总共需要的带宽资源=每载频带宽*频点数=200kHz*12=2.4MHz;UMTS每个载频的系统带宽为5MHz;LTE支持1.4/3/5/10/15/20MHz,但是系统带宽越大越能体现LTE系统的高频谱效率,通常LTE网络的系统带宽要求5MHz或以上。因此,本发明实施例一即是考虑运营商总频谱为5MHz情况,能够同时部署GSM/UMTS/LTE三个制式系统。如此有 限的频谱上的各制式系统间复杂的干扰关系决定了基于现有的组网技术根本不可能实现。本发明将突破当前的技术限制,在有限的频谱内进行多个制式的频谱资源共享。
图4为本发明实施例提供的完全频谱共享组合示意图。如图4所示,本发明将从以下各方面入手,解决好各制式系统间的干扰问题,实现真正的完全频谱共享:
1、制定频谱使用优先级策略;
2、将用户接入到最合适的制式网络;
3、基于制式间的干扰状况进行合理的资源调度;
4、对于同时工作的多个制式进行联合降、抗干扰管理,保证频谱共享的质量。
图5为本发明实施例提供的完全频谱共享示意图,结合图5所示,现对本发明中的主要内容进行详细说明。
频谱优先级策略确定
对于多个制式系统共享频谱,为了达到良好的效果,制式之间能够从频域上进行细分资源的情况,可以先进行频分,减少系统之间的干扰问题。当频谱资源无法细分时,首先要确定频谱资源使用的优先级,这将是解决资源或性能冲突的依据。基于各制式的频谱效率、业务特点、运营商的网络性能考虑等因素综合确定频谱资源使用的优先级。
网络侧将对各制式进行综合频谱优先级的评分,可按照如下公式进行判断:
频谱优先级得分=a*系统占用频谱资源评分+b*系统业务优先级评分+c*系统用户重要性评分
其中包含三个评分指标,各制式系统均要对每项指标进行评分,然后再按照上述公式进行综合评分。
1、系统占用频谱资源评分
该项评分由系统占用资源带宽以及系统频谱效率共同确定,系统占用频谱资源评分=系统频谱效率/系统常规业务占用频谱资源带宽,频谱效率为通用的定义为单位带宽传输频道上每秒可传输的比特数,单位是bit/s/Hz;系统占用 资源带宽为通常一个典型业务所分配的频谱资源带宽。
2、系统业务优先级评分
该项评分根据运营商指定的业务重要性以及各系统承载不同业务的优先级进行评分,各系统业务优先级评分=∑
Figure PCTCN2016105531-appb-000001
〖系统承载业务优先级*业务重要性系数〗,不同业务有不同的承载优先级,通常跟运营商的具体系统网络的性能指标要求相关。
3、系统用户重要性评分
该项评分主要由重要用户在各系统中的占比决定,如果重要用户占比大,则反映的频谱优先级更高。
a、b、c是三个评分项的权重因子,可以根据运营商不同的网络运营策略、用户营销策略等进行调整,频谱优先级综合得分越高则系统使用频谱的优先级越高。
现以GUL三种制式共享频谱为例,说明网络侧确定频谱优先级的具体过程。假设某运营商主要考虑承载语音、数据两类业务,且两种业务的重要性系数分别为:语音业务为0.7,数据业务为0.3。其余GSM、UMTS、LTE系统的相关评分的输入条件如表1所示:
表1
Figure PCTCN2016105531-appb-000002
1、GUL系统占用频谱资源评分SpectrumScore
SpectrumScore_GSM=1/0.2=5
SpectrumScore_UMTS=5/5=1
SpectrumScore_LTE=10/1=10
2、GUL系统业务优先级评分ServiceScore
ServiceScore_GSM=0.7*5+0.3*1=3.3
ServiceScore_UMTS=0.7*3+0.3*2=2.7
ServiceScore_LTE=0.7*2+0.3*5=2.9
3、GUL系统高端用户占比VIPUserPropotion
VIPUserPropotion_GSM=0.4*10=4
VIPUserPropotion_UMTS=0.6*10=6
VIPUserPropotion_LTE=0.8*10=8
如果以业务承载为最重要指标,其次是频谱资源评分,最后是高端用户占比,则系统优先级权重因子b取较大值、其次是a、最后是c,假设规定a、b、c分别为0.3、0.6、0.1,则GUL系统的频谱优先级得分SpectrumPriorityScore分别为:
SpectrumPriorityScore_GSM=0.3*5+0.6*3.3+0.1*4=3.88
SpectrumPriorityScore_UMTS=0.3*1+0.6*2.7+0.1*6=2.32
SpectrumPriorityScore_LTE=0.3*10+0.6*2.9+0.1*8=2.54
因此,基于以上综合评分系统评测,GSM系统具有最高频谱资源使用优先级,其次是LTE,最后是UMTS。
