JP2018001111A - Processing method of desalinating salt water and processing system of desalinating salt water - Google Patents

Processing method of desalinating salt water and processing system of desalinating salt water Download PDF

Info

Publication number
JP2018001111A
JP2018001111A JP2016133280A JP2016133280A JP2018001111A JP 2018001111 A JP2018001111 A JP 2018001111A JP 2016133280 A JP2016133280 A JP 2016133280A JP 2016133280 A JP2016133280 A JP 2016133280A JP 2018001111 A JP2018001111 A JP 2018001111A
Authority
JP
Japan
Prior art keywords
salt water
chamber
membrane
water
semipermeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016133280A
Other languages
Japanese (ja)
Inventor
昌平 合田
Shohei Aida
昌平 合田
櫻井 秀彦
Hidehiko Sakurai
秀彦 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016133280A priority Critical patent/JP2018001111A/en
Publication of JP2018001111A publication Critical patent/JP2018001111A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of desalinating salt water capable of reducing a pressure necessary for desalination processing using a reverse osmosis method, and a processing system of desalinating salt water.SOLUTION: The processing method of desalinating salt water for obtaining fresh water from salt water includes: a membrane separation step of transferring water contained in the salt water in a first chamber to the salt water in a second chamber through a semipermeable membrane to discharge a dilute salt water obtained from the second chamber by dilution by flowing a part of the salt water to the first chamber of a semipermeable module provided with the semipermeable membrane, and with the first chamber and the second chamber separated by the semipermeable membrane, and flowing the other part of the salt water to the second chamber to pressurize the first chamber; and a desalination step of obtaining fresh water from the diluted salt water using a reverse osmotic method.SELECTED DRAWING: Figure 1

Description

本発明は、塩水の淡水化処理方法、および、塩水の淡水化処理システムに関する。   The present invention relates to a desalination treatment method for salt water and a desalination treatment system for salt water.

海水等の塩水の淡水化処理の技術として、逆浸透(RO:Reverse Osmosis)法が知られている。RO法は、高圧ポンプによって浸透圧より高い所定の圧力に昇圧された塩水を逆浸透(RO)膜モジュールに供給し、RO膜を通過させることで、海水中の塩分等を除去して淡水を取り出す方法である。   As a technique for desalinating salt water such as seawater, a reverse osmosis (RO) method is known. In the RO method, salt water that has been boosted to a predetermined pressure higher than the osmotic pressure by a high-pressure pump is supplied to the reverse osmosis (RO) membrane module and passed through the RO membrane, thereby removing salt and the like from seawater. It is a method of taking out.

RO法は、従来から知られている蒸発法よりも、エネルギーの消費量が少ないため、近年検討が進められている。   The RO method has been studied in recent years because it consumes less energy than the conventionally known evaporation method.

なお、石油含有地層から石油を回収するための随伴水の処理において、随伴水の塩分濃度を調整するために、逆浸透膜の両側に塩水を流し、両側の流速および圧力を調整して、逆浸透膜を介して一方の塩水中の水を他方の塩水中に移動させる技術が知られている。   In the treatment of associated water for recovering oil from petroleum-containing formations, in order to adjust the salinity concentration of the associated water, salt water is flowed on both sides of the reverse osmosis membrane, and the flow rate and pressure on both sides are adjusted to reverse A technique is known in which water in one salt water is transferred to the other salt water through an osmosis membrane.

米国特許出願公開第2015/0260028号明細書US Patent Application Publication No. 2015/0260028

RO法による淡水化処理では、高圧ポンプと耐圧性能の高い処理設備が必要であり、また、逆浸透膜への圧力負荷が大きいため、逆浸透膜の寿命が短くなるという問題がある。   In the desalination treatment by the RO method, a high-pressure pump and a treatment facility with high pressure resistance are necessary, and the pressure load on the reverse osmosis membrane is large, and thus there is a problem that the life of the reverse osmosis membrane is shortened.

本発明は、上記の課題に鑑み、逆浸透法を用いた淡水化処理に必要な圧力を低下させることのできる、塩水の淡水化処理方法、および、塩水の淡水化処理システムを提供することを目的とする。   In view of the above problems, the present invention provides a salt water desalination method and a salt water desalination system that can reduce the pressure required for desalination using a reverse osmosis method. Objective.

