JP2002001068A - Method and apparatus for membrane separation - Google Patents
Method and apparatus for membrane separationInfo
- Publication number
- JP2002001068A JP2002001068A JP2000191093A JP2000191093A JP2002001068A JP 2002001068 A JP2002001068 A JP 2002001068A JP 2000191093 A JP2000191093 A JP 2000191093A JP 2000191093 A JP2000191093 A JP 2000191093A JP 2002001068 A JP2002001068 A JP 2002001068A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- membrane separation
- chamber
- treated
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半透膜を用いる膜分
離方法および装置、特に高濃縮液に適した膜分離方法お
よび装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation method and apparatus using a semipermeable membrane, and more particularly to a membrane separation method and apparatus suitable for highly concentrated liquid.
【0002】[0002]
【従来の技術】半透膜を通して溶媒を移動させ、被処理
液を濃縮するとともに透過液を得る膜分離方法が採用さ
れている。半透膜により溶液とその溶媒を隔てると、溶
媒は浸透圧により溶液側に透過する。このため溶液を濃
縮するためには、溶液側を加圧することにより浸透圧に
抗して溶媒を透過させる必要がある。このような膜分離
方法は逆浸透(RO)と呼ばれ、これに用いられる半透
膜は逆浸透膜と呼ばれている。通常逆浸透は溶液中の塩
分を濃縮する場合に用いられているが、浸透圧は塩分以
外の溶質が溶解した溶液にも生じるから、塩分以外の溶
質が溶解した一般の溶液を濃縮する場合でも浸透圧が生
じ、同様の原理で濃縮が行われる。2. Description of the Related Art A membrane separation method has been employed in which a solvent is moved through a semipermeable membrane to concentrate a liquid to be treated and obtain a permeate. When a solution and its solvent are separated by a semipermeable membrane, the solvent permeates to the solution side by osmotic pressure. For this reason, in order to concentrate the solution, it is necessary to pressurize the solution side to allow the solvent to permeate against the osmotic pressure. Such a membrane separation method is called reverse osmosis (RO), and the semipermeable membrane used for this is called a reverse osmosis membrane. Normally, reverse osmosis is used when concentrating salt in a solution, but since osmotic pressure also occurs in a solution in which solutes other than salt are dissolved, even when concentrating a general solution in which solutes other than salt are dissolved. Osmotic pressure occurs and concentration takes place on a similar principle.
【0003】このような膜分離による濃縮では浸透圧に
抗して溶媒の透過が行われるから、浸透圧が高い被処理
液の場合には操作圧を高くする必要がある。このことは
被処理液を高濃縮する場合、あるいは高濃度の被処理液
をさらに高濃度に濃縮する場合には高圧で膜分離を行う
必要があることを意味する。ところが操作圧を高くする
ことは装置全体を耐圧構造かつ大型にする必要があり、
加圧のためのエネルギー量も多くなり、装置の設置コス
トおよび運転コストが高くなるという問題点がある。ま
た使われる膜の耐圧強度に限界があるため、濃縮限界が
生じる。In such concentration by membrane separation, the permeation of the solvent is performed against the osmotic pressure. Therefore, in the case of a liquid to be treated having a high osmotic pressure, it is necessary to increase the operating pressure. This means that when the liquid to be treated is highly concentrated, or when the liquid to be treated having a high concentration is further concentrated to a higher concentration, it is necessary to perform membrane separation at a high pressure. However, increasing the operating pressure requires the entire device to be pressure-resistant and large.
There is a problem in that the amount of energy for pressurization also increases, and the installation cost and operation cost of the device increase. In addition, since the pressure resistance of the membrane used is limited, a concentration limit occurs.
【0004】このような点を改善し、低い操作圧で高濃
縮を行う膜分離方法として、透過液側に浸透圧液を流し
て膜分離を行う方法が提案されている(特開平4−21
5822号)。この方法は被処理液とは異なる液であっ
て浸透圧を有する液を透過液側に流すことにより、浸透
圧の差よりも若干高い操作圧で膜分離して高濃縮するこ
とを可能にする。すなわち被処理液より浸透圧の高い浸
透圧液を流すと、被処理液側を加圧しなくても被処理液
側から溶媒が透過するが、被処理液より低い浸透圧液を
流す場合でも、両者の浸透圧の差よりも若干高い圧力で
被処理液を流すことにより、被処理液側から溶媒が透過
して膜分離が行われる。従って吐出圧が低い小型のポン
プを使用し、耐圧容器を用いることなく膜分離を行って
高濃縮することが可能になる。As a membrane separation method for improving such points and performing high concentration at a low operating pressure, there has been proposed a method in which an osmotic pressure liquid is caused to flow on a permeate side to perform membrane separation (Japanese Patent Laid-Open No. 4-21).
No. 5822). This method allows a liquid having an osmotic pressure, which is different from the liquid to be treated, to flow to the permeate side, thereby performing membrane separation at a slightly higher operating pressure than the difference in osmotic pressure and performing high concentration. . That is, when the osmotic liquid having a higher osmotic pressure than the liquid to be treated flows, the solvent permeates from the liquid to be treated without pressurizing the liquid to be treated, but even when the osmotic liquid lower than the liquid to be treated flows, By flowing the liquid to be treated at a pressure slightly higher than the difference between the two osmotic pressures, the solvent permeates from the liquid to be treated and the membrane is separated. Therefore, it is possible to use a small pump having a low discharge pressure and perform membrane separation without using a pressure-resistant container to perform high concentration.
【0005】しかしながらこのような従来の方法では、
溶媒によって希釈された大量の浸透圧液が生成し、その
処分は困難であった。海水のように入手および処分が容
易な浸透圧液を利用する場合はあまり問題はないが、こ
の液を利用するには立地条件に制限を受ける。またこの
ような液でも浸透圧液として利用するためには、膜分離
装置に悪影響を与えないような前処理をする必要があ
り、またそのままで廃棄できない場合には後処理が必要
になるなどの問題点があった。However, in such a conventional method,
Large volumes of osmotic fluid, diluted by solvent, were produced, and their disposal was difficult. There is not much problem when using an osmotic fluid that is easy to obtain and dispose like seawater, but use of this fluid is limited by the location conditions. In addition, in order to use such a liquid as an osmotic pressure liquid, it is necessary to perform a pretreatment so as not to adversely affect the membrane separation device. There was a problem.
【0006】[0006]
【発明が解決しようとする課題】本発明の課題は、入手
および処分が容易な浸透圧液および小型の装置を用い
て、低い操作圧で効率よく膜分離を行い、低エネルギー
量で高濃度の濃縮液を得ることができる膜分離方法およ
び装置を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to efficiently perform membrane separation at a low operating pressure by using an osmotic fluid and a small device that are easily available and disposed of, and to realize a high energy concentration at a low energy level. An object of the present invention is to provide a membrane separation method and an apparatus capable of obtaining a concentrated solution.
