WO2018086012A1 - 一种柔性石墨散热体 - Google Patents

一种柔性石墨散热体 Download PDF

Info

Publication number
WO2018086012A1
WO2018086012A1 PCT/CN2016/105216 CN2016105216W WO2018086012A1 WO 2018086012 A1 WO2018086012 A1 WO 2018086012A1 CN 2016105216 W CN2016105216 W CN 2016105216W WO 2018086012 A1 WO2018086012 A1 WO 2018086012A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
heat sink
flexible graphite
heat
heat dissipation
Prior art date
Application number
PCT/CN2016/105216
Other languages
English (en)
French (fr)
Inventor
林晓杰
Original Assignee
林晓杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林晓杰 filed Critical 林晓杰
Priority to PCT/CN2016/105216 priority Critical patent/WO2018086012A1/zh
Publication of WO2018086012A1 publication Critical patent/WO2018086012A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/04Electric heating systems using electric heating of heat-transfer fluid in separate units of the system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material

Definitions

  • the invention relates to an electrically heated graphite heat sink, in particular to a graphite heat sink capable of preventing high temperature oxidation of graphite.
  • the Chinese utility model patent specification CN 201976268 U discloses a graphite heating plate, which uses a metal foil and a heat insulating material to encapsulate and paste the graphite in the middle, and heats the device to be fixed at the graphite, and the thermostat is connected to the power source to form a graphite heat.
  • the form of the plate is used for rapid heating. According to the characteristics of rapid heat transfer of graphite, it can achieve energy-saving effect, and is suitable for wall, floor, bed, mattress, sofa, blanket, felt and so on.
  • the heat of the heating device cannot be dissipated by heat conduction, but is mainly dissipated by heat radiation or heat convection, which lacks a heat dissipation path and affects heat dissipation efficiency;
  • the superheated heating device causes the oxidation speed to be accelerated, and there is a possibility of scalding the human body;
  • the present invention provides a flexible graphite heat sink comprising a flexible graphite substrate, a heating component, a heat sink, a graphite substrate and a heat sink, and a heat sink and a heat sink.
  • the raised portions are all heat conductive materials, wherein the convex portion forms a cavity with the graphite substrate,
  • the heating element is arranged in the cavity in a heat transfer manner. Due to the presence of the raised portion, the heat transfer and heat dissipation area of the contact with the heating member is increased, and the temperature of the heating member and the heat dissipation plate and graphite can be lowered to avoid local overheat deformation and graphite oxidation. Further, the thermal conductivity of the raised portion is greater than 300 W/mk to ensure good heat dissipation or heat transfer.
  • the flexible graphite heat sink of the present invention has a heat conductive filler in the cavity formed by the convex portion and the graphite substrate, and the heat dispersion efficiency of the heating member can be more effectively improved.
  • the thermal conductivity of the thermally conductive filler is greater than 10 W/mk for better results.
  • the material of the thermally conductive filler may be any one of graphite crumb, thermally conductive polymer, thermal silica gel, thermal grease, ceramic powder or milky high temperature grease, or two or more of them may be selected.
  • the heating portion may be a heating wire or other general electric heating device capable of converting electrical energy into thermal energy.
  • the flexible graphite heat sink described above wherein the flexible graphite substrate is a high-density, anisotropic graphite foil heat sink, the high-density, anisotropic graphite foil heat sink comprising a compressed particle layer of exfoliated graphite, and the compression of the exfoliated graphite
  • the particle layer has a density of at least 1.0 g/cc and a thermal conductivity parallel to the flat surface of the high density, anisotropic graphite foil heat sink of at least 140 W/m °C.
  • the thickness of the flexible graphite substrate is preferably 0.25 mm to 3 mm, and the thickness of the heat dissipation plate is 1 to 10 mm.
  • the heat dissipation plate may be a galvanized steel plate or a ceramic plate.
  • the convex portion of the flexible graphite heat dissipating body of the present invention has a semi-circular shape, a fan shape, a square shape or a rectangular shape, and can better form a cavity to accommodate the heat-conductive filler to avoid the heating member and the heat dissipation plate. Direct contact while increasing the heat dissipation area. It is preferably semi-circular and achieves maximum heat dissipation surface area with minimal material usage.
  • the heat dissipating device of the invention can be dissipated by heat conduction, and can be dissipated by heat radiation or heat convection, thereby improving heat dissipation efficiency; and solving the local overheating temperature of the heat sink is close to 500 ° C, which causes slow oxidation of graphite.
  • the problem of lowering the thermal conductivity; solving the local overheating of the contact between the heating device and the graphite, and the problem of the oxidation speed being accelerated by the overheated heating device, avoiding the possibility of scalding the human body and local heating may cause deformation of the heat sink heat sink.
