WO2012000288A1 - 上行频率资源的分配方法和基站 - Google Patents

上行频率资源的分配方法和基站 Download PDF

Info

Publication number
WO2012000288A1
WO2012000288A1 PCT/CN2010/079583 CN2010079583W WO2012000288A1 WO 2012000288 A1 WO2012000288 A1 WO 2012000288A1 CN 2010079583 W CN2010079583 W CN 2010079583W WO 2012000288 A1 WO2012000288 A1 WO 2012000288A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
ring area
area
outer ring
Prior art date
Application number
PCT/CN2010/079583
Other languages
English (en)
French (fr)
Inventor
陈嘉明
王宁
鲁绍贵
邱刚
高旭昇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012000288A1 publication Critical patent/WO2012000288A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communications, and in particular to a method and a base station for allocating uplink spectrum resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MCM multi-carrier modulation
  • the frequency response curve of the wireless channel is mostly non-flat, and the main idea of OFDM technology is to divide a given channel into many orthogonal subchannels in the frequency domain, modulate each subcarrier on each subchannel, and transmit each subcarrier in parallel. .
  • the WiMAX (World Interoperability for Microwave Access) system uses OFDM technology.
  • the frame structure of the TDD (Time Division Duplexing) mode is shown in Figure 1.
  • the frame structure is a two-dimensional structure.
  • the horizontal axis is composed of the symbol of the time domain, and the vertical axis is composed of subcarriers in the frequency domain.
  • the TTG (Transmit/Receive Transition Gap) in FIG. 1 indicates the transmission transmission interval, which is the downlink subframe and the subsequent uplink.
  • the interval between bursts; RTG (Receive Transition Gap) indicates the receive transmission interval. You can see that the downlink sub-frame preamble (Preamble) is the start, and the preamble is mainly used for physical layer synchronization and equalization.
  • the preamble is followed by the Frame Control Header (FCH).
  • FCH Frame Control Header
  • DL-MAP Downlink Mapping
  • Burst burst carrying the DL-MAP message
  • FCH appears.
  • this downstream frame also needs to transmit an uplink mapping (UL-MAP) message
  • UL-MAP uplink mapping
  • the next frame portion is used to transfer data, which is composed of multiple bursts.
  • frequency resources are a kind of non-renewable scarce and expensive resources that cannot meet the rising demands of people. Therefore, for any technology and network planning, frequency resources will not be used endlessly.
  • Frequency reuse technology is a networking technology proposed to improve spectrum utilization and expand system capacity.
  • the traditional frequency reuse technology can be divided into an inter-frequency multiplexing technology and an equal frequency multiplexing technology.
  • the same frequency multiplexing technology can achieve a frequency reuse factor of 1, that is, cells within the coverage of the entire system use the same frequency band to serve users in the cell.
  • the inter-frequency multiplexing technology divides thousands of cells using different frequency bands into one multiplexing cluster in the system, and the frequency band occupied in the multiplexing cluster is all the frequency bands allowed by the system. The entire system is composed of one such multiplexing cluster.
  • the same-frequency multiplexing technology has a high spectrum utilization and system capacity because the multiplexing factor is only 1. However, since all cells use the same frequency band, edge users are subject to the same frequency interference from other neighboring cells, and the communication quality is seriously affected, so it is rarely used in actual cellular systems.
  • Fractional Frequency Reuse (FFR) technology is a new technology to increase system capacity.
  • the idea of FFR is: users in the cell center have better channel conditions, and because the physical locations are relatively far apart, they are not particularly large for other cells, so they are allocated on a multiplexing set with a frequency reuse factor of 1.
  • the cell edge user is relatively far away from the base station, the channel condition is relatively poor, and the interference between the users of other cells is relatively large, so it is allocated on the multiplexing set with the frequency reuse factor of 3.
  • the CxNxS in the same frequency networking mode may be 1 X 1 X 3 in the wireless communication network planning, where C is the number of base stations in each cluster, and N is frequency reuse.
  • the total number of channels (or groups of channels), S is the number of sectors per base station.
  • the carrier frequency of the unwanted signal at the boundary is the same as the carrier frequency of the wanted signal, and the receiver receiving the same-frequency useful signal is disturbed.
  • a large number of co-frequency interferences will replace noise and other interferences, which will become the main constraint on this networking mode.
  • a primary object of the present invention is to provide an uplink spectrum resource allocation method and a base station, so as to at least solve the problem that the existing spectrum resource allocation method cannot maximize the terminal to obtain the required bandwidth resource.
  • a method for allocating an uplink spectrum resource includes: determining, by a base station, a type of the terminal according to a downlink signal used by the terminal and a interference signal received by the terminal; An uplink spectrum resource corresponding to the type of the above terminal is allocated. Determining, by the base station, the type of the terminal according to the downlink signal used by the terminal and the interference signal received by the terminal, including: the coverage area of each sector of the base station according to the signal strength of the base station and the interference with the adjacent base station The case is divided into N ring regions, where N>1; the base station determines the ring region in which the terminal is located according to the downlink signal and the above-mentioned interference signal.
  • the ring-shaped area includes: an outer ring area and an inner ring area, where the foregoing base station allocates an uplink spectrum resource corresponding to the type of the terminal to the terminal, where the base station allocates the terminal to the terminal located in an outer ring area of a different sector. Overlapping spectral bandwidth.
  • the foregoing base station allocates the uplink spectrum resource corresponding to the type of the terminal to the terminal, the method further includes: the base station allocates a partially overlapping spectrum bandwidth for the terminal located in an inner ring area of a different sector; and the base station is located in the first sector.
  • the spectrum bandwidth allocated by the terminal in the inner loop region partially overlaps with the spectrum bandwidth allocated by the base station to the terminal located in the outer loop region of the second sector.
  • the ring-shaped area further includes: a central area, located between the outer ring area and the inner ring area, wherein the foregoing base station allocates an uplink spectrum resource corresponding to the type of the terminal to the terminal, further comprising: the foregoing base station is located in a different sector
  • the above terminals in the central area allocate the same spectrum bandwidth.
  • the ring-shaped area includes: an outer ring area, a middle ring area, and an inner ring area, wherein the foregoing base station allocates an uplink spectrum resource corresponding to the type of the terminal to the terminal, where the base station allocates the foregoing to the terminal located in the outer ring area.
  • a base station including: a determining unit, configured to determine a type of the terminal according to a downlink signal used by the terminal and a interference signal received by the terminal; An uplink spectrum resource corresponding to the type of the terminal is allocated to the terminal.
  • the determining unit includes: a dividing module, configured to divide a coverage area of each sector of the base station into N ring areas according to a signal strength of the base station and a interference condition of a neighboring base station, where N>1; And a module, configured to determine, according to the downlink signal and the foregoing interference signal, the ring zone i or the terminal where the terminal is located.
  • the ring area includes: an outer ring area and an inner ring area, wherein the foregoing allocation unit is further configured to allocate non-overlapping spectrum bandwidths to the terminals located in outer ring areas of different sectors.