【0007】[0007]
【課題を解決するための手段】本発明は次の膜分離方法
および装置である。 (1) 半透膜の片側に形成された濃縮室に被処理液を
供給し、反対側に形成された透過室に被処理液を含む浸
透圧液を供給し、濃縮室側から溶媒を透過室側に透過さ
せて膜分離を行うことを特徴とする膜分離方法。 (2) 被処理液を濃縮室と透過室の両方に供給する上
記(1)記載の方法。 (3) 前膜分離による濃縮液を被処理液として供給し
て膜分離する上記(1)または(2)記載の方法。 (4) 透過室から得られる透過液を後膜分離し、その
濃縮液を被処理液に混合して膜分離する上記(1)ない
し(3)のいずれかに記載の方法。 (5) 半透膜により濃縮室および透過室を区画した膜
分離モジュールを複数段設け、前段の濃縮液を後段の被
処理液および浸透圧液として供給する上記(1)ないし
(4)のいずれかに記載の方法。 (6) 半透膜の片側に形成される濃縮室および反対側
に形成される透過室と、濃縮室に被処理液を供給する被
処理液路と、透過室に被処理液を含む浸透圧液を供給す
る浸透圧液路と、濃縮室の圧力を透過室の圧力よりも高
くする差圧形成手段と、濃縮室から濃縮液を取り出す濃
縮液路と、透過室から透過液を取り出す透過液路とを含
む膜分離装置。 (7) 被処理液路から浸透圧液路に被処理液を分流す
る分流路を有する上記(6)記載の装置。 (8) 低濃度液を濃縮し、その濃縮液を被処理液とし
て供給する前膜分離装置を有する上記(6)または
(7)記載の方法。 (9) 透過室から得られる透過液を濃縮し、その濃縮
液を被処理液に混合する後膜分離装置を有する上記
(6)ないし(8)のいずれかに記載の装置。 (10) 半透膜により濃縮室および透過室を区画した
複数段の膜分離モジュールと、前段の膜分離モジュール
の濃縮液を後段の膜分離モジュールの被処理液および浸
透圧液として供給する供給流路を含む上記(6)ないし
(9)のいずれかに記載の装置。The present invention is the following membrane separation method and apparatus. (1) The liquid to be treated is supplied to the concentration chamber formed on one side of the semipermeable membrane, and the osmotic fluid containing the liquid to be treated is supplied to the permeation chamber formed on the other side, and the solvent permeates from the concentration chamber side. A membrane separation method, wherein the membrane is separated by passing the light through a chamber. (2) The method according to the above (1), wherein the liquid to be treated is supplied to both the concentration chamber and the permeation chamber. (3) The method according to the above (1) or (2), wherein the concentrated liquid obtained by the pre-membrane separation is supplied as a liquid to be treated and the membrane is separated. (4) The method according to any one of (1) to (3) above, wherein the permeated liquid obtained from the permeation chamber is subjected to post-membrane separation, and the concentrated liquid is mixed with the liquid to be treated and subjected to membrane separation. (5) Any one of the above (1) to (4), in which a plurality of membrane separation modules in which a concentration chamber and a permeation chamber are partitioned by a semi-permeable membrane are provided, and the concentrated solution of the preceding stage is supplied as the liquid to be treated and the osmotic pressure solution of the subsequent stage. The method described in Crab. (6) a concentration chamber formed on one side of the semipermeable membrane and a permeation chamber formed on the opposite side, a liquid passage for supplying the liquid to be concentrated to the concentration chamber, and an osmotic pressure containing the liquid to be treated in the permeation chamber. An osmotic pressure liquid path for supplying the liquid, a differential pressure forming means for increasing the pressure in the concentrating chamber higher than the pressure in the permeating chamber, a condensing liquid path for taking out the condensed liquid from the concentrating chamber, and a permeating liquid for taking out the permeated liquid from the permeating chamber And a membrane separation device. (7) The apparatus according to the above (6), further comprising a branch channel for dividing the liquid to be processed from the liquid path to be processed to the osmotic pressure liquid path. (8) The method according to the above (6) or (7), further comprising a membrane separator for concentrating the low-concentration liquid and supplying the concentrated liquid as a liquid to be treated. (9) The apparatus according to any one of the above (6) to (8), further comprising a post-membrane separation device for concentrating the permeate obtained from the permeation chamber and mixing the concentrate with the liquid to be treated. (10) A multi-stage membrane separation module in which a concentration chamber and a permeation chamber are partitioned by a semi-permeable membrane, and a supply flow for supplying a concentrate of the preceding membrane separation module as a liquid to be treated and an osmotic pressure liquid of the subsequent membrane separation module. The apparatus according to any one of the above (6) to (9), including a road.
【0008】本発明において膜分離の対象となる被処理
液は浸透圧を示す溶液であって、溶質が溶媒に溶解した
溶液であるが、不溶性物質が分散していてもよい。溶質
としては無機または有機の塩類、酸、アルカリ、アルコ
ール、糖類、蛋白質、その他の可溶性物質が含まれる。
また分散性の物質であっても、親溶媒性部分が存在する
ことにより浸透圧が表われる物質も含まれる。溶媒とし
てはこれらの溶質または分散質を溶解または分散させて
浸透圧を示す溶液を形成できる物質があげられる。この
ような溶媒としては水が典型的であるが、アルコールそ
の他の溶液であってもよい。In the present invention, the target liquid to be subjected to membrane separation is a solution having an osmotic pressure and a solution in which a solute is dissolved in a solvent. However, an insoluble substance may be dispersed. Solutes include inorganic or organic salts, acids, alkalis, alcohols, sugars, proteins, and other soluble substances.
Further, even a dispersible substance includes a substance whose osmotic pressure is exhibited by the presence of a solvotropic part. Examples of the solvent include substances capable of forming a solution having an osmotic pressure by dissolving or dispersing these solutes or dispersoids. Water is typically used as such a solvent, but may be an alcohol or other solution.
【0009】本発明において膜分離に使用する半透膜は
被処理液中の溶媒を透過させ、溶質の透過を阻止する膜
である。このような半透膜としては浸透圧または逆浸透
により溶媒を透過させるすべての半透膜が含まれる。通
常逆浸透(R0)膜と呼ばれる半透膜は無機塩類や低分
子量の有機物などを水から分離するために用いられてお
り、本発明の半透膜に含まれる。このほかナノ濾過(N
F)膜、限外濾過(UF)膜や精密濾過(MF)膜など
と呼ばれる膜でも、浸透圧または逆浸透を利用して糖類
や蛋白等の水溶性の高分子量物質を分離する膜は本発明
の半透膜に含まれる。In the present invention, the semipermeable membrane used for membrane separation is a membrane that allows the solvent in the liquid to be treated to permeate and prevents the permeation of solutes. Such semipermeable membranes include all semipermeable membranes that allow solvent to permeate by osmotic pressure or reverse osmosis. A semipermeable membrane usually called a reverse osmosis (R0) membrane is used for separating inorganic salts and low molecular weight organic substances from water, and is included in the semipermeable membrane of the present invention. In addition, nanofiltration (N
F) Membrane, ultrafiltration (UF) membrane, microfiltration (MF) membrane, etc., are membranes that separate water-soluble high molecular weight substances such as sugars and proteins using osmotic pressure or reverse osmosis. Included in the semipermeable membrane of the invention.
【0010】半透膜の材質としては制限はなく、酢酸セ
ルロース、ポリアミド、ポリビニールアルコール、ポリ
アクリルニトリル、ポリスルホン、ニトロセルロース、
トリアセチルセルロース、再生セルロース、ポリカーボ
ネイト、ポリエーテルスルホン、2フッ化ビニリデン、
4フッ化エチレン、セラミック、ポリオレフィン、ポリ
エチレン、ポリプロピレン、ポリイミドなど、一般に半
透膜に利用されているものがすべて使用できる。このよ
うな半透膜はモジュールとして用いるのが好ましい。こ
れらの半透膜の形状としては平膜、スパイラル、チュー
ブラ、中空糸など任意の形状の半透膜を用いるものが使
用できる。There is no limitation on the material of the semipermeable membrane, and cellulose acetate, polyamide, polyvinyl alcohol, polyacrylonitrile, polysulfone, nitrocellulose,
Triacetyl cellulose, regenerated cellulose, polycarbonate, polyether sulfone, vinylidene difluoride,
All materials generally used for semipermeable membranes such as tetrafluoroethylene, ceramic, polyolefin, polyethylene, polypropylene, and polyimide can be used. Such a semipermeable membrane is preferably used as a module. As the shape of these semipermeable membranes, those using an arbitrary shape semipermeable membrane such as a flat membrane, spiral, tubular, or hollow fiber can be used.