[1]
塩水から淡水を得る淡水化処理方法であって、
半透膜と、前記半透膜で仕切られた第1室および第2室と、を備える半透膜モジュールの前記第1室に前記塩水の一部を流し、前記第2室に前記塩水の他の一部を流して、前記第1室を加圧することで、前記第1室内の前記塩水に含まれる水を前記半透膜を介して前記第2室内の前記塩水に移行させ、前記第2室から希釈された前記塩水である希釈塩水を排出する、膜分離工程と、
前記希釈塩水から逆浸透法を用いて前記淡水を得る淡水化処理工程と、を含む、淡水化処理方法。
[1]
A desalination treatment method for obtaining fresh water from salt water,
A portion of the salt water is caused to flow in the first chamber of a semipermeable membrane module including a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane, and the salt water is supplied to the second chamber. By flowing the other part and pressurizing the first chamber, water contained in the salt water in the first chamber is transferred to the salt water in the second chamber through the semipermeable membrane, A membrane separation step of discharging diluted brine which is the brine diluted from two chambers;
A desalination treatment step of obtaining the fresh water from the diluted salt water using a reverse osmosis method.

[2]
塩水から淡水を得る淡水化処理システムであって、
半透膜と、前記半透膜で仕切られた第1室および第2室と、を有する半透膜モジュールを備え、前記第1室に前記塩水の一部を流し、前記第2室に前記塩水の他の一部を流して、前記第1室を加圧することで、前記第1室内の前記塩水に含まれる水を前記半透膜を介して前記第2室内の前記塩水に移行させ、前記第2室から希釈された前記塩水である希釈塩水を排出する、膜分離装置と、
逆浸透膜モジュールを備え、前記希釈塩水から前記逆浸透膜モジュールを用いて前記淡水を得る、淡水化処理装置と、を含む、淡水化処理システム。
[2]
A desalination treatment system for obtaining fresh water from salt water,
A semipermeable membrane module having a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane, a portion of the salt water is allowed to flow in the first chamber, and the second chamber is Flowing the other part of the salt water to pressurize the first chamber, thereby transferring water contained in the salt water in the first chamber to the salt water in the second chamber through the semipermeable membrane, A membrane separation device for discharging diluted brine which is the brine diluted from the second chamber;
A desalination treatment system comprising: a reverse osmosis membrane module; and a desalination treatment device that obtains the fresh water from the diluted salt water using the reverse osmosis membrane module.

本発明によれば、逆浸透法を用いた淡水化処理に必要な圧力を低下させることのできる、塩水の淡水化処理方法、および、塩水の淡水化処理システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the desalination process method of salt water and the desalination system of salt water which can reduce the pressure required for the desalination process using a reverse osmosis method can be provided.

本発明の塩水の淡水化処理方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the desalination processing method of the salt water of this invention.

<淡水化処理方法>
本実施形態の淡水化処理方法は、逆浸透(RO)法を用いて塩水から淡水を得る淡水化処理方法である。
<Desalination treatment method>
The desalination treatment method of the present embodiment is a desalination treatment method for obtaining fresh water from salt water using a reverse osmosis (RO) method.

本実施形態の塩水の淡水化処理方法は、塩水から希釈塩水を得る膜分離工程と、希釈塩水から逆浸透法を用いて前記淡水を得る淡水化処理工程と、を含むことを特徴としている。以下、本実施形態の淡水化処理方法の詳細について、図1を参照して説明する。   The saltwater desalination method of the present embodiment is characterized by including a membrane separation step for obtaining diluted saltwater from saltwater and a desalination treatment step for obtaining the freshwater from the diluted saltwater using a reverse osmosis method. Hereinafter, the detail of the desalination processing method of this embodiment is demonstrated with reference to FIG.

(膜分離工程)
図1に示されるように、まず、膜分離工程によって、塩水から希釈塩水を得る。
(Membrane separation process)
As shown in FIG. 1, first, diluted salt water is obtained from salt water by a membrane separation step.

本明細書において、塩水とは、少なくとも塩分と水を含む液であり、例えば、海水、かん水などである。塩水の蒸発残留物濃度(TDS)は、特に限定されないが、好ましくは3〜13質量%程度である。   In this specification, salt water is a liquid containing at least salt and water, such as sea water and brine. Although the evaporation residue density | concentration (TDS) of salt water is not specifically limited, Preferably it is about 3-13 mass%.

なお、塩水に対して、塩水中に含まれる微粒子、微生物等を除去するための前処理を行ってもよい。前処理としては、海水淡水化技術に用いられる種々公知の前処理を実施することができ、例えば、NF膜、UF膜、MF膜等を用いたろ過、次亜塩素酸ナトリウムの添加、凝集剤添加などが挙げられる。このような前処理は、膜分離工程の前に実施されることが好ましい。   In addition, you may perform the pre-processing for removing the microparticles | fine-particles, microorganisms, etc. which are contained in salt water with respect to salt water. As the pretreatment, various known pretreatments used in seawater desalination technology can be implemented. For example, filtration using NF membrane, UF membrane, MF membrane, addition of sodium hypochlorite, flocculant Addition etc. are mentioned. Such pretreatment is preferably performed before the membrane separation step.