  • FIG. 1 is a schematic diagram of a Wimax frame structure according to the related art
  • FIG. 2 is a preferred flowchart of a method for allocating an uplink spectrum resource according to an embodiment of the present invention
  • 7 is a schematic diagram of a 3-segment networking according to an embodiment of the present invention
  • FIG. 8 is a frame structure diagram of a 3-segment networking 3-ring resource according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a 3rd ring resource according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of resource allocation by frame scheduling of 3segment networking 3 ring resources under Wimax according to an embodiment of the present invention
  • FIG. 11 is a flowchart of resource allocation according to frame scheduling of 3segment networking 3 ring resources under Wimax;
  • the base station determines, according to the downlink signal used by the terminal and the interference signal received by the terminal, the type of the terminal.
  • the base station allocates an uplink spectrum resource corresponding to the type of the terminal to the terminal.
  • the existing spectrum resource allocation method does not allocate spectrum resources according to the actual interference, which makes the spectrum utilization become very low, and the throughput is difficult to guarantee.
  • the location of the terminal in different sectors is determined according to the interference condition of the terminal, and the frequency resource corresponding to the location is allocated to the terminal, so that the spectrum utilization and the system capacity are increased simultaneously. It also reduces the interference, improves the performance of the cell edge, and improves the total throughput of the entire cell.
  • the step of determining, by the base station, the type of the terminal according to the downlink signal used by the terminal and the interference signal received by the terminal comprises: according to the coverage area of each sector of the base station
  • the signal strength of the station and the interference condition with the neighboring base station are divided into N ring regions, where N>1; the base station determines the ring region in which the terminal is located according to the downlink signal and the interference signal.
  • N 3. Since N>1 described above, the coverage area of the sector can be divided more finely, thereby increasing the accuracy of frequency resource allocation.
  • the ring area includes: an outer ring area and an inner ring area, where the step of the base station assigning, to the terminal, an uplink spectrum resource corresponding to the type of the terminal, where the base station is located in a different sector
  • the terminals in the outer ring region allocate non-overlapping spectral bandwidth. Since the spectrum bandwidths of the terminals located in the outer ring area of different sectors do not overlap each other, the terminals are not subject to the same frequency interference, and the cell edge performance is improved.
  • the step of the base station allocating the uplink spectrum resource corresponding to the type of the terminal to the terminal further includes: the base station allocating a partially overlapping spectrum bandwidth to the terminal located in an inner ring area of a different sector.
  • the spectrum bandwidth allocated by the base station to the terminal located in an inner ring area of the first sector partially overlaps with a spectrum bandwidth allocated by the base station to the terminal located in an outer ring area of the second sector.
  • the transmission power is relatively smaller, and the same frequency as the terminal part in the outer loop area is timely, and the same frequency is also small. Therefore, by partially overlapping the spectral bandwidth allocated by the terminal in the inner ring region of the first sector with the spectral bandwidth allocated by the base station to the terminal located in the outer ring region of the second sector, It ensures low interference and improves the utilization of spectrum resources.
  • the step of corresponding uplink spectrum resources further includes: the base station allocating the same spectrum bandwidth to the terminals located in the central ring area of different sectors.
  • the terminal in the central ring region in the first sector has a non-overlapping spectral bandwidth with the inner ring region and the outer ring region in the second sector.
  • the granularity of the division of the coverage area of the sector is refined, so that resource allocation to the terminal can be performed more accurately.
  • the ring area includes: an outer ring area, a middle ring area, and an inner ring area
  • the step of the base station assigning an uplink spectrum resource corresponding to the type of the terminal to the terminal includes: the base station is located The terminal in the outer ring area allocates spectrum resources in the outer ring area; the base station allocates spectrum resources and the outer ring area in the central ring area to the terminal located in the central ring area a spectrum resource that is not allocated; the base station allocates a spectrum resource of the inner ring area, an unallocated spectrum resource in the central ring area, and the outer ring area to the terminal located in the inner ring area Unallocated spectrum resources.
  • the terminals in each ring area can use the unallocated spectrum resources in the previous ring area, thereby improving the utilization of spectrum resources.
  • Embodiments of the method for allocating uplink spectrum resources of the present invention are further described below.
  • the same-frequency networking mode CxNxS is 1 X 1 XS (S is the number of sectors per base station), under a station of the same-sector intra-frequency network, according to the user and the antenna angle and distance from the antenna case, i.e.
  • is greater than the value Equal to 2 and less than or equal to the total number of users under the sector. If ⁇ is the total number of users under the sector, it is based on the signal and interference characteristics of each user to allocate resources and overpower control. The frequency is reused.
  • Users of UserTypel are the least affected by the neighboring station's thousand 4, UserType2 is the second..., and UserTypeN is the largest by the neighboring station's thousand 4, that is, the outer ring user.
  • the interference condition of UserTypel to UserTypeN is gradually increased by neighboring stations, and the base station performs different processing for users of different UserTypes according to the situation of its interference: setting different power control strategies and AMC for users of different UserTypes. (Adaptive modulation coding) strategy.
  • MaxTxPower ut 1 ⁇ MaxTxPower_ut2 ⁇ ... ⁇ MaxTxPower utN MaxTxPower_utl refers to the maximum transmit power limit of UserTypel, and so on.
  • the bandwidth is planned to be N, and the different UserTypes use the corresponding bandwidth to reduce the interference to maximize the spectrum utilization. Generally, the fewer users are less available, the more resources are available to the user. Less, UserTypel users can use all bandwidth, while UserTypeN users can only use outer ring bandwidth.
  • the road loss is especially larger than the thousand 4, so to ensure a certain signal quality, the transmission power of the central user should be It is larger than the inner ring user; the outer ring user is divided into two types: one is close to the station but at the position of the antenna side lobe, although the signal strength is large, but the distance from the antenna of the two segments is similar, received The intensity of the interference is also very large, and the other is at the edge of the cell, the farthest from the station, the road loss is the largest, and the most affected by the neighboring area is 4, especially in the case of the same frequency network, the outer ring user is not solved. There is no way to guarantee coverage if there is a problem with the interference.
  • the uplink frames of the three segments under one station are divided into inner ring zone i or (Inner Zone), outer ring zone i or (Outer Zone) and central ring.
  • Zone i or (Median Zone) 3 parts as shown in Figure 4.
  • the inner ring users mainly use inner ring resources, and the inner ring and outer ring resources can also be used when the inner ring and outer ring resources are idle.
  • the inner loop user uses low power transmission to reduce the interference to the outer ring of the neighboring area.
  • Central users mainly use the Central resources, and the outer ring resources can also be used when the outer ring resources are idle.
  • Central users use lower power transmissions to reduce interference and also ensure a certain signal quality.
  • the outer ring users are more disturbed by neighboring areas, and the interference to the neighboring areas is also larger. Therefore, only outer ring resources can be used, and higher power transmission is used to ensure coverage.