统一用户体验管理
在多制式系统共享时,为了让用户能有更好的体验,要基于终端类型、用户业务类型、兼顾对干扰资源重叠度等方面的考虑,使用户初始接入或已经与网络建立连接时能够切换到最合适的制式系统,给用户提供持续稳定的业务环境、减少不必要的系统间切换,为用户提供最好的业务体验。
基于用户是否与移动网络间是否已有无线连接,分成接入和连接两种状态,下面将从两种不同的状态分别描述详细的终端、基站及网络侧的交互过程。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
用户接入态
图6为本发明实施例提供的接入态用户的体验管理示意图,如图6所示,用户还没有跟网络侧基站间建立连接,用户发起业务请求、与移动网络建立连接。在多制式完全共享的网络,在用户发起业务时,要将用户接入到最合适的制式系统,给用户提供最好的服务。详细的流程如下:
第一步,终端用户有业务需求时,需要跟网络建立起无线连接,先向基站发送接入网络请求,将同时携带终端类型(支持什么制式系统)、业务类型(语音、数据或其它)等信息,具体的业务类型隐含了对业务质量(QoS)的要求比如:速率、误码率等。
第二步,多模基站(多个制式系统共用的基站系统)接收到终端发起的接入请求后,首先根据终端支持制式系统类型选择需要评估的网络,将根据各支持系统当前的运行情况、用户的业务的QoS要求,计算对于不同的制式系统所需要分配的时频资源,然后将初步估算的结果发送给用户体验管理服务器。
第三步,用户体验管理服务器保存了当前各系统频谱资源占用情况,当收到基站发来的初步估算结果后,将结合已占用频谱资源情况、系统间干扰、用户质量要求计算出最合适的承载系统,并通知给基站。
第四步,基站接收到用户体验管理服务器选定的系统后,将在对应的制式系统准备好接入用户需要的无线资源,并将对应的接入的无线资源的时频信息,如哪一系统帧、接入信道号等通知用户。
第五步,终端用户按照网络侧的指示接入到指定系统中,同时多模基站将把当前频谱占用的情况通知给用户体验管理服务器保存。
比如:当前运营商5M频谱内,LTE已占用了其中3M左右频谱,此时有一个用户发起语音业务。当该用户接入网络,在接入请求时告诉网络侧它是一个支持GUL的三模终端、需要发起语音业务。假如网络侧对于语音业务的承载策略是语音业务只由GSM或UMTS网络承载,则网络侧分别对GSM或UMTS承载语音业务用户进行分配资源预估,对于GSM可以分配一个200k载频上的一个信道,而UMTS分配一个CS64K码道、占用5M带宽(如果使用窄带滤波器,UMTS也可 以减少频谱资源占用)。基站将该信息传给用户体验管理服务器,服务器中保存了之前各系统频谱占用情况,将结合基站估算的占用资源情况,分析各系统间的干扰状况。此时如果分到一个200kGSM信道将可以跟LTE频谱错开,因此确定该语音用户接入到GSM系统,同时将这个信息传递给基站。基站将准备好GSM的无线资源,并通知用户接入。用户将按照基站指示时间及信道接入GSM系统中,多模基站再将用户占用GSM系统资源状态再告知给服务器保存。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
用户连接态
已经跟网络中某个系统有无线连接的用户处于连接态。当网络给用户提供的业务比较稳定时无需调整,如果用户在运动状态、由于自身移动无线环境发生改变,或者所接入的系统由于系统内负载变化、其它系统资源占用变化干扰情况随着改变,网络侧要将用户及时调整到最合理的系统中,持续给用户提供最好的服务。图7为本发明实施例提供的连接态用户的体验管理示意图,其详细的流程如下:
第一步,用户在连接态位置移动或者当前服务系统网络状况发生变化,用户将周期性地或者满足一定业务质量条件时(比如语音业务质量、数据业务的误码率等),终端将自身测量到的服务小区以及本系统邻区、异系统邻区的信号接收电平强度、信号质量等测量信息上报给服务的多模基站。
第二步,多模基站接收到用户上报的测量信息,将根据本系统、异系统的无线资源、负载等现状评估当前用户是否处于比较合理的工作状态、业务是否满足需求,如果满足将不做任何处理;若不满足要求则评估是否需要切换到新的小区或系统中来满足用户需求,并将初步评估资源占用的结果同时发到用户体验管理服务器。
第三步,与接入态用户处理流程相似,多模基站要将初步估算的其它系统承载需要的资源传递给用户体验管理服务器,当用户体验管理服务器接收到基站估算的结果,将结合所保存的各系统已占用频谱资源情况、系统间干扰、用户质量要求计算出最合适的承载系统,并通知给基站。用户体验管理服务器会综合考虑各系统的连续覆盖情况、尽可能减少不必要的系统间切换等因素。