  • FIG. 1 is a schematic perspective view of a flexible graphite heat sink of the present invention.
  • FIG. 2 is a partial cross-sectional view showing a first embodiment of the flexible graphite heat sink of the present invention.
  • Figure 3 is a partial cross-sectional view showing a second embodiment of the flexible graphite heat sink of the present invention.
  • FIG. 2 is a partial cross-sectional view of a flexible graphite heat sink with a heating member.
  • a flexible graphite heat sink comprising a flexible graphite substrate 1 which is a calendered graphite paper having a planar thermal conductivity of 500 W/m ° C and a thickness of 0.2 mm.
  • the heating component 2 is an electric heating wire
  • the material is an iron-chromium-aluminum resistive electric heating wire
  • the diameter is 1.0 mm
  • the heat dissipation plate 3 is a galvanized steel plate
  • the graphite substrate 1 is closely adhered to the heat dissipation plate 3
  • the heat dissipation plate 3 has a direction along the heating wire.
  • the strip-like projections 4 have a semicircular cross section.
  • the heat radiating plate 3 and the boss portion 4 are both galvanized steel sheets
  • the convex portion 4 forms a cavity 5 with the graphite substrate 1
  • the heating member 2 is disposed in the cavity 5 in a heat transfer manner.
  • a flexible graphite heat sink of the same material and size is different from the above-described embodiment in that there is no boss 4 and a cavity 5, and the heating wire is sandwiched between the flat plate heat sink 3 and the graphite substrate 1. Continuous heating for only 11 minutes, the temperature of the iron-chromium-aluminum electric heating wire reaches 800 ° C, and the portion where the flexible graphite substrate is in direct contact with the heating wire is oxidized, and the heat dissipation plate is severely deformed.
  • the heat transfer and heat dissipation area in contact with the heating member 4 is increased, and the temperature of the heating member 4, the heat dissipation plate, and the graphite can be lowered, and local overheat deformation and graphite oxidation can be avoided.
  • the thermal conductivity of the boss portion 4 is greater than 30 W/m ° C to ensure a good heat transfer and heat dissipation effect.
  • the heating portion 2 can also be other general electric heating devices capable of converting electrical energy into thermal energy.
  • Figure 3 is a partial cross-sectional view of a flexible graphite heat sink with a heating member in accordance with a second embodiment of the present invention.
  • the graphite substrate 1 is a high-density, anisotropic graphite foil heat sink, the high-density, anisotropic graphite foil heat sink comprising a compressed particle layer of exfoliated graphite, the compressed particle layer of the exfoliated graphite having A thermal conductivity of at least 1.6 g/cc and a flat surface parallel to the high density, anisotropic graphite foil heat sink of at least 450 W/m °C.
  • the flexible graphite substrate 1 has a thickness of 0.124 mm and a heat dissipation plate thickness of 2 mm.
  • the heat sink 3 and the raised portion 4 are made of a ceramic plate.
  • the cavity formed by the convex portion 4 and the graphite substrate 1 has a heat conductive filler 6.
  • the heat conductive filler 6 is graphite scrap and has a thermal conductivity of 60 W/ m ° C.
  • the graphite paste of the thermally conductive filler in this embodiment is removed and subjected to a comparative experiment.
  • the time required for the temperature of the radiator to rise from the normal temperature before heating to 71 ° C is extended by 1 minute.
  • the contact area of the heating member 2 with the graphite substrate 1 and the heat dissipation plate 3 is further increased, the heat conduction efficiency is improved, the temperature of the heat dissipation plate 3 is increased faster, and the heating member 2 and the graphite base are further reduced.
  • the temperature of the contact point of the material 1 and the heat sink 3 effectively prevents local overheat deformation of the heat sink 3 and local oxidation of the graphite substrate 1.
  • the heat conductive filler 6 may be any one of a thermally conductive polymer, a thermally conductive silicone, a thermal grease, a ceramic powder or a milky high temperature grease, or two or more of them may be selected. Through experiments, the thermal conductivity of the thermally conductive filler 6 is greater than 60 W/mk for better results.
  • the heating element 2 can also be a nickel-chromium electrothermal alloy wire or other common electrical heating device capable of converting electrical energy into thermal energy.
  • the cross-sectional shape of the boss portion 4 may be semi-circular, fan-shaped, square or rectangular, which can better form the cavity 5 to accommodate the heat-conductive filler 6 to avoid direct contact between the heating member 2 and the heat sink 3, and increase the heat-dissipating area. .
  • the present invention can be produced and used industrially, and the present invention is not limited to the above description, It is within the scope of the present invention to fall within the scope of the present invention without departing from the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种柔性石墨散热体,包括柔性石墨基材(1),加热部件(2),散热板(3),石墨基材(1)与散热板(3)紧密贴合,散热板(3)上有凸起部(4),散热板(3)和凸起部(4)均为导热材料,凸起部(4)与石墨基材(1)形成空腔(5),加热部件(2)以热传递的方式布置在空腔(5)内;凸起部的存在,增大了与加热部件的接触传热和散热面积,能够降低加热部件与散热板、石墨的温度,避免局部过热变形和石墨氧化。

