JP7464969B2 - METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED - Google Patents

METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED Download PDF

Info

Publication number
JP7464969B2
JP7464969B2 JP2020041824A JP2020041824A JP7464969B2 JP 7464969 B2 JP7464969 B2 JP 7464969B2 JP 2020041824 A JP2020041824 A JP 2020041824A JP 2020041824 A JP2020041824 A JP 2020041824A JP 7464969 B2 JP7464969 B2 JP 7464969B2
Authority
JP
Japan
Prior art keywords
liquid
semipermeable membrane
concentrated
concentrated liquid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020041824A
Other languages
Japanese (ja)
Other versions
JP2021045742A (en
Inventor
基頼 早水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Publication of JP2021045742A publication Critical patent/JP2021045742A/en
Application granted granted Critical
Publication of JP7464969B2 publication Critical patent/JP7464969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被処理液の膜処理方法および装置に関し、より詳しくは、逆浸透膜を利用する被処理液の膜処理方法および装置に関する。 The present invention relates to a method and apparatus for membrane treatment of a liquid to be treated, and more specifically, to a method and apparatus for membrane treatment of a liquid to be treated that utilizes a reverse osmosis membrane.

逆浸透膜を利用して被処理液を処理する方法として、例えば特許文献1に開示された造水方法が知られている。特許文献1の造水方法は、海水を昇圧して逆浸透膜モジュールに供給することにより淡水を分離した後、逆浸透膜を透過せずに濃縮された濃縮塩水を海水とのエネルギー交換により減圧して正浸透膜モジュールに供給し、正浸透膜モジュールにおいて正浸透膜を透過する水によって濃縮塩水を希釈する。 As a method for treating a liquid to be treated using a reverse osmosis membrane, for example, the fresh water production method disclosed in Patent Document 1 is known. In the fresh water production method of Patent Document 1, seawater is pressurized and supplied to a reverse osmosis membrane module to separate fresh water, and then concentrated saltwater that does not pass through the reverse osmosis membrane is depressurized by energy exchange with seawater and supplied to a forward osmosis membrane module, where the concentrated saltwater is diluted with water that passes through the forward osmosis membrane.

特開2016-97331号公報JP 2016-97331 A

逆浸透膜法は、被処理液の浸透圧よりも高い圧力を加える必要があることから、高濃縮に限界がある一方、上記従来の造水方法は、正浸透膜モジュールにおいて濃