第四步,如需要切换到新的小区或新的系统,多模基站将按照指示向目标邻区或系统发起切换请求,当目标邻区或系统接纳了请求,准备好切换所需要的资源,目标基站就会通知当前服务的基站,基站再将用户切换需要的接入信息(与用户接入时所需要的信息类似)发给终端。
第五步,用户按照基站指示停留在原小区或切换到新的小区或新的系统,其的小区或新的系统资源占用后,对应基站将会将最新的频谱资源占用情况通知用户体验管理服务器、保存最新的频谱资源占用状态。
连接态用户的用户体验的管理与接入态类似,具体的实施例不再赘述。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
多制式联合资源调度
为了能够最合理地使用资源、达到频谱效率提升的目的,在多制式系统之间需要对频谱资源进行联合管理。联合资源管理的主体是基站,网络中激活态的终端需根据基站分配的无线资源进行信道占用。如终端由于覆盖及容量等原因需切换频段或制式的情况,由具体的网络承载策略来确定判决条件及其流程,不在此展开。
本扇区/站点的资源联合调度
多制式系统完全共享一段频谱,对于网络侧或终端,当不能从同时收到的多种制式混合的信号中消除干扰、分离出有用信号时,还是需要对频谱资源进行频分,根据不同制式系统的资源需求动态将频谱资源细分给不同系统使用。优先给高优先级制式分配需要的频谱资源,其它低优先级系统尽可能从频域上错开使用不同的频率资源。本扇区/站点的多制式系统的资源联合调度步骤如下:
第一步:基站对本扇区/站点的各制式调度优先级排序。
第二步:基站确定当前最高优先级的制式所需的最小调度时频单位,检查当前是否有大于或等于该单位的可用资源,如果有,则按照以下原则给待调度用户分配资源;否则转步骤3。
·基站进行资源调度时遵循先时域后频域的原则,尽量让每个制式内的用户之间使用的频谱保持连续或集中。
·每个制式调度时,以自身要求的最小频谱粒度为单位,先用完当前可用的一个频点或者一段频谱上的信道,当一个单位频谱上的时域资源分配完毕才占用另外一个频谱单位上的资源。
·如果每段单位频谱上都有部分或全部时频资源已经分配给了优先级更高的制式,基站需要根据各种制式系统之间的时间差、帧结构特点,选择部分未被分配的时频资源来使用。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
如图8为本发明实施例提供的不同制式系统的时序关系示意图,为各系统的帧结构的时间上的关系,基于各系统相对绝对时间的帧定时差可以计算出各个系统资源调度的关系。就可以判断各系统在哪些时间占用频谱资源。
第三步:基站把完成资源分配的制式从制式优先级列表中删除。
第四步:如制式优先级列表中没有待调度的制式,转第五步,否则转第二步。
第五步:结束。
仍然以GUL三种制式共扇区共享频谱为例,制式优先级从高到低排序分别是GSM、LTE和UMTS。为了简化业务模型,以上行方向的资源分配为例,假设在某个调度时刻到来时,某个扇区中的GSM业务需占用2个全速率信道,则首先为其分配同一个载波上相邻的两个时隙;若LTE业务总共需要25个RB资源,则根据业务优先级排序先分配独立的RB资源,然后再分配与GSM同频的RB上的某些时频资源;如果UMTS也有无线资源需求,而基站判断当前调度周期内已经没有可用的时频资源,则UMTS的用户需等到下一个周期才能被调度。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
如图9a为本发明实施例提供的不同制式系统在不同时间上的频分示意图,结合图9a所示,即是在不同时间,按照各系统的需求将频谱资源进行不同的细分。这样保证在共享相同频谱资源的同时,从时间上错开了系统之间频率交叠的干扰。
邻扇区/站点的资源联合调度
前述内容解决一个扇区内或站内的资源联合调度问题。而实际网络中,在资源联合调度时除了要考虑本扇区或本站的系统间的干扰问题,还要考虑与周边扇区/站点的干扰关系。并且为达到尽可能高的频谱效率,需要与其它扇区/站点能够共用相同的频谱资源,即同频资源复用。
对于邻站的不同制式系统,可以控制使用相同频谱资源、存在相互同频干扰的用户的范围,只让小区中心用户使用与邻站异系统同频的资源,图9为本发明实施例中提供的邻扇区/站点资源联合调度示意图,如图9中的深色区域中的用户,这样距离的隔离可以减少相互系统之间的同频干扰,使得资源可以同频复用。除此之外,降低同频复用系统的发射功率强度,可以减少相互系统间的干扰,使得两个系统可以安全地共享相同的频谱资源。
比如,GSM小区A和LTE小区B分别属于相邻站点的两个扇区,若小区A和小区B需要共用部分频谱资源,则两小区调度步骤如下:
第一步:基站根据GSM和LTE频谱配置和使用情况,分别标记A、B两小区的独享频谱和共享频谱。
第二步:基站分别实时判断A、B两小区的负载状态(大于LoadThreshold的为高负载,否则为低负载),低负载状态第三步,高负载状态转第四步。