【0011】本発明の膜分離装置は上記の半透膜の片側
に濃縮室を形成し、反対側に透過室を形成し、濃縮室に
被処理液路および濃縮液路を連絡し、透過室に浸透圧液
路および透過液路を連絡し、濃縮室の圧力を透過室の圧
力より高くする差圧形成手段を設置して形成される。膜
分離装置としては半透膜の両側に濃縮室および透過室を
形成した複数のモジュールを設置するのが好ましい。こ
れらのモジュールは半透膜により濃縮室と透過室を区画
したものが好ましい。差圧形成手段としては、ポンプ等
の加圧手段を用いて濃縮室に被処理液を加圧下に供給し
て膜分離を行い、透過室側から透過液を流出させるもの
が好ましいが、吸引ポンプ等の吸引手段を用いて透過室
側を吸引して透過液を透過させるもの、あるいは浸透圧
で透過液を透過させるものでもよい。In the membrane separation apparatus of the present invention, a concentration chamber is formed on one side of the above semipermeable membrane, a permeation chamber is formed on the other side, and a liquid passage to be treated and a concentrated liquid path are connected to the concentration chamber. The osmotic pressure passage and the permeate passage are connected to each other, and a pressure difference forming means for increasing the pressure in the concentration chamber to be higher than the pressure in the permeation chamber is provided. As the membrane separation device, it is preferable to install a plurality of modules in which a concentration chamber and a permeation chamber are formed on both sides of the semipermeable membrane. These modules preferably have a concentration chamber and a permeation chamber separated by a semipermeable membrane. As the pressure difference forming means, a means for supplying the liquid to be concentrated to the concentration chamber under pressure using a pressure means such as a pump to perform membrane separation and allowing the permeated liquid to flow out from the permeation chamber side is preferable. A suction means such as the above may be used to suction the permeation chamber side to allow the permeate to permeate, or to permeate the permeate by osmotic pressure.
【0012】浸透圧液は被処理液を含む液であり、被処
理液そのものを用いてもよく、またその希釈液または濃
縮液を用いてもよい。被処理液を含む浸透圧液を透過室
に供給するためには、被処理液路から分流路を通して被
処理液の一部を浸透圧液路に分流するのが好ましい、
(濃縮室に供給する被処理液量)/(透過室に供給する
被処理液量)は容量比で1/0.1〜1/10、好まし
くは1/0.5〜1/5程度である。透過室には被処理
液以外の液を供給してもよいが、しなくてもよい。The osmotic pressure liquid is a liquid containing the liquid to be treated, and may be the liquid to be treated itself, or a diluent or concentrated liquid thereof. In order to supply the osmotic liquid containing the liquid to be treated to the permeation chamber, it is preferable to divide a part of the liquid to be treated into the osmotic liquid path through the branch channel from the liquid path to be treated,
(Amount of the liquid to be supplied to the concentrating chamber) / (Amount of the liquid to be supplied to the permeation chamber) is about 1 / 0.1 to 1/10, preferably about 1 / 0.5 to 1/5 by volume ratio. is there. A liquid other than the liquid to be treated may be supplied to the permeation chamber, but may not be supplied.
【0013】被処理液は同形物その他の不純物を含まな
いものが好ましい。このため原液が不純物を含む場合に
は前処理装置により不純物を除去した液を被処理液とし
て用いるのが好ましい。前処理装置としては沈澱装置、
凝集沈澱装置、濾過装置、孔径の大きい膜分離装置、殺
菌装置など、除去する不純物に適した処理装置を用いる
ことができる。前処理装置は主として半透膜の汚染ない
し目詰まりを防止することを目的とすることができる
が、得られる濃縮液または透過液の純度を上げる目的、
その他の目的で行うこともできる。It is preferable that the liquid to be treated does not contain the same substance or other impurities. For this reason, when the stock solution contains impurities, it is preferable to use a liquid from which impurities have been removed by the pretreatment device as the liquid to be treated. Precipitation equipment as pretreatment equipment,
It is possible to use a treatment apparatus suitable for impurities to be removed, such as a coagulation sedimentation apparatus, a filtration apparatus, a membrane separation apparatus having a large pore diameter, and a sterilization apparatus. The pretreatment device can be mainly intended to prevent contamination or clogging of the semipermeable membrane, but to increase the purity of the obtained concentrated solution or permeate,
It can be performed for other purposes.
【0014】上記のような被処理液を供給して本発明の
膜分離を行うと、濃縮室と透過室の浸透圧の差が低くな
るため、小さい圧力差を与えることにより、濃縮室側か
ら透過室側に半透膜を通して溶媒を透過させることがで
きる。このため小型、低圧の装置を用いて、少ないエネ
ルギー量で効率よく膜分離を行い、高濃度の被処理液に
ついても濃縮を行い、高濃縮により、さらに高濃度の濃
縮液を得ることができる。When the liquid to be treated is supplied and the membrane separation of the present invention is carried out, the difference in osmotic pressure between the concentration chamber and the permeation chamber is reduced. The solvent can be transmitted through the semipermeable membrane to the permeation chamber side. Therefore, using a small-sized, low-pressure apparatus, membrane separation can be efficiently performed with a small amount of energy, and a high-concentration liquid to be treated can be concentrated.
【0015】原液が高濃度の場合、例えば浸透圧0.9
8MP(10kgf/cm2)以上の場合には、原液を
そのまま被処理液として本発明による膜分離を行うこと
ができるが、原液が低濃度の場合例えば上記浸透圧未満
の場合には、浸透圧液を供給しない通常の膜分離により
濃縮した濃縮液を被処理液として供給し、本発明の膜分
離を行うことができる。この場合、前膜分離では浸透圧
液を流さないから、前処理を行った原液を排棄すること
なく、有効に濃縮に供することができる。When the stock solution has a high concentration, for example, an osmotic pressure of 0.9
In the case of 8MP (10kgf / cm 2 ) or more, the membrane separation according to the present invention can be performed using the undiluted solution as it is as the liquid to be treated. The membrane separation of the present invention can be carried out by supplying a concentrated liquid concentrated by ordinary membrane separation without supplying a liquid as a liquid to be treated. In this case, since the osmotic pressure liquid is not flowed in the pre-membrane separation, it is possible to effectively perform the concentration without discarding the pretreated stock solution.
【0016】原液が高濃度のためそのまま被処理液と
し、または前処理した前処理液を被処理液として本発明
の膜分離を行った場合には、透過室から得られる透過液
中には被処理液を含む浸透圧液が混入している。このた
め前膜分離に用いたのと同様の浸透圧液を流さない通常
の膜分離装置を用いた後膜分離を行い、その濃縮液を被
処理液に混入して膜分離を行うのが好ましく、これによ
り前処理を行った被処理液を有効に利用することができ
る。前処理および廃棄が容易な場合には、透過液はその
まま廃棄してもよい。[0016] When the membrane separation of the present invention is carried out as it is as the liquid to be treated due to the high concentration of the undiluted solution, or when the pretreatment liquid subjected to the pretreatment is used as the liquid to be treated, the liquid permeate obtained from the permeation chamber is not treated. Osmotic fluid containing the processing solution is mixed. For this reason, it is preferable to perform membrane separation using the same membrane separation device that does not flow the osmotic pressure liquid similar to that used for pre-membrane separation, and to mix the concentrated solution into the liquid to be treated to perform membrane separation. Thus, the liquid to be treated which has been subjected to the pretreatment can be effectively used. If the pretreatment and disposal are easy, the permeate may be discarded as it is.