膜分離工程は、半透膜モジュール1を用いて実施される。半透膜モジュール1は、半透膜10と、半透膜10で仕切られた第1室11および第2室12と、を備える。   The membrane separation step is performed using the semipermeable membrane module 1. The semipermeable membrane module 1 includes a semipermeable membrane 10 and a first chamber 11 and a second chamber 12 partitioned by the semipermeable membrane 10.

膜分離工程では、半透膜モジュール1の第1室11に塩水の一部を流し、第2室12に塩水の他の一部を流して、第1室11を加圧する。これにより、第1室11内の塩水に含まれる水を半透膜10を介して第2室12内の塩水に移行させ、第2室12から希釈された塩水である希釈塩水が排出される。   In the membrane separation step, a part of the salt water is caused to flow in the first chamber 11 of the semipermeable membrane module 1 and the other part of the salt water is caused to flow in the second chamber 12 to pressurize the first chamber 11. Thereby, the water contained in the salt water in the first chamber 11 is transferred to the salt water in the second chamber 12 through the semipermeable membrane 10, and the diluted salt water that is diluted salt water is discharged from the second chamber 12. .

これに伴い、第1室11内の塩水が濃縮され、濃縮塩水である第1ブラインが第1室11から排出される。   Accordingly, the salt water in the first chamber 11 is concentrated, and the first brine that is the concentrated salt water is discharged from the first chamber 11.

ここで、半透膜モジュール1の流入口において、半透膜の一方側と他方側に流入するブラインは、共に海水等の塩水であるため、基本的に浸透圧は等しい。このため、RO法のように、塩水と淡水との間の高い浸透圧差に逆らって逆浸透を起こさせるための高い圧力が必要なく、比較的低圧の加圧によって、希釈塩水を得ることができる(一部の塩水を希釈し、他の一部の塩水を濃縮することができる)。   Here, at the inflow port of the semipermeable membrane module 1, since the brine flowing into one side and the other side of the semipermeable membrane is salt water such as seawater, the osmotic pressure is basically equal. For this reason, unlike the RO method, high pressure for causing reverse osmosis against the high osmotic pressure difference between salt water and fresh water is not necessary, and diluted salt water can be obtained by relatively low pressure. (Some brines can be diluted and some other brines can be concentrated).

ただし、半透膜の一方側に流される塩水と他方側に流される塩水で海水等の原液の塩分濃度が異なるような場合など、半透膜の一方側と他方側に流される塩水の浸透圧が異なる可能性がある。このような場合でも、その浸透圧差(絶対値)が第1室を加圧する圧力の10%以下程度であれば、膜分離工程は実施可能である。このため、半透膜の一方側(加圧側)に流入する塩水の浸透圧と半透膜の他方側に流入する塩水の浸透圧との差は、第1室を加圧する圧力の10%以下であることが好ましい。   However, the osmotic pressure of salt water flowing on one side and the other side of the semipermeable membrane, such as when the salt water flowing on one side of the semipermeable membrane and the salt water flowing on the other side have different salinity concentrations in the stock solution such as seawater May be different. Even in such a case, if the osmotic pressure difference (absolute value) is about 10% or less of the pressure for pressurizing the first chamber, the membrane separation step can be performed. For this reason, the difference between the osmotic pressure of salt water flowing into one side (pressure side) of the semipermeable membrane and the osmotic pressure of salt water flowing into the other side of the semipermeable membrane is 10% or less of the pressure for pressurizing the first chamber. It is preferable that

なお、膜分離工程は、図1に示されるように1つの半透膜モジュールを用いた1段の工程であってもよいが、複数の半透膜モジュール1を用いた多段の工程であってもよい。膜分離工程において、半透膜の両側の希釈塩水と第1ブラインとの浸透圧差を、半透膜モジュールの第1室への加圧の圧力以上にすることはできないため、1段の工程(1つの半透膜モジュール)による塩水の希釈率には限界がある。このため、淡水化処理工程に供される希釈塩水をより低濃度にして、淡水化処理工程に必要な圧力をさらに低下させること等を目的として、膜分離工程を2段以上の工程としてもよい。   The membrane separation step may be a one-step process using one semipermeable membrane module as shown in FIG. 1, but is a multi-step step using a plurality of semipermeable membrane modules 1. Also good. In the membrane separation step, the difference in osmotic pressure between the diluted brine on both sides of the semipermeable membrane and the first brine cannot be higher than the pressure applied to the first chamber of the semipermeable membrane module. There is a limit to the dilution rate of salt water by one semipermeable membrane module). For this reason, the membrane separation process may be a two or more-stage process for the purpose of further reducing the pressure required for the desalination treatment process by lowering the concentration of the diluted brine used in the desalination treatment process. .