第三步:在低负载状态,基站只为用户分配独享频谱,转第七步。
第四步:进入高负载状态以后,基站根据终端测量到的本小区电平和邻区电平值来判断用户的位置。当本小区电平值SCellRxLev>SCellRxLevThreshold1时为近点用户,当SCellRxLev<SCellRxLevThreshold2时为远点用户。当SCellRxLevThreshold1≥SCellRxLev≥SCellRxLevThreshold2时,根据终端测量到的邻区电平值NCellRxLev来判断用户位置类别。上述NCellRxLev可能是A、B两小区之间的异制式同频电平测量值,也可能是测量与对方共扇区同覆盖的制式内的邻区电平值;如小区A可以直接测量小区B也可以测量与小区B同扇区的GSM小区C,反之,亦然。如果NCellRxLev≤NCellRxLevThreshold,则为近点用户,否则为远点用户。
第五步:基站根据用户位置为用户分配资源。对于远点用户,只能分配独享频谱资源;对于近点用户,可分配所有可用的频谱资源。
第六步:如果还有待调度用户,转第二步;否则转第七步。
第七步:结束。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
其它结合各制式特点的联合资源调度技术
根据各种移动通信制式系统不同特点,还有特定系统的资源联合调度方案。
例如对于UMTS/LTE/5G可以开启多个载波情况,可以将与其它制式同频的部分作为CA/DC/MC的辅载波,可以灵活根据干扰变化状况实时占用或释放辅载波部分的频谱资源。对于LTE/5G还可以利用辅载波可不发射控制信道降低对共享频谱的干扰,此时LTE/5G与其它制式系统之间的资源联合调度将变得更加灵活、便捷。
示例性的,相邻站点的两个扇区SectorA、SectorB使用相同的频谱F1分别部署UMTS和LTE,如果上述两个扇区分别还有制式内的其他非同频的频点UMTS F2和LTE F3,则F1可以做F2、F3的辅载波。基站根据负载情况、用户位置来确定是否要使用辅载波以及其发射功率。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
联合降、抗干扰技术
图10为本发明实施例提供的系统间互干扰示意图,结合图10所示,多制式完全频谱共享,对于其中的任意一个制式系统与其它制式系统之间都是干扰与被干扰的关系。作为干扰系统,需要考虑尽可能减少对其它系统干扰;作为被干扰系统,需要增强抗其它系统的干扰能力。
多制式系统之间根据同时占用的频谱状况可以分成同频干扰和邻频干扰,同频干扰指多个系统之间使用的频谱资源部分或完全重叠的情况;邻频干扰指系统之间频谱没有重叠,但是挨得比较近,由于频谱间的扩散仍然存在的干扰。因此,频谱共享除了前面提到的资源如何合理分配、使用之外,还必须通过结合干扰特征的降、抗干扰技术来使得多制式系统在频谱共享时能够正常工作、能够发挥出多制式系统进行频谱共享的频谱效率的提升。对于每个系统自身要尽可能降低对其它系统的干扰,同时也要提升抵抗接收到其它系统干扰的能力。
以下为针对完全频谱共享所引入的降、抗干扰技术。
同频干扰对消
图11为本发明实施例提供的同频干扰对消示意图,结合图11所示,当干扰和被干扰信号为同频干扰,无路是基站或终端,如果对于接收机而言干扰和被干扰信号同时使用相同的射频通道的情况,在接收本制式系统的有用信号时,也会对收进的其它制式系统的干扰信号进行解调、重构,然后就可以消除掉干扰信号。
仍然以GUL制式同频共享为例,由于GSM占用频谱资源较有限,只占用5M频谱中的200kHz,可以可能通过频分的方式错开GSM与UMTS或LTE的同频干扰,但是UMTS和LTE系统所占用的频谱资源较宽,不可避免有频谱重叠,对UMTS或LTE系统来说,LTE或UMTS系统都是同频干扰信号。为了能从干扰信号中分离出自身的有用信号,就需要做UMTS和LTE的联合同频干扰对消。以基站侧接收为例,UMTS和LTE的信号通过同一个5M带宽的滤波器接收,收入的信号一路先进行UMTS系统信号第一次解调、同时重构出UMTS对LTE的干扰并送到LTE系统的同频信号对消模块;另一路接收的信号先进行LTE系统信号第一次解调、同时重构出LTE对UMTS的干扰并送到UMTS系统的同频信号对消模块。经过UMTS和LTE的同频对消之后,得到UMTS和LTE系统的有用信号,再分别送入各自的解调模块进行第二次信号解调,这样就从同频干扰信号中抑制到干扰系统信号、分离出有用信号。使得UMTS和LTE的同频接收成为可能。
筛状滤波器