【0017】本発明では半透膜により濃縮室と透過液室
を区画したモジュールを多段に設け、前段の濃縮液を次
段の被処理液および浸透圧液としてそれぞれ濃縮室およ
び透過室に供給するように流路を形成し、これにより前
段の濃縮を次段の被処理液および浸透圧液として供給し
て膜分離を行うと、さらに高濃度にまで濃縮することが
できる。それぞれの段の透過液は前段の被処理液として
戻すことにより、効率のよい膜分離を行うことができ
る。濃縮液は一般の膜分離の場合と同様に、そのまま後
段に供給してもよく、また被処理液槽に循環して濃縮度
を高めてから後段に送ってもよい。In the present invention, a module in which a concentration chamber and a permeate chamber are divided by a semi-permeable membrane is provided in multiple stages, and the concentrate in the preceding stage is supplied to the concentration chamber and the permeate chamber as the liquid to be treated and the osmotic pressure solution in the next stage, respectively. When the flow path is formed as described above, and the pre-concentration is supplied as the liquid to be processed and the osmotic pressure liquid in the next step and membrane separation is performed, the concentration can be further increased to a higher concentration. By returning the permeate in each stage as the liquid to be treated in the preceding stage, efficient membrane separation can be performed. As in the case of general membrane separation, the concentrated solution may be supplied to the subsequent stage as it is, or may be circulated to the liquid tank to be treated to increase the degree of concentration and then sent to the subsequent stage.
【0018】[0018]
【発明の効果】本発明によれば、被処理液を含む浸透圧
液を透過室に供給して膜分離を行うことにより、入手お
よび処分が容易な浸透圧液および小型の装置を用いて、
低い操作圧で効率よく膜分離を行い、低エネルギー量で
高濃度の濃縮液を得ることができる。また被処理液を濃
縮室と透過室の両方に供給するようにすると、装置の構
成が簡単になり、処理も容易になる。前膜分離による濃
縮液を被処理液とすると、前処理を行った原液の利用率
を高くできるとともに、低濃度の原液を効率よく膜分離
することができる。後膜分離により透過液を濃縮して濃
縮液を被処理液に混合して膜分離すると、高濃度の被処
理液をそのまま膜分離に供することができ、被処理液の
利用率を高くして処理することができる。また多段にモ
ジュールを設置して、濃縮液を後段の被処理液および浸
透圧液として供給することにより高濃縮が可能になる。According to the present invention, the osmotic fluid containing the liquid to be treated is supplied to the permeation chamber and the membrane is separated, so that the osmotic fluid and the compact device which are easy to obtain and dispose can be used.
The membrane can be efficiently separated at a low operating pressure, and a concentrated solution having a low energy amount and a high concentration can be obtained. Further, when the liquid to be treated is supplied to both the concentration chamber and the permeation chamber, the configuration of the apparatus is simplified, and the processing is also facilitated. When the liquid to be treated is the concentrated liquid obtained by pre-membrane separation, the utilization rate of the pre-treated stock solution can be increased, and a low-concentration stock solution can be efficiently subjected to membrane separation. When the permeate is concentrated by post-membrane separation, and the concentrated liquid is mixed with the liquid to be treated and subjected to membrane separation, a high-concentration liquid to be treated can be directly subjected to membrane separation, and the utilization rate of the liquid to be treated is increased. Can be processed. Further, by installing modules in multiple stages and supplying the concentrated liquid as the liquid to be treated and the osmotic pressure liquid at the subsequent stage, high concentration can be achieved.
【0019】[0019]
【発明の実施の形態】以下、本発明の実施形態を図面に
より説明する。図1ないし図4はそれぞれ別の実施形態
を示すフロー図である。Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are flowcharts showing different embodiments.
【0020】図1において、1は膜分離モジュールであ
り、半透膜1aによって片側に濃縮室1b、反対側に透
過室1cが区画されている。2は被処理液槽であって、
加圧ポンプP1を有する被処理液路L1が濃縮室1bに
連絡し、これから分流する浸透圧液路L2が弁V1を介
して透過室1cに連絡している。透過室1cからポンプ
P2を有する透過液路L3が後膜分離モジュール3の濃
縮室3bに連絡している。濃縮室1bには濃縮液路L4
が連絡し、循環式の場合には循環路L5が被処理液槽2
に連絡する。後膜分離モジュール3は半透膜3aにより
濃縮室3bと透過室3cに区画されており、濃縮室3b
から濃縮液路L6が被処理液槽2に連絡し、透過室3c
から透過液路L7が系外に連絡している。4は前処理装
置であって、原液路L8から供給される原液を前処理し
た前処理原液を供給する前処理原液路L9が被処理液槽
2に連絡している。In FIG. 1, reference numeral 1 denotes a membrane separation module, in which a concentration chamber 1b is partitioned on one side and a permeation chamber 1c is partitioned on the other side by a semipermeable membrane 1a. 2 is a liquid tank to be treated,
The liquid passage L1 having the pressurizing pump P1 communicates with the concentration chamber 1b, and the osmotic pressure liquid passage L2, which diverges therefrom, communicates with the permeation chamber 1c via the valve V1. A permeate passage L3 having a pump P2 from the permeation chamber 1c communicates with the concentration chamber 3b of the post-membrane separation module 3. In the concentration chamber 1b, the concentrated liquid path L4
And in the case of the circulation type, the circulation path L5 is connected to the liquid tank 2 to be treated.
Contact The post-membrane separation module 3 is divided into a concentration chamber 3b and a permeation chamber 3c by a semi-permeable membrane 3a.
, The concentrated liquid path L6 communicates with the liquid tank 2 to be treated, and the permeation chamber 3c
And the permeate passage L7 communicates with the outside of the system. Reference numeral 4 denotes a pretreatment device, and a pretreatment undiluted solution path L9 for supplying a pretreatment undiluted solution obtained by pretreating the undiluted solution supplied from the undiluted solution path L8 communicates with the liquid tank 2 to be treated.
【0021】上記の膜分離装置においては、原液路L8
から供給される原液を前処理装置4で前処理し、前処理
原液を前処理原液路L9から被処理液槽2に送る。被処
理液槽2の被処理液5は加圧ポンプP1により加圧して
被処理液路L1から膜分離モジュール1の濃縮室1bに
供給して膜分離を行う。このとき一部の被処理液を浸透
圧液として弁V1で流量を調整しながら浸透圧液路L2
から透過室1cに供給する。これにより半透膜1aの両
側の浸透圧の差は小さくなり、加圧ポンプP1の加圧力
が小さい場合でも溶媒が濃縮室1bから半透膜1aを透
過して膜分離が行われ、被処理液は高濃度に濃縮され
る。濃縮室1bの濃縮液は濃縮液路L4が取り出され、
一過式で濃縮液として系外に排出される場合と、循環路
L5から被処理液槽2に循環して濃縮度をさらに高める
場合とがあり、いずれの方式での運転も可能である。In the above membrane separation apparatus, the stock solution path L8
The pre-treatment device 4 pre-treats the stock solution supplied from the pre-treatment device 4 and sends the pre-treatment stock solution to the to-be-processed solution tank 2 from the pre-treatment stock solution passage L9. The liquid 5 to be treated in the liquid tank 2 to be treated is pressurized by the pressure pump P1 and supplied from the liquid passage L1 to the concentration chamber 1b of the membrane separation module 1 to perform membrane separation. At this time, a part of the liquid to be treated is used as the osmotic liquid and the flow rate is adjusted by the valve V1 while the osmotic liquid path L2
To the transmission chamber 1c. As a result, the difference between the osmotic pressures on both sides of the semipermeable membrane 1a is reduced, and even when the pressure of the pressurizing pump P1 is small, the solvent permeates through the semipermeable membrane 1a from the concentration chamber 1b and membrane separation is performed. The liquid is concentrated to a high concentration. The concentrate in the concentration chamber 1b is taken out of the concentrate path L4,
There are cases where the concentrated liquid is discharged out of the system as a transient method, and cases where the concentration is further increased by circulating the liquid from the circulation path L5 to the liquid tank 2 to be treated, and operation in either method is possible.
