WO2018084246A1 - Concentration method and concentration device - Google Patents

Concentration method and concentration device Download PDF

Info

Publication number
WO2018084246A1
WO2018084246A1 PCT/JP2017/039750 JP2017039750W WO2018084246A1 WO 2018084246 A1 WO2018084246 A1 WO 2018084246A1 JP 2017039750 W JP2017039750 W JP 2017039750W WO 2018084246 A1 WO2018084246 A1 WO 2018084246A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
module
upstream
target solution
semipermeable membrane
Prior art date
Application number
PCT/JP2017/039750
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 信也
櫻井 秀彦
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2018084246A1 publication Critical patent/WO2018084246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a concentration method and a concentration apparatus.
  • a reverse osmosis (RO) method is known as a desalination treatment technique for salt water such as seawater.
  • salt water that has been boosted to a predetermined pressure higher than the osmotic pressure by a high-pressure pump is supplied to the reverse osmosis (RO) membrane module and passed through the RO membrane, thereby removing salt and the like from seawater. It is a method of taking out.
  • the RO method has been studied in recent years because it consumes less energy than the conventionally known evaporation method. In such desalination of salt water, fresh water is obtained, while concentrated salt water called brine is discharged.
  • a method for treating brine generated by desalination treatment of seawater or the like so as not to discharge high-concentration salt water has begun to be studied.
  • a method called a brine concentration method is known.
  • the brine generated by the desalination treatment is further concentrated by an evaporation method, and finally the salt content in the brine is recovered as a crystallized salt (solid), thereby reducing the salt concentration.
  • Brine or fresh water is discharged (see, for example, Patent Document 1 (US Pat. No. 9085471)).
  • ZLD Zero Liquid Discharge
  • one of the inventors of the present invention examined a brine processing method that can reduce energy required for processing brine in the brine concentration method and reduce processing costs.
  • the inventors have found a concentration method using membrane separation that can increase the concentration rate more than the RO method.
  • the concentration method the same brine is supplied to both the first chamber and the second chamber partitioned by the semipermeable membrane of the semipermeable membrane module, and the brine in the first chamber is pressurized to be contained in the brine in the first chamber.
  • a membrane separation step for transferring water into the second chamber is performed.
  • Japanese Patent Application No. 2016-133279 Japanese Patent Application No. 2016-133279
  • An object of the present invention is to provide a concentration method and a concentration apparatus that can be performed by a simple process or apparatus.
  • a concentration method for concentrating a target solution Using a multistage membrane separation device in which a plurality of semipermeable membrane modules are connected in series, Each of the plurality of semipermeable membrane modules has a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
  • the plurality of semipermeable membrane modules are composed of a final module that is a semipermeable membrane module at one end thereof, and at least one upstream module that is a semipermeable membrane module other than the final module,
  • the target solution passes through the first chamber of the upstream module, a part of the target solution that passes through the first chamber of the upstream module passes through the first chamber of the final module, and the other part Passing through the second chamber of the final module, flowing the target solution so that the target solution that has passed through the second chamber of the final module passes through the second chamber of the upstream module, and ,
  • the upstream module is plural, The target solution sequentially passes through the first chamber of each of the upstream modules, and a part of the target solution that has passed through the first chamber of the upstream module passes through the first chamber of the final module; The other part has passed through the second chamber of the final module, and the target solution that has passed through the second chamber of the final module is in the reverse order of the first chamber in each of the upstream modules.
  • Each of the upstream modules is composed of a plurality of module units connected in parallel.
  • the module units each have a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
  • the semipermeable membrane is a hollow fiber membrane
  • the first chamber is outside the hollow fiber membrane
  • the second chamber is the hollow fiber membrane.
  • the finally diluted target solution flowing out from the first chamber of the upstream module is subjected to a desalination treatment using a reverse osmosis method to discharge fresh water and concentrate the target
  • the concentration method according to any one of [1] to [6], wherein the solution is supplied to the first chamber of the upstream module.
  • a concentration device for concentrating the target solution A multi-stage membrane separator comprising a plurality of semipermeable membrane modules connected in series, Each of the plurality of semipermeable membrane modules has a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane, The plurality of semipermeable membrane modules are composed of a final module that is a semipermeable membrane module at one end thereof, and at least one upstream module that is a semipermeable membrane module other than the final module, The membrane separator is A branch flow path connecting the first chamber of the upstream module and the first chamber and the second chamber of the final module; and A return flow path connecting the second chamber of the final module and the second chamber of the upstream module; Each of the plurality of semipermeable membrane modules further comprises a pressurizing device that pressurizes the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber.
  • the upstream module is plural, The upstream modules are connected in series;
  • the final module is connected to one end of the upstream module connected in series,
  • the branch flow path connects the first chamber of the upstream module coupled to the final module and the first chamber and the second chamber of the final module;
  • the return flow path connects the second chamber of the final module and the second chamber of the upstream module coupled to the final module;
  • a first flow path connecting the first chambers of each of the plurality of upstream modules in series;
  • a concentrating device according to [8] or [9], further comprising: a second flow path that connects the second chambers of each of the plurality of upstream modules in series.
  • Each of the upstream modules is composed of a plurality of module units connected in parallel.
  • the module units each have a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
  • the concentration device according to [11] wherein the number of the plurality of module units configuring each of the upstream modules is larger toward the upstream side.
  • a target solution such as brine is concentrated to a high concentration by using membrane separation
  • a concentration method and a concentration apparatus that can be carried out by a simple process or apparatus.
  • FIG. 1 is a schematic diagram showing a concentrator used in the first embodiment.
  • the concentrating device of this embodiment is a concentrating device for concentrating a target solution, and as shown in FIG. 1, a multi-stage type in which a plurality of semipermeable membrane modules 11, 12, and 13 are connected in series.
  • a membrane separation apparatus is provided.
  • Each of the plurality of semipermeable membrane modules 11, 12, 13 includes semipermeable membranes 110, 120, 130, first chambers 111, 121, 131 partitioned by the semipermeable membranes 110, 120, 130, and It has two chambers 112, 122, 132.
  • a plurality of semipermeable membrane modules 11, 12, and 13 connected in series include a semipermeable membrane module 13 (final module) at one end and two semipermeable membrane modules 11 and 12 (upstream modules) other than the final module. ).
  • the upstream module is a plurality of semipermeable membrane modules 11 and 12.
  • the upstream modules (semipermeable membrane modules 11, 12) are connected in series, and the final module (semipermeable membrane module 13) is connected to one end (semipermeable membrane module 12) of the upstream modules connected in series.
  • the upstream module may be one semipermeable membrane module.
  • the membrane separation device includes a supply channel 30, a first channel 31, and a second channel in order from the upstream side (target solution supply side) as a channel that connects the semipermeable membrane modules in series. 32, a branch channel 33, a return channel 34, and a discharge channel 35.
  • the first flow path 31 connects the first chambers 111 and 121 of the plurality of upstream modules (semipermeable membrane modules 11 and 12) in series.
  • the 2nd flow path 32 connects each 2nd chamber 112,122 of each of several upstream modules (semipermeable membrane module 11,12) in series.
  • the first channel 31 is a channel through which the target solution sequentially passes through the first chambers 111 and 121 of the upstream modules (semipermeable membrane modules 11 and 12).
  • the second flow path 32 is a flow for the target solution to sequentially pass through the second chambers 112 and 122 of the upstream modules (semipermeable membrane modules 11 and 12) in the reverse order to the first chamber. Road.
  • the branch flow path 33 includes a first chamber 121 of the semipermeable membrane module 12 (upstream module connected to the final module), and a first chamber 131 and a second chamber 132 of the semipermeable membrane module 13 (final module). Connecting.
  • the return flow path 34 connects the second chamber 132 of the semipermeable membrane module 13 and the second chamber 122 of the semipermeable membrane module 12.
  • a part of the target solution that has passed through the first chamber 121 of the upstream module passes through the first chamber 131 of the final module, and the other part of the target solution passes through the second chamber of the final module.
  • the target solution that is flowed into the first chambers 111, 121, 131 in each of the plurality of semipermeable membrane modules 11, 12, 13 is flowed into the second chambers 112, 122, 132.
  • a pressurizing device for pressurizing to a higher pressure is further provided.
  • the supply channel 30 is provided with a pump 41, and the return channel 34 is provided with a pump 42.
  • the pump 41 is a high-pressure pump (pressurization) capable of sending the target solution into the first chambers 111 and 121 at a pressure higher than the target solution flowing in the second chambers 112 and 112 (pressure higher than the pump 42). Instrument).
  • a pressurizing device for pressurizing the target solution flowing in the first chamber 131 from the outside of the semipermeable membrane module 13 is provided.
  • the supply path for supplying the target solution into the second chamber 132 may be provided with a mechanism for reducing the pressure.
  • This mechanism includes a device that produces a pressure difference before and after it, such as an automatic adjustment valve, that is, a device that maintains a high pressure before that and lowers the subsequent pressure, and a supply liquid that has a pressure such as an energy recovery device.
  • an apparatus having a mechanism for converting the energy recovered from the drive energy to the drive energy of the pump 41.
  • examples of the semipermeable membrane include a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), and a nanofiltration membrane (NF membrane: Nanofiltration Membrane). And a semipermeable membrane called an ultrafiltration membrane (UF membrane: Ultrafiltration Membrane).
  • the semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane.
  • the pressure of the target solution in the first chamber is preferably 0.5 to 10.0 MPa.
  • the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm.
  • the NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm.
  • the salt removal rate of the RO membrane, FO membrane, or NF membrane is preferably 90% or more.
  • the material constituting the semipermeable membrane is not particularly limited, and examples thereof include cellulose resins, polysulfone resins, and polyamide resins.
  • the semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.
  • the cellulose resin is preferably a cellulose acetate resin.
  • Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms.
  • the cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
  • the polysulfone resin is preferably a polyethersulfone resin.
  • the polyethersulfone resin is preferably a sulfonated polyethersulfone.
  • the shape of the semipermeable membrane is not particularly limited, and examples thereof include a flat membrane, a spiral membrane, and a hollow fiber membrane.
  • the flat membrane is simplified and drawn as a semipermeable membrane, it is not limited to such a shape and it is preferable that it is a hollow fiber membrane.
  • Hollow fiber membranes are smaller in thickness than spiral type semipermeable membranes, and can increase the membrane area per module and increase the penetration efficiency. It is advantageous.
  • the single-layer structure here does not need to be a uniform film as a whole, and may be a film that is not uniform in the thickness direction, for example. Specifically, it has a dense layer on the outer peripheral surface, and this dense layer is a separation active layer that substantially defines the pore diameter of the hollow fiber membrane, and the inner peripheral surface side has a lower density than the dense layer.
  • a simple film may be used.
  • the hollow fiber membrane As another specific example of the hollow fiber membrane, a two-layer structure having a dense layer made of a polyphenylene resin (for example, sulfonated polyethersulfone) on the outer peripheral surface of a support layer (for example, a layer made of polyphenylene oxide).
  • a membrane is mentioned.
  • Another example includes a two-layered film having a dense layer made of a polyamide resin on the outer peripheral surface of a support layer (for example, a layer made of polysulfone or polyethersulfone).
  • the concentration method of this embodiment is a concentration method for concentrating a target solution, and includes a membrane separation step.
  • concentration method of the present embodiment will be described with reference to FIG.
  • the membrane separation step is performed using a multistage membrane separation apparatus in which a plurality of semipermeable membrane modules 11, 12, and 13 are connected in series as shown in FIG. To concentrate the target solution.
  • the target solution is not particularly limited, and examples thereof include salt water (brine, seawater, brine, etc.), industrial waste water, and the like.
  • the concentration method of the present invention can be suitably used to further concentrate it.
  • the target solution may be subjected to pretreatment for removing fine particles, microorganisms, scale components, and the like contained in the solution.
  • pretreatment various known pretreatments used in seawater desalination technology and the like can be carried out. For example, filtration using NF membrane, UF membrane, MF membrane, etc., addition of sodium hypochlorite, aggregation Agent addition, activated carbon adsorption treatment, ion exchange resin treatment and the like.
  • Such pretreatment is preferably performed before supplying the target solution to the upstream module (semipermeable membrane module 11).