(淡水化処理工程)
次に、希釈塩水から淡水を得る淡水化処理工程が実施される。淡水化処理工程は、逆浸透(RO)法を用いて実施される。淡水化処理工程3では、希釈塩水から淡水が製造されると共に、第2ブライン(希釈塩水が濃縮された液)が生じる。
(Desalination process)
Next, a desalination treatment step for obtaining fresh water from the diluted salt water is performed. The desalination process is performed using a reverse osmosis (RO) method. In the desalination treatment step 3, fresh water is produced from the diluted salt water, and second brine (a liquid in which the diluted salt water is concentrated) is generated.

具体的には、高圧ポンプ(図示せず)により昇圧された希釈塩水を逆浸透(RO)膜モジュール2の第1室21に供給する。これにより、圧力によって第1室21内の希釈塩水中に含まれる水がRO膜20を介して第2室22へ移行し、第2室22から淡水が排出される。   Specifically, diluted salt water pressurized by a high pressure pump (not shown) is supplied to the first chamber 21 of the reverse osmosis (RO) membrane module 2. Thereby, the water contained in the diluted salt water in the first chamber 21 is transferred to the second chamber 22 through the RO membrane 20 by the pressure, and fresh water is discharged from the second chamber 22.

これに伴い、第1室21内の希釈塩水は濃縮され、希釈塩水より高濃度の塩水(第2ブライン)が第1室11から排出される。   Accordingly, the diluted salt water in the first chamber 21 is concentrated, and salt water (second brine) having a higher concentration than the diluted salt water is discharged from the first chamber 11.

このような淡水化処理工程において、希釈塩水(膜分離工程によって希釈された塩水)と淡水との浸透圧差は、元の塩水(海水等)と淡水との浸透圧差より小さくなっている。このため、本実施形態においては、RO法のみで塩水から同量の淡水を得る場合に比べて、低い圧力の加圧で淡水を得ることができる。   In such a desalination process, the osmotic pressure difference between diluted salt water (salt water diluted by the membrane separation process) and fresh water is smaller than the osmotic pressure difference between the original salt water (such as seawater) and fresh water. For this reason, in this embodiment, compared with the case where the same amount of fresh water is obtained from salt water only by the RO method, fresh water can be obtained by pressurization at a lower pressure.

これにより、高圧ポンプを必要とせず、通常(中圧〜低圧)のポンプを用いることができる。また、処理設備の耐圧性を高める必要もなく、設備投資のコストを削減することができる。また、高圧ポンプを使用せずに同率の回収率を実現することができ、電力消費量を下げることが可能である。   Accordingly, a normal (medium pressure to low pressure) pump can be used without requiring a high pressure pump. Further, it is not necessary to increase the pressure resistance of the processing equipment, and the cost of equipment investment can be reduced. Further, the same recovery rate can be realized without using a high-pressure pump, and the power consumption can be reduced.

なお、RO法を用いた淡水化処理工程では、RO膜モジュール内において、塩水の流入口から流出口にかけて、RO膜の両側の浸透圧差が大きくなり、浸透圧差が塩水への加圧の圧力と等しくなると、それ以上逆浸透が進まなくなる。このため、RO法においては、RO膜モジュールの耐圧性やポンプの性能によって決まる塩水への加圧の圧力上限に応じて、塩水の濃縮率には上限がある。RO法における加圧の圧力は、例えば、1〜6MPa程度である。   In the desalination process using the RO method, the osmotic pressure difference on both sides of the RO membrane increases from the inlet to the outlet of the salt water in the RO membrane module, and the osmotic pressure difference is equal to the pressure applied to the salt water. Once equal, reverse osmosis will not proceed any further. For this reason, in the RO method, there is an upper limit in the concentration rate of salt water depending on the pressure upper limit of pressurization to the salt water determined by the pressure resistance of the RO membrane module and the performance of the pump. The pressurizing pressure in the RO method is, for example, about 1 to 6 MPa.

ただし、塩水あたりの淡水の生産効率を高める観点からは、第2ブラインができる限り高濃度まで濃縮されることが望ましい。第2ブラインの塩分濃度は、特に限定されないが、例えば、3〜10質量%程度である。   However, from the viewpoint of increasing the production efficiency of fresh water per salt water, it is desirable that the second brine is concentrated as high as possible. Although the salt concentration of a 2nd brine is not specifically limited, For example, it is about 3-10 mass%.

また、半透膜モジュール1から排出される第1ブライン、および、RO膜モジュール2から排出される第2ブラインは、いずれもRO法のみで塩水から同量の淡水を生産する際に生じるブライン(濃縮塩水)より低濃度である。   Moreover, the 1st brine discharged | emitted from the semipermeable membrane module 1 and the 2nd brine discharged | emitted from the RO membrane module 2 are all the brines produced when producing the same amount of fresh water from salt water only by RO method ( Concentrated salt water).