【0022】透過室1cの透過液は透過液路L3から取
り出され、ポンプP2で加圧して後膜分離モジュールの
濃縮室3bに送り、後膜分離を行う。濃縮室3bの濃縮
液は、浸透圧液として透過室1cに入った被処理液と、
半透膜1aを透過した被処理液成分とが濃縮されてお
り、濃縮液路L6から被処理液槽2に供給し、被処理液
として利用する。これにより前処理を行った原液の利用
率が高くなる。透過室3cの透過液は透過液路L7から
処理液として系外に取り出され、回収水等として利用さ
れる。上記の図1の装置は原液が比較的高濃度であっ
て、そのまま本発明の被処理液として膜分離を行う場合
に適している。The permeated liquid in the permeation chamber 1c is taken out from the permeated liquid passage L3, pressurized by the pump P2, and sent to the concentration chamber 3b of the post-membrane separation module to perform post-membrane separation. The concentrated liquid in the concentration chamber 3b is a liquid to be treated that has entered the permeation chamber 1c as an osmotic pressure liquid,
The liquid component to be processed that has passed through the semipermeable membrane 1a is concentrated and supplied to the liquid tank 2 to be processed from the concentrated liquid path L6, and is used as the liquid to be processed. As a result, the utilization rate of the stock solution subjected to the pretreatment is increased. The permeated liquid in the permeation chamber 3c is taken out of the system as a processing liquid from the permeated liquid passage L7, and is used as recovered water or the like. The apparatus shown in FIG. 1 has a relatively high concentration of the stock solution, and is suitable for performing membrane separation as it is as the liquid to be treated in the present invention.
【0023】図1において半透膜としてポリアミド製の
ナノろ過膜を用い、1重量%のイソプロパノール水溶液
を原液とし、これを0.98MPa(10kg/c
m2、ゲージ圧)のポンプ操作圧で循環式にて膜分離す
ると、濃縮液路L4から得られる濃縮液の濃度は2重量
%となり、2倍濃縮が可能となる。これに対して浸透圧
液路から浸透圧液を供給しないで同条件で処理する場合
の濃縮液の濃縮限界は1重量%であり、濃縮は不可能と
なる。In FIG. 1, a nanofiltration membrane made of polyamide was used as a semipermeable membrane, and a 1% by weight aqueous solution of isopropanol was used as a stock solution, which was prepared at 0.98 MPa (10 kg / c).
(m 2 , gauge pressure), when the membrane is separated by a circulation method using a pump operating pressure, the concentration of the concentrated liquid obtained from the concentrated liquid passage L4 becomes 2% by weight, and the concentration can be doubled. On the other hand, when the treatment is carried out under the same conditions without supplying the osmotic pressure liquid from the osmotic pressure liquid path, the concentration limit of the concentrated liquid is 1% by weight, and the concentration becomes impossible.
【0024】図2は比較的低濃度の原液を処理するのに
適した実施形態を示し、原液を前膜分離により濃縮して
本発明の被処理液として利用するように構成されてい
る。すなわち、6は前膜分離モジュールであって半透膜
6aにより濃縮室6bと透過室6cに区画されている。
7は原液槽であって被濃縮液路L11が加圧ポンプP3
を介して濃縮室6bに連絡している。透過室6cには透
過液路L12が連絡している。濃縮室6bから濃縮液路
L13が被処理液槽2に接続し、これから分流する浸透
圧液路L2が膜分離モジュール1の透過室1cに連絡し
ている。透過室1cから透過液路L3が原液槽7に接続
している。他の構成は図1と同様である。FIG. 2 shows an embodiment suitable for treating a stock solution having a relatively low concentration. The stock solution is configured to be concentrated by pre-membrane separation and used as a solution to be treated in the present invention. That is, reference numeral 6 denotes a pre-membrane separation module, which is divided into a concentration chamber 6b and a permeation chamber 6c by the semi-permeable membrane 6a.
Reference numeral 7 denotes a stock solution tank, and the liquid passage L11 to be concentrated has a pressure pump P3.
To the concentration chamber 6b. The permeated liquid passage L12 communicates with the permeation chamber 6c. From the concentration chamber 6b, a concentrated liquid path L13 is connected to the liquid tank 2 to be treated, and an osmotic pressure liquid path L2 branched therefrom communicates with the permeation chamber 1c of the membrane separation module 1. A permeate passage L3 is connected to the undiluted solution tank 7 from the permeation chamber 1c. Other configurations are the same as those in FIG.
【0025】上記の装置による膜分離方法は、前処理装
置4において前処理した前処理原液は前処理原液路L9
から原液槽7に入り、被濃縮原液路L11から加圧ポン
プP3により加圧されて前膜分離モジュール6の濃縮室
6bに入り前膜分離を行う。被濃縮原液中の溶媒は半透
膜6aを透過して透過室6cに入る。透過室6cには浸
透圧液は供給されないので、透過液は処理液として透過
液路L12から取り出される。濃縮室6bの濃縮液は濃
縮液路L13から被処理液として被処理液槽2に供給
し、一部は浸透圧液として浸透圧液路L2から膜分離モ
ジュール1の透過室1cへ供給する。膜モジュール1に
おける膜分離は図1の場合と同様に行われ、透過液は透
過液路L3から原液槽7に供給する。これにより浸透圧
液として透過室1cに導入した原液が希釈された透過液
を前膜分離モジュールで膜分離を行って溶質を濃縮し、
前処理原液の利用率を高めることができる。In the membrane separation method using the above-described apparatus, the pretreatment stock solution pretreated in the pretreatment device 4 is used as the pretreatment stock solution path L9.
From the concentrated solution path L11, pressurized by the pressure pump P3, enters the concentration chamber 6b of the pre-membrane separation module 6, and performs pre-membrane separation. The solvent in the undiluted solution passes through the semipermeable membrane 6a and enters the permeation chamber 6c. Since the osmotic pressure liquid is not supplied to the permeation chamber 6c, the permeate is taken out of the permeate passage L12 as a processing liquid. The concentrated liquid in the concentration chamber 6b is supplied from the concentrated liquid path L13 to the liquid tank 2 to be treated as a liquid to be treated, and a part is supplied as the osmotic liquid from the osmotic liquid path L2 to the permeation chamber 1c of the membrane separation module 1. The membrane separation in the membrane module 1 is performed in the same manner as in FIG. 1, and the permeate is supplied to the stock solution tank 7 from the permeate passage L3. As a result, the permeate diluted with the undiluted solution introduced into the permeation chamber 1c as the osmotic pressure liquid is subjected to membrane separation by the pre-membrane separation module to concentrate the solute,
The utilization rate of the pretreatment stock solution can be increased.
【0026】図2において半透膜として酢酸セルロース
製の逆浸透膜を用いて、0.1重量%のイソプロパノー
ル水溶液を原液とし、これを0.98MPa(10kg
/cm2、ゲージ圧)のポンプ操作圧で循環式にて膜分
離すると、濃縮液路L4から得られる濃縮液の濃度は2
重量%となり、20倍濃縮が可能となる。これに対して
浸透圧液路から浸透圧液を供給しないで同条件で処理す
る場合の濃縮液の濃度は1重量%であり、10倍濃縮と
なる。In FIG. 2, a 0.1% by weight aqueous solution of isopropanol was used as a stock solution using a reverse osmosis membrane made of cellulose acetate as a semipermeable membrane.