  • the middle ring of the three segments under the same station uses the same frequency resource; the outer ring of the three segments is the frequency division, and there is no thousand 4 between the outer rings; and the inner ring uses the frequency resources of the inner ring and the outer ring. All frequency resources except the frequency between the inner and inner rings of the three segments, and the frequency overlap between the inner and outer rings. Between the three segments, there are thousands of specials between the central ring and the central ring.
  • the uplink power control of the central users needs to control the uplink users to maintain proper transmission power, reduce the interference to the neighboring areas, and ensure a certain signal quality.
  • the user After the user enters the network, according to the downlink CINR of the user station, the RSSI information, and the signal strength of the neighboring station received by the terminal, the user is judged to be in the inner, middle, and outer rings, and the strategic power is performed according to the type of the user. Control and allocate upstream bandwidth resources.
  • the user classification process is as follows:
  • the base station determines the user type of the terminal according to the downlink CINR, the RSSI information, and the signal strength of the neighboring station received by the terminal; 3) The periodic trigger or event triggering base station repeats the above steps 2) until the terminal exits the network.
  • the uplink resources are allocated by frame, and the process is as follows:
  • the user of UserTypel can use the unallocated resources of the entire frame until the bandwidth is allocated or the user does not have the requirement, and the resource allocation ends.
  • the present invention can determine the frequency reuse according to the actual interference condition of the user, and can achieve a reuse factor of 1 when the interference is small, and reduce the reuse when the interference is large.
  • the number of resources guarantees the transmission quality of the user, so the present invention has higher spectrum utilization and system throughput in the same channel environment.
  • the networking method and apparatus of the present invention can also be used for downlink, but the frame structure will vary.
  • the uplink control channel still uses the 1/3 frequency division method, and the data channel uses the improvement of the present invention.
  • the networking method of spectrum utilization the networking diagram is shown in Figure 7. Since there are three types of users, the resources are also divided into three categories.
  • the frame structure is shown in Figure 8.
  • Step 4 S902: The terminal enters the network;
  • Step S904 The base station determines whether the user is an inner ring, a middle ring or an outer ring user according to the downlink signal condition of the terminal and the signal condition of the neighboring station (neighboring base station) received by the terminal;
  • S906 The user type of the base station implements different power control policies for the terminal and implements different uplink bandwidth allocation mechanisms.
  • Step S908 Determine whether the signal of the terminal changes or the re-decision period of the terminal reaches, and if yes, go to the step.
  • Step S910 determine whether the terminal is backed off, and if so, the process ends, otherwise go to step S908;
  • the implementation step 4 is as shown in FIG.
  • Step S1002 Allocating the bandwidth resource of the outer ring to the outer ring user;
  • Step 4 S 1004: determining whether there is no external ring user requirement or the outer ring resource has been allocated, if Then, go to step S1006, otherwise go to step S1002;
  • Step S1006 allocate the bandwidth resource of the middle ring to the central ring user and the bandwidth resource that has not been allocated by the outer ring;
  • Step S1008 determine whether there is no need of the central ring user or If the central resource and the outer ring resource have been allocated, go to step S1010, otherwise go to step S1006;
  • step 4 gather S 1010: allocate the inner ring bandwidth resource for the inner ring user and the outer and middle rings have not been allocated yet.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention, including: a determining unit 1102, configured to determine, according to a downlink signal used by a terminal and a interference signal received by the terminal, a type of the terminal; And connected to the determining unit 1102, configured to allocate, to the terminal, an uplink spectrum resource corresponding to the type of the terminal.
  • the location of the terminal in different sectors is determined according to the situation of the terminal, and the frequency resource corresponding to the location is allocated to the terminal, so that the spectrum utilization and the expansion system are improved.
  • the capacity also reduces the interference, improves the cell edge performance, and improves the total throughput of the entire cell.
  • the determining unit 1102 includes: a dividing module, configured to divide a coverage area of each sector of the base station into N ring areas according to a signal strength of the base station and a interference condition of a neighboring base station, where, N
  • the determining module is connected to the dividing module, and is configured to determine the annular region where the terminal is located, by using the downlink signal and the above-mentioned downlink signal.
  • N 3. Since N>1 above, it is possible to divide the coverage area of the sector more finely, from The accuracy of frequency resource allocation is increased.
  • the ring area includes: an outer ring area and an inner ring area, wherein the foregoing allocating unit 1104 is further configured to allocate non-overlapping spectral bandwidths to the terminals located in outer ring areas of different sectors. Since the spectrum bandwidths of the terminals located in the outer ring area of different sectors do not overlap each other, the terminals are not subject to the same frequency interference, and the cell edge performance is improved.
  • the step of allocating the uplink spectrum resource corresponding to the type of the terminal to the terminal by the allocating unit 1104 further comprises: the allocating unit 1104 allocating a partially overlapping spectrum bandwidth for the terminal located in the inner ring area of different sectors.
  • the allocation unit 1104 partially overlaps the spectral bandwidth allocated by the terminal in the inner ring region of the first sector with the spectral bandwidth allocated by the allocating unit 1104 for the terminal located in the outer ring region of the second sector.
  • the transmission power is relatively smaller, and the same frequency as the terminal part in the outer loop area is timely, and the same frequency is also small. Therefore, by partially overlapping the spectral bandwidth allocated by the terminal in the inner ring region of the first sector with the spectral bandwidth allocated by the base station to the terminal located in the outer ring region of the second sector, It ensures low interference and improves the utilization of spectrum resources.
  • the step of corresponding uplink spectrum resources further includes: the allocating unit 1104 allocating the same spectrum bandwidth to the terminals located in the central ring region of different sectors.
  • the terminal in the central ring region in the first sector has a non-overlapping spectral bandwidth with the inner ring region and the outer ring region in the second sector. According to the above preferred embodiment, the granularity of the division of the coverage area of the sector is refined, so that resource allocation to the terminal can be performed more accurately.
  • the annular area includes: an outer ring area, a middle ring area, and an inner ring area
  • the allocating unit 1104 includes: a first allocating module, configured to allocate the outer ring area to the terminal located in the outer ring area
  • the second allocation module is configured to be connected to the first allocation module, and configured to allocate the spectrum resource in the central ring area and the unallocated spectrum resource in the outer ring area to the terminal located in the central ring area; Module, connected to the second distribution module, The spectrum resource of the inner ring region, the unallocated spectrum resource in the middle ring region, and the unallocated spectrum resource in the outer ring region are allocated to the terminal located in the inner ring region.