半透膜モジュール1を用いた膜分離工程によって生じる第1ブラインの塩分含有率、および、RO法(RO膜モジュール2)を用いた淡水化処理工程によって生じる第2ブラインの塩分含有率は、通常、飽和濃度以下である。ブラインの塩分含有率が飽和濃度以上になると塩分(結晶化塩)が析出するため、半透膜(RO膜)の目詰まり等によって半透膜モジュール1、RO膜モジュール2等を継続的に使用することができなくなるからである。   The salt content of the first brine produced by the membrane separation process using the semipermeable membrane module 1 and the salt content of the second brine produced by the desalination treatment process using the RO method (RO membrane module 2) are usually The saturation concentration is below. When the salt content of brine exceeds the saturation concentration, salt (crystallized salt) precipitates, so the semipermeable membrane module 1, RO membrane module 2, etc. are continuously used due to clogging of the semipermeable membrane (RO membrane). It is because it becomes impossible to do.

<淡水化処理システム>
本実施形態の淡水化処理システムは、塩水から淡水を得るためのシステムである。本実施形態の淡水化処理システムは、上記の膜分離工程を実施するために膜分離装置と、上記の淡水化処理工程を実施するための淡水化処理装置と、を含む。
<Desalination system>
The desalination treatment system of this embodiment is a system for obtaining fresh water from salt water. The desalination treatment system of the present embodiment includes a membrane separation device for performing the membrane separation step and a desalination treatment device for performing the desalination treatment step.

膜分離装置は、半透膜モジュール1を備える。半透膜モジュール1は、半透膜10と、半透膜10で仕切られた第1室11および第2室12と、を有する。   The membrane separation device includes a semipermeable membrane module 1. The semipermeable membrane module 1 includes a semipermeable membrane 10 and a first chamber 11 and a second chamber 12 partitioned by the semipermeable membrane 10.

そして、膜分離装置は、半透膜モジュール1の第1室11に塩水の一部を流し、第2室12に塩水の他の一部を流して、第1室11を加圧することで、第1室11内の塩水に含まれる水を半透膜10を介して第2室12内の塩水に移行させ、第2室12から希釈された塩水である希釈塩水を排出する装置である。   Then, the membrane separator flows a part of the salt water into the first chamber 11 of the semipermeable membrane module 1 and flows the other part of the salt water into the second chamber 12, thereby pressurizing the first chamber 11, This is a device for transferring the water contained in the salt water in the first chamber 11 to the salt water in the second chamber 12 through the semipermeable membrane 10 and discharging the diluted salt water that is diluted salt water from the second chamber 12.

半透膜としては、例えば、逆浸透膜(RO膜:Reverse Osmosis Membrane)、正浸透膜(FO膜:Forward Osmosis Membrane)、ナノろ過膜(NF膜:Nanofiltration Membrane)、限外ろ過膜(UF膜:Ultrafiltration Membrane)と呼ばれる半透膜が挙げられる。半透膜は、好ましくは逆浸透膜または正浸透膜、ナノろ過膜である。なお、半透膜として逆浸透膜または正浸透膜、ナノろ過膜を用いる場合、第1室の加圧の圧力は好ましくは0.5〜6.5MPaである。   As the semipermeable membrane, for example, a reverse osmosis membrane (RO membrane: Reverse Osmosis membrane), a forward osmosis membrane (FO membrane: forward osmosis membrane), a nanofiltration membrane (NF membrane: nanofiltration membrane), and an ultrafiltration membrane (UF membrane). : A semipermeable membrane called Ultrafiltration Membrane). The semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane. When a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane is used as the semipermeable membrane, the pressure of the first chamber is preferably 0.5 to 6.5 MPa.

通常、RO膜およびFO膜の孔径は約2nm以下であり、UF膜の孔径は約2〜100nmである。NF膜は、RO膜のうちイオンや塩類の阻止率が比較的低いものであり、通常、NF膜の孔径は約1〜2nmである。半透膜としてRO膜またはFO膜、NF膜を用いる場合、RO膜またはFO膜、NF膜の塩除去率は好ましくは90%以上である。   Usually, the pore size of the RO membrane and the FO membrane is about 2 nm or less, and the pore size of the UF membrane is about 2 to 100 nm. The NF membrane has a relatively low rejection rate of ions and salts among the RO membrane, and the pore size of the NF membrane is usually about 1 to 2 nm. When an RO membrane, FO membrane, or NF membrane is used as the semipermeable membrane, the salt removal rate of the RO membrane, FO membrane, or NF membrane is preferably 90% or more.