  • the target solution sequentially passes through the first chambers 111 and 121 of each of the upstream modules (semipermeable membrane modules 11 and 12), and then a part of the target solution that has passed through the first chamber of the upstream module. Passes through the first chamber 131 of the final module (semipermeable membrane module 13), the other part passes through the second chamber 132 of the final module, and the target solution that has passed through the second chamber 132 of the final module is The target solution is allowed to flow through the second chambers 122 and 112 of the upstream module sequentially in the reverse order of the first chambers 111 and 121.
  • the target solution flowing into the first chamber is pressurized to a pressure higher than that of the target solution flowing into the second chamber. Accordingly, in each of the plurality of semipermeable membrane modules, water contained in the target solution in the first chamber moves to the target solution in the second chamber through the semipermeable membrane, and the target solution in the first chamber is concentrated. At the same time, the target solution in the second chamber is diluted.
  • the method of pressurizing the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber is not particularly limited.
  • a method using the above-described high-pressure pump as the pump 41, the first Examples include a method of pressurizing the target solution flowing in the room from the outside of the semipermeable membrane module.
  • a target solution that is flowed into the first chambers 111 and 121 of the upstream module (semipermeable membrane modules 11 and 12) is flowed into the second chambers 112 and 122 using a high-pressure pump as the pump 41. Pressurized to a higher pressure than the solution.
  • the pressure of the target solution in the first chamber 131 is increased by pressurizing the semipermeable membrane module 13 from the outside with respect to the target solution flowing in the first chamber 131 of the final module (semipermeable membrane module 13). The pressure in the two chambers 132 is higher.
  • the first chamber is preferably outside the hollow fiber membrane
  • the second chamber is preferably inside the hollow fiber membrane. It is preferable that the solution outside the hollow fiber membrane is pressurized. Even if the solution flowing inside the hollow fiber membrane (hollow part) is pressurized, the pressure loss may increase and it may be difficult to perform the pressurization. Also, the structure of the hollow fiber membrane itself has a structure against the external pressure. This is because it is easy to hold and the membrane may rupture when a high internal pressure is applied. However, when a hollow fiber membrane having a small pressure loss, that is, having a large inner diameter and a high pressure resistance against the internal pressure is used, there is no problem even if the first chamber 11 is set inside the hollow fiber membrane.
  • the membrane constituting the hollow fiber membrane is a non-uniform membrane in the thickness direction as described above, it is preferable to have a dense layer on the outer surface of the hollow fiber membrane. Since the dense layer is a separation active layer that substantially defines the pore diameter of the hollow fiber membrane, when the solution outside the hollow fiber membrane is pressurized, the dense layer has a dense layer on the outer surface of the hollow fiber membrane. This is because the movement of molecules from the outside to the inside of the hollow fiber membrane can be controlled more accurately.
  • the concentration method of the present embodiment As described above, according to the concentration method of the present embodiment, the target solution that is finally concentrated to a high concentration that flows out from the first chamber 131 of the final module (semipermeable membrane module 13) and the target solution are discharged. Only the finally diluted target solution flowing out of the flow path 35 is obtained. Therefore, in this embodiment, when the target solution such as brine is concentrated to a high concentration using membrane separation, the generation of a plurality of diluted solutions having different concentrations is suppressed. Thereby, the concentration method of this embodiment can be implemented by a simple process or apparatus.
  • the concentrated salt water discharged from the first chamber 131 of the final module is further concentrated by the brine concentration method, for example, by the evaporation method.
  • the brine concentration method for example, by the evaporation method.
  • the osmotic pressure of the target solution concentrated on one side of the semipermeable membrane (the osmotic pressure difference between this osmotic pressure and the osmotic pressure of water on the other side of the semipermeable membrane that has passed through the RO membrane)
  • the forward osmotic force due to is generated in the direction opposite to the pressing force by the pump.
  • the pressure applied in the RO method is, for example, about 1 to 10 MPa.
  • the concentration of the solution supplied to the first chamber 111, 121 and the second chamber 112, 122 in each of the upstream modules (semipermeable membrane modules 11, 12) ( The osmotic pressure difference is smaller than that of the RO method, and the osmotic pressure of the solution supplied to the first chamber 131 and the second chamber 132 of the final module (semipermeable membrane module 13) is equal. Is unlikely to occur. For this reason, it is thought that the final concentration of the concentrated target solution can be increased as compared with the RO method, and in principle, the target solution can be concentrated to a saturated concentration.
  • the osmotic pressure difference (absolute value) of the solution supplied to the first chamber and the second chamber is smaller than the pressure for pressurizing the first chamber (pressure difference with the second chamber).
  • the osmotic pressure difference is smaller than the pressure applied, it is considered that the membrane separation step in this embodiment can be performed.
  • the osmotic pressures of the solutions supplied to the first chamber and the second chamber are basically the same.
  • the osmotic pressure of the target solution and the osmotic pressure of the target solution in the second chamber 12 may be slightly different, there is no problem in performing the membrane separation step in the present embodiment.
  • the concentration method of the present embodiment since the forward osmotic force acting in the opposite direction to the pump is difficult to occur, the concentration proceeds even if the pump pressure is low. For this reason, it is not necessary to use an expensive high-pressure pump, it is not necessary to increase the pressure resistance of the processing equipment, and the cost of equipment investment can be reduced. Moreover, since the pressure required to perform the concentration at a predetermined magnification can be reduced as compared with the RO method, the power consumption of the pump can be reduced and the energy efficiency of the concentration can be increased.
  • the target solution that is finally concentrated to a high concentration that flows out from the first chamber 131 of the final module (semipermeable membrane module 13) and the final diluted solution that flows out from the discharge flow path 35 are used. Only the target solution is obtained. Therefore, the concentration method of the present embodiment can be carried out by a process or apparatus that can easily process the diluted target solution as compared with Comparative Example 1 described later.
  • the finally diluted target solution discharged from the discharge channel 35 of the semipermeable membrane module 11 has a lower concentration than the original target solution.
  • the target solution is brine.
  • the diluted target solution discharged from the discharge channel 35 can be directly released to the ocean.
  • RO reverse osmosis
  • FIG. 2 is a schematic diagram showing a concentrating device used in Embodiment 2 of the present invention.
  • the concentrator used in this embodiment is composed of a plurality of module units 11a, 12a, 13a in which each upstream module (semipermeable membrane module 11, 12, 13) is connected in parallel. It differs from the concentrating device used in Embodiment 1 in that the number of module units constituting each of the modules is large.
  • the number of semipermeable membrane modules (the number in the series direction) is also one more than that of the first embodiment shown in FIG.
  • Each of the module units 11a, 12a, 13a, and 14a has a semipermeable membrane and a first chamber and a second chamber partitioned by the semipermeable membrane.
  • the target solution flowing through the first chambers 111, 121, and 131 is sequentially concentrated, so that the flow rate decreases as the concentration proceeds.
  • the flow rate decreases as the concentration proceeds. Since the concentration efficiency by the semipermeable membrane module decreases when the flow rate decreases, it is desirable to maintain the flow rate by reducing the processing capacity of the semipermeable membrane module as the concentration proceeds (as it goes downstream).
  • the upstream module (semipermeable membrane module 11, 12) has a larger processing capacity than the final module (semipermeable membrane module 13).
  • the processing capacity is larger on the upstream side (the first chamber side where the target solution is first flowed).
  • the treatment capacity is the maximum possible amount of water permeating the semipermeable membrane (permeable amount) per unit time in the entire semipermeable membrane module, and mainly depends on the type and area of the semipermeable membrane.
  • the semipermeable membrane modules 11, 12, and 13 three types of semipermeable membrane modules with decreasing processing capacities may be used.
  • the manufacturing cost of the semipermeable membrane module for producing a plurality of types of semipermeable membrane modules increases, it is preferable to use the same type of semipermeable membrane module.
  • each of the upstream modules is configured by a plurality of module units connected in parallel, and the number of the plurality of module units that configure each of the upstream modules is increased toward the upstream side. It is preferable to do.
  • the number of inefficient semipermeable membrane modules can be reduced, and the required processing capacity of the semipermeable membrane modules (the number of module units connected in parallel) can be reduced.
  • the efficiency of the concentration process can be increased, the number of modules can be minimized, and the apparatus cost can be reduced.
  • FIG. 3 is a schematic diagram showing a concentrating device used in Comparative Example 1. This comparison form is a concentration method similar to the brine processing method of Japanese Patent Application No. 2016-133279 already filed by the applicant.
  • the processing solution is supplied from the processing solution supply side (upstream side) to both the first chambers 111 and 121 and the second chambers 112 and 122. Is supplied. For this reason, diluted solutions A and B, which are diluted target solutions, flow out from the second chambers 112 and 122 of the semipermeable membrane modules 11 and 12, respectively. Further, the diluted solution C, which is the target solution diluted in the second chamber 132 of the final stage semipermeable membrane module 13, flows out of the second chamber 132 and is not returned to the semipermeable membrane module 12.
  • the dilute solutions (diluents A to C) generated in each stage are collected and handled in one flow path, but separate piping or the like is required. Further, when all the diluted solutions are simply mixed, the concentration of the mixed solution becomes high. For example, when the target solution is brine, the diluted solution may not be released into the sea. In addition, if the concentration exceeds the concentration that can be processed by the RO treatment, fresh water cannot be taken out by the RO treatment and used for disposal or industrial water.
  • the diluent A having a low concentration is subjected to a treatment such as being released into the ocean, while the diluents B and C having a high concentration use a separate semipermeable membrane module, or are in an appropriate stage.
  • a treatment such as being released into the ocean
  • the diluents B and C having a high concentration use a separate semipermeable membrane module, or are in an appropriate stage.
  • Embodiment 1 described above, the target solution that is finally concentrated to a high concentration and flows out from the first chamber 131 of the final module (semipermeable membrane module 13) from the target solution, and the discharge flow path 35. Only the final diluted target solution flowing out of the water is obtained (FIG. 1). Therefore, the diluted target solution generated by the concentration method of Embodiment 1 can be processed by a simple process or apparatus.
  • a pressurizing device is required for making the first chamber higher in pressure than the second chamber with respect to the semipermeable membrane module in each stage.
  • the first embodiment can be implemented by a simple process or apparatus in that pressure control is easy.
  • FIG. 4 is a schematic diagram showing a concentrating device used in Comparative Example 2.
  • the concentrator used in this comparative embodiment is composed of a plurality of module units 11a, 12a, and 13a each connected in parallel, each upstream module (semi-permeable membrane module 11, 12, and 13). It differs from the concentrating device used in the comparative form 2 in that the number of a plurality of module units constituting each of the modules is large.
  • the number of the semipermeable membrane modules (number in the series direction) is also one more than that of the comparative form 1 shown in FIG.
  • Each of the module units 11a, 12a, 13a, and 14a has a semipermeable membrane and a first chamber and a second chamber partitioned by the semipermeable membrane.
  • both the first chamber 111, 121, 131 and the second chamber 112, 122, 132 are supplied with the treatment solution (upstream). Treatment solution is supplied from the side). For this reason, the diluted solutions A, B, and C, which are diluted target solutions, flow out from the second chambers 112, 122, 132 of the semipermeable membrane modules 11, 12, 13, respectively. In addition, the diluent C, which is the target solution diluted in the second chamber 142 of the final stage semipermeable membrane module 14, flows out of the second chamber 132 and is not returned to the semipermeable membrane module 13.
  • the concentration method of Embodiment 1 can be performed by a simple process or apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A concentration method comprising a membrane separation step in which: a target solution is made to flow such that the target solution passes through a first chamber of an upstream module (semipermeable membrane module), a portion of the target solution that has passed through the first chamber of the upstream module passes through the first chamber of a final module, another portion of the target solution passes through a second chamber of the final module, and the target solution that has passed through the second chamber of the final module passes through a second chamber of the upstream module; and, at each of a plurality of semipermeable membrane modules, the target solution made to flow into the first chamber is pressurized to a pressure which is higher than that of the target solution made to flow into the second chamber so that water contained in the target solution in the first chamber is transferred through a semipermeable membrane to the target solution in the second chamber, concentrating the target solution in the first chamber, and diluting the target solution in the second chamber.