Description

一种柔性石墨散热体 技术领域
本发明涉及一种电加热石墨散热装置,特别是一种能够防止石墨高温氧化的石墨散热体。
背景技术
目前家庭或办公场所取暖,不具备集中供暖的地区,普遍使用电取暖的方式,例如电油汀,使用导热油做介质,但导热油比热容较大,导致预热时间长,并且电油汀重量较大,外形式样单一。
利用石墨的快速导热特性,可以制作电加热取暖装置,柔性石墨导热迅速、热效率高,重量轻,相对于电油汀,使用柔性石墨作为导热介质的电热器具备加热迅速、重量轻、可制作成多种形状等优点。中国实用新型专利说明书CN 201976268 U公开了一种石墨发热板,利用金属箔和保温材料把石墨包裹粘贴在中间于一体,把发热器件粘贴固定在石墨处,温控器连接电源组成一种石墨发热板的形式,进行快速发热效果。根据石墨可迅速传热的特性,达到节能功效,适用于墙面、地板、床、床垫、沙发、毯、毡等方面。
技术问题
但如果发热器件与金属箔、石墨等散热器件接触不充分,会存在以下问题:
1、导致发热器件的热量不能通过热传导的方式散出,而主要通过热辐射或热对流的方式散出,缺少了一种散热途径,影响散热效率;
2、导致发热器件与石墨接触的局部过热,石墨在500℃以上会氧化,若局部过热温度接近500℃,会造成石墨缓慢氧化,导热性能降低;
3、导致发热器件与石墨接触的局部过热,过热的发热器件导致氧化速度加快,并存在烫伤人体的可能;
4、局部受热会导致电暖器散热板产生变形,影响美观。
技术解决方案
为了解决上述技术问题,本发明提出了一种柔性石墨散热体,包括柔性石墨基材,加热部件,散热板,石墨基材与散热板紧密贴合,散热板上有凸起部,散热板和凸起部均为导热材料,其特征是,所述凸起部与石墨基材形成空腔, 加热部件以热传递的方式布置在空腔内。由于凸起部的存在,增大了与加热部件的接触传热和散热面积,能够降低加热部件与散热板、石墨的温度,避免局部过热变形和石墨氧化。进一步的,凸起部的热导率大于300W/mk,以保证良好的散热或热传递效果。
为了进一步提高散热或热传递效果,本发明的柔性石墨散热体,凸起部与石墨基材形成的空腔内有导热填充物,能够更加有效的提高加热部件的热分散效率。导热填充物的热导率大于10W/mk能够取得更好效果。导热填充物的材料可以选择石墨屑、导热高分子塑料、导热硅胶、导热硅脂、陶瓷粉末或乳状高温油脂的任意一种,或者选择其中两种或两种以上组合物。
上述的柔性石墨散热体,其加热部可以是电热丝或其它通用的能够将电能转化为热能的电加热器件。
上述的柔性石墨散热体,其柔性石墨基材是高密度、各向异性石墨箔散热体,所述高密度、各向异性石墨箔散热体包括剥离石墨的压缩粒子层,所述剥离石墨的压缩粒子层具有至少为1.0g/cc的密度和至少为140W/m℃的平行于高密度、各向异性石墨箔散热体的平表面的热导率。柔性石墨基材的厚度优选为0.25mm~3mm,散热板厚度为1~10mm。
本发明的柔性石墨散热体,其散热板可以是镀锌钢板或陶瓷板。
作为一种改进,本发明所述的柔性石墨散热体的凸起部的截面轮廓形状为半圆形、扇形、正方形或长方形,可以更好地形成空腔容纳导热填充物避免加热部件与散热板的直接接触,同时增大散热面积。优选为半圆形,用最小的材料使用量获得最大的散热表面积。
有益效果
本发明的散热装置,能既能通过热传导的方式散出,还能通过热辐射或热对流的方式散出,提高了散热效率;解决了散热体局部过热温度接近500℃,会造成石墨缓慢氧化,导热性能降低的问题;解决了发热器件与石墨接触的局部过热,过热的发热器件导致氧化速度加快的问题,避免了烫伤人体的可能以及局部受热会导致电暖器散热板产生变形。
附图说明
图1是本发明柔性石墨散热体的立体示意图。
图2是本发明柔性石墨散热体第一种实施方式的局部剖视图。
图3是本发明柔性石墨散热体第二种实施方式的局部剖视图。