半透膜を構成する材料としては、特に限定されないが、例えば、セルロース系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂などが挙げられる。半透膜は、セルロース系樹脂およびポリスルホン系樹脂の少なくともいずれかを含む材料から構成されることが好ましい。   Although it does not specifically limit as a material which comprises a semipermeable membrane, For example, a cellulose resin, a polysulfone resin, a polyamide resin etc. are mentioned. The semipermeable membrane is preferably composed of a material containing at least one of a cellulose resin and a polysulfone resin.

セルロース系樹脂は、好ましくは酢酸セルロース系樹脂である。酢酸セルロース系樹脂は、殺菌剤である塩素に対する耐性があり、微生物の増殖を抑制できる特徴を有している。酢酸セルロース系樹脂は、好ましくは酢酸セルロースであり、耐久性の点から、より好ましくは三酢酸セルロースである。   The cellulose resin is preferably a cellulose acetate resin. Cellulose acetate resin is resistant to chlorine, which is a bactericidal agent, and has a feature that it can suppress the growth of microorganisms. The cellulose acetate resin is preferably cellulose acetate, and more preferably cellulose triacetate from the viewpoint of durability.

ポリスルホン系樹脂は、好ましくはポリエーテルスルホン系樹脂である。ポリエーテルスルホン系樹脂は、好ましくはスルホン化ポリエーテルスルホンである。   The polysulfone resin is preferably a polyethersulfone resin. The polyethersulfone resin is preferably a sulfonated polyethersulfone.

半透膜の形状としては、特に限定されないが、例えば、平膜、スパイラル膜または中空糸膜が挙げられる。なお、図1では、半透膜として平膜を簡略化して描いているが、特にこのような形状に限定されるものではない。なお、中空糸膜(中空糸型半透膜)は、スパイラル型半透膜などに比べて、モジュール当たりの膜面積を大きくすることができ、浸透効率を高めることができる点で有利である。   Although it does not specifically limit as a shape of a semipermeable membrane, For example, a flat membrane, a spiral membrane, or a hollow fiber membrane is mentioned. In FIG. 1, a flat membrane is illustrated as a semipermeable membrane in a simplified manner, but is not particularly limited to such a shape. The hollow fiber membrane (hollow fiber type semipermeable membrane) is advantageous in that the membrane area per module can be increased and the permeation efficiency can be increased as compared with a spiral type semipermeable membrane.

具体的な中空糸型半透膜の一例としては、全体がセルロース系樹脂から構成されている単層構造の膜が挙げられる。ただし、ここでいう単層構造とは、層全体が均一な膜である必要はなく、例えば、特許文献1に開示されるように、外周表面近傍に緻密層を有し、この緻密層が実質的に中空糸型半透膜の孔径を規定する分離活性層となっていることが好ましい。   As an example of a specific hollow fiber type semipermeable membrane, a membrane having a single layer structure, which is entirely composed of a cellulosic resin, can be mentioned. However, the single-layer structure here does not need to be a uniform film as a whole, for example, as disclosed in Patent Document 1, a dense layer is provided in the vicinity of the outer peripheral surface, and this dense layer is substantially In particular, it is preferably a separation active layer that defines the pore diameter of the hollow fiber type semipermeable membrane.

具体的な中空糸型半透膜の別の例としては、支持層(例えば、ポリフェニレンオキサイドからなる層)の外周表面にポリフェニレン系樹脂(例えば、スルホン化ポリエーテルスルホン)からなる緻密層を有する2層構造の膜が挙げられる。また、他の例として、支持層(例えば、ポリスルホンまたはポリエーテルスルホンからなる層)の外周表面にポリアミド系樹脂からなる緻密層を有する2層構造の膜が挙げられる。   As another example of a specific hollow fiber type semipermeable membrane, 2 having a dense layer made of a polyphenylene resin (for example, sulfonated polyethersulfone) on the outer peripheral surface of a support layer (for example, a layer made of polyphenylene oxide) A film having a layer structure may be mentioned. Another example includes a two-layered film having a dense layer made of a polyamide resin on the outer peripheral surface of a support layer (for example, a layer made of polysulfone or polyethersulfone).

なお、通常は、上記中空糸型半透膜の緻密層側に流される塩水が加圧される。緻密層側、すなわち中空糸型半透膜の内側(中空部)を流れる流体を加圧しても、圧力損失が大きくなり加圧が十分に働かないためである。   Normally, salt water that flows to the dense layer side of the hollow fiber type semipermeable membrane is pressurized. This is because even if the fluid flowing on the dense layer side, that is, the inner side (hollow part) of the hollow fiber type semipermeable membrane is pressurized, the pressure loss increases and the pressure does not work sufficiently.