/ Cm 2 , gauge pressure), when the membrane is separated in a circulating manner with a pump operation pressure of 2%, the concentration of the concentrate obtained from the concentrate path L4 becomes 2
% By weight, and can be concentrated 20 times. On the other hand, when the treatment is performed under the same conditions without supplying the osmotic fluid from the osmotic fluid channel, the concentration of the concentrated solution is 1% by weight, and the concentration is 10 times.
【0027】図3は図1の装置を多段に構成した実施形
態を示す。11は第2膜分離モジュールであって、半透
膜11aにより濃縮室11bと透過室11cが区画され
ている。12は第2被処理液槽であって、加圧ポンプP
4を有する被処理液路L21が第2膜分離モジュール1
1の濃縮室11bに連絡している。膜分離モジュール1
の濃縮液路L4は第2被処理液槽12に連絡し、これか
ら分流する浸透圧液路L22が第2膜分離モジュール1
1の透過液室11cに連絡している。透過室11cから
透過液路L23が被処理液槽2に接続している。濃縮液
室11bには濃縮液路L24が連絡しており、循環式の
場合には循環路L25が第2被処理液槽12に連絡す
る。FIG. 3 shows an embodiment in which the apparatus of FIG. 1 is configured in multiple stages. Reference numeral 11 denotes a second membrane separation module, which separates a concentration chamber 11b and a permeation chamber 11c by a semipermeable membrane 11a. Reference numeral 12 denotes a second liquid tank to be treated,
To be treated L21 having the second membrane separation module 1
One of the concentrating chambers 11b is communicated. Membrane separation module 1
The concentrated liquid path L4 communicates with the second liquid tank 12 to be treated, and the osmotic pressure liquid path L22, which is diverted therefrom, is connected to the second membrane separation module 1
This is in communication with the first permeated liquid chamber 11c. A permeated liquid passage L23 is connected to the liquid tank 2 to be processed from the permeation chamber 11c. A concentrated liquid passage L24 communicates with the concentrated liquid chamber 11b, and in the case of a circulation type, a circulation passage L25 communicates with the second treated liquid tank 12.
【0028】上記の装置による膜分離方法は、図1の場
合と同様に行われるが、多段に膜分離を行うことにより
濃縮度をさらに高めることができる。すなわち膜分離モ
ジュール1の濃縮液は濃縮液路L4から取り出してその
一部を被処理液として第2被処理液槽12に導入し、一
部は浸透圧液として浸透圧液路L22から第2膜分離モ
ジュール11の透過室11cに送る。第2被処理液槽1
2の被処理液15は加圧ポンプP4により加圧して被処
理液路L21から第2膜分離モジュール11の濃縮室1
1bに供給して膜分離を行う。ここでは膜分離モジュー
ル1の場合と同様に膜分離が行われ、被処理液は濃縮さ
れる。濃縮液は濃縮液路L24から取り出され一過式の
場合はそのまま排出され、さらに多段の膜分離を行う場
合は後段に送られる。循環式の場合は循環路L25から
第2被処理液槽12に循環する。透過液は透過液路L2
3から被処理液槽2に供給する。The membrane separation method using the above-described apparatus is performed in the same manner as in FIG. 1, but the concentration can be further increased by performing the membrane separation in multiple stages. That is, the concentrated liquid of the membrane separation module 1 is taken out from the concentrated liquid passage L4, a part of the concentrated liquid is introduced into the second treated liquid tank 12 as a liquid to be treated, and a part of the concentrated liquid is supplied as an osmotic liquid from the osmotic liquid passage L22 to the second liquid tank L22. It is sent to the permeation chamber 11c of the membrane separation module 11. Second treated liquid tank 1
The liquid to be treated 15 is pressurized by the pressurizing pump P4 and is supplied from the liquid to be treated L21 to the concentration chamber 1 of the second membrane separation module 11.
1b to perform membrane separation. Here, membrane separation is performed as in the case of the membrane separation module 1, and the liquid to be treated is concentrated. The concentrated liquid is taken out from the concentrated liquid passage L24 and discharged as it is in the case of a single-pass type, and is sent to the subsequent stage in the case of performing multi-stage membrane separation. In the case of the circulation type, the liquid is circulated from the circulation path L25 to the second processing liquid tank 12. The permeated liquid is the permeated liquid path L2
3 to the liquid tank 2 to be treated.
【0029】図3において半透膜としてポリアミド製の
ナノろ過膜を用い、0.1重量%のショ糖水溶液を原液
とし、これを0.98MPa(10kg/cm2、ゲー
ジ圧)のポンプ操作圧で循環式にて膜分離すると、濃縮
液路L24から得られる濃縮液の濃度は3重量%とな
り、30倍濃縮が可能となる。これに対して浸透圧液路
から浸透圧液を供給しないで同条件で処理する場合の濃
縮液の濃度は1重量%であり、10倍濃縮となる。In FIG. 3, a nanofiltration membrane made of polyamide was used as a semipermeable membrane, and a 0.1% by weight aqueous solution of sucrose was used as a stock solution, which was pumped at a pump operating pressure of 0.98 MPa (10 kg / cm 2 , gauge pressure). When the membrane is separated by a circulation method in the above, the concentration of the concentrated liquid obtained from the concentrated liquid path L24 becomes 3% by weight, and the concentration can be made 30 times. On the other hand, when the treatment is performed under the same conditions without supplying the osmotic fluid from the osmotic fluid channel, the concentration of the concentrated solution is 1% by weight, and the concentration is 10 times.
【0030】図4は図2の装置を多段に構成した実施形
態を示す。基本的な構成は図2と同様であるが、第2膜
分離モジュール11および第2被処理液槽12の構成は
図3と同様であり、図3と同様に膜分離モジュール1に
接続している。上記の装置における膜分離は基本的には
図2の場合と同様に行われるが、第2膜分離装置モジュ
ール11における膜分離は図3の場合と同様に行われ
る。FIG. 4 shows an embodiment in which the apparatus of FIG. 2 is configured in multiple stages. The basic configuration is the same as that of FIG. 2, but the configurations of the second membrane separation module 11 and the second liquid tank 12 are the same as those of FIG. 3. I have. The membrane separation in the above-described apparatus is basically performed in the same manner as in FIG. 2, but the membrane separation in the second membrane separation module 11 is performed in the same manner as in FIG.
【0031】図4において半透膜としてポリアミド製の
逆浸透膜を用い、0.2重量%の食塩水溶液を原液と
し、これを1.47MPa(15kg/cm2、ゲージ
圧)のポンプ操作圧で循環式にて膜分離すると、濃縮液
路L24から得られる濃縮液の濃度は3重量%となり、
15倍濃縮が可能となる。これに対して浸透圧液路から
浸透圧液を供給しないで同条件で処理する場合の濃縮液
の濃度は1重量%であり、5倍濃縮となる。In FIG. 4, a reverse osmosis membrane made of polyamide is used as a semipermeable membrane, and a 0.2 wt% saline solution is used as a stock solution, which is pumped at a pump operating pressure of 1.47 MPa (15 kg / cm 2 , gauge pressure). When the membrane is separated by a circulation method, the concentration of the concentrate obtained from the concentrate path L24 becomes 3% by weight,
15-fold concentration becomes possible. On the other hand, when the treatment is performed under the same conditions without supplying the osmotic fluid from the osmotic fluid channel, the concentration of the concentrated solution is 1% by weight, and the concentration is 5 times.