图中:1-柔性石墨基材,2-加热部件,3-散热板,4-凸起部,5-空腔,6-导热填充物。
本发明的最佳实施方式
本发明的立体示意图如图1所示。图2是柔性石墨散热体中带有加热部件的局部剖视图。
一种柔性石墨散热体,包括柔性石墨基材1,为压延石墨纸,其平面热导率为500W/m℃,厚度为0.2mm。加热部件2为电热丝,材料为铁铬铝电阻式电热丝,直径1.0mm,散热板3为镀锌钢板,石墨基材1与散热板3紧密贴合,散热板3上有沿电热丝走向的条状凸起部4,凸起部4的截面为半圆形。散热板3和凸起部4均为镀锌钢板,凸起部4与石墨基材1形成空腔5,加热部件2以热传递的方式布置在空腔5内。
使用220v交流电,在20平米房间使用65cm×80cm面积的散热板,铁铬铝电热丝功率900W,长度320cm,测得持续加热至室温稳定,铁铬铝电热丝温度为109℃,散热板3表面温度为72℃,门窗封闭的外墙无保温层的砖混结构20平米室内空间在持续加热情况下室温稳定在25℃,连续加热48小时,柔性石墨基材无氧化现象,散热板无明显变形。
作为对比,取同样材料及尺寸的柔性石墨散热体,与上述本实施例的区别在于没有凸起部4和空腔5,电热丝被夹持在平板装散热板3与石墨基材1之间,连续加热仅11分钟,铁铬铝电热丝温度即达到800℃,柔性石墨基材与电热丝直接接触的部位氧化,散热板变形严重。
由于凸起部4的存在,增大了与加热部件4的接触传热和散热面积,能够降低加热部件4与散热板、石墨的温度,避免局部过热变形和石墨氧化。为了取得更好的散热效果,凸起部4的热导率大于30W/m℃,以保证良好的传热散热效果。加热部2也可以是其它通用的能够将电能转化为热能的电加热器件。
本发明的实施方式
图3是本发明的第二种实施方式,柔性石墨散热体中带有加热部件的局部剖视图。
柔性石墨散热体,石墨基材1是高密度、各向异性石墨箔散热体,所述高密度、各向异性石墨箔散热体包括剥离石墨的压缩粒子层,所述剥离石墨的压缩粒子层具有至少为1.6g/cc的度和至少为450W/m℃的平行于高密度、各向异性石墨箔散热体的平表面的热导率。柔性石墨基材1的厚度为0.124mm,散热板厚度为2mm。散热板3和凸起部4的材质均为陶瓷板,凸起部4与石墨基材1形成的空腔内有导热填充物6,导热填充物6为石墨屑,其热导率为60W/m℃。
使用220v交流电,在20平米房间使用65cm×80cm面积的散热板,铁铬铝电热丝功率900W,长度320cm,测得持续加热器件,铁铬铝电热丝温度为110℃,散热板3表面温度为71℃,门窗封闭的20平米室内空间在持续加热情况下室温稳定在23℃。
作为对比,将本实施例中的导热填充物石墨屑清除后进行对比实验,在没有导热填充物石墨屑的情况下,散热体温度从加热前的常温升至71℃所需的时间延长了1分钟。
由于导热填充物6的存在,进一步增加了加热部件2与石墨基材1和散热板3的接触面积,提高了导热效率,散热板3的温度提升更快,进一步降低了加热部件2与石墨基材1和散热板3的接触点的温度,有效避免散热板3的局部过热变形和石墨基材1的局部氧化。
本发明的柔性石墨散热体,导热填充物6可以是导热高分子塑料、导热硅胶、导热硅脂、陶瓷粉末或是乳状高温油脂的任意一种,或者选择其中两种或两种以上组合物。通过实验,导热填充物6的热导率大于60W/mk能够取得更好效果。加热部件2还可以是镍铬电热合金丝或其它通用的能够将电能转化为热能的电加热器件。
图4是本发明所述的柔性石墨散热体的凸起部4的截面轮廓形状为长方形的局部剖视图。凸起部4的截面轮廓形状可以是半圆形、扇形、正方形或长方形,可以更好地形成空腔5容纳导热填充物6避免加热部件2与散热板3的直接接触,同时增大散热面积。
工业实用性
本发明能够在工业上生产使用,本发明不仅限于上面描述的内容,在 本领域技术人员所具备的知识范围内,不脱离本发明构思的各种变化,仍落在本发明的保护范围内。
序列表自由内容