  • the terminals in each ring area can use the unallocated spectrum resources in the previous ring area, thereby improving the utilization of spectrum resources.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

上行频率资源的分配方法和基站 技术领域 本发明涉及通信领域, 具体而言, 涉及一种上行频谱资源的分配方法和 基站。 背景技术 正交频分复用 ( OFDM ) 技术是一种多载波传输技术, 它是由多载波调 制(MCM )发展而来的一种无线环境下的高速传输技术。 无线信道的频率响 应曲线大多是非平坦的,而 OFDM技术的主要思想是将频域内将给定信道分 成许多正交子信道, 在每个子信道上对每个子载波进行调制, 各子载波进行 并行传输。
WiMAX ( World Interoperability for Microwave Access, 全球微波接入互 操作性) 系统釆用 OFDM技术, 它的 TDD ( Time Division Duplexing, 时分 复用)模式的帧结构如图 1 , 帧结构是一个二维结构, 横轴是由时域的符号 ( Symbol )组成,纵轴是频域的子载波组成,图 1中的 TTG( Transmit/Receive Transition Gap )表示发送传输间隔, 其为下行子帧与接下去的上行突发脉冲 间的间隔; RTG ( Receive Transition Gap )表示接收传输间隔。 可以看到下行 子帧以前导 (Preamble ) 为开始, 前导主要用于物理层同步和均衡。 前导之 后为帧控制部分(FCH, Frame Control Header ), 另夕卜, 如果当前帧中还有 一个下行映射 ( DL-MAP ) 消息, 那么承载 DL-MAP消息的突发( Burst )就 应该紧接着 FCH 出现。 而且, 如果这个下行帧还需要传输上行映射 ( UL-MAP ) 消息, 这个 UL-MAP消息也是应该紧接着 DL-MAP消息出现 的。 接下去的帧部分用来传送数据, 这部分由多个突发脉冲组成。 众所周知, 频率资源是一种不可再生的稀缺和昂贵资源, 不能满足人们 日益上升的需求。 因此, 对于任何技术和网络规划来说, 频率资源都不会是 无穷尽被使用的, 正因如此, 在新技术发展的过程中, 需要研究如何更有效 地利用频率资源, 这也是目前国内外设备生产商和运营商都在关注的频率资 源的共享问题, 换句话说, 通信技术的更新换代, 也很大程度由于资源的稀 缺性决定的。 由于频率资源的总量受到限制, 所以需要通过新的方法或者技 术来实现更高速的传输和更广的覆盖。 这一点是未来通信技术发展的方向, 也是电信运营商和设备生产商未来努力的方向。 频率复用技术是为了提高频谱利用率和扩充系统容量而提出的一种组网 技术。 传统的频率复用技术可以分为异频复用技术和同频复用技术。 同频复 用技术可以做到频率复用因子为 1 , 即整个系统覆盖范围内的小区使用相同 的频带为本小区内的用户服务。 异频复用技术将系统内若千个使用不同频带 的小区组成一个复用簇, 该复用簇内占用的频带即为系统允许使用的所有频 带。 而整个系统则是由一个个这样的复用簇组成的。 同频复用技术由于复用因子仅为 1 , 因此具有很高的频谱利用率和系统 容量。 然而由于所有小区使用相同的频带, 边缘用户会受到来自其他相邻小 区的同频千扰,通信质量受到严重影响, 因而在实际的蜂窝系统中很少使用。 异频复用技术由于同频小区物理位置相隔较远, 能很好的抑制同频千扰。 然 而随着无线用户的日趋增多, 异频复用系统的系统容量受到很大的考验。 部分频率复用 (FFR, Fractional Frequency Reuse )技术是一种提高系统 容量的新技术。 FFR的思想是: 小区中心的用户, 信道条件较好, 并且由于 物理位置相隔比较远, 本身对其他小区的千 4尤也不大, 所以分配在频率复用 因子为 1的复用集上; 小区边缘用户, 由于离基站距离比较远, 信道条件比 较差, 跟其他小区的用户之间的千扰比较大, 所以分配在频率复用因子为 3 的复用集上。 当 WiMAX运营商频率资源不丰富时, 在无线通信网络规划中可能会釆 用同频组网方式 CxNxS为 1 X 1 X 3的方式, 其中 C为每簇中的基站数, N 是频率复用的总信道 (或信道组) 数, S 是每基站的扇区数。 但这种方式用 户在小区边界处受到千扰太大, 无法接收到有用信号, 在边界处无用信号的 载频与有用信号的载频相同, 并对接收同频有用信号的接收机造成千扰, 这 时大量的同频千扰将取代噪声和其它千扰,成为对这种组网方式的主要约束, 此时移动无线环境将由噪声受限环境变为千 4尤受限环境。 有些 WiMAX运营商可能会釆用组网方式 CxNxS为 l x3Segment (段) 3的方式, 虽然在这种组网方式下, 基站间同频千扰可以得到较好的抑制, 但频谱利用率变得很低, 吞吐量很难保证。 由上可知, 现有的频谱资源的分配方法无法使得终端最大限度的得到所 需的带宽资源。 发明内容 本发明的主要目的在于提供一种上行频谱资源的分配方法和基站, 以至 少解决现有的频谱资源的分配方法无法使得终端最大限度的得到所需的带宽 资源问题。 根据本发明的一个方面,提供了一种上行频谱资源的分配方法, 其包括: 基站根据用于终端的下行信号和上述终端接收到的千扰信号来判断上述终端 的类型; 上述基站为上述终端分配与上述终端的类型对应的上行频谱资源。 基站根据用于终端的下行信号和上述终端接收到的千扰信号来判断上述 终端的类型包括: 将上述基站的各个扇区的覆盖区域按照上述基站的信号强 弱及与相邻基站的千扰情况划分成 N个环形区域, 其中, N>1 ; 基站根据上 述下行信号和上述千扰信号判断上述终端所位于的环形区域。 上述环形区域包括: 外环区域和内环区域, 其中, 上述基站为上述终端 分配与上述终端的类型对应的上行频谱资源包括: 上述基站为位于不同扇区 的外环区域中的上述终端分配不重叠的频谱带宽。 上述基站为上述终端分配与上述终端的类型对应的上行频谱资源还包 括: 上述基站为位于不同扇区的内环区域中的上述终端分配部分重叠的频谱 带宽; 上述基站为位于第一扇区的内环区域中的上述终端分配的频谱带宽与 上述基站为位于第二扇区的外环区域中的上述终端分配的频谱带宽部分重 叠。 上述环形区域还包括: 中环区域, 位于上述外环区域和上述内环区域之 间, 其中, 上述基站为上述终端分配与上述终端的类型对应的上行频谱资源 还包括: 上述基站为位于不同扇区的中环区域中的上述终端分配相同的频谱 带宽。 上述环形区域包括: 外环区域、 中环区域和内环区域, 其中, 上述基站 为上述终端分配与上述终端的类型对应的上行频谱资源包括: 上述基站为位 于上述外环区域中的上述终端分配上述外环区域中的频谱资源; 上述基站为 位于上述中环区域中的上述终端分配上述中环区域中的频谱资源和上述外环 区域中未分配的频谱资源; 上述基站为位于上述内环区域中的上述终端分配 上述内环区域的频谱资源、 上述中环区域中未分配的频谱资源、 以及上述外 环区域中未分配的频 i普资源。 根据本发明的另一方面, 提供了一种基站, 其包括: 判断单元, 用于根 据用于终端的下行信号和上述终端接收到的千扰信号来判断上述终端的类 型; 分配单元, 用于为上述终端分配与上述终端的类型对应的上行频谱资源。 