图12为本发明实施例提供的装滤波器示意图,结合图12所示。每个系统的广播、控制信道是关键的信道信息,对于低优先级系统或者当前业务量较少的系统,可以滤除影响高优先级系统的关键信道如导频、控制信道对应的时频资源。通过损失部分自身系统的性能,降低对其它系统的干扰。
对于UMTS或R13之前的LTE系统,控制信道、导频信道分布在全系统带宽。由于UMTS和LTE相对GSM为宽带系统,GSM的功率谱密度远高于UMTS或LTE。在GSM与UMTS和/或LTE同频复用的场景,为了减少GSM对UMTS或LTE关键信道的影响,可以从GSM内部筛除与UMTS或LTE关键信道所对应的时频资源。下图所示为一个GSM(橙色方块)与LTE的时频关系,GSM筛出与LTE导频重叠的时频资源,可以减低对其的干扰,提升LTE导频性能。
伪装信号
多制式系统共享频谱资源时,如果其中某个系统在一些时间没有业务承载、也不需发送广播、导频信息,则可以利用这些时间内的时频资源发射其它制式系统信号,一方面不影响本系统的用户的驻留,同时可以提升其它制式系统的性能。
以GSM系统为例,一个载波占用200kHz频谱,有8个时隙,在BCCH所在载频上,对于不发BCCH/SDCCH/TCH业务的时隙,原本要发送空的信息功率(Dummy Burst),本身对其它制式系统来说是一种同频干扰。为了减对其它制式系统的干扰,可以在这些空闲的时隙上发射对应频率资源上的LTE或UMTS的控制信道或数据信息。如图13所示:
动态滤波器隔离不同系统间的邻频干扰
无论是网络侧或终端侧增加滤波器,从发射方向可以限制信号频谱的范围,控制由于频谱扩散对其它制式系统的干扰;从接收方向,滤波也可以抑制接收到的其它制式系统的干扰。在多制式频谱完全共享时,无法静态对频谱进行分割,需要根据业务占用频谱资源情况动态启用合适的滤波器。动态滤波器可以较好地对各制式系统使用频谱资源进行频域上的分割,控制频谱相邻的系统间的干扰。
图14为本发明实施例提供的动态滤波器示意图,如图14所示,给出了GUL完全频谱共享的一个动态滤波器是示例。在T1时刻,此时根据各系统的业务量情况,只有UMTS用户需要占用,GSM和LTE系统只有一些公共控制信道在发送,此时UMTS用户可以占用整个5M频谱;在T2时刻,5M频谱资源分给GSM和LTE使用,并且由于GSM此时较忙,分得相对较多;在T3时刻,5M频谱资源仍然分给GSM和LTE使用,GSM的业务量下降,让出更多频谱资源给LTE使用;在T4时刻频谱资源分给UMTS和LTE使用。对于UMTS系统在T1和T4时刻,分别套用了一个5M和一个小带宽,比如2.4M的滤波器,根据业务需求动态切换滤波器;对于LTE系统在T2和T3时刻,为了隔离LTE与GSM之间的干扰,也在两种滤波器之间进行动态切换。
本发明实施例二:
本发明实施一例中以当前最通用的FDD系统为例,说明多制式系统可以在同一段频谱资源上完全共享,其它FDD系统如CDMA、TDD系统如TD-SCDMA系统也可以应用实施例一中的技术实现频谱资源完全共享。同样,对于正在逐渐兴 起的未来的通信系统也是通用的。
本发明实施例三:
本发明实施一例强调的综合GSM/UMTS/LTE系统的最小需求,在5MHz的频谱资源上的完全频谱共享。当运营商频谱资源多余5MHz时,本发明实施一例中的技术同样适用。此外,多个制式系统之间如果在频谱资源足够宽松时,可以部分频谱资源共享,使得资源利用更加合理、给用户提供更优质的服务。
本发明实施例具有的有益效果:
本发明是真正意义上的完全频谱共享,可以应用于当前移动通信的各主流频段,应用于不同频谱带宽。本发明结合终端类型、业务需求及运营商需求在多个通信制式系统间联合调度、管理资源;利用当前基站、终端可同时收发多个制式系统的特点、实现一些同频干扰重构消除、筛装滤波器、信号伪装、动态滤波器等减少对其它系统的干扰、提升有用信号的抗干扰能力。频谱资源向来是移动通信系统最宝贵的资源,通过运用本发明的技术,可以协助运营商在最有限的频谱资源内部署多个制式的通信系统。既能尽可能为老终端用户的需求提供最基本的服务,又能够面向新的业务、品牌竞争力需求,将频谱资源有效用来开启高效率的制式系统,最大化频谱资源的效率。
需要说明的是,本发明实施例中的基站发射多种制式信号,且多种制式工作在同一段频谱上。
本发明的技术关键点和欲保护点包括:
多个制式系统的信号可以完全在同一段频谱上共享并发。
多个制式在并发时基于制式优先级保证最高优先级制式正常工作。
多个制式在并发时,各制式筛除或扣掉影响正在使用频谱制式的对应数据或控制/同步信道来减少干扰影响。
正在使用共享资源的制式在时域上可以伪装发射其它制式的信号来降低对其它制式的影响。
多个制式在并发时结合本小区/本站的系统间干扰及邻站间干扰来联合调度管理频谱资源。
另外,需要说明的是,本发明实施例中提供的完全频谱共享的频谱资源分 配方法及装置,可以针对网络侧基站实施,也可以在用户侧终端实施。