Claims (10)

  1. 一种柔性石墨散热体,包括柔性石墨基材(1),加热部件(2),散热板(3),石墨基材(1)与散热板(3)紧密贴合,散热板(3)上有凸起部(4),散热板(3)和凸起部(4)均为导热材料,其特征是,所述凸起部(4)与石墨基材(1)形成空腔(5),加热部件(2)以热传递的方式布置在空腔(5)内。
  2. 根据权利要求1所述的柔性石墨散热体,其特征是,所述凸起部(4)的的热导率大于300W/mk。
  3. 根据权利要求1所述的柔性石墨散热体,其特征是,所述凸起部(4)与石墨基材(1)形成的空腔(5)内有导热填充物(6)。
  4. 根据权利要求3所述的柔性石墨散热体,其特征是,所述导热填充物(6)的热导率大于10W/mk。
  5. 根据权利要求4所述的柔性石墨散热体,其特征是,所述导热填充物(6)的材料为石墨屑、导热高分子塑料、导热硅胶、导热硅脂或陶瓷粉末,或是乳状高温油脂等的任意一种,或任意两种以上的组合物。
  6. 根据权利要求1至5任意一项权利要求所述的柔性石墨散热体,其特征是,所述加热部(2)为电热丝。
  7. 根据权利要求1至5任意一项权利要求所述的柔性石墨散热体,其特征是,所述柔性石墨基材(1)是高密度、各向异性石墨箔散热体,所述高密度、各向异性石墨箔散热体包括剥离石墨的压缩粒子层,所述剥离石墨的压缩粒子层具有至少为1.0g/cc的密度和至少为140W/mk的平行于高密度、各向异性石墨箔散热体的平表面的热导率。
  8. 根据权利要求7所述的柔性石墨散热体,其特征是,所述柔性石墨基材(1)的厚度为0.25mm~3mm,散热板(3)的厚度为1~10mm。
  9. 根据权利要求1至5任意一项权利要求所述的柔性石墨散热体,其特征是,所述散热板(3)为镀锌钢板或陶瓷板或导热高分子材料。
  10. 根据权利要求1至5任意一项权利要求所述的柔性石墨散热体,其特征是,所述凸起部(4)的截面轮廓形状为半圆形、扇形、正方形、长方形或三角形。
PCT/CN2016/105216 2016-11-09 2016-11-09 一种柔性石墨散热体 WO2018086012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105216 WO2018086012A1 (zh) 2016-11-09 2016-11-09 一种柔性石墨散热体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105216 WO2018086012A1 (zh) 2016-11-09 2016-11-09 一种柔性石墨散热体