上述判断单元包括: 划分模块, 用于将上述基站的各个扇区的覆盖区域 按照上述基站的信号强弱及与相邻基站的千扰情况划分成 N个环形区域, 其 中, N>1 ; 判断模块, 用于根据上述下行信号和上述千扰信号判断上述终端 所位于的环形区 i或。 上述环形区域包括: 外环区域和内环区域, 其中, 上述分配单元还用于 为位于不同扇区的外环区域中的上述终端分配不重叠的频谱带宽。 上述环形区 i或包括: 夕卜环区 i或、 中环区 i或和内环区 i或, 其中, 上述分配 单元包括: 第一分配模块, 用于为位于上述外环区域中的上述终端分配上述 外环区域中的频谱资源; 第二分配模块, 用于为位于上述中环区域中的上述 终端分配上述中环区域中的频谱资源和上述外环区域中未分配的频谱资源; 第三分配模块, 用于为位于上述内环区域中的上述终端分配上述内环区域的 频谱资源、 上述中环区域中未分配的频谱资源、 以及上述外环区域中未分配 的频 i普资源。 本发明根据用户在不同扇区中所处的位置来分配频率资源, 使得在提高 频谱利用率和扩充系统容量同时, 也降低了千扰, 提高了小区边缘性能, 提 升了整个小区的总吞吐量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据相关技术的 Wimax帧结构的示意图; 图 2 是才艮据本发明实施例的上行频谱资源的分配方法的一种优选流程 图; 图 3是才艮据本发明实施例的 S=3 , N=3时用户的分布示意图; 图 4是才艮据本发明实施例的 S=3 , N=3时帧资源划分的示意图; 图 5是才艮据本发明实施例的 S=3 , N=2时用户的分布示意图; 图 6是才艮据本发明实施例的 S=3 , N=2时帧资源划分的示意图; 图 7是根据本发明实施例的 3 segment组网的示意图; 图 8是才艮据本发明实施例的 Wimax下 3segment组网 3环资源的帧结构 图; 图 9是才艮据本发明实施例的 Wimax下 3segment组网 3环资源的用户类 型判别的流程图; 图 10是根据本发明实施例的 Wimax下 3segment组网 3环资源的按帧调 度的资源分配的流程图; 图 11才艮据本发明实施例的基站的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 2是根据本发明实施例的上行频谱资源的分配方法的流程图, 其包括 以下步 4聚:
S202, 基站根据用于终端的下行信号和上述终端接收到的千扰信号来判 断上述终端的类型;
S204 , 上述基站为上述终端分配与上述终端的类型对应的上行频谱资 源。 现有的频谱资源分配方法并没有根据实际的千扰来分配频谱资源, 这样 使得频谱利用率变得很低, 吞吐量很难保证。 反观本发明实施例, 根据终端 的千扰情况来判断该终端在不同扇区中所处的位置, 并为该终端分配与该位 置对应的频率资源, 使得在提高频谱利用率和扩充系统容量同时, 也降低了 千扰, 提高了小区边缘性能, 提升了整个小区的总吞吐量。 优选的, 基站根据用于终端的下行信号和所述终端接收到的千扰信号来 判断所述终端的类型的步骤包括: 将所述基站的各个扇区的覆盖区域按照基 站的信号强弱及与相邻基站的千扰情况划分成 N个环形区域, 其中, N>1; 基站根据所述下行信号和所述千扰信号判断所述终端所位于的环形区域。 优 选的, N=3。 由于上述的 N>1 , 使得可以对扇区的覆盖区域进行更细粒度地划分, 从 而增加了频率资源分配的精度。 优选的, 所述环形区域包括: 外环区域和内环区域, 其中, 所述基站为 所述终端分配与所述终端的类型对应的上行频谱资源的步骤包括: 所述基站 为位于不同扇区的外环区域中的所述终端分配不重叠的频谱带宽。 由于位于不同扇区的外环区域中的终端彼此之间的频谱带宽不重叠, 从 而使得这些终端不会受到同频千扰, 提高了小区边缘性能。 优选的, 所述基站为所述终端分配与所述终端的类型对应的上行频谱资 源的步骤还包括: 所述基站为位于不同扇区的内环区域中的所述终端分配部 分重叠的频谱带宽; 所述基站为位于第一扇区的内环区域中的所述终端分配 的频谱带宽与所述基站为位于第二扇区的外环区域中的所述终端分配的频谱 带宽部分重叠。 根据上述的优选实施例, 由于内环区域中的终端距离基站较近, 其发射 功率相对较小, 及时与外环区域中的终端部分同频, 其产生的同频千 4尤也较 小。 因此, 通过将位于第一扇区的内环区域中的所述终端分配的频谱带宽与 所述基站为位于第二扇区的外环区域中的所述终端分配的频谱带宽部分重 叠, 使得既保证了较低的千扰, 又提高了频谱资源的利用率。 优选的, 所述环形区 i或还包括: 中环区 i或, 位于所述外环区 i或和所述内 环区域之间, 其中, 所述基站为所述终端分配与所述终端的类型对应的上行 频谱资源的步骤还包括: 所述基站为位于不同扇区的中环区域中的所述终端 分配相同的频谱带宽。 优选的, 第一扇区中的中环区域中的终端与第二扇区 中的内环区域和外环区域中的终端具有不重叠的频谱带宽。 根据上述优选的实施例, 细化了扇区的覆盖区域的划分粒度, 使得能够 更精确地对终端进行资源分配。 同时, 由于位于不同扇区的中环区域中的终 端具有相同的频谱带宽, 使得中环区域中的终端与外环区域中的终端之间的 千扰较小。 优选的, 所述环形区域包括: 外环区域、 中环区域和内环区域, 其中, 所述基站为所述终端分配与所述终端的类型对应的上行频谱资源的步骤包 括: 所述基站为位于所述外环区域中的所述终端分配所述外环区域中的频谱 资源; 所述基站为位于所述中环区域中的所述终端分配所述中环区域中的频 谱资源和所述外环区域中未分配的频谱资源; 所述基站为位于所述内环区域 中的所述终端分配所述内环区域的频谱资源、 所述中环区域中未分配的频谱 资源、 以及所述外环区域中未分配的频谱资源。 通过上述优选的分配方式, 各个环形区域中的终端均能使用前面的环形 区域中未分配的频谱资源, 从而提高了频谱资源的利用率。 下面对本发明的上行频谱资源的分配方法的实施例作进一步的描述。 在本发明的实施例中, 同频组网方式 CxNxS为 1 X 1 X S ( S是每基站的 扇区数) 的方式下, 在一个 S扇区同频组网的站下面, 根据用户与天线的角 度以及离天线的远近情况, 即根据本小区的信号强弱及受邻站的千扰情况可 以^ 1用户分成 N类: UserTypel , UserType2, UserType3... , UserTypeN, Ν 的取值是大于等于 2且少于等于扇区下的总的用户数, 如果 Ν为扇区下的总 的用户数时, 那就是根据每个用户的信号及千扰特点来分配资源和过功率控 制的方式来丈频率复用了。 UserTypel的用户受邻站的千 4尤最小, UserType2 次之..., 而 UserTypeN受邻站的千 4尤最大, 即外环用户。也就是说 UserTypel 到 UserTypeN受邻站的千扰情况逐渐增大, 基站根据其千扰的情况为不同的 UserType的用户作不同的处理: 为不同的 UserType的用户设定不同的功率控制策略和 AMC ( 自适应调 制编码) 策略。 用户的最大发射功率限制:
MaxTxPower ut 1 <MaxTxPower_ut2< ... < MaxTxPower utN MaxTxPower_utl是指 UserTypel的最大发射功率限制, 其余类推。 将带宽规划成 N份, 不同的 UserType使用相应的带宽, 以减少千扰使 得频谱利用率最大, 一般来说受千扰越少的用户可用资源越多, 受千扰越多 的用户可用资源越少, UserTypel 用户可以使用所有的带宽, 而 UserTypeN 用户只能使用外环带宽。 为了保证覆盖, 由于 UserTypeN用户 (外环用户) 受邻区千扰最大, 邻 区之间 UserTypeN用户不会使用相同的带宽, 也就是说在 1 x 1 x S下, S个 扇区的外环用户不会使用相同的带宽。 下面以较常用的 3扇区 (S=3 )组网方式以及用户分类为 N= 2和 3的场 景故进一步的说明。
3扇区组网的场景下, JL N为 3时, 一个扇区下的用户分成内环用户, 中环用户和外环用户。 内环用户一般处于天线的主瓣位置, 离站比较近, 路 损较小, 同时受邻区的千扰也比较小, 因此此类用户即使用很小的功率发送 上行信号, 到基站侧也会有较佳的质量; 中环用户相对来说比内环用户离站 要远一点,相对来说路损和千 4尤要大一点, 因此要保证一定的信号质量的话, 中环用户的发射功率要比内环用户要大一些; 而外环用户分成两种: 一种是 离站艮近但处于天线旁瓣的位置, 尽管信号强度大, 但由于离两个 Segment 的天线的距离差不多, 受到的千扰强度也很大, 另外一种是处于小区边缘, 离站最远, 路损最大, 受邻区的千 4尤也最严重, 在同频组网的情况下, 不解 决外环用户的千扰问题就没有办法保证覆盖。 才艮据上述 3类用户的特点以及用户分布情况和组网情况将一个站下的 3 个 Segment的上行帧分成内环区 i或 ( Inner Zone ), 外环区 i或 ( Outer Zone ) 和中环区 i或 ( Median Zone ) 3个部分, 如图 4所示。 内环用户主要使用内环资源, 在中环和外环资源有空闲的情况下也可以 使用中环和外环资源。 内环用户使用低功率发射,以减少对邻区外环的千扰。 中环用户主要使用中环资源, 在外环资源有空闲的情况下也可以使用外 环资源。 中环用户使用较低功率发射, 降低千扰同时也要保证一定的信号质 量。 外环用户受邻区的千扰较大, 同时对邻区的千扰也较大, 因此只能使用 外环资源, 使用较高的功率发射以保证覆盖。 由图 4可知, 同一站下的 3个 Segment的中环使用相同的频率资源; 3 个 Segment的外环是频分, 外环之间没有千 4尤; 而内环就是使用中环和外环 频率资源之外的所有频率资源, 3个 Segment的内环和内环之间, 内环和外 环之间有频率重叠。 3个 Segment之间, 中环与中环之间存在千 4尤, 所以中环用户的上行功 控需要控制上行用户保持适当的发射功率, 降低对邻区的千扰同时保证一定 的信号质量。 3个 Segment的内环与内环之间也存在千扰, 但内环的用户都 是要保持低的发射功率, 而且从图 3可知内环之间距离较远, 因此内环与内 环之间的千扰很轻。 与此同时, 3个 Segment的内外环之间存在千扰, 而且 外环一般功率都较高, 而内环功率低, 覆盖范围小, 所以一般是信道条件极 好的用户才能进内环,如果没有用户到达内环的条件,也可以没有内环用户。 而 3个 Segment的中环和外环之间由于是频分, 不存在千 4尤。 当 S=3 , N=2时, 也就是用户只分成外环和内环用户, 这个场景和 N=3 时的场景类似, 只是用户分类的粒度要粗一些, 用户发布如图 5所示, 帧结 构也有一些变化, 带宽资源只分成 2部分, 帧结构如图 6所示。 由于上行功率是可变的, 上行的信号情况不能反映用户的位置情况, 需 要根据下行信号情况进行判断。 当用户入网后, 根据用户本站的下行 CINR, RSSI信息以及终端接收到邻站的信号强弱来判断用户是处于内, 中, 外的那 个环, 根据所属用户的类型来进行策略性的功率控制和分配上行带宽资源。 用户分类流程如下:
1 ) 终端入网;
2 )基站根据下行 CINR, RSSI 信息以及终端接收到邻站的信号强弱判 别终端的用户类型; 3 ) 周期触发或事件触发基站重复上述步骤 2 ), 直到终端退网。 上行资源是按帧分配, 流程如下:
1 ) 先为 UserTypeN的用户分配 ZoneN的带宽, 直到带宽分配完或是用 户没有需求;
2 ) 为 UserTypeN- 1的用户分配 ZoneN- 1的带宽以及 ZoneN- 1未使用的 带宽, 直到带宽分配完或是用户没有需求;
3 ) 为 UserTypeN-2的用户分配 ZoneN的带宽以及 ZoneN- 1和 ZoneN-2 未使用的带宽, 直到带宽分配完或是用户没有需求; 4 ) 同理类推为 UserTypeN-3...UserType2的用户分配带宽, 直到带宽分 配完或是用户没有需求;
5 )为用户 UserTypel的用户分配资源,才艮据上面的流程可知, UserTypel 的用户可以使用整帧的未分配资源, 直到带宽分配完或是用户没有需求, 资 源分配结束。 与现有技术相比较, 本发明可以根据用户的实际千扰情况来决定频率的 复用情况, 在千扰较少时可以达到复用因子为 1 , 在千扰较大时, 就减少复 用的资源数来保证用户的传输质量, 因此在相同的信道环境下本发明有更高 的频谱利用率和系统吞吐量。 本发明的组网方法和装置也可以用于下行, 只是帧结构会有所不同。 下面结合附图对本发明提高上行频谱利用率的具体实施例( Wimax ),即, S=3 , Ν=3 , 也就是, 3Segment组网 3类用户的组网方法进行说明。
3Segment组网的场景下, 为了保证 Ranging区域 , FFB区 i或和 ACK区 域等控制信道的可靠性, 上行控制信道还是釆用 1/3频分的方式, 而数据信 道就釆用本发明的提高频谱利用率的组网方法, 组网示意图如图 7所示, 由 于分 3类用户, 所以资源也分成 3类, 帧结构如图 8所示。 在本发明的提高上行频谱利用率的具体实施例(Wimax )下, S=3 , N=3 , 即, 3Segment组网 3类用户的组网方法中对不同类型用户的处理具体实施步 骤如图 9所示: 步 4聚 S902: 终端入网; 步骤 S904: 基站根据终端的下行信号情况及终端所接收到邻站(相邻基 站) 的信号情况判决用户是内环、 中环还是外环用户; 步骤 S906:基站 居终端的用户类型对终端实施不同的功控策略和实施 不同的上行带宽分配机制; 步骤 S908: 判断终端的信号是否发生变化或是终端的重新判决周期到, 若是, 则转至步骤 S904, 否则转至步骤 S910; 步骤 S910: 判断终端是否退网,若是, 则流程结束, 否则转至步骤 S908; 在本发明的提高上行频谱利用率的具体实施例(Wimax )下, S=3 , N=3 , 即, 3Segment组网 3类用户的组网方法中对不同用户按帧调度的带宽资源分 配具体实施步 4聚如图 10所示: 步骤 S 1002: 为外环用户分配外环的带宽资源; 步 4聚 S 1004: 判断是否已经没有外环用户的需求或是外环资源已经分配 完, 若是, 则转至步骤 S 1006, 否则转至步骤 S 1002; 步骤 S 1006: 为中环用户分配中环的带宽资源以及外环还没有分配的带 宽资源; 步骤 S 1008: 判断是否已经没有中环用户的需求或是中环资源和外环资 源已经分配完, 若是, 则转至步骤 S 1010, 否则转至步骤 S 1006; 步 4聚 S 1010: 为内环用户分配内环的带宽资源以及外、 中环还没有分配 的带宽资源; 步 4聚 S 1012: 判断是否已经没有内环用户的需求或是所以可用资源已经 分配完, 若是, 则流程结束, 否则转至步骤 S 1010。 本发明还提供了一种基站, 该基站可以使用上述各个优选的上行频谱资 源的分配方法。 