Description

濃縮方法および濃縮装置Concentration method and concentration apparatus
 本発明は、濃縮方法および濃縮装置に関する。 The present invention relates to a concentration method and a concentration apparatus.
 海水等の塩水の淡水化処理の技術として、逆浸透(RO:Reverse Osmosis)法が知られている。RO法は、高圧ポンプによって浸透圧より高い所定の圧力に昇圧された塩水を逆浸透(RO)膜モジュールに供給し、RO膜を通過させることで、海水中の塩分等を除去して淡水を取り出す方法である。 A reverse osmosis (RO) method is known as a desalination treatment technique for salt water such as seawater. In the RO method, salt water that has been boosted to a predetermined pressure higher than the osmotic pressure by a high-pressure pump is supplied to the reverse osmosis (RO) membrane module and passed through the RO membrane, thereby removing salt and the like from seawater. It is a method of taking out.
 RO法は、従来から知られている蒸発法よりも、エネルギーの消費量が少ないため、近年検討が進められている。このような塩水の淡水化処理においては、淡水が得られる一方で、ブラインと呼ばれる濃縮された塩水が排出される。 The RO method has been studied in recent years because it consumes less energy than the conventionally known evaporation method. In such desalination of salt water, fresh water is obtained, while concentrated salt water called brine is discharged.
 これまで、ブラインは主に海洋へ放流されていた。しかし、近年は、海水の塩濃度上昇などによる生態系への影響が懸念され始め、ブラインをそのまま放流できないようにする規制を設けることが検討されている。 Until now, brine has been mainly released into the ocean. However, in recent years, there has been concern about the impact on the ecosystem due to an increase in the salt concentration of seawater, and it has been studied to establish a regulation that prevents the brine from being discharged as it is.
 そこで、海水等の淡水化処理で発生するブラインを処理して、高濃度の塩水を排出しないようにする方法が検討され始めている。その代表的な手法としては、ブラインコンセントレーション法と呼ばれる方法が知られている。 Therefore, a method for treating brine generated by desalination treatment of seawater or the like so as not to discharge high-concentration salt water has begun to be studied. As a typical method, a method called a brine concentration method is known.
 ブラインコンセントレーション法では、例えば、淡水化処理によって生じたブラインを蒸発法によってさらに濃縮し、最終的にブライン中に含まれる塩分を結晶化塩(固体)として回収することで、塩分濃度が低減されたブラインや淡水を排出する(例えば、特許文献1(米国特許第9085471号明細書)参照)。この手法は、「Zero Liquid Discharge(ZLD)」とも呼ばれており、ブラインから結晶化塩(固形塩)を回収することで、高濃度のブラインが排出されず、また、有価塩を生産できるという利点もある。 In the brine concentration method, for example, the brine generated by the desalination treatment is further concentrated by an evaporation method, and finally the salt content in the brine is recovered as a crystallized salt (solid), thereby reducing the salt concentration. Brine or fresh water is discharged (see, for example, Patent Document 1 (US Pat. No. 9085471)). This method is also called “Zero Liquid Discharge (ZLD)”. By recovering crystallized salt (solid salt) from brine, high-concentration brine is not discharged and valuable salt can be produced. There are also advantages.
米国特許第9085471号明細書US Patent No. 9085471
 しかし、ブラインコンセントレーション法で用いられる蒸発法はエネルギーの消費量が大きいため、ブライン処理に必要なエネルギーが増加し、処理コストが増加するという問題がある。 However, since the evaporation method used in the brine concentration method consumes a large amount of energy, there is a problem that the energy required for the brine treatment increases and the processing cost increases.
 このため、本発明者の一人は、ブラインコンセントレーション法におけるブラインの処理に必要なエネルギーを低減し、処理コストを低減することのできる、ブラインの処理方法について検討した。その結果、RO法よりも濃縮率を高めることが可能な膜分離を用いた濃縮方法を見出している。その濃縮方法では、半透膜モジュールの半透膜で仕切られた第1室および第2室の両方に同じブラインを流し、第1室内のブラインを加圧することで第1室内のブラインに含まれる水を第2室内に移行させる膜分離工程を実施する。なお、本願出願人は、このようなブラインの処理方法等について既に特許出願(特願2016-133279)を行っている。 For this reason, one of the inventors of the present invention examined a brine processing method that can reduce energy required for processing brine in the brine concentration method and reduce processing costs. As a result, the inventors have found a concentration method using membrane separation that can increase the concentration rate more than the RO method. In the concentration method, the same brine is supplied to both the first chamber and the second chamber partitioned by the semipermeable membrane of the semipermeable membrane module, and the brine in the first chamber is pressurized to be contained in the brine in the first chamber. A membrane separation step for transferring water into the second chamber is performed. The applicant of the present application has already filed a patent application (Japanese Patent Application No. 2016-133279) for such a brine processing method.
 ここで、エネルギー消費量を低減するためには、蒸発法を用いる前に、エネルギー消費量の少ない膜分離法等により、ブラインをできる限り高濃度に濃縮しておくことが望ましい。1段の工程でのブラインの濃縮率には限界があるため、膜分離によってブラインの塩分濃度を十分に高めるためには、膜分離工程で多段の半透膜モジュールを用いることが好ましい。 Here, in order to reduce the energy consumption, it is desirable to concentrate the brine as high as possible by using a membrane separation method with a low energy consumption before using the evaporation method. Since there is a limit to the brine concentration rate in the single-stage process, it is preferable to use a multi-stage semipermeable membrane module in the membrane separation process in order to sufficiently increase the brine salinity by membrane separation.
 しかしながら、多段の半透膜モジュールを用いる場合、最終的に最も濃縮されたブライン以外に、段階的に濃度が異なる複数の希釈溶液が生じるため、その処理工程または処理装置が複雑になるという問題があった(図3、図4参照)。 However, when a multi-stage semipermeable membrane module is used, a plurality of dilute solutions having different concentrations in stages other than the most concentrated brine are finally generated, so that the processing step or processing apparatus becomes complicated. (See FIGS. 3 and 4).
 本発明は、上記の課題に鑑み、ブラインなどの対象溶液を膜分離を用いて高濃度に濃縮する際に、最終的に最も濃縮された対象溶液以外に、濃度が異なる複数の希釈溶液が生成することを抑制し、簡便な工程または装置により実施することのできる、濃縮方法および濃縮装置を提供することを目的とする。 In the present invention, in view of the above-mentioned problems, when concentrating a target solution such as brine to a high concentration using membrane separation, in addition to the most concentrated target solution, a plurality of diluted solutions having different concentrations are finally generated. An object of the present invention is to provide a concentration method and a concentration apparatus that can be performed by a simple process or apparatus.
 [1] 対象溶液を濃縮する濃縮方法であって、
 複数の半透膜モジュールが直列的に連結されてなる多段式の膜分離装置を用い、
 前記複数の半透膜モジュールの各々は、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
 前記複数の半透膜モジュールは、そのうちの一端の半透膜モジュールである最終モジュールと、前記最終モジュール以外の半透膜モジュールである少なくとも1つの上流モジュールと、からなり、
 前記対象溶液が前記上流モジュールの前記第1室を通過し、前記上流モジュールの前記第1室を通過した前記対象溶液の一部が前記最終モジュールの前記第1室を通過し、他の一部が前記最終モジュールの前記第2室を通過し、前記最終モジュールの前記第2室を通過した前記対象溶液が、前記上流モジュールの前記第2室を通過するように、前記対象溶液を流し、かつ、
 前記複数の半透膜モジュールの各々において、前記第1室内に流される前記対象溶液を前記第2室内に流される前記対象溶液よりも高い圧力に加圧することによって、
 前記第1室内の前記対象溶液に含まれる水を前記半透膜を介して前記第2室内の前記対象溶液に移行させ、前記第1室内の前記対象溶液を濃縮すると共に、前記第2室内の前記対象溶液を希釈する、膜分離工程、を含む、濃縮方法。
[1] A concentration method for concentrating a target solution,
Using a multistage membrane separation device in which a plurality of semipermeable membrane modules are connected in series,
Each of the plurality of semipermeable membrane modules has a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
The plurality of semipermeable membrane modules are composed of a final module that is a semipermeable membrane module at one end thereof, and at least one upstream module that is a semipermeable membrane module other than the final module,
The target solution passes through the first chamber of the upstream module, a part of the target solution that passes through the first chamber of the upstream module passes through the first chamber of the final module, and the other part Passing through the second chamber of the final module, flowing the target solution so that the target solution that has passed through the second chamber of the final module passes through the second chamber of the upstream module, and ,
In each of the plurality of semipermeable membrane modules, pressurizing the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber,
Water contained in the target solution in the first chamber is transferred to the target solution in the second chamber through the semipermeable membrane, the target solution in the first chamber is concentrated, and the water in the second chamber is concentrated. A concentration method comprising a membrane separation step of diluting the target solution.
 [2] 前記上流モジュールは、前記最終モジュールより処理容量が大きい、[1]に記載の濃縮方法。 [2] The concentration method according to [1], wherein the upstream module has a larger processing capacity than the final module.
 [3] 前記上流モジュールは複数であり、
 前記対象溶液が、前記上流モジュールの各々の前記第1室を順次通過し、前記上流モジュールの前記第1室を通過した前記対象溶液の一部が前記最終モジュールの前記第1室を通過し、他の一部が前記最終モジュールの前記第2室を通過し、前記最終モジュールの前記第2室を通過した前記対象溶液が、前記第1室とは逆の順序で前記上流モジュールの各々の前記第2室を順次通過するように、前記対象溶液を流す、[1]または[2]に記載の濃縮方法。
[3] The upstream module is plural,
The target solution sequentially passes through the first chamber of each of the upstream modules, and a part of the target solution that has passed through the first chamber of the upstream module passes through the first chamber of the final module; The other part has passed through the second chamber of the final module, and the target solution that has passed through the second chamber of the final module is in the reverse order of the first chamber in each of the upstream modules. The concentration method according to [1] or [2], wherein the target solution is allowed to flow sequentially through the second chamber.
 [4] 前記上流モジュールは、最初に前記対象溶液が流される前記第1室側である上流側ほど処理容量が大きい、[3]に記載の濃縮方法。 [4] The concentration method according to [3], wherein the upstream module has a larger processing capacity toward the upstream side, which is the first chamber side through which the target solution is first flowed.
 [5] 前記上流モジュールの各々は、並列的に接続された複数のモジュールユニットから構成され、
 前記モジュールユニットは、それぞれに、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
 前記上流モジュールの各々を構成する前記複数のモジュールユニットの数が、前記上流側ほど多い、[4]に記載の濃縮方法。
[5] Each of the upstream modules is composed of a plurality of module units connected in parallel.
The module units each have a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
The concentration method according to [4], wherein the number of the plurality of module units constituting each of the upstream modules is larger toward the upstream side.
 [6] 前記複数の半透膜モジュールの少なくとも1つにおいて、前記半透膜が中空糸膜であり、前記第1室は前記中空糸膜の外側であり、前記第2室は前記中空糸膜の内側である、[1]~[5]のいずれかに記載の濃縮方法。 [6] In at least one of the plurality of semipermeable membrane modules, the semipermeable membrane is a hollow fiber membrane, the first chamber is outside the hollow fiber membrane, and the second chamber is the hollow fiber membrane. The concentration method according to any one of [1] to [5], wherein
 [7] 前記上流モジュールの前記第1室から流出する最終的に希釈された前記対象溶液に対して、逆浸透法を用いた淡水化処理を行い、淡水を排出するとともに、濃縮された前記対象溶液を前記上流モジュールの前記第1室に供給する、[1]~[6]のいずれかに記載の濃縮方法。 [7] The finally diluted target solution flowing out from the first chamber of the upstream module is subjected to a desalination treatment using a reverse osmosis method to discharge fresh water and concentrate the target The concentration method according to any one of [1] to [6], wherein the solution is supplied to the first chamber of the upstream module.
 [8] 対象溶液を濃縮するための濃縮装置であって、
 複数の半透膜モジュールが直列的に連結されてなる多段式の膜分離装置を備え、
 前記複数の半透膜モジュールの各々は、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
 前記複数の半透膜モジュールは、そのうちの一端の半透膜モジュールである最終モジュールと、前記最終モジュール以外の半透膜モジュールである少なくとも1つの上流モジュールと、からなり、
 前記膜分離装置は、
 前記上流モジュールの前記第1室と、前記最終モジュールの前記第1室および前記第2室と、を接続する分岐流路、および、
 前記最終モジュールの前記第2室と、前記上流モジュールの前記第2室と、を接続する戻り流路とを含み、
 前記複数の半透膜モジュールの各々において、前記第1室内に流される前記対象溶液を前記第2室内に流される前記対象溶液よりも高い圧力に加圧する加圧器具をさらに備える、濃縮装置。
[8] A concentration device for concentrating the target solution,
A multi-stage membrane separator comprising a plurality of semipermeable membrane modules connected in series,
Each of the plurality of semipermeable membrane modules has a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
The plurality of semipermeable membrane modules are composed of a final module that is a semipermeable membrane module at one end thereof, and at least one upstream module that is a semipermeable membrane module other than the final module,
The membrane separator is
A branch flow path connecting the first chamber of the upstream module and the first chamber and the second chamber of the final module; and
A return flow path connecting the second chamber of the final module and the second chamber of the upstream module;
Each of the plurality of semipermeable membrane modules further comprises a pressurizing device that pressurizes the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber.
 [9] 前記上流モジュールは、前記最終モジュールより処理容量が大きい、[8]に記載の濃縮装置。 [9] The concentrator according to [8], wherein the upstream module has a larger processing capacity than the final module.
 [10] 前記上流モジュールは複数であり、
 前記上流モジュールは直列的に連結され、
 直列的に連結された前記上流モジュールの一端に前記最終モジュールが連結され、
 前記分岐流路は、前記最終モジュールに連結される前記上流モジュールの前記第1室と、前記最終モジュールの前記第1室および前記第2室と、を接続し、
 前記戻り流路は、前記最終モジュールの前記第2室と、前記最終モジュールに連結される前記上流モジュールの前記第2室と、を接続し、
 さらに、複数の前記上流モジュールの各々の前記第1室を直列的に接続する第1流路と、
 複数の前記上流モジュールの各々の前記第2室を直列的に接続する第2流路と、を備える、[8]または[9]に記載の濃縮装置。
[10] The upstream module is plural,
The upstream modules are connected in series;
The final module is connected to one end of the upstream module connected in series,
The branch flow path connects the first chamber of the upstream module coupled to the final module and the first chamber and the second chamber of the final module;
The return flow path connects the second chamber of the final module and the second chamber of the upstream module coupled to the final module;
A first flow path connecting the first chambers of each of the plurality of upstream modules in series;
A concentrating device according to [8] or [9], further comprising: a second flow path that connects the second chambers of each of the plurality of upstream modules in series.
 [11] 前記上流モジュールは、最初に前記対象溶液が流される前記第1室側である上流側ほど処理容量が大きい、[10]に記載の濃縮装置。 [11] The concentrator according to [10], wherein the upstream module has a larger processing capacity toward the upstream side that is the first chamber side through which the target solution is first flowed.