Claims (14)

  1. 一种完全频谱共享的频谱资源分配方法,其特征在于,包括:
    基站实时获取所述终端发送的网络接入请求消息,所述网络接入请求消息包括下述的至少一种:所述终端支持的网络制式、所述终端的接入业务和所述接入业务的服务质量QoS;
    所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;
    所述基站向所述终端发送第一网络制式接入指示消息,以使所述终端根据所述第一网络制式接入指示消息通过对应的网络制式接入业务。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述基站向所述终端发送多种不同网络制式信号,所述多种不同网络制式的信号工作在同一频谱资源上;
    所述基站通过所述同一频谱资源与所述终端通信。
  3. 根据权利要求1所述的方法,其特征在于,所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式,包括:
    所述基站根据所述终端的接入业务和所述接入业务的QoS,分别获取所述不同的网络制式在接入业务时占用的时频资源;
    所述基站根据不同的网络制式占用的时频资源,为所述不同的网络制式分配频谱资源。
  4. 根据权利要求1所述的方法,其特征在于,所述基站根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;
    所述基站根据所述网络接入请求消息,获取不同的网络制式的网络优先级;
    所述基站按照所述网络优先级的先后顺序,将频谱资源分配给所述不同的网络制式。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    所述基站获取所述终端发送的测量信息;
    所述基站在根据所述测量信息判断到所述终端的通信质量不能满足所 述接入业务的QoS时,根据所述网络优先级为不同的网络制式分配频谱资源;
    所述基站向所述终端发送第二网络制式接入指示消息,以使所述终端根据所述第二网络制式接入指示消息通过对应的网络制式接入业务。
  6. 根据权利要求4所述的方法,其特征在于,所述获取不同的网络制式的网络优先级,包括:
    所述基站分别获取所述终端支持的网络制式中各个网络制式使用的频谱资源评分、所述接入业务优先级评分和用户重要性指数评分;
    所述基站分别获取频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重;
    所述基站根据所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分,以及所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重,计算不同的网络制式的网络优先级。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    所述基站分别获取所述终端通过第一网络制式发送的第一上行数据及所述终端通过第二网络制式发送的第二上行数据,所述第一网络制式使用的频谱资源与所述第二网络制式使用的频谱资源有部分或者全部重叠;
    所述基站分别对所述第一上行数据和所述第二上行数据进行干扰处理。
  8. 一种完全频谱共享的频谱资源分配装置,其特征在于,包括:
    接收器,用于实时获取所述终端发送的网络接入请求消息,所述网络接入请求消息包括下述的至少一种:所述终端支持的网络制式、所述终端的接入业务和所述接入业务的服务质量QoS;
    处理器,用于根据所述网络接入请求消息,将频谱资源动态分配给不同的网络制式;
    发送器,用于向所述终端发送第一网络制式接入指示消息,以使所述终端根据所述第一网络制式接入指示消息通过对应的网络制式接入业务。
  9. 根据权利要求8所述的装置,其特征在于,
    所述发送器,还用于向所述终端发送多种不同网络制式信号,所述多种 不同网络制式的信号工作在同一频谱资源上;
    所述处理器,还用于通过所述同一频谱资源与所述终端通信。
  10. 根据权利要求8所述的装置,其特征在于,
    所述处理器,还用于根据所述终端的接入业务和所述接入业务的QoS,分别获取所述不同的网络制式在接入业务时占用的时频资源;
    所述处理器,还用于根据不同的网络制式占用的时频资源,为所述不同的网络制式分配频谱资源。
  11. 根据权利要求8所述的装置,其特征在于,
    所述接收器,还用于根据所述网络接入请求消息,获取不同的网络制式的网络优先级;
    所述处理器,还用于按照所述网络优先级的先后顺序,将频谱资源分配给所述不同的网络制式。
  12. 根据权利要求11所述的装置,其特征在于,
    所述接收器,还用于获取所述终端发送的测量信息;
    所述处理器,还用于在根据所述测量信息判断到所述终端的通信质量不能满足所述接入业务的QoS时,根据所述网络优先级为不同的网络制式分配频谱资源;
    所述发送器,还用于向所述终端发送第二网络制式接入指示消息,以使所述终端根据所述第二网络制式接入指示消息通过对应的网络制式接入业务。
  13. 根据权利要求11所述的装置,其特征在于,
    所述接收器,还用于分别获取所述终端支持的网络制式中各个网络制式使用的频谱资源评分、所述接入业务优先级评分和用户重要性指数评分;
    所述接收器,还用于获取频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重;
    所述处理器,还用于根据所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分,以及所述频谱资源评分、所述接入业务优先级评分和用户重要性指数评分分别对应的权重,计算不同的网络制式的网络优先 级。
  14. 根据权利要求8所述的装置,其特征在于,
    所述接收器,还用于分别获取所述终端通过第一网络制式发送的第一上行数据及所述终端通过第二网络制式发送的第二上行数据,所述第一网络制式使用的频谱资源与所述第二网络制式使用的频谱资源有部分或者全部重叠;
    所述处理器,还用于分别对所述第一上行数据和所述第二上行数据进行干扰处理。
PCT/CN2016/105531 2016-11-11 2016-11-11 完全频谱共享的频谱资源分配方法及装置 WO2018086080A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2016/105531 WO2018086080A1 (zh) 2016-11-11 2016-11-11 完全频谱共享的频谱资源分配方法及装置
JP2019524166A JP6812631B2 (ja) 2016-11-11 2016-11-11 スペクトルリソース分配方法、及び完全スペクトル共有のための装置
KR1020197016339A KR102169766B1 (ko) 2016-11-11 2016-11-11 전체 스펙트럼 공유를 위한 스펙트럼 자원 할당 방법 및 장치
BR112019009465A BR112019009465A2 (pt) 2016-11-11 2016-11-11 método de alocação de recurso de espectro e aparelho para compartilhamento de espectro total
CN201680090637.1A CN109983825B (zh) 2016-11-11 2016-11-11 完全频谱共享的频谱资源分配方法及装置
EP16921327.9A EP3531792B1 (en) 2016-11-11 2016-11-11 Spectrum resource allocation method and device enabling full spectrum sharing
US16/407,391 US11012930B2 (en) 2016-11-11 2019-05-09 Dynamic spectrum resource allocation for full spectrum sharing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105531 WO2018086080A1 (zh) 2016-11-11 2016-11-11 完全频谱共享的频谱资源分配方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/407,391 Continuation US11012930B2 (en) 2016-11-11 2019-05-09 Dynamic spectrum resource allocation for full spectrum sharing