图 11才艮据本发明实施例的基站的结构示意图, 其包括: 判断 单元 1102 , 用于根据用于终端的下行信号和上述终端接收到的千扰信号来判 断上述终端的类型; 分配单元 1104 , 与判断单元 1102连接, 用于为上述终 端分配与上述终端的类型对应的上行频谱资源。 本发明实施例, 才艮据终端的千 4尤情况来判断该终端在不同扇区中所处的 位置, 并为该终端分配与该位置对应的频率资源, 使得在提高频谱利用率和 扩充系统容量同时, 也降低了千扰, 提高了小区边缘性能, 提升了整个小区 的总吞吐量。 优选的, 上述判断单元 1102包括: 划分模块, 用于将上述基站的各个扇 区的覆盖区域按照上述基站的信号强弱及与相邻基站的千扰情况划分成 N个 环形区域, 其中, N>1 ; 判断模块, 与划分模块连接, 用于 居上述下行信 号和上述千 4尤信号判断上述终端所位于的环形区域。 优选的, N=3。 由于上述的 N>1 , 使得可以对扇区的覆盖区域进行更细粒度地划分, 从 而增加了频率资源分配的精度。 优选的, 上述环形区域包括: 外环区域和内环区域, 其中, 上述分配单 元 1104 还用于为位于不同扇区的外环区域中的上述终端分配不重叠的频谱 带宽。 由于位于不同扇区的外环区域中的终端彼此之间的频谱带宽不重叠, 从 而使得这些终端不会受到同频千扰, 提高了小区边缘性能。 优选的,分配单元 1104为所述终端分配与所述终端的类型对应的上行频 谱资源的步骤还包括:分配单元 1104为位于不同扇区的内环区域中的所述终 端分配部分重叠的频谱带宽;分配单元 1104为位于第一扇区的内环区域中的 所述终端分配的频谱带宽与分配单元 1104 为位于第二扇区的外环区域中的 所述终端分配的频谱带宽部分重叠。 根据上述的优选实施例, 由于内环区域中的终端距离基站较近, 其发射 功率相对较小, 及时与外环区域中的终端部分同频, 其产生的同频千 4尤也较 小。 因此, 通过将位于第一扇区的内环区域中的所述终端分配的频谱带宽与 所述基站为位于第二扇区的外环区域中的所述终端分配的频谱带宽部分重 叠, 使得既保证了较低的千扰, 又提高了频谱资源的利用率。 优选的, 所述环形区 i或还包括: 中环区 i或, 位于所述外环区 i或和所述内 环区域之间, 其中, 分配单元 1104为所述终端分配与所述终端的类型对应的 上行频谱资源的步骤还包括:分配单元 1104为位于不同扇区的中环区域中的 所述终端分配相同的频谱带宽。 优选的, 第一扇区中的中环区域中的终端与 第二扇区中的内环区域和外环区域中的终端具有不重叠的频谱带宽。 根据上述优选的实施例, 细化了扇区的覆盖区域的划分粒度, 使得能够 更精确地对终端进行资源分配。 同时, 由于位于不同扇区的中环区域中的终 端具有相同的频谱带宽, 使得中环区域中的终端与外环区域中的终端之间的 千扰较小。 优选的, 上述环形区域包括: 外环区域、 中环区域和内环区域, 其中, 上述分配单元 1104包括: 第一分配模块, 用于为位于上述外环区域中的上述 终端分配上述外环区域中的频谱资源; 第二分配模块, 与第一分配模块连接, 用于为位于上述中环区域中的上述终端分配上述中环区域中的频谱资源和上 述外环区域中未分配的频谱资源; 第三分配模块, 与第二分配模块连接, 用 于为位于上述内环区域中的上述终端分配上述内环区域的频谱资源、 上述中 环区域中未分配的频谱资源、 以及上述外环区域中未分配的频谱资源。 通过上述优选的分配方式, 各个环形区域中的终端均能使用前面的环形 区域中未分配的频谱资源, 从而提高了频谱资源的利用率。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种上行频谱资源的分配方法, 包括:
基站根据用于终端的下行信号和所述终端接收到的千扰信号来判断 所述终端的类型;
所述基站为所述终端分配与所述终端的类型对应的上行频谱资源。
2. 根据权利要求 1所述的方法, 基站根据用于终端的下行信号和所述终端 接收到的千扰信号来判断所述终端的类型的步骤包括:
将所述基站的各个扇区的覆盖区域按照所述基站的信号强弱及与相 邻基站的千扰情况划分成 N个环形区域, 其中, N>1 ;
基站根据所述下行信号和所述千扰信号判断所述终端所位于的环形 区域。
3. 根据权利要求 2所述的方法, 所述环形区域包括: 外环区域和内环区域, 其中, 所述基站为所述终端分配与所述终端的类型对应的上行频谱资源 的步 4聚包括:
所述基站为位于不同扇区的外环区域中的所述终端分配不重叠的频 谱带宽。
4. 根据权利要求 3所述的方法, 所述基站为所述终端分配与所述终端的类 型对应的上行频谱资源的步骤还包括:
所述基站为位于不同扇区的内环区域中的所述终端分配部分重叠的 频谱带宽;
所述基站为位于第一扇区的内环区域中的所述终端分配的频谱带宽 与所述基站为位于第二扇区的外环区域中的所述终端分配的频谱带宽部 分重叠。
5. 根据权利要求 3所述的方法, 所述环形区域还包括: 中环区域, 位于所 述外环区域和所述内环区域之间, 其中, 所述基站为所述终端分配与所 述终端的类型对应的上行频谱资源的步骤还包括: 所述基站为位于不同扇区的中环区域中的所述终端分配相同的频谱 带宽。
6. 根据权利要求 2所述的方法, 所述环形区域包括: 外环区域、 中环区域 和内环区 i或, 其中, 所述基站为所述终端分配与所述终端的类型对应的 上行频谱资源的步骤包括:
所述基站为位于所述外环区域中的所述终端分配所述外环区域中的 频谱资源;
所述基站为位于所述中环区域中的所述终端分配所述中环区域中的 频谱资源和所述外环区域中未分配的频谱资源;
所述基站为位于所述内环区域中的所述终端分配所述内环区域的频 谱资源、 所述中环区域中未分配的频谱资源、 以及所述外环区域中未分 配的频 i普资源。
7. —种基站, 其特征在于, 包括:
判断单元, 用于才艮据用于终端的下行信号和所述终端接收到的千 4尤 信号来判断所述终端的类型;
分配单元, 用于为所述终端分配与所述终端的类型对应的上行频谱 资源。
8. 根据权利要求 7所述的基站, 所述判断单元包括:
划分模块, 用于将所述基站的各个扇区的覆盖区域按照所述基站的 信号强弱及与相邻基站的千扰情况划分成 N个环形区域, 其中, N>1; 判断模块, 用于根据所述下行信号和所述千扰信号判断所述终端所 位于的环形区 i或。
9. 根据权利要求 8所述的基站, 所述环形区域包括: 外环区域和内环区域, 配不重叠的频谱带宽。
10. 根据权利要求 8所述的基站, 所述环形区域包括: 外环区域、 中环区域 和内环区域, 其中, 所述分配单元包括:
第一分配模块, 用于为位于所述外环区域中的所述终端分配所述外 环区域中的频 i普资源; 第二分配模块, 用于为位于所述中环区域中的所述终端分配所述中 环区域中的频谱资源和所述外环区域中未分配的频谱资源;
第三分配模块, 用于为位于所述内环区域中的所述终端分配所述内 环区域的频谱资源、 所述中环区域中未分配的频谱资源、 以及所述外环 区域中未分配的频谱资源。
PCT/CN2010/079583 2010-06-30 2010-12-08 上行频率资源的分配方法和基站 WO2012000288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010220098.3 2010-06-30
CN2010102200983A CN102316584A (zh) 2010-06-30 2010-06-30 上行频谱资源的分配方法和基站