 [12] 前記上流モジュールの各々は、並列的に接続された複数のモジュールユニットから構成され、
 前記モジュールユニットは、それぞれに、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
 前記上流モジュールの各々を構成する前記複数のモジュールユニットの数が、前記上流側ほど多い、[11]に記載の濃縮装置。
[12] Each of the upstream modules is composed of a plurality of module units connected in parallel.
The module units each have a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
The concentration device according to [11], wherein the number of the plurality of module units configuring each of the upstream modules is larger toward the upstream side.
 [13] 前記第2室内に流される前記対象溶液よりも高い圧力で前記対象溶液を前記第1室内に送ることのできる高圧ポンプを有する、[8]~[12]のいずれかに記載の濃縮装置。 [13] The concentration according to any one of [8] to [12], further including a high-pressure pump capable of sending the target solution into the first chamber at a pressure higher than that of the target solution flowing into the second chamber. apparatus.
 [14] [1]に記載の濃縮方法に用いられる、[8]~[13]のいずれかに記載の濃縮装置。 [14] The concentration apparatus according to any one of [8] to [13], which is used in the concentration method according to [1].
 本発明によれば、ブラインなどの対象溶液を膜分離を用いて高濃度に濃縮する際に、最終的に最も濃縮された対象溶液以外に、濃度が異なる複数の希釈溶液が生成することを抑制し、簡便な工程または装置により実施することのできる、濃縮方法および濃縮装置を提供することができる。 According to the present invention, when a target solution such as brine is concentrated to a high concentration by using membrane separation, it is possible to suppress the generation of a plurality of diluted solutions having different concentrations in addition to the most concentrated target solution. In addition, it is possible to provide a concentration method and a concentration apparatus that can be carried out by a simple process or apparatus.
本発明の実施形態1で用いられる濃縮装置を示す模式図である。It is a schematic diagram which shows the concentration apparatus used in Embodiment 1 of this invention. 本発明の実施形態2で用いられる濃縮装置を示す模式図である。It is a schematic diagram which shows the concentration apparatus used in Embodiment 2 of this invention. 比較形態1で用いられる濃縮装置を示す模式図である。It is a schematic diagram which shows the concentration apparatus used by the comparative form 1. 比較形態2で用いられる濃縮装置を示す模式図である。It is a schematic diagram which shows the concentration apparatus used by the comparative form 2.
 以下、本発明の実施形態について、図面を参照して説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を表す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same reference numerals represent the same or corresponding parts.
 [実施形態1]
 <濃縮装置>
 図1は、実施形態1で用いられる濃縮装置を示す模式図である。本実施形態の濃縮装置は、対象溶液を濃縮するための濃縮装置であって、図1に示されるように、複数の半透膜モジュール11,12,13が直列的に連結されてなる多段式の膜分離装置を備える。
[Embodiment 1]
<Concentrator>
FIG. 1 is a schematic diagram showing a concentrator used in the first embodiment. The concentrating device of this embodiment is a concentrating device for concentrating a target solution, and as shown in FIG. 1, a multi-stage type in which a plurality of semipermeable membrane modules 11, 12, and 13 are connected in series. A membrane separation apparatus.
 複数の半透膜モジュール11,12,13の各々は、半透膜110,120,130、並びに、半透膜110,120,130で仕切られた第1室111,121,131、および、第2室112,122,132を有する。 Each of the plurality of semipermeable membrane modules 11, 12, 13 includes semipermeable membranes 110, 120, 130, first chambers 111, 121, 131 partitioned by the semipermeable membranes 110, 120, 130, and It has two chambers 112, 122, 132.
 直列的に連結された複数の半透膜モジュール11,12,13は、そのうちの一端の半透膜モジュール13(最終モジュール)と、最終モジュール以外の2つの半透膜モジュール11,12(上流モジュール)と、からなる。 A plurality of semipermeable membrane modules 11, 12, and 13 connected in series include a semipermeable membrane module 13 (final module) at one end and two semipermeable membrane modules 11 and 12 (upstream modules) other than the final module. ).
 本実施形態において、上流モジュールは複数の半透膜モジュール11,12である。上流モジュール(半透膜モジュール11,12)は直列的に連結され、直列的に連結された上流モジュールの一端(半透膜モジュール12)に最終モジュール(半透膜モジュール13)が連結されている。ただし、このような形態に限定されず、上流モジュールは、1つの半透膜モジュールであってもよい。 In this embodiment, the upstream module is a plurality of semipermeable membrane modules 11 and 12. The upstream modules (semipermeable membrane modules 11, 12) are connected in series, and the final module (semipermeable membrane module 13) is connected to one end (semipermeable membrane module 12) of the upstream modules connected in series. . However, it is not limited to such a form, The upstream module may be one semipermeable membrane module.
 上記の膜分離装置は、上記の半透膜モジュールを直列的に連結する流路として、上流側(対象溶液の供給側)から順に、供給流路30、第1流路31、第2流路32、分岐流路33、戻り流路34、および、排出流路35を含む。 The membrane separation device includes a supply channel 30, a first channel 31, and a second channel in order from the upstream side (target solution supply side) as a channel that connects the semipermeable membrane modules in series. 32, a branch channel 33, a return channel 34, and a discharge channel 35.
 第1流路31は、複数の上流モジュール(半透膜モジュール11,12)の各々の第1室111,121を直列的に接続する。また、第2流路32は、複数の上流モジュール(半透膜モジュール11,12)の各々の第2室112,122を直列的に接続する。 The first flow path 31 connects the first chambers 111 and 121 of the plurality of upstream modules (semipermeable membrane modules 11 and 12) in series. Moreover, the 2nd flow path 32 connects each 2nd chamber 112,122 of each of several upstream modules (semipermeable membrane module 11,12) in series.
 第1流路31は、対象溶液が上流モジュール(半透膜モジュール11,12)の各々の第1室111,121を順次通過するための流路である。また、第2流路32は、対象溶液が、第1室とは逆の順序で、上流モジュール(半透膜モジュール11,12)の各々の第2室112,122を順次通過するための流路である。 The first channel 31 is a channel through which the target solution sequentially passes through the first chambers 111 and 121 of the upstream modules (semipermeable membrane modules 11 and 12). The second flow path 32 is a flow for the target solution to sequentially pass through the second chambers 112 and 122 of the upstream modules (semipermeable membrane modules 11 and 12) in the reverse order to the first chamber. Road.
 分岐流路33は、半透膜モジュール12(最終モジュールに連結される上流モジュール)の第1室121と、半透膜モジュール13(最終モジュール)の第1室131および第2室132と、を接続する。戻り流路34は、半透膜モジュール13の第2室132と、半透膜モジュール12の第2室122と、を接続する。 The branch flow path 33 includes a first chamber 121 of the semipermeable membrane module 12 (upstream module connected to the final module), and a first chamber 131 and a second chamber 132 of the semipermeable membrane module 13 (final module). Connecting. The return flow path 34 connects the second chamber 132 of the semipermeable membrane module 13 and the second chamber 122 of the semipermeable membrane module 12.
 すなわち、分岐流路33および戻り流路34は、上流モジュールの第1室121を通過した対象溶液の一部が最終モジュールの第1室131を通過し、他の一部が最終モジュールの第2室132を通過し、最終モジュールの第2室132を通過した対象溶液が、上流モジュールの第2室122に戻されるように、対象溶液を流すための流路である。 That is, in the branch flow path 33 and the return flow path 34, a part of the target solution that has passed through the first chamber 121 of the upstream module passes through the first chamber 131 of the final module, and the other part of the target solution passes through the second chamber of the final module. This is a flow path for flowing the target solution so that the target solution that has passed through the chamber 132 and passed through the second chamber 132 of the final module is returned to the second chamber 122 of the upstream module.
 上記の濃縮装置は、複数の半透膜モジュール11,12,13の各々において、第1室111,121,131内に流される対象溶液を第2室112,122,132内に流される対象溶液よりも高い圧力に加圧する加圧器具をさらに備える。 In the concentrator, the target solution that is flowed into the first chambers 111, 121, 131 in each of the plurality of semipermeable membrane modules 11, 12, 13 is flowed into the second chambers 112, 122, 132. A pressurizing device for pressurizing to a higher pressure is further provided.
 供給流路30にはポンプ41が設けられ、戻り流路34にはポンプ42が設けられている。ポンプ41は、第2室112,112内に流される対象溶液よりも高い圧力(ポンプ42よりも高い圧力)で、対象溶液を第1室111,121内に送ることのできる高圧ポンプ(加圧器具)である。 The supply channel 30 is provided with a pump 41, and the return channel 34 is provided with a pump 42. The pump 41 is a high-pressure pump (pressurization) capable of sending the target solution into the first chambers 111 and 121 at a pressure higher than the target solution flowing in the second chambers 112 and 112 (pressure higher than the pump 42). Instrument).
 また、第1室131内を流れる対象溶液を半透膜モジュール13の外部から加圧するための加圧器具が設けられている。また、対象溶液を第2室132内へ供給する供給経路には、その圧力を低下させる機構が備えられていてもよい。この機構としては、自動調節バルブのように、その前後で圧力差を生じさせる、つまりその前の圧力を高く保ち、その後の圧力を低下させる装置や、エネルギー回収装置のように圧力を有する供給液体から回収したエネルギーをポンプ41の駆動エネルギー補助に変換する機構を持つ装置が挙げられる。 In addition, a pressurizing device for pressurizing the target solution flowing in the first chamber 131 from the outside of the semipermeable membrane module 13 is provided. The supply path for supplying the target solution into the second chamber 132 may be provided with a mechanism for reducing the pressure. This mechanism includes a device that produces a pressure difference before and after it, such as an automatic adjustment valve, that is, a device that maintains a high pressure before that and lowers the subsequent pressure, and a supply liquid that has a pressure such as an energy recovery device. And an apparatus having a mechanism for converting the energy recovered from the drive energy to the drive energy of the pump 41.
 なお、半透膜モジュールにおいて、半透膜としては、例えば、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、限外ろ過膜(UF膜:Ultrafiltration Membrane)と呼ばれる半透膜が挙げられる。半透膜は、好ましくは逆浸透膜または正浸透膜、ナノろ過膜である。なお、半透膜として逆浸透膜または正浸透膜、ナノろ過膜を用いる場合、第1室内の対象溶液の圧力は、好ましくは0.5~10.0MPaである。 In the semipermeable membrane module, examples of the semipermeable membrane include a reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane), a forward osmosis membrane (FO membrane: Forward Osmosis Membrane), and a nanofiltration membrane (NF membrane: Nanofiltration Membrane). And a semipermeable membrane called an ultrafiltration membrane (UF membrane: Ultrafiltration Membrane). The semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane. When a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane is used as the semipermeable membrane, the pressure of the target solution in the first chamber is preferably 0.5 to 10.0 MPa.
 通常、RO膜およびFO膜の孔径は約2nm以下であり、UF膜の孔径は約2~100nmである。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1~2nmである。半透膜としてRO膜またはFO膜、NF膜を用いる場合、RO膜またはFO膜、NF膜の塩除去率は好ましくは90%以上である。 Usually, the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm. The NF membrane has a relatively low blocking rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm. When an RO membrane, FO membrane, or NF membrane is used as the semipermeable membrane, the salt removal rate of the RO membrane, FO membrane, or NF membrane is preferably 90% or more.
 半透膜を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。半透膜は、セルロース系樹脂およびポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。 The material constituting the semipermeable membrane is not particularly limited, and examples thereof include cellulose resins, polysulfone resins, and polyamide resins. The semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.
 セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。 The cellulose resin is preferably a cellulose acetate resin. Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms. The cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.
 ポリスルホン系樹脂は、好ましくはポリエーテルスルホン系樹脂である。ポリエーテルスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホンである。 The polysulfone resin is preferably a polyethersulfone resin. The polyethersulfone resin is preferably a sulfonated polyethersulfone.
 半透膜の形状としては、特に限定されないが、例えば、平膜、スパイラル膜または中空糸膜が挙げられる。なお、図1等では、半透膜として平膜を簡略化して描いているが、このような形状に限定されるものではなく、中空糸膜であることが好ましい。中空糸膜(中空糸型半透膜)は、スパイラル型半透膜などに比べて、膜厚が小さく、さらにモジュール当たりの膜面積を大きくすることができ、浸透効率を高めることができる点で有利である。 The shape of the semipermeable membrane is not particularly limited, and examples thereof include a flat membrane, a spiral membrane, and a hollow fiber membrane. In addition, in FIG. 1 etc., although the flat membrane is simplified and drawn as a semipermeable membrane, it is not limited to such a shape and it is preferable that it is a hollow fiber membrane. Hollow fiber membranes (hollow fiber type semipermeable membranes) are smaller in thickness than spiral type semipermeable membranes, and can increase the membrane area per module and increase the penetration efficiency. It is advantageous.
 具体的な中空糸膜の一例としては、全体がセルロース系樹脂から構成されている単層構造の膜が挙げられる。ただし、ここでいう単層構造とは、層全体が均一な膜である必要はなく、例えば、厚み方向に不均一な膜であってもよい。具体的には、外周表面に緻密層を有し、この緻密層が実質的に中空糸膜の孔径を規定する分離活性層となっており、内周表面側は緻密層よりも密度が低いような膜であってもよい。 As an example of a specific hollow fiber membrane, there is a membrane having a single layer structure which is entirely made of a cellulose resin. However, the single-layer structure here does not need to be a uniform film as a whole, and may be a film that is not uniform in the thickness direction, for example. Specifically, it has a dense layer on the outer peripheral surface, and this dense layer is a separation active layer that substantially defines the pore diameter of the hollow fiber membrane, and the inner peripheral surface side has a lower density than the dense layer. A simple film may be used.
 具体的な中空糸膜の別の例としては、支持層(例えば、ポリフェニレンオキサイドからなる層)の外周表面にポリフェニレン系樹脂(例えば、スルホン化ポリエーテルスルホン)からなる緻密層を有する2層構造の膜が挙げられる。また、他の例として、支持層(例えば、ポリスルホンまたはポリエーテルスルホンからなる層)の外周表面にポリアミド系樹脂からなる緻密層を有する2層構造の膜が挙げられる。 As another specific example of the hollow fiber membrane, a two-layer structure having a dense layer made of a polyphenylene resin (for example, sulfonated polyethersulfone) on the outer peripheral surface of a support layer (for example, a layer made of polyphenylene oxide). A membrane is mentioned. Another example includes a two-layered film having a dense layer made of a polyamide resin on the outer peripheral surface of a support layer (for example, a layer made of polysulfone or polyethersulfone).
 <濃縮方法>
 本実施形態の濃縮方法は、対象溶液を濃縮する濃縮方法であって、膜分離工程を含む。以下、本実施形態の濃縮方法の詳細について、図1を参照して説明する。
<Concentration method>
The concentration method of this embodiment is a concentration method for concentrating a target solution, and includes a membrane separation step. Hereinafter, the details of the concentration method of the present embodiment will be described with reference to FIG.