【0032】図3、図4の装置において、さらに膜分離
モジュールを増やして多段に処理を行うと、より加圧力
を低くして、高濃度に濃縮を行うことができる。上記各
実施形態において、膜分離モジュールおよび流路の構成
は任意に変更可能である。また差圧形成手段として加圧
ポンプを用いたが、吸引ポンプでもよく、また場合によ
っては浸透圧を利用するものでもよい。In the apparatus shown in FIGS. 3 and 4, when the number of membrane separation modules is further increased and the treatment is performed in multiple stages, the pressure can be further reduced and the concentration can be increased to a high concentration. In each of the above embodiments, the configurations of the membrane separation module and the flow path can be arbitrarily changed. Further, although the pressure pump is used as the differential pressure forming means, a suction pump may be used, and in some cases, an osmotic pressure may be used.
【図1】実施形態の膜分離装置のフロー図である。FIG. 1 is a flowchart of a membrane separation device according to an embodiment.
【図2】他の実施形態の膜分離装置のフロー図である。FIG. 2 is a flowchart of a membrane separation device according to another embodiment.
【図3】さらに他の実施形態の膜分離装置のフロー図で
ある。FIG. 3 is a flowchart of a membrane separation device according to still another embodiment.
【図4】さらに他の実施形態の膜分離装置のフロー図で
ある。FIG. 4 is a flowchart of a membrane separation apparatus according to still another embodiment.
1 膜分離モジュール 2 被処理液槽 3 後膜分離モジュール 4 前処理装置 5、15 被処理液 6 前膜分離モジュール 7 原液槽 11 第2膜分離モジュール 12 第2被処理液槽 REFERENCE SIGNS LIST 1 membrane separation module 2 liquid tank to be treated 3 post-membrane separation module 4 pretreatment device 5, 15 liquid to be treated 6 pre-membrane separation module 7 raw liquid tank 11 second membrane separation module 12 second liquid tank to be treated
フロントページの続き Fターム(参考) 4D006 GA02 GA14 HA01 HA21 HA41 HA61 KA02 KA16 KA53 KA54 KA55 KA56 KA63 KA66 KB13 KB14 KB30 KE07Q MA01 MA02 MA03 MA04 MC12 MC18 MC23 MC29 MC30 MC33 MC39 MC45 MC49 MC54X MC62 PA02 PB12 PB25 PB26 PB32 PB52 Continued on the front page F-term (reference) 4D006 GA02 GA14 HA01 HA21 HA41 HA61 KA02 KA16 KA53 KA54 KA55 KA56 KA63 KA66 KB13 KB14 KB30 KE07Q MA01 MA02 MA03 MA04 MC12 MC18 MC23 MC29 MC30 MC33 MC39 MC45 MC49 MC54X MC32 PA25 PB12B52B
Claims (10)
理液を供給し、 反対側に形成された透過室に被処理液を含む浸透圧液を
供給し、 濃縮室側から溶媒を透過室側に透過させて膜分離を行う
ことを特徴とする膜分離方法。1. A liquid to be treated is supplied to a concentration chamber formed on one side of a semipermeable membrane, an osmotic pressure liquid containing the liquid to be treated is supplied to a permeation chamber formed on the opposite side, and a solvent is supplied from the concentration chamber side. Membrane separation method, wherein the membrane is permeated into the permeation chamber to perform membrane separation.
する請求項1記載の方法。2. The method according to claim 1, wherein the liquid to be treated is supplied to both the concentration chamber and the permeation chamber.
供給して膜分離する請求項1または2記載の方法。3. The method according to claim 1, wherein the concentrated liquid obtained by the pre-membrane separation is supplied as a liquid to be treated and the membrane is separated.
し、その濃縮液を被処理液に混合して膜分離する請求項
1ないし3のいずれかに記載の方法。4. The method according to claim 1, wherein the permeated liquid obtained from the permeation chamber is subjected to post-membrane separation, and the concentrated liquid is mixed with the liquid to be treated and subjected to membrane separation.
した膜分離モジュールを複数段設け、前段の濃縮液を後
段の被処理液および浸透圧液として供給する請求項1な
いし4のいずれかに記載の方法。5. The method according to claim 1, wherein a plurality of membrane separation modules are provided in which the concentration chamber and the permeation chamber are divided by a semipermeable membrane, and the concentrated liquid in the former stage is supplied as the liquid to be treated and the osmotic pressure liquid in the latter stage. The method described in.
反対側に形成される透過室と、 濃縮室に被処理液を供給する被処理液路と、 透過室に被処理液を含む浸透圧液を供給する浸透圧液路
と、 濃縮室の圧力を透過室の圧力よりも高くする差圧形成手
段と、 濃縮室から濃縮液を取り出す濃縮液路と、 透過室から透過液を取り出す透過液路とを含む膜分離装
置。6. A concentrating chamber formed on one side of the semipermeable membrane and a permeating chamber formed on the other side, a liquid passage for supplying a liquid to be processed to the concentrating chamber, and a permeating chamber containing the liquid to be processed. An osmotic fluid path for supplying the osmotic fluid, a differential pressure forming means for increasing the pressure in the concentrating chamber to a pressure higher than the pressure in the permeating chamber, a condensing liquid path for taking out the concentrated liquid from the concentrating chamber, and taking out the permeated liquid from the permeating chamber A membrane separation device including a permeate passage.
分流する分流路を有する請求項6記載の装置。7. The apparatus according to claim 6, further comprising a branch channel for dividing the liquid to be processed from the liquid to be processed to the osmotic pressure liquid path.
液として供給する前膜分離装置を有する請求項6または
7記載の方法。8. The method according to claim 6, further comprising a pre-membrane separation device for concentrating the low-concentration liquid and supplying the concentrated liquid as a liquid to be treated.
の濃縮液を被処理液に混合する後膜分離装置を有する請
求項6ないし8のいずれかに記載の装置。9. The apparatus according to claim 6, further comprising a post-membrane separation device for concentrating the permeate obtained from the permeation chamber and mixing the concentrate with the liquid to be treated.