(淡水化処理装置)
淡水化処理装置は、逆浸透(RO)膜モジュール2を備える。淡水化処理装置は、上記希釈塩水からRO膜モジュール2を用いて(RO法によって)淡水を得ることができる装置であれば特に限定されず。種々公知の装置を用いることができる。
(Desalination equipment)
The desalination apparatus includes a reverse osmosis (RO) membrane module 2. The desalination apparatus is not particularly limited as long as it is an apparatus that can obtain fresh water from the diluted salt water using the RO membrane module 2 (by the RO method). Various known devices can be used.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 半透膜モジュール、10 半透膜、11 第1室、12 第2室、2 逆浸透膜モジュール、20 逆浸透膜、21 第1室、22 第2室。   DESCRIPTION OF SYMBOLS 1 Semipermeable membrane module, 10 Semipermeable membrane, 11 1st chamber, 12 2nd chamber, 2 Reverse osmosis membrane module, 20 Reverse osmosis membrane, 21 1st chamber, 22 2nd chamber.

Claims (2)

塩水から淡水を得る淡水化処理方法であって、
半透膜と、前記半透膜で仕切られた第1室および第2室と、を備える半透膜モジュールの前記第1室に前記塩水の一部を流し、前記第2室に前記塩水の他の一部を流して、前記第1室を加圧することで、前記第1室内の前記塩水に含まれる水を前記半透膜を介して前記第2室内の前記塩水に移行させ、前記第2室から希釈された前記塩水である希釈塩水を排出する、膜分離工程と、
前記希釈塩水から逆浸透法を用いて前記淡水を得る淡水化処理工程と、を含む、淡水化処理方法。
A desalination treatment method for obtaining fresh water from salt water,
A portion of the salt water is caused to flow in the first chamber of a semipermeable membrane module including a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane, and the salt water is supplied to the second chamber. By flowing the other part and pressurizing the first chamber, water contained in the salt water in the first chamber is transferred to the salt water in the second chamber through the semipermeable membrane, A membrane separation step of discharging diluted brine which is the brine diluted from two chambers;
A desalination treatment step of obtaining the fresh water from the diluted salt water using a reverse osmosis method.
塩水から淡水を得る淡水化処理システムであって、
半透膜と、前記半透膜で仕切られた第1室および第2室と、を有する半透膜モジュールを備え、前記第1室に前記塩水の一部を流し、前記第2室に前記塩水の他の一部を流して、前記第1室を加圧することで、前記第1室内の前記塩水に含まれる水を前記半透膜を介して前記第2室内の前記塩水に移行させ、前記第2室から希釈された前記塩水である希釈塩水を排出する、膜分離装置と、
逆浸透膜モジュールを備え、前記希釈塩水から前記逆浸透膜モジュールを用いて前記淡水を得る、淡水化処理装置と、を含む、淡水化処理システム。
A desalination treatment system for obtaining fresh water from salt water,
A semipermeable membrane module having a semipermeable membrane, and a first chamber and a second chamber partitioned by the semipermeable membrane, a portion of the salt water is allowed to flow in the first chamber, and the second chamber is Flowing the other part of the salt water to pressurize the first chamber, thereby transferring water contained in the salt water in the first chamber to the salt water in the second chamber through the semipermeable membrane, A membrane separation device for discharging diluted brine which is the brine diluted from the second chamber;
A desalination treatment system comprising: a reverse osmosis membrane module; and a desalination treatment device that obtains the fresh water from the diluted salt water using the reverse osmosis membrane module.
JP2016133280A 2016-07-05 2016-07-05 Processing method of desalinating salt water and processing system of desalinating salt water Pending JP2018001111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016133280A JP2018001111A (en) 2016-07-05 2016-07-05 Processing method of desalinating salt water and processing system of desalinating salt water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133280A JP2018001111A (en) 2016-07-05 2016-07-05 Processing method of desalinating salt water and processing system of desalinating salt water

Publications (1)

Publication Number Publication Date
JP2018001111A true JP2018001111A (en) 2018-01-11

Family

ID=60947229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133280A Pending JP2018001111A (en) 2016-07-05 2016-07-05 Processing method of desalinating salt water and processing system of desalinating salt water

Country Status (1)