 本実施形態の濃縮方法では、図1に示されるような、複数の半透膜モジュール11,12,13が直列的に連結されてなる多段式の膜分離装置を用いて、膜分離工程を実施することにより、対象溶液を濃縮する。 In the concentration method of the present embodiment, the membrane separation step is performed using a multistage membrane separation apparatus in which a plurality of semipermeable membrane modules 11, 12, and 13 are connected in series as shown in FIG. To concentrate the target solution.
 対象溶液としては、特に限定されないが、例えば、塩水(ブライン、海水、かん水など)、工業排水などが挙げられる。特に、対象溶液がブラインなどの高濃度(高浸透圧)の溶液である場合に、それをさらに濃縮するために、本発明の濃縮方法を好適に用いることができる。 The target solution is not particularly limited, and examples thereof include salt water (brine, seawater, brine, etc.), industrial waste water, and the like. In particular, when the target solution is a high-concentration (high osmotic pressure) solution such as brine, the concentration method of the present invention can be suitably used to further concentrate it.
 なお、対象溶液に対して、溶液中に含まれる微粒子、微生物、スケール成分等を除去するための前処理を行ってもよい。前処理としては、海水淡水化技術等に用いられる種々公知の前処理を実施することができ、例えば、NF膜、UF膜、MF膜等を用いたろ過、次亜塩素酸ナトリウムの添加、凝集剤添加、活性炭吸着処理、イオン交換樹脂処理などが挙げられる。このような前処理は、対象溶液を上流モジュール(半透膜モジュール11)に供給する前に実施されることが好ましい。 Note that the target solution may be subjected to pretreatment for removing fine particles, microorganisms, scale components, and the like contained in the solution. As the pretreatment, various known pretreatments used in seawater desalination technology and the like can be carried out. For example, filtration using NF membrane, UF membrane, MF membrane, etc., addition of sodium hypochlorite, aggregation Agent addition, activated carbon adsorption treatment, ion exchange resin treatment and the like. Such pretreatment is preferably performed before supplying the target solution to the upstream module (semipermeable membrane module 11).
 膜分離工程では、対象溶液が、上流モジュール(半透膜モジュール11,12)の各々の第1室111,121を順次通過し、その後、上流モジュールの第1室を通過した対象溶液の一部が最終モジュール(半透膜モジュール13)の第1室131を通過し、他の一部が最終モジュールの第2室132を通過し、最終モジュールの第2室132を通過した対象溶液が、第1室111,121とは逆の順序で、上流モジュールの各々の第2室122,112を順次通過するように、対象溶液を流す。 In the membrane separation step, the target solution sequentially passes through the first chambers 111 and 121 of each of the upstream modules (semipermeable membrane modules 11 and 12), and then a part of the target solution that has passed through the first chamber of the upstream module. Passes through the first chamber 131 of the final module (semipermeable membrane module 13), the other part passes through the second chamber 132 of the final module, and the target solution that has passed through the second chamber 132 of the final module is The target solution is allowed to flow through the second chambers 122 and 112 of the upstream module sequentially in the reverse order of the first chambers 111 and 121.
 このとき、複数の半透膜モジュールの各々において、第1室内に流される対象溶液を第2室内に流される対象溶液よりも高い圧力に加圧する。これにより、複数の半透膜モジュールの各々において、第1室内の対象溶液に含まれる水が半透膜を介して第2室内の対象溶液に移行し、第1室内の対象溶液が濃縮されると共に、第2室内の対象溶液が希釈される。 At this time, in each of the plurality of semipermeable membrane modules, the target solution flowing into the first chamber is pressurized to a pressure higher than that of the target solution flowing into the second chamber. Accordingly, in each of the plurality of semipermeable membrane modules, water contained in the target solution in the first chamber moves to the target solution in the second chamber through the semipermeable membrane, and the target solution in the first chamber is concentrated. At the same time, the target solution in the second chamber is diluted.
 なお、第1室内に流される対象溶液を第2室内に流される対象溶液よりも高い圧力に加圧する方法としては、特に限定されないが、例えば、ポンプ41として上述の高圧ポンプを用いる方法、第1室内を流れる対象溶液を半透膜モジュールの外部から加圧する方法などが挙げられる。 The method of pressurizing the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber is not particularly limited. For example, a method using the above-described high-pressure pump as the pump 41, the first Examples include a method of pressurizing the target solution flowing in the room from the outside of the semipermeable membrane module.
 本実施形態では、ポンプ41として高圧ポンプを用いて、上流モジュール(半透膜モジュール11,12)の第1室111,121内に流される対象溶液を第2室112,122内に流される対象溶液よりも高い圧力に加圧している。また、最終モジュール(半透膜モジュール13)の第1室131内を流れる対象溶液に対して、半透膜モジュール13を外部から加圧することにより、第1室131内の対象溶液の圧力を第2室132内の圧力より高めている。 In the present embodiment, a target solution that is flowed into the first chambers 111 and 121 of the upstream module (semipermeable membrane modules 11 and 12) is flowed into the second chambers 112 and 122 using a high-pressure pump as the pump 41. Pressurized to a higher pressure than the solution. In addition, the pressure of the target solution in the first chamber 131 is increased by pressurizing the semipermeable membrane module 13 from the outside with respect to the target solution flowing in the first chamber 131 of the final module (semipermeable membrane module 13). The pressure in the two chambers 132 is higher.
 半透膜が中空糸膜である場合、第1室は中空糸膜の外側であり、第2室は中空糸膜の内側であることが好ましい。中空糸膜の外側の溶液が加圧されることが好ましい。中空糸膜の内側(中空部)を流れる溶液を加圧しても、圧力損失が大きくなり加圧が十分に行われ難い場合があるほか、中空糸膜自体の構造が、外圧に対して構造を保持しやすく、高い内圧を付与すると膜が破裂することがあるからである。しかしながら、圧力損失が小さい、つまり大きな内径を持ち、内圧に対する耐圧が大きい中空糸膜を使用する場合は、第1室11を中空糸膜の内側としても、なんら問題はない。 When the semipermeable membrane is a hollow fiber membrane, the first chamber is preferably outside the hollow fiber membrane, and the second chamber is preferably inside the hollow fiber membrane. It is preferable that the solution outside the hollow fiber membrane is pressurized. Even if the solution flowing inside the hollow fiber membrane (hollow part) is pressurized, the pressure loss may increase and it may be difficult to perform the pressurization. Also, the structure of the hollow fiber membrane itself has a structure against the external pressure. This is because it is easy to hold and the membrane may rupture when a high internal pressure is applied. However, when a hollow fiber membrane having a small pressure loss, that is, having a large inner diameter and a high pressure resistance against the internal pressure is used, there is no problem even if the first chamber 11 is set inside the hollow fiber membrane.
 なお、中空糸膜を構成する膜が、上述したような厚み方向に不均一な膜である場合、中空糸膜の外側表面に緻密層を有していることが好ましい。緻密層は、実質的に中空糸膜の孔径を規定する分離活性層となるため、中空糸膜の外側の溶液が加圧される場合は、中空糸膜の外側表面に緻密層を有している方が、中空糸膜の外側から内側への分子の移動を正確に制御することができるからである。 When the membrane constituting the hollow fiber membrane is a non-uniform membrane in the thickness direction as described above, it is preferable to have a dense layer on the outer surface of the hollow fiber membrane. Since the dense layer is a separation active layer that substantially defines the pore diameter of the hollow fiber membrane, when the solution outside the hollow fiber membrane is pressurized, the dense layer has a dense layer on the outer surface of the hollow fiber membrane. This is because the movement of molecules from the outside to the inside of the hollow fiber membrane can be controlled more accurately.
 上述したように、本実施形態の濃縮方法によれば、対象溶液から、最終モジュール(半透膜モジュール13)の第1室131から流出する最終的に高濃度に濃縮された対象溶液と、排出流路35から流出する最終的に希釈された対象溶液のみが得られる。したがって、本実施形態においては、ブラインなどの対象溶液を膜分離を用いて高濃度に濃縮する際に、濃度が異なる複数の希釈溶液が生成することが抑制される。これにより、本実施形態の濃縮方法は、簡便な工程または装置により実施することが可能である。 As described above, according to the concentration method of the present embodiment, the target solution that is finally concentrated to a high concentration that flows out from the first chamber 131 of the final module (semipermeable membrane module 13) and the target solution are discharged. Only the finally diluted target solution flowing out of the flow path 35 is obtained. Therefore, in this embodiment, when the target solution such as brine is concentrated to a high concentration using membrane separation, the generation of a plurality of diluted solutions having different concentrations is suppressed. Thereby, the concentration method of this embodiment can be implemented by a simple process or apparatus.
 なお、対象溶液が塩水である場合、最終モジュール(半透膜モジュール13)の第1室131から排出される濃縮塩水は、ブラインコンセントレーション法により、例えば、蒸発法によってさらに濃縮される。これにより、塩分を結晶化塩(固体)として回収すると共に、淡水を海洋、河川等に排出したり、工業用水として利用したりすることができる。 When the target solution is salt water, the concentrated salt water discharged from the first chamber 131 of the final module (semipermeable membrane module 13) is further concentrated by the brine concentration method, for example, by the evaporation method. Thereby, while salinity is collect | recovered as crystallized salt (solid), fresh water can be discharged | emitted to the ocean, a river, etc., or it can utilize as industrial water.
 従来のRO法による濃縮では、半透膜の一方側で濃縮された対象溶液の浸透圧(この浸透圧と、RO膜を透過した半透膜の他方側の水の浸透圧との浸透圧差)による正浸透力が、ポンプによる押圧力とは反対方向に生じる。このため、濃縮された対象溶液の浸透圧がポンプの圧力に達すると、ポンプによる押圧力と、それとは反対方向に働く正浸透力が拮抗し、それ以上は水が半透膜を透過せず、濃縮が進まなくなる。このため、RO膜で濃縮された対象溶液を再度、RO膜に循環させたとしても、対象溶液の濃縮率をさらに高めることはできなかった。なお、RO法における加圧の圧力は、例えば、1~10MPa程度である。 In the concentration by the conventional RO method, the osmotic pressure of the target solution concentrated on one side of the semipermeable membrane (the osmotic pressure difference between this osmotic pressure and the osmotic pressure of water on the other side of the semipermeable membrane that has passed through the RO membrane) The forward osmotic force due to is generated in the direction opposite to the pressing force by the pump. For this reason, when the osmotic pressure of the concentrated target solution reaches the pressure of the pump, the pressing force by the pump and the forward osmotic force acting in the opposite direction antagonize, and water does not permeate the semipermeable membrane beyond that. Concentration does not progress. For this reason, even if the target solution concentrated on the RO membrane is circulated through the RO membrane again, the concentration rate of the target solution cannot be further increased. Note that the pressure applied in the RO method is, for example, about 1 to 10 MPa.
 これに対して、本実施形態の濃縮方法では、上流モジュール(半透膜モジュール11,12)の各々において、第1室111,121と第2室112,122とに供給される溶液の濃度(浸透圧)差がRO法に比べて小さく、最終モジュール(半透膜モジュール13)の第1室131と第2室132とに供給される溶液の浸透圧が等しいため、浸透圧差による正浸透力が生じ難い。このため、RO法よりも、濃縮された対象溶液の最終濃度を高めることができ、原理的には、対象溶液を飽和濃度まで濃縮できると考えられる。 In contrast, in the concentration method of the present embodiment, the concentration of the solution supplied to the first chamber 111, 121 and the second chamber 112, 122 in each of the upstream modules (semipermeable membrane modules 11, 12) ( The osmotic pressure difference is smaller than that of the RO method, and the osmotic pressure of the solution supplied to the first chamber 131 and the second chamber 132 of the final module (semipermeable membrane module 13) is equal. Is unlikely to occur. For this reason, it is thought that the final concentration of the concentrated target solution can be increased as compared with the RO method, and in principle, the target solution can be concentrated to a saturated concentration.
 したがって、その濃縮溶液に対して実施される蒸発法等の濃縮処理に必要なエネルギーが低減され、ブラインコンセントレーション等の対象溶液の濃縮処理のエネルギー効率を向上させることができる。 Therefore, energy required for the concentration process such as an evaporation method performed on the concentrated solution is reduced, and the energy efficiency of the target solution concentration process such as brine concentration can be improved.
 なお、上流モジュールの各々において、第1室と第2室とに供給される溶液の浸透圧差(絶対値)が第1室を加圧する圧力(第2室との圧力差)よりも小さいことが好ましい。浸透圧差が加圧する圧力よりも小さければ、本実施形態における膜分離工程は実施可能であると考えられる。 In each of the upstream modules, the osmotic pressure difference (absolute value) of the solution supplied to the first chamber and the second chamber is smaller than the pressure for pressurizing the first chamber (pressure difference with the second chamber). preferable. If the osmotic pressure difference is smaller than the pressure applied, it is considered that the membrane separation step in this embodiment can be performed.
 なお、最終モジュールにおいては、第1室と第2室とに供給される溶液の浸透圧は基本的に等しいが、例えば、第1室と第2室との温度差等により、第1室内の対象溶液の浸透圧と第2室12内の対象溶液の浸透圧とが若干異なる可能性もあるが、本実施形態における膜分離工程を実施する上で問題とはならない。 In the final module, the osmotic pressures of the solutions supplied to the first chamber and the second chamber are basically the same. For example, due to the temperature difference between the first chamber and the second chamber, Although there is a possibility that the osmotic pressure of the target solution and the osmotic pressure of the target solution in the second chamber 12 may be slightly different, there is no problem in performing the membrane separation step in the present embodiment.
 また、本実施形態の濃縮方法では、ポンプと反対方向に働く正浸透力が生じ難いため、ポンプの圧力が低くても濃縮が進行する。このため、高価な高圧ポンプを用いる必要が無く、処理設備の耐圧性を高める必要もなく、設備投資のコストを削減することができる。また、所定倍率の濃縮を行うのに必要な圧力をRO法よりも低下させることができるため、ポンプの電力消費量を低減させ、濃縮のエネルギー効率を高めることができる。 Further, in the concentration method of the present embodiment, since the forward osmotic force acting in the opposite direction to the pump is difficult to occur, the concentration proceeds even if the pump pressure is low. For this reason, it is not necessary to use an expensive high-pressure pump, it is not necessary to increase the pressure resistance of the processing equipment, and the cost of equipment investment can be reduced. Moreover, since the pressure required to perform the concentration at a predetermined magnification can be reduced as compared with the RO method, the power consumption of the pump can be reduced and the energy efficiency of the concentration can be increased.
 そして、本実施形態では、最終モジュール(半透膜モジュール13)の第1室131から流出する最終的に高濃度に濃縮された対象溶液と、排出流路35から流出する最終的に希釈された対象溶液のみが得られる。したがって、本実施形態の濃縮方法は、後述する比較形態1などに比べて、希釈された対象溶液の処理が簡便な工程または装置により実施可能である。 In the present embodiment, the target solution that is finally concentrated to a high concentration that flows out from the first chamber 131 of the final module (semipermeable membrane module 13) and the final diluted solution that flows out from the discharge flow path 35 are used. Only the target solution is obtained. Therefore, the concentration method of the present embodiment can be carried out by a process or apparatus that can easily process the diluted target solution as compared with Comparative Example 1 described later.