Publications (1)

Publication Number Publication Date
WO2018086012A1 true WO2018086012A1 (zh) 2018-05-17

Family

ID=62110161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105216 WO2018086012A1 (zh) 2016-11-09 2016-11-09 一种柔性石墨散热体

Country Status (1)

Country Link
WO (1) WO2018086012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531829A (zh) * 2022-02-28 2022-05-24 安徽碳华新材料科技有限公司 一种应用于无人机控制芯片的基于人工石墨的导热结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164369A1 (en) * 2002-03-01 2003-09-04 Sintec Keramik Gmbh & Co. Kg Resistive heating element and method of producing same
CN1590344A (zh) * 2003-09-04 2005-03-09 Sgl碳股份公司 膨胀石墨导热板及其制造方法
CN201476149U (zh) * 2009-05-11 2010-05-19 宁波高新区健坤电热技术有限公司 装修建材电加热采暖组件
CN201976268U (zh) * 2011-01-24 2011-09-14 黄斌 一种石墨发热板
CN103002607A (zh) * 2011-09-14 2013-03-27 吉富新能源科技(上海)有限公司 一种光伏玻璃均匀加热装置
CN204629670U (zh) * 2015-05-07 2015-09-09 福建亚伦电子电器科技有限公司 一种铸铁发热体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164369A1 (en) * 2002-03-01 2003-09-04 Sintec Keramik Gmbh & Co. Kg Resistive heating element and method of producing same
CN1590344A (zh) * 2003-09-04 2005-03-09 Sgl碳股份公司 膨胀石墨导热板及其制造方法
CN201476149U (zh) * 2009-05-11 2010-05-19 宁波高新区健坤电热技术有限公司 装修建材电加热采暖组件
CN201976268U (zh) * 2011-01-24 2011-09-14 黄斌 一种石墨发热板
CN103002607A (zh) * 2011-09-14 2013-03-27 吉富新能源科技(上海)有限公司 一种光伏玻璃均匀加热装置
CN204629670U (zh) * 2015-05-07 2015-09-09 福建亚伦电子电器科技有限公司 一种铸铁发热体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531829A (zh) * 2022-02-28 2022-05-24 安徽碳华新材料科技有限公司 一种应用于无人机控制芯片的基于人工石墨的导热结构

Similar Documents

Publication Publication Date Title
TWI257543B (en) Equalizing temperature device
TW201034272A (en) A heating structure and device and auxiliary cooling module that are applicable in a battery
CN207185041U (zh) 介面卡的交错式散热结构
WO2018086012A1 (zh) 一种柔性石墨散热体
CN209229998U (zh) 采用水冷散热的磁能感应加热装置及饮水机
CN108495388A (zh) 一种采用石墨烯导热导电的ptc发热体
WO2018086083A1 (zh) 一种箱形石墨导热散热器
CN208337903U (zh) 一种ptc标准件发热铝件
CN2665571Y (zh) Ptc热敏陶瓷电暖器
JP5145975B2 (ja) 流体加熱装置
CN208128559U (zh) 一种使用寿命长的发热盘
TWM511174U (zh) 具有增大受風面積的陶瓷加熱器
CN214949230U (zh) 一种远红外加热炉
CN209910357U (zh) 烘干装置
CN203689426U (zh) 一种电脑cpu用半导体散热器
CN208689533U (zh) 一种cpu散热片
CN212259368U (zh) 一种发热体
CN217088194U (zh) 一种串铝发热装置
CN205653387U (zh) 一种石墨烯散热涂层
WO2018086082A1 (zh) 一种柔性石墨散热装置
CN208418835U (zh) 无风扇的电磁炉装置
CN209087472U (zh) 一种ptc用铝制散热条
CN208735731U (zh) 一种电暖器用发热盘
CN209246216U (zh) 一种电暖气
RU184422U1 (ru) Электрическая конфорка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921171

Country of ref document: EP

Kind code of ref document: A1