画した複数段の膜分離モジュールと、前段の膜分離モジ
ュールの濃縮液を後段の膜分離モジュールの被処理液お
よび浸透圧液として供給する供給流路を含む請求項6な
いし9のいずれかに記載の装置。10. A multistage membrane separation module in which a concentration chamber and a permeation chamber are divided by a semipermeable membrane, and a concentrated solution of a preceding membrane separation module is supplied as a liquid to be treated and an osmotic pressure solution of a subsequent membrane separation module. Apparatus according to any of claims 6 to 9, including a supply channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000191093A JP2002001068A (en) | 2000-06-21 | 2000-06-21 | Method and apparatus for membrane separation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000191093A JP2002001068A (en) | 2000-06-21 | 2000-06-21 | Method and apparatus for membrane separation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002001068A true JP2002001068A (en) | 2002-01-08 |
Family
ID=18690448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000191093A Pending JP2002001068A (en) | 2000-06-21 | 2000-06-21 | Method and apparatus for membrane separation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002001068A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005070954A1 (en) * | 2004-01-21 | 2005-08-04 | Toray Industries, Inc. | Fractionator and method of fractionation |
JP2005232156A (en) * | 2004-01-21 | 2005-09-02 | Toray Ind Inc | Solution of purified component of living body,method for separating the component of the living body and apparatus for separating the component of the living body |
JP2006512336A (en) * | 2002-12-18 | 2006-04-13 | アベシア・リミテッド | Method for purifying oligonucleotide synthons |
CN107469623A (en) * | 2017-09-25 | 2017-12-15 | 厦门市天泉鑫膜科技股份有限公司 | A kind of multifunctional membrane separates pilot experiment equipment |
JP2018001111A (en) * | 2016-07-05 | 2018-01-11 | 東洋紡株式会社 | Processing method of desalinating salt water and processing system of desalinating salt water |
JP2018001110A (en) * | 2016-07-05 | 2018-01-11 | 東洋紡株式会社 | Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water |
JP2018065114A (en) * | 2016-10-21 | 2018-04-26 | 東洋紡株式会社 | Concentration method and apparatus |
JP2018069198A (en) * | 2016-11-02 | 2018-05-10 | 東洋紡株式会社 | Concentration method and concentrator |
JP2018143970A (en) * | 2017-03-07 | 2018-09-20 | 東洋紡株式会社 | Concentration system and concentration method |
CN108778469A (en) * | 2016-02-02 | 2018-11-09 | 特雷维系统公司 | The hyperfiltration and its application method of osmotic pressure auxiliary |
JP2021016823A (en) * | 2019-07-19 | 2021-02-15 | オルガノ株式会社 | Water treatment method and water treatment apparatus |
CN114206785A (en) * | 2019-12-25 | 2022-03-18 | 奥加诺株式会社 | Water treatment system and water treatment method |
US11400416B2 (en) | 2015-07-29 | 2022-08-02 | Gradiant Corporation | Osmotic desalination methods and associated systems |
US11629072B2 (en) | 2018-08-22 | 2023-04-18 | Gradiant Corporation | Liquid solution concentration system comprising isolated subsystem and related methods |
US11667549B2 (en) | 2020-11-17 | 2023-06-06 | Gradiant Corporation | Osmotic methods and systems involving energy recovery |
TWI832959B (en) * | 2019-01-30 | 2024-02-21 | 日商東洋紡Mc股份有限公司 | Precipitation system and precipitation method |
-
2000
- 2000-06-21 JP JP2000191093A patent/JP2002001068A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006512336A (en) * | 2002-12-18 | 2006-04-13 | アベシア・リミテッド | Method for purifying oligonucleotide synthons |
JP4824931B2 (en) * | 2002-12-18 | 2011-11-30 | アベシア・バイオテクノロジー・インコーポレーテッド | Method for purifying oligonucleotide synthons |
JP4655938B2 (en) * | 2004-01-21 | 2011-03-23 | 東レ株式会社 | Fractionation apparatus and fractionation method |
JPWO2005070954A1 (en) * | 2004-01-21 | 2008-01-10 | 東レ株式会社 | Fractionation apparatus and fractionation method |
US7795010B2 (en) | 2004-01-21 | 2010-09-14 | Toray Industries, Inc. | Fractionator and method of fractionation |
JP2011006466A (en) * | 2004-01-21 | 2011-01-13 | Toray Ind Inc | Apparatus and method of fractionation |
JP2005232156A (en) * | 2004-01-21 | 2005-09-02 | Toray Ind Inc | Solution of purified component of living body,method for separating the component of the living body and apparatus for separating the component of the living body |
WO2005070954A1 (en) * | 2004-01-21 | 2005-08-04 | Toray Industries, Inc. | Fractionator and method of fractionation |
US11400416B2 (en) | 2015-07-29 | 2022-08-02 | Gradiant Corporation | Osmotic desalination methods and associated systems |
CN108778469A (en) * | 2016-02-02 | 2018-11-09 | 特雷维系统公司 | The hyperfiltration and its application method of osmotic pressure auxiliary |
CN108778469B (en) * | 2016-02-02 | 2022-08-02 | 特雷维系统公司 | Osmotic pressure assisted reverse osmosis process and method of use |
US11198097B2 (en) | 2016-02-02 | 2021-12-14 | Trevi Systems Inc. | Osmotic pressure assisted reverse osmosis process and method of using the same |
JP2018001111A (en) * | 2016-07-05 | 2018-01-11 | 東洋紡株式会社 | Processing method of desalinating salt water and processing system of desalinating salt water |
JP2018001110A (en) * | 2016-07-05 | 2018-01-11 | 東洋紡株式会社 | Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water |
JP2018065114A (en) * | 2016-10-21 | 2018-04-26 | 東洋紡株式会社 | Concentration method and apparatus |
JP2018069198A (en) * | 2016-11-02 | 2018-05-10 | 東洋紡株式会社 | Concentration method and concentrator |
WO2018084246A1 (en) * | 2016-11-02 | 2018-05-11 | 東洋紡株式会社 | Concentration method and concentration device |
JP2018143970A (en) * | 2017-03-07 | 2018-09-20 | 東洋紡株式会社 | Concentration system and concentration method |
CN107469623A (en) * | 2017-09-25 | 2017-12-15 | 厦门市天泉鑫膜科技股份有限公司 | A kind of multifunctional membrane separates pilot experiment equipment |
US11629072B2 (en) | 2018-08-22 | 2023-04-18 | Gradiant Corporation | Liquid solution concentration system comprising isolated subsystem and related methods |
TWI832959B (en) * | 2019-01-30 | 2024-02-21 | 日商東洋紡Mc股份有限公司 | Precipitation system and precipitation method |
JP2021016823A (en) * | 2019-07-19 | 2021-02-15 | オルガノ株式会社 | Water treatment method and water treatment apparatus |
JP7319119B2 (en) | 2019-07-19 | 2023-08-01 | オルガノ株式会社 | Water treatment method and water treatment equipment |
CN114206785A (en) * | 2019-12-25 | 2022-03-18 | 奥加诺株式会社 | Water treatment system and water treatment method |
CN114206785B (en) * | 2019-12-25 | 2023-08-08 | 奥加诺株式会社 | Water treatment system and water treatment method |
US11667549B2 (en) | 2020-11-17 | 2023-06-06 | Gradiant Corporation | Osmotic methods and systems involving energy recovery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12005396B2 (en) | Advancements in osmotically driven membrane systems including multi-stage purification | |
KR102392316B1 (en) | Osmotic pressure assisted reverse osmosis process and method of using the same | |
JP2002001068A (en) | Method and apparatus for membrane separation | |
JP6834360B2 (en) | Concentration method and concentrator | |
CN210764468U (en) | Membrane separation device and water making system | |
JP2018001110A (en) | Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water | |
JP2018001111A (en) | Processing method of desalinating salt water and processing system of desalinating salt water | |
CN211311217U (en) | Zero liquid discharge system | |
WO2016057764A1 (en) | Osmotic separation systems and methods | |
JPS5946644B2 (en) | Membrane separation method | |
JP2018143970A (en) | Concentration system and concentration method | |
JP2002085941A (en) | Fresh water making process and fresh water maker | |
CN115916381B (en) | Membrane separation device and concentration method | |
TW202327717A (en) | Osmotic methods and systems involving energy recovery | |
JPH10305216A (en) | Reverse osmosis membrane device and high concentration solution separation | |
JP4332774B2 (en) | Method and apparatus for processing high concentration solution by reverse osmosis membrane | |
WO2024214605A1 (en) | Concentration system | |
JP2005254192A (en) | Membrane separator and membrane separation method | |
WO2024214606A1 (en) | Concentration system | |
CA3080110A1 (en) | Filtration device | |
US20240109037A1 (en) | Liquid separation using solute-permeable membranes and related systems | |
CN115432876B (en) | Water treatment method and water treatment device | |
WO2024214608A1 (en) | Concentration system | |
JP2002085944A (en) | Ion selective separator, fluid treatment equipment including the same and fluid separation process | |
JP7516167B2 (en) | Concentration method, concentration device, water treatment method, and water treatment device |