 なお、本実施形態においては、半透膜モジュール11の排出流路35から排出される最終的に希釈された対象溶液は、元の対象溶液より低濃度になっており、例えば、対象溶液がブラインである場合は、排出流路35から排出される希釈された対象溶液をそのまま海洋に放出することができる。 In the present embodiment, the finally diluted target solution discharged from the discharge channel 35 of the semipermeable membrane module 11 has a lower concentration than the original target solution. For example, the target solution is brine. In this case, the diluted target solution discharged from the discharge channel 35 can be directly released to the ocean.
 また、上流モジュール(半透膜モジュール11)の第2室112から流出する最終的に希釈された対象溶液(排出流路35から排出される希釈された対象溶液)に対して、逆浸透(RO)法を用いた淡水化処理を行い、淡水を排出するとともに、濃縮された対象溶液を上流モジュール(半透膜モジュール11)の第1室111に供給してもよい。これにより、例えば、対象溶液が環境等に著しい影響を与える物質を含む場合、系外にこれらの物質を排出しないという利点がある。 In addition, reverse osmosis (RO) with respect to the finally diluted target solution (diluted target solution discharged from the discharge channel 35) flowing out from the second chamber 112 of the upstream module (semipermeable membrane module 11). ) Method may be performed to discharge the fresh water, and the concentrated target solution may be supplied to the first chamber 111 of the upstream module (semipermeable membrane module 11). Thereby, for example, when the target solution contains substances that significantly affect the environment, there is an advantage that these substances are not discharged out of the system.
 [実施形態2]
 図2は、本発明の実施形態2で用いられる濃縮装置を示す模式図である。本実施形態で用いられる濃縮装置は、上流モジュール(半透膜モジュール11,12,13)の各々が、並列的に接続された複数のモジュールユニット11a,12a,13aから構成され、上流側ほど上流モジュールの各々を構成する複数のモジュールユニットの数が多い点で、実施形態1で用いられる濃縮装置とは異なる。
[Embodiment 2]
FIG. 2 is a schematic diagram showing a concentrating device used in Embodiment 2 of the present invention. The concentrator used in this embodiment is composed of a plurality of module units 11a, 12a, 13a in which each upstream module ( semipermeable membrane module 11, 12, 13) is connected in parallel. It differs from the concentrating device used in Embodiment 1 in that the number of module units constituting each of the modules is large.
 なお、図2では、半透膜モジュールの段数(直列方向の数)も、図1に示す実施形態1より1段多くなっている。また、モジュールユニット11a,12a,13a,14aは、それぞれに、半透膜、並びに、半透膜で仕切られた第1室および第2室を有している。 In FIG. 2, the number of semipermeable membrane modules (the number in the series direction) is also one more than that of the first embodiment shown in FIG. Each of the module units 11a, 12a, 13a, and 14a has a semipermeable membrane and a first chamber and a second chamber partitioned by the semipermeable membrane.
 実施形態1において、第1室111,121,131を流れる対象溶液は順次濃縮されるため、濃縮が進むにつれて流量が減少する。このように、多段の半透膜モジュールを用いた濃縮装置では、濃縮が進むにつれて流量が減少する。流量が減少すると半透膜モジュールによる濃縮効率が低下するため、濃縮が進むにつれて(下流側ほど)、半透膜モジュールの処理容量を低減することで、流量を維持することが望ましい。 In the first embodiment, the target solution flowing through the first chambers 111, 121, and 131 is sequentially concentrated, so that the flow rate decreases as the concentration proceeds. Thus, in the concentration apparatus using a multistage semipermeable membrane module, the flow rate decreases as the concentration proceeds. Since the concentration efficiency by the semipermeable membrane module decreases when the flow rate decreases, it is desirable to maintain the flow rate by reducing the processing capacity of the semipermeable membrane module as the concentration proceeds (as it goes downstream).
 したがって、上流モジュール(半透膜モジュール11,12)は、最終モジュール(半透膜モジュール13)より処理容量が大きいことが好ましい。 Therefore, it is preferable that the upstream module (semipermeable membrane module 11, 12) has a larger processing capacity than the final module (semipermeable membrane module 13).
 また、上流モジュールが複数の半透膜モジュールである場合は、上流側(最初に対象溶液が流される第1室側)ほど処理容量が大きいことが好ましい。処理容量は、半透膜モジュール全体において単位時間当たりに半透膜を透過する水の量(透水量)の最大可能量であり、主に半透膜の種類と面積に依拠する。 Further, when the upstream module is a plurality of semipermeable membrane modules, it is preferable that the processing capacity is larger on the upstream side (the first chamber side where the target solution is first flowed). The treatment capacity is the maximum possible amount of water permeating the semipermeable membrane (permeable amount) per unit time in the entire semipermeable membrane module, and mainly depends on the type and area of the semipermeable membrane.
 具体的にこれを実施するためには、実施形態1において、半透膜モジュール11,12,13として、処理容量が順に小さくなる3種類の半透膜モジュールを用いてもよい。ただし、実用的には、複数の種類の半透膜モジュールを製造する半透膜モジュールの製造コストが増加するため、同じ1種類の半透膜モジュールを用いることが好ましい。 Specifically, in order to implement this, in the first embodiment, as the semipermeable membrane modules 11, 12, and 13, three types of semipermeable membrane modules with decreasing processing capacities may be used. However, practically, since the manufacturing cost of the semipermeable membrane module for producing a plurality of types of semipermeable membrane modules increases, it is preferable to use the same type of semipermeable membrane module.
 したがって、本実施形態のように、上流モジュールの各々を、並列的に接続された複数のモジュールユニットで構成し、上流モジュールの各々を構成する複数のモジュールユニットの数が、上流側ほど多いようにすることが好ましい。 Therefore, as in the present embodiment, each of the upstream modules is configured by a plurality of module units connected in parallel, and the number of the plurality of module units that configure each of the upstream modules is increased toward the upstream side. It is preferable to do.
 本実施形態においては、非効率な半透膜モジュール(モジュールユニット)を減らし、必要な半透膜モジュールの処理容量(並列接続されたモジュールユニットの本数)を低減することができる。これにより、濃縮処理の効率を高めるとともに、モジュール数を必要最小限にして、装置コストを下げることができる。 In the present embodiment, the number of inefficient semipermeable membrane modules (module units) can be reduced, and the required processing capacity of the semipermeable membrane modules (the number of module units connected in parallel) can be reduced. As a result, the efficiency of the concentration process can be increased, the number of modules can be minimized, and the apparatus cost can be reduced.
 [比較形態1]
 図3は、比較形態1で用いられる濃縮装置を示す模式図である。なお、本比較形態は、上述の本願出願人が既に出願した特願2016-133279のブライン処理方法と同様の濃縮方法である。
[Comparison 1]
FIG. 3 is a schematic diagram showing a concentrating device used in Comparative Example 1. This comparison form is a concentration method similar to the brine processing method of Japanese Patent Application No. 2016-133279 already filed by the applicant.
 図3に示されるように、本比較形態では、半透膜モジュール11,12において、第1室111,121および第2室112,122の両方に処理溶液の供給側(上流側)から処理溶液が供給される。このため、半透膜モジュール11,12の第2室112,122の各々から、希釈された対象溶液である希釈液AおよびBが流出する。また、最終段の半透膜モジュール13の第2室132で希釈された対象溶液である希釈液Cは、第2室132から流出し、半透膜モジュール12には戻されない。 As shown in FIG. 3, in this comparative embodiment, in the semipermeable membrane modules 11 and 12, the processing solution is supplied from the processing solution supply side (upstream side) to both the first chambers 111 and 121 and the second chambers 112 and 122. Is supplied. For this reason, diluted solutions A and B, which are diluted target solutions, flow out from the second chambers 112 and 122 of the semipermeable membrane modules 11 and 12, respectively. Further, the diluted solution C, which is the target solution diluted in the second chamber 132 of the final stage semipermeable membrane module 13, flows out of the second chamber 132 and is not returned to the semipermeable membrane module 12.
 このように、本比較形態においては、3種類の希釈液A~Cが得られ、それらの濃度はいずれも異なっている。 Thus, in this comparative embodiment, three types of diluents A to C are obtained, and their concentrations are all different.
 各段で生じる希釈溶液(希釈液A~C)を1つの流路に集約して取り扱うことも考えられるが、別途配管等が必要になる。また、全ての希釈溶液を単に混合すると、その混合溶液の濃度が高くなり、例えば、対象溶液がブラインである場合、希釈溶液を海に放出することができなくなる場合もある。また、RO処理により処理可能な濃度を超えると、RO処理により淡水を取り出して、廃棄または工業用水等に利用するなどすることができなくなる。 It is conceivable that the dilute solutions (diluents A to C) generated in each stage are collected and handled in one flow path, but separate piping or the like is required. Further, when all the diluted solutions are simply mixed, the concentration of the mixed solution becomes high. For example, when the target solution is brine, the diluted solution may not be released into the sea. In addition, if the concentration exceeds the concentration that can be processed by the RO treatment, fresh water cannot be taken out by the RO treatment and used for disposal or industrial water.
 このため、濃度の低い希釈液Aは、海洋に放出する等の処理を行い、一方で、濃度の高い希釈液BおよびCは、別途の半透膜モジュールを用いるか、あるいは、適当な段の半透膜モジュールに供給することにより、より濃度の高い溶液と、系外に排出可能な濃度の低い溶液と、に分離する必要がある。このように、本比較形態においては、処理工程または処理装置が複雑になってしまう。 For this reason, the diluent A having a low concentration is subjected to a treatment such as being released into the ocean, while the diluents B and C having a high concentration use a separate semipermeable membrane module, or are in an appropriate stage. By supplying it to the semipermeable membrane module, it is necessary to separate into a solution with a higher concentration and a solution with a lower concentration that can be discharged out of the system. As described above, in this comparative embodiment, the processing step or the processing apparatus becomes complicated.
 これに対して、上記の実施形態1では、対象溶液から、最終モジュール(半透膜モジュール13)の第1室131から流出する最終的に高濃度に濃縮された対象溶液と、排出流路35から流出する最終的に希釈された対象溶液のみが得られる(図1)。したがって、実施形態1の濃縮方法によって生じる希釈された対象溶液は、簡便な工程または装置により処理することが可能である。 On the other hand, in Embodiment 1 described above, the target solution that is finally concentrated to a high concentration and flows out from the first chamber 131 of the final module (semipermeable membrane module 13) from the target solution, and the discharge flow path 35. Only the final diluted target solution flowing out of the water is obtained (FIG. 1). Therefore, the diluted target solution generated by the concentration method of Embodiment 1 can be processed by a simple process or apparatus.
 また、比較形態1では、上流モジュールにおいて、各段の半透膜モジュールに対して、第1室内を第2室内より高圧にするための加圧器具が必要になる。 Further, in the comparative form 1, in the upstream module, a pressurizing device is required for making the first chamber higher in pressure than the second chamber with respect to the semipermeable membrane module in each stage.
 これに対して、上記の実施形態1では、ポンプ41に高圧ポンプを用いれば、上流モジュール(半透膜モジュール11,12)の全てにおいて、第1室内を第2室内より高圧にすることができる。したがって、上記の実施形態1は、圧力制御が容易であるという点でも、簡便な工程または装置により実施することが可能である。 On the other hand, in said Embodiment 1, if a high pressure pump is used for the pump 41, in all the upstream modules (semi-permeable membrane modules 11 and 12), a 1st chamber can be made higher pressure than a 2nd chamber. . Therefore, the first embodiment can be implemented by a simple process or apparatus in that pressure control is easy.
 [比較形態2]
 図4は、比較形態2で用いられる濃縮装置を示す模式図である。本比較形態で用いられる濃縮装置は、上流モジュール(半透膜モジュール11,12,13)の各々が、並列的に接続された複数のモジュールユニット11a,12a,13aから構成され、上流側ほど上流モジュールの各々を構成する複数のモジュールユニットの数が多い点で、比較形態2で用いられる濃縮装置とは異なる。
[Comparison 2]
FIG. 4 is a schematic diagram showing a concentrating device used in Comparative Example 2. The concentrator used in this comparative embodiment is composed of a plurality of module units 11a, 12a, and 13a each connected in parallel, each upstream module ( semi-permeable membrane module 11, 12, and 13). It differs from the concentrating device used in the comparative form 2 in that the number of a plurality of module units constituting each of the modules is large.
 なお、図4では、半透膜モジュールの段数(直列方向の数)も、図3に示す比較形態1より1段多くなっている。また、モジュールユニット11a,12a,13a,14aは、それぞれに、半透膜、並びに、半透膜で仕切られた第1室および第2室を有している。 In FIG. 4, the number of the semipermeable membrane modules (number in the series direction) is also one more than that of the comparative form 1 shown in FIG. Each of the module units 11a, 12a, 13a, and 14a has a semipermeable membrane and a first chamber and a second chamber partitioned by the semipermeable membrane.
 本比較形態でも、比較形態1と同様に、半透膜モジュール11,12,13において、第1室111,121,131および第2室112,122,132の両方に処理溶液の供給側(上流側)から処理溶液が供給される。このため、半透膜モジュール11,12,13の第2室112,122,132の各々から、希釈された対象溶液である希釈液A、BおよびCが流出する。また、最終段の半透膜モジュール14の第2室142で希釈された対象溶液である希釈液Cは、第2室132から流出し、半透膜モジュール13には戻されない。 Also in this comparative embodiment, in the same manner as in Comparative Embodiment 1, in the semipermeable membrane modules 11, 12, and 13, both the first chamber 111, 121, 131 and the second chamber 112, 122, 132 are supplied with the treatment solution (upstream). Treatment solution is supplied from the side). For this reason, the diluted solutions A, B, and C, which are diluted target solutions, flow out from the second chambers 112, 122, 132 of the semipermeable membrane modules 11, 12, 13, respectively. In addition, the diluent C, which is the target solution diluted in the second chamber 142 of the final stage semipermeable membrane module 14, flows out of the second chamber 132 and is not returned to the semipermeable membrane module 13.
 このように、本比較形態においては、4種類の希釈液A~Dが得られ、それらの濃度はいずれも異なっている。また、本比較形態でも、上流モジュールにおいて、各段の半透膜モジュールに対して、第1室内を第2室内より高圧にするための加圧器具が必要になる。 Thus, in this comparative embodiment, four types of diluents A to D are obtained, and their concentrations are all different. Also in this comparative embodiment, in the upstream module, a pressurizing device for making the first chamber have a higher pressure than the second chamber is required for each stage of the semipermeable membrane module.
 これに対して、上述のとおり、実施形態1の濃縮方法は、簡便な工程または装置により実施することが可能である。 On the other hand, as described above, the concentration method of Embodiment 1 can be performed by a simple process or apparatus.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 11,12,13,14 半透膜モジュール、11a,12a,13a,14a モジュールユニット、110,120,130,140 半透膜、111,121,131,141 第1室、112,122,132,142 第2室、30 供給流路、31 第1流路、32 第2流路、33 分岐流路、34 戻り流路、35 排出流路、41,42,43 ポンプ。 11, 12, 13, 14 semipermeable membrane module, 11a, 12a, 13a, 14a module unit, 110, 120, 130, 140 semipermeable membrane, 111, 121, 131, 141 first chamber, 112, 122, 132, 142, second chamber, 30 supply flow path, 31 first flow path, 32 second flow path, 33 branch flow path, 34 return flow path, 35 discharge flow path, 41, 42, 43 pump.