Publications (1)

Publication Number Publication Date
WO2018086080A1 true WO2018086080A1 (zh) 2018-05-17

Family

ID=62110104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105531 WO2018086080A1 (zh) 2016-11-11 2016-11-11 完全频谱共享的频谱资源分配方法及装置

Country Status (7)

Country Link
US (1) US11012930B2 (zh)
EP (1) EP3531792B1 (zh)
JP (1) JP6812631B2 (zh)
KR (1) KR102169766B1 (zh)
CN (1) CN109983825B (zh)
BR (1) BR112019009465A2 (zh)
WO (1) WO2018086080A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020182182A (ja) * 2019-04-26 2020-11-05 パナソニック株式会社 制御装置、基地局、及び、制御方法
EP3965449A4 (en) * 2019-05-23 2022-07-06 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR DETERMINING A SPECTRUM RESOURCE
CN114928891A (zh) * 2022-06-09 2022-08-19 中国电信股份有限公司 基站、资源分配及pdcch信息处理方法、装置、设备及介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020385510A1 (en) * 2019-11-19 2022-01-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for measurement relaxation, user equipment, and computer readable medium
CN111278019B (zh) * 2020-01-21 2022-12-20 达闼机器人股份有限公司 网络接入的方法、装置、存储介质及网络设备
CN114079914B (zh) * 2020-08-12 2023-03-24 中国电信股份有限公司 终端接入基站的方法、基站、终端以及通信系统
US20220150713A1 (en) * 2020-11-06 2022-05-12 At&T Intellectual Property I, L.P. Dynamic spectrum sharing resource coordination for fifth generation wireless communications and beyond
CN113573412B (zh) * 2021-06-28 2024-05-07 山东师范大学 一种频谱动态分配方法、系统、设备及存储介质
CN113395724B (zh) * 2021-08-13 2021-10-15 北京玻色量子科技有限公司 一种基站的模式优化方法及装置
CN115734213A (zh) * 2021-08-26 2023-03-03 上海华为技术有限公司 一种网络升级方法及相关装置
CN115002784B (zh) * 2022-05-30 2024-06-07 中国联合网络通信集团有限公司 一种频谱配置方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223640A (zh) * 2011-06-03 2011-10-19 中兴通讯股份有限公司 一种动态频谱共享系统及方法
CN102264110A (zh) * 2010-05-25 2011-11-30 中兴通讯股份有限公司 基于无线资源分配数据库的切换方法及系统
US20130279376A1 (en) * 2012-04-24 2013-10-24 Apple Inc. Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
CN103391597A (zh) * 2012-05-08 2013-11-13 京信通信系统(中国)有限公司 一种多模移动终端的接入控制方法、装置及基站
US20150296560A1 (en) * 2014-04-11 2015-10-15 Qualcomm Incorporated Discontinuous reception (drx)-aware carrier sense adaptive transmission (csat) in shared spectrum
CN105794247A (zh) * 2013-12-04 2016-07-20 瑞典爱立信有限公司 无线电接入技术之间的资源共享