Publications (1)

Publication Number Publication Date
WO2012000288A1 true WO2012000288A1 (zh) 2012-01-05

Family

ID=45401356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079583 WO2012000288A1 (zh) 2010-06-30 2010-12-08 上行频率资源的分配方法和基站

Country Status (2)

Country Link
CN (1) CN102316584A (zh)
WO (1) WO2012000288A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107900A1 (en) * 2013-01-14 2014-07-17 Telefonaktiebolaget L M Ericsson (Publ) Resource scheduling in a wireless communication network
CN113014514A (zh) * 2019-12-19 2021-06-22 青岛海信宽带多媒体技术有限公司 一种传输资源的分配方法及设备
EP4373180A4 (en) * 2021-07-12 2024-09-04 Guangdong Oppo Mobile Telecommunications Corp Ltd WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND COMMUNICATION DEVICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394648A (zh) * 2007-09-17 2009-03-25 中兴通讯股份有限公司 一种时分双工系统中终端前导的发送方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222728B (zh) * 2007-01-09 2010-08-25 华为技术有限公司 在ofdma系统中使用时频资源的方法及系统
CN101325445B (zh) * 2007-06-15 2012-11-14 中兴通讯股份有限公司 一种正交频分多址接入系统的动态组网方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394648A (zh) * 2007-09-17 2009-03-25 中兴通讯股份有限公司 一种时分双工系统中终端前导的发送方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI KANG: "A new division method of cells", TELECOMMUNICATION ENGINEERING, vol. 48, no. 1, January 2008 (2008-01-01), pages 75 - 77 *
WEI KANG: "Application of concentric cell technology in mobile communication systems", JOURNAL OF HEFEI UNIVERSITY OF TECHNOLOGY, vol. 31, no. 1, January 2008 (2008-01-01), pages 29 - 31 *

Also Published As

Publication number Publication date
CN102316584A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
AU2021203676B2 (en) Techniques for scaling bandwidth of an unlicensed radio frequency spectrum band
CN110999220B (zh) 具有不同优先级等级的交叠控制资源集
US8666425B2 (en) System and method for semi-static downlink inter-cell interference coordination for wireless communications
US10206212B2 (en) Overlaying wireless networks
WO2016141518A1 (zh) 一种使用无线接口技术的方法以及装置和通信系统
KR101700184B1 (ko) 무선 통신을 위한 향상된 자원 입도를 갖는 퍼뮤테이션 장치 및 방법
KR102242515B1 (ko) 무선 자원 멀티플렉싱 방법, 기지국 장치, 단말기 장치 및 무선 통신 시스템
US20110194495A1 (en) Method for Managing Radio Resources for Uplink and Downlink in Wireless Communication System
US20120120881A1 (en) Subcarrier allocation for downlink channels in an orthogonal frequency division multiplex (ofdm) communication system
CN103220719B (zh) 一种载波聚合场景下载波资源规划方法
US12035146B1 (en) Systems and methods for wireless coexistence of OFDM technologies
US8411637B2 (en) Method for dividing a subcarrier permutation zone and an information configuration system
WO2012003695A1 (zh) 下行资源分配方法及基站
WO2012000288A1 (zh) 上行频率资源的分配方法和基站
CN102572961B (zh) 配置微小区无线接入点信道的方法及装置
Jo et al. Dynamic spectrum sharing algorithm for combined mobile networks
CN102316467B (zh) 分配通信资源的方法和装置
US20240172192A1 (en) Uplink and downlink resource scheduling to mitigate interference
US20240172226A1 (en) Cross link interference mitigation for full duplex wireless systems
WO2023186487A1 (en) Methods, communications devices, and network infrastructure equipment
CN117641566A (zh) 一种基于旁路的定位方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853991

Country of ref document: EP

Kind code of ref document: A1