Claims (14)

  1.  対象溶液を濃縮する濃縮方法であって、
     複数の半透膜モジュールが直列的に連結されてなる多段式の膜分離装置を用い、
     前記複数の半透膜モジュールの各々は、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
     前記複数の半透膜モジュールは、そのうちの一端の半透膜モジュールである最終モジュールと、前記最終モジュール以外の半透膜モジュールである少なくとも1つの上流モジュールと、からなり、
     前記対象溶液が前記上流モジュールの前記第1室を通過し、前記上流モジュールの前記第1室を通過した前記対象溶液の一部が前記最終モジュールの前記第1室を通過し、他の一部が前記最終モジュールの前記第2室を通過し、前記最終モジュールの前記第2室を通過した前記対象溶液が、前記上流モジュールの前記第2室を通過するように、前記対象溶液を流し、かつ、
     前記複数の半透膜モジュールの各々において、前記第1室内に流される前記対象溶液を前記第2室内に流される前記対象溶液よりも高い圧力に加圧することによって、
     前記第1室内の前記対象溶液に含まれる水を前記半透膜を介して前記第2室内の前記対象溶液に移行させ、前記第1室内の前記対象溶液を濃縮すると共に、前記第2室内の前記対象溶液を希釈する、膜分離工程、を含む、濃縮方法。
    A concentration method for concentrating a target solution,
    Using a multistage membrane separation device in which a plurality of semipermeable membrane modules are connected in series,
    Each of the plurality of semipermeable membrane modules has a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
    The plurality of semipermeable membrane modules are composed of a final module that is a semipermeable membrane module at one end thereof, and at least one upstream module that is a semipermeable membrane module other than the final module,
    The target solution passes through the first chamber of the upstream module, a part of the target solution that passes through the first chamber of the upstream module passes through the first chamber of the final module, and the other part Passing through the second chamber of the final module, flowing the target solution so that the target solution that has passed through the second chamber of the final module passes through the second chamber of the upstream module, and ,
    In each of the plurality of semipermeable membrane modules, pressurizing the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber,
    Water contained in the target solution in the first chamber is transferred to the target solution in the second chamber through the semipermeable membrane, the target solution in the first chamber is concentrated, and the water in the second chamber is concentrated. A concentration method comprising a membrane separation step of diluting the target solution.
  2.  前記上流モジュールは、前記最終モジュールより処理容量が大きい、請求項1に記載の濃縮方法。 The concentration method according to claim 1, wherein the upstream module has a larger processing capacity than the final module.
  3.  前記上流モジュールは複数であり、
     前記対象溶液が前記上流モジュールの各々の前記第1室を順次通過し、前記上流モジュールの前記第1室を通過した前記対象溶液の一部が前記最終モジュールの前記第1室を通過し、他の一部が前記最終モジュールの前記第2室を通過し、前記最終モジュールの前記第2室を通過した前記対象溶液が、前記第1室とは逆の順序で前記上流モジュールの各々の前記第2室を順次通過するように、前記対象溶液を流す、請求項1または2に記載の濃縮方法。
    The upstream module is plural,
    The target solution sequentially passes through the first chamber of each of the upstream modules, a part of the target solution that has passed through the first chamber of the upstream module passes through the first chamber of the final module, and others Is passed through the second chamber of the final module, and the target solution that has passed through the second chamber of the final module is in the reverse order of the first chamber in the first module of each of the upstream modules. The concentration method according to claim 1 or 2, wherein the target solution is flowed so as to sequentially pass through the two chambers.
  4.  前記上流モジュールは、最初に前記対象溶液が流される前記第1室側である上流側ほど処理容量が大きい、請求項3に記載の濃縮方法。 The concentration method according to claim 3, wherein the upstream module has a larger processing capacity toward an upstream side that is the first chamber side through which the target solution is first flowed.
  5.  前記上流モジュールの各々は、並列的に接続された複数のモジュールユニットから構成され、
     前記モジュールユニットは、それぞれに、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
     前記上流モジュールの各々を構成する前記複数のモジュールユニットの数が、前記上流側ほど多い、請求項4に記載の濃縮方法。
    Each of the upstream modules is composed of a plurality of module units connected in parallel,
    The module units each have a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
    The concentration method according to claim 4, wherein the number of the plurality of module units constituting each of the upstream modules is larger toward the upstream side.
  6.  前記複数の半透膜モジュールの少なくとも1つにおいて、前記半透膜が中空糸膜であり、前記第1室は前記中空糸膜の外側であり、前記第2室は前記中空糸膜の内側である、請求項1~5のいずれか1項に記載の濃縮方法。 In at least one of the plurality of semipermeable membrane modules, the semipermeable membrane is a hollow fiber membrane, the first chamber is outside the hollow fiber membrane, and the second chamber is inside the hollow fiber membrane. The concentration method according to any one of claims 1 to 5, wherein:
  7.  前記上流モジュールの前記第1室から流出する最終的に希釈された前記対象溶液に対して、逆浸透法を用いた淡水化処理を行い、淡水を排出するとともに、濃縮された前記対象溶液を前記上流モジュールの前記第1室に供給する、請求項1~6のいずれか1項に記載の濃縮方法。 The finally diluted target solution flowing out from the first chamber of the upstream module is subjected to a desalination process using a reverse osmosis method to discharge fresh water and to concentrate the target solution. The concentration method according to any one of claims 1 to 6, wherein the concentration is supplied to the first chamber of the upstream module.
  8.  対象溶液を濃縮するための濃縮装置であって、
     複数の半透膜モジュールが直列的に連結されてなる多段式の膜分離装置を備え、
     前記複数の半透膜モジュールの各々は、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
     前記複数の半透膜モジュールは、そのうちの一端の半透膜モジュールである最終モジュールと、前記最終モジュール以外の半透膜モジュールである少なくとも1つの上流モジュールと、からなり、
     前記膜分離装置は、
     前記上流モジュールの前記第1室と、前記最終モジュールの前記第1室および前記第2室と、を接続する分岐流路、および、
     前記最終モジュールの前記第2室と、前記上流モジュールの前記第2室と、を接続する戻り流路とを含み、
     前記複数の半透膜モジュールの各々において、前記第1室内に流される前記対象溶液を前記第2室内に流される前記対象溶液よりも高い圧力に加圧する加圧器具をさらに備える、濃縮装置。
    A concentrating device for concentrating a target solution,
    A multi-stage membrane separator comprising a plurality of semipermeable membrane modules connected in series,
    Each of the plurality of semipermeable membrane modules has a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
    The plurality of semipermeable membrane modules are composed of a final module that is a semipermeable membrane module at one end thereof, and at least one upstream module that is a semipermeable membrane module other than the final module,
    The membrane separator is
    A branch flow path connecting the first chamber of the upstream module and the first chamber and the second chamber of the final module; and
    A return flow path connecting the second chamber of the final module and the second chamber of the upstream module;
    Each of the plurality of semipermeable membrane modules further comprises a pressurizing device that pressurizes the target solution flowing into the first chamber to a pressure higher than that of the target solution flowing into the second chamber.
  9.  前記上流モジュールは、前記最終モジュールより処理容量が大きい、請求項8に記載の濃縮装置。 The concentrator according to claim 8, wherein the upstream module has a larger processing capacity than the final module.
  10.  前記上流モジュールは複数であり、
     前記上流モジュールは直列的に連結され、
     直列的に連結された前記上流モジュールの一端に前記最終モジュールが連結され、
     前記分岐流路は、前記最終モジュールに連結される前記上流モジュールの前記第1室と、前記最終モジュールの前記第1室および前記第2室と、を接続し、
     前記戻り流路は、前記最終モジュールの前記第2室と、前記最終モジュールに連結される前記上流モジュールの前記第2室と、を接続し、
     さらに、複数の前記上流モジュールの各々の前記第1室を直列的に接続する第1流路と、
     複数の前記上流モジュールの各々の前記第2室を直列的に接続する第2流路と、を備える、請求項8または9に記載の濃縮装置。
    The upstream module is plural,
    The upstream modules are connected in series;
    The final module is connected to one end of the upstream module connected in series,
    The branch flow path connects the first chamber of the upstream module coupled to the final module and the first chamber and the second chamber of the final module;
    The return flow path connects the second chamber of the final module and the second chamber of the upstream module coupled to the final module;
    A first flow path connecting the first chambers of each of the plurality of upstream modules in series;
    The concentration apparatus according to claim 8, further comprising: a second flow path that connects the second chambers of each of the plurality of upstream modules in series.
  11.  前記上流モジュールは、最初に前記対象溶液が流される前記第1室側である上流側ほど処理容量が大きい、請求項10に記載の濃縮装置。 The concentrator according to claim 10, wherein the upstream module has a larger processing capacity toward an upstream side which is the first chamber side through which the target solution is first flowed.
  12.  前記上流モジュールの各々は、並列的に接続された複数のモジュールユニットから構成され、
     前記モジュールユニットは、それぞれに、半透膜、並びに、前記半透膜で仕切られた第1室および第2室を有し、
     前記上流モジュールの各々を構成する前記複数のモジュールユニットの数が、前記上流側ほど多い、請求項11に記載の濃縮装置。
    Each of the upstream modules is composed of a plurality of module units connected in parallel,
    The module units each have a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane,
    The concentrating device according to claim 11, wherein the number of the plurality of module units constituting each of the upstream modules is larger toward the upstream side.
  13.  前記第2室内に流される前記対象溶液よりも高い圧力で前記対象溶液を前記第1室内に送ることのできる高圧ポンプを有する、請求項8~12のいずれか1項に記載の濃縮装置。 The concentrator according to any one of claims 8 to 12, further comprising a high-pressure pump capable of sending the target solution into the first chamber at a pressure higher than that of the target solution flowing into the second chamber.
  14.  請求項1に記載の濃縮方法に用いられる、請求項8~13のいずれか1項に記載の濃縮装置。 The concentrating device according to any one of claims 8 to 13, which is used in the concentrating method according to claim 1.
PCT/JP2017/039750 2016-11-02 2017-11-02 Concentration method and concentration device WO2018084246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016215260A JP6834360B2 (en) 2016-11-02 2016-11-02 Concentration method and concentrator
JP2016-215260 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018084246A1 true WO2018084246A1 (en) 2018-05-11