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512793B (zh) * 2002-12-27 2010-05-26 皇家飞利浦电子股份有限公司 多标准无线通信系统中射频资源分配的方法和装置
KR100943614B1 (ko) 2005-05-31 2010-02-24 삼성전자주식회사 다중 무선 접속 네트워크 환경에서 주파수 자원 관리시스템 및 그 방법
JP4680046B2 (ja) * 2005-12-02 2011-05-11 富士通株式会社 動的チャネル割当方法及び動的チャネル割当装置
CN101083825B (zh) * 2006-05-30 2011-09-28 株式会社Ntt都科摩 在共存的多种无线网络中进行动态频谱分配的方法及装置
KR101712785B1 (ko) * 2009-08-21 2017-03-06 인터디지탈 패튼 홀딩스, 인크 상이한 무선 액세스 기술들에 대해 다운링크 업링크를 분리하기 위한 멀티 무선 액세스 기술 계층에 대한 방법 및 장치
US9066238B2 (en) * 2010-02-22 2015-06-23 Spectrum Bridge. Inc. System and method for spectrum sharing among plural wireless radio networks
US8711721B2 (en) 2010-07-15 2014-04-29 Rivada Networks Llc Methods and systems for dynamic spectrum arbitrage
US9253778B2 (en) 2012-05-04 2016-02-02 Interdigital Patent Holdings, Inc. Coexistence management service for spectrum sharing
US9992780B2 (en) * 2012-09-19 2018-06-05 Interdigital Patent Holdings, Inc. Methods and apparatus for accessing spectrum in a shared spectrum system
ES2532518B1 (es) 2013-09-27 2016-01-19 Vodafone España, S.A.U. Elemento de red y procedimiento para coordinar el uso de recursos radio entre redes de acceso radio
WO2015077973A1 (en) 2013-11-29 2015-06-04 Qualcomm Incorporated Methods and apparatus for interference mitigation in wireless communication system
US9526110B2 (en) * 2014-02-20 2016-12-20 Nokia Solutions And Networks Oy Techniques for multi-RAT (radio access technology) coordinated resource sharing
US9961696B2 (en) * 2014-07-30 2018-05-01 Qualcomm Incorporated Spectrum analysis and operation of a dual radio device
CN104159234B (zh) * 2014-08-06 2017-09-29 电子科技大学 在两个rat之间进行动态频谱资源分配的方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264110A (zh) * 2010-05-25 2011-11-30 中兴通讯股份有限公司 基于无线资源分配数据库的切换方法及系统
CN102223640A (zh) * 2011-06-03 2011-10-19 中兴通讯股份有限公司 一种动态频谱共享系统及方法
US20130279376A1 (en) * 2012-04-24 2013-10-24 Apple Inc. Methods and apparatus for opportunistic radio resource allocation in multi-carrier communication systems
CN103391597A (zh) * 2012-05-08 2013-11-13 京信通信系统(中国)有限公司 一种多模移动终端的接入控制方法、装置及基站
CN105794247A (zh) * 2013-12-04 2016-07-20 瑞典爱立信有限公司 无线电接入技术之间的资源共享
US20150296560A1 (en) * 2014-04-11 2015-10-15 Qualcomm Incorporated Discontinuous reception (drx)-aware carrier sense adaptive transmission (csat) in shared spectrum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531792A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020182182A (ja) * 2019-04-26 2020-11-05 パナソニック株式会社 制御装置、基地局、及び、制御方法
JP7412089B2 (ja) 2019-04-26 2024-01-12 パナソニックホールディングス株式会社 制御装置、及び、制御方法
EP3965449A4 (en) * 2019-05-23 2022-07-06 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR DETERMINING A SPECTRUM RESOURCE
CN114928891A (zh) * 2022-06-09 2022-08-19 中国电信股份有限公司 基站、资源分配及pdcch信息处理方法、装置、设备及介质
CN114928891B (zh) * 2022-06-09 2023-11-07 中国电信股份有限公司 基站、资源分配及pdcch信息处理方法、装置、设备及介质

Also Published As

Publication number Publication date
CN109983825A (zh) 2019-07-05
US11012930B2 (en) 2021-05-18
CN109983825B (zh) 2021-06-15
KR102169766B1 (ko) 2020-10-26
EP3531792B1 (en) 2022-08-31
KR20190073570A (ko) 2019-06-26
JP6812631B2 (ja) 2021-01-13
BR112019009465A2 (pt) 2019-07-30
EP3531792A1 (en) 2019-08-28
JP2019533965A (ja) 2019-11-21
EP3531792A4 (en) 2019-10-30
US20190268838A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018086080A1 (zh) 完全频谱共享的频谱资源分配方法及装置
CN109039556B (zh) 一种信号传输方法、相关设备及系统
US9131470B2 (en) Resource allocation in a coexistence system
JP5261387B2 (ja) 動的に無線資源を割り当てる装置及び方法
EP2215865B1 (en) Spectrum coordination controller
US9301149B2 (en) Method for providing information such that different types of access points can coexist
EP3288329A1 (en) Frequency spectrum coordination device and method, and device and method in wireless communication system
US9491662B2 (en) Method in a radio network node for controlling usage of rat and frequency bandwidth in a radio communication system
US20120257551A1 (en) Duplex Communication Method, Terminal Scheduling Method and System
CN112312429B (zh) 一种提升终端设备测量能力的方法、芯片以及终端设备
US20140010125A1 (en) Method and Apparatus for Carrier Aggregation
JP5810432B2 (ja) 無線ネットワークを構成するための方法、装置、およびシステム
WO2014007156A1 (ja) 無線通信システム、周波数チャネル共用方法、ネットワークコントローラ装置
EP2647236B1 (en) Resource allocation in dynamic spectrum refarming
CN108135007A (zh) 一种通信的方法及装置
WO2017008221A1 (zh) 一种lte集群系统同频组网资源调度方法及装置
WO2010134121A1 (ja) 無線通信方法、無線通信システム、基地局装置および携帯端末
WO2012000288A1 (zh) 上行频率资源的分配方法和基站
Lin et al. 2.1 GHz Dynamic Spectrum Sharing Scheme for 4G/5G Mobile Network
JP2009088643A (ja) 空間多重スロット割当方法およびアダプティブアレイ基地局
Danaei Yeganeh et al. Dynamic spectrum refarming for GERAN/EUTRAN considering GERAN voice traffic
KR20150042048A (ko) 다중 fa 기반 광대역 무선 접속 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009465

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197016339

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016921327

Country of ref document: EP

Effective date: 20190523

ENP Entry into the national phase

Ref document number: 112019009465

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190509