Country Link
JP (1) JP2018001111A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US10301198B2 (en) 2015-08-14 2019-05-28 Gradiant Corporation Selective retention of multivalent ions
US10518221B2 (en) 2015-07-29 2019-12-31 Gradiant Corporation Osmotic desalination methods and associated systems
JP2020110795A (en) * 2019-01-15 2020-07-27 クウェート インスティチュート フォア サイエンティフィック リサーチKuwait Institute for Scientific Research Reduced pressure brine treatment system
KR20210023605A (en) * 2019-08-23 2021-03-04 한국기계연구원 Desalination apparatus using osmotic pressure equilibrium process and reverse osmosis process
CN112672812A (en) * 2019-02-28 2021-04-16 东洋纺株式会社 Hollow fiber membrane, method for producing hollow fiber membrane, hollow fiber membrane module, membrane separation device, and membrane separation method
WO2023276586A1 (en) 2021-06-29 2023-01-05 住友化学株式会社 Membrane separation method, and method for manufacturing loose ro membrane
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (en) * 1972-10-18 1974-06-17
JPH09290260A (en) * 1996-04-24 1997-11-11 Sachiko Hayashi Production of drinking water and salt, and device therefor
JP2002001068A (en) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd Method and apparatus for membrane separation
JP2009095821A (en) * 2007-09-28 2009-05-07 Asahi Kasei Chemicals Corp Method of treating salt water
JP4919183B1 (en) * 2010-08-27 2012-04-18 東洋紡績株式会社 Hollow fiber type reverse osmosis membrane and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (en) * 1972-10-18 1974-06-17
JPH09290260A (en) * 1996-04-24 1997-11-11 Sachiko Hayashi Production of drinking water and salt, and device therefor
JP2002001068A (en) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd Method and apparatus for membrane separation
JP2009095821A (en) * 2007-09-28 2009-05-07 Asahi Kasei Chemicals Corp Method of treating salt water
JP4919183B1 (en) * 2010-08-27 2012-04-18 東洋紡績株式会社 Hollow fiber type reverse osmosis membrane and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518221B2 (en) 2015-07-29 2019-12-31 Gradiant Corporation Osmotic desalination methods and associated systems
US11400416B2 (en) 2015-07-29 2022-08-02 Gradiant Corporation Osmotic desalination methods and associated systems
US10245555B2 (en) 2015-08-14 2019-04-02 Gradiant Corporation Production of multivalent ion-rich process streams using multi-stage osmotic separation
US10301198B2 (en) 2015-08-14 2019-05-28 Gradiant Corporation Selective retention of multivalent ions
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
JP2020110795A (en) * 2019-01-15 2020-07-27 クウェート インスティチュート フォア サイエンティフィック リサーチKuwait Institute for Scientific Research Reduced pressure brine treatment system
CN112672812A (en) * 2019-02-28 2021-04-16 东洋纺株式会社 Hollow fiber membrane, method for producing hollow fiber membrane, hollow fiber membrane module, membrane separation device, and membrane separation method
KR20210023605A (en) * 2019-08-23 2021-03-04 한국기계연구원 Desalination apparatus using osmotic pressure equilibrium process and reverse osmosis process
KR102280325B1 (en) 2019-08-23 2021-07-21 한국기계연구원 Desalination apparatus using osmotic pressure equilibrium process and reverse osmosis process
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery
WO2023276586A1 (en) 2021-06-29 2023-01-05 住友化学株式会社 Membrane separation method, and method for manufacturing loose ro membrane
KR20240027684A (en) 2021-06-29 2024-03-04 스미또모 가가꾸 가부시끼가이샤 Membrane separation method and preparation method of loose RO membrane

Similar Documents

Publication Publication Date Title
JP6834360B2 (en) Concentration method and concentrator
JP2018001111A (en) Processing method of desalinating salt water and processing system of desalinating salt water
US12005396B2 (en) Advancements in osmotically driven membrane systems including multi-stage purification
JP6977247B2 (en) Concentration method and concentrator
JP2018001110A (en) Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water
JP5549589B2 (en) Fresh water system
JP6269241B2 (en) Forward osmosis processing system
CN102958848B (en) Forward osmotic desalination device using membrane distillation method
US20160040522A1 (en) Production of injection water by coupling direct-osmosis methods with other methods of filtration
WO2020049579A1 (en) Combinatorial membrane-based systems and methods for dewatering and concentrating applications
WO2020179594A1 (en) Zero liquid discharge system
JP2008100220A (en) Method for producing freshwater
WO2020027056A1 (en) Membrane separation device, desalination system, membrane separation method, and desalination method
JP7133429B2 (en) Water treatment system and water treatment method
CN111867705A (en) Solvent separation
JP6862935B2 (en) Concentration system and concentration method
JP2000051663A (en) Apparatus and method for separation of reverse osmosis membrane
KR20170069614A (en) Saltwater desalination system
CN212832954U (en) Concentration system
WO2021049621A1 (en) Concentration system
CN212832953U (en) Concentration system
WO2024214606A1 (en) Concentration system
WO2022059737A1 (en) Seawater desalination system
JP2006167533A (en) Method for condensing sea water
WO2023026815A1 (en) Forward osmosis treatment method and forward osmosis treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929