Family

ID=62076840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039750 WO2018084246A1 (en) 2016-11-02 2017-11-02 Concentration method and concentration device

Country Status (2)

Country Link
JP (1) JP6834360B2 (en)
WO (1) WO2018084246A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518221B2 (en) 2015-07-29 2019-12-31 Gradiant Corporation Osmotic desalination methods and associated systems
CN113453776A (en) * 2019-01-30 2021-09-28 东洋纺株式会社 Precipitation system and precipitation method
WO2021241620A1 (en) * 2020-05-28 2021-12-02 東洋紡株式会社 Hollow fiber membrane replacing method
WO2022004381A1 (en) 2020-06-30 2022-01-06 東洋紡株式会社 Membrane separation device and concentrating method
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027056A1 (en) * 2018-08-03 2020-02-06 東洋紡株式会社 Membrane separation device, desalination system, membrane separation method, and desalination method
JPWO2020158456A1 (en) * 2019-01-30 2021-12-02 東洋紡株式会社 Concentration system and concentration method
CN211311217U (en) * 2019-03-01 2020-08-21 东洋纺株式会社 Zero liquid discharge system
JP7319119B2 (en) * 2019-07-19 2023-08-01 オルガノ株式会社 Water treatment method and water treatment equipment
JP7291039B2 (en) * 2019-09-05 2023-06-14 オルガノ株式会社 Water treatment method and water treatment equipment
JP7464969B2 (en) 2019-09-10 2024-04-10 株式会社ササクラ METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED
JP2021122769A (en) * 2020-02-04 2021-08-30 東洋紡株式会社 Concentration system
JP2022040928A (en) * 2020-08-31 2022-03-11 オルガノ株式会社 Concentration method, concentrator, water treatment method, and water treatment device
CN112408548B (en) * 2020-10-20 2021-08-31 浙江省海洋水产养殖研究所 Water desalination device for large-scale seedling cultivation of litopenaeus vannamei
WO2022181541A1 (en) * 2021-02-24 2022-09-01 東洋紡株式会社 Concentration device
JP2022135710A (en) * 2021-03-05 2022-09-15 オルガノ株式会社 Water treatment method and water treatment apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851907A (en) * 1981-09-22 1983-03-26 Nippon Atom Ind Group Co Ltd Concentration apparatus
JPH02303526A (en) * 1989-05-17 1990-12-17 Arubatsuku Service Kk Membrane separator
JP2002001068A (en) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd Method and apparatus for membrane separation
JP2003010649A (en) * 2001-06-29 2003-01-14 Mitsubishi Heavy Ind Ltd Reversely osmotic membrane module and apparatus for turning salt water into fresh water by using the same
JP2011120996A (en) * 2009-12-10 2011-06-23 Panasonic Corp Method and apparatus for desalination
JP2013052333A (en) * 2011-09-02 2013-03-21 Mitsubishi Heavy Ind Ltd Reverse osmosis treatment method and reverse osmosis treatment apparatus
JP2015142903A (en) * 2013-12-26 2015-08-06 栗田工業株式会社 Operational method of reverse osmosis membrane device and reverse osmosis membrane device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851907A (en) * 1981-09-22 1983-03-26 Nippon Atom Ind Group Co Ltd Concentration apparatus
JPH02303526A (en) * 1989-05-17 1990-12-17 Arubatsuku Service Kk Membrane separator
JP2002001068A (en) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd Method and apparatus for membrane separation
JP2003010649A (en) * 2001-06-29 2003-01-14 Mitsubishi Heavy Ind Ltd Reversely osmotic membrane module and apparatus for turning salt water into fresh water by using the same
JP2011120996A (en) * 2009-12-10 2011-06-23 Panasonic Corp Method and apparatus for desalination
JP2013052333A (en) * 2011-09-02 2013-03-21 Mitsubishi Heavy Ind Ltd Reverse osmosis treatment method and reverse osmosis treatment apparatus
JP2015142903A (en) * 2013-12-26 2015-08-06 栗田工業株式会社 Operational method of reverse osmosis membrane device and reverse osmosis membrane device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518221B2 (en) 2015-07-29 2019-12-31 Gradiant Corporation Osmotic desalination methods and associated systems
US11400416B2 (en) 2015-07-29 2022-08-02 Gradiant Corporation Osmotic desalination methods and associated systems
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
CN113453776A (en) * 2019-01-30 2021-09-28 东洋纺株式会社 Precipitation system and precipitation method
WO2021241620A1 (en) * 2020-05-28 2021-12-02 東洋紡株式会社 Hollow fiber membrane replacing method
WO2022004381A1 (en) 2020-06-30 2022-01-06 東洋紡株式会社 Membrane separation device and concentrating method
JP2022011711A (en) * 2020-06-30 2022-01-17 東洋紡株式会社 Membrane separation device and concentration method
JP7020512B2 (en) 2020-06-30 2022-02-16 東洋紡株式会社 Membrane separation device and concentration method
CN115916381A (en) * 2020-06-30 2023-04-04 东洋纺株式会社 Membrane separation device and concentration method
CN115916381B (en) * 2020-06-30 2023-09-22 东洋纺Mc株式会社 Membrane separation device and concentration method
EP4173694A4 (en) * 2020-06-30 2024-04-03 TOYOBO MC Corporation Membrane separation device and concentrating method
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery

Also Published As

Publication number Publication date
JP6834360B2 (en) 2021-02-24
JP2018069198A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2018084246A1 (en) Concentration method and concentration device
US20220315469A1 (en) Cross current staged reverse osmosis
JP6977247B2 (en) Concentration method and concentrator
US10500544B2 (en) Advancements in osmotically driven membrane systems including multi-stage purification
JP2018001110A (en) Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water
WO2020027056A1 (en) Membrane separation device, desalination system, membrane separation method, and desalination method
JP2018001111A (en) Processing method of desalinating salt water and processing system of desalinating salt water
WO2020179594A1 (en) Zero liquid discharge system
JP2008100220A (en) Method for producing freshwater
JP2000167358A (en) Membrane separation system and membrane separation method
JP2002085941A (en) Fresh water making process and fresh water maker
WO2022004381A1 (en) Membrane separation device and concentrating method
WO2020022218A1 (en) Forward osmosis treatment method and forward osmosis treatment device
CN213446623U (en) Concentration system
CN212832954U (en) Concentration system
WO2021241620A1 (en) Hollow fiber membrane replacing method
JP2021045736A (en) Concentration system
WO2022059737A1 (en) Seawater desalination system
JP2020203258A (en) Seawater desalination method and apparatus thereof
WO2023017778A1 (en) Membrane separation system
JP7238233B2 (en) Forward osmosis treatment method and forward osmosis treatment apparatus
WO2024052721A1 (en) Saline water treatment pre-treatment or treatment system
GB2623984A (en) Minimal liquid discharge desalination systems using integrated membrane processes
JP2002085944A (en) Ion selective separator, fluid treatment equipment including the same and fluid separation process
JP2022186382A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866926

Country of ref document: EP

Kind code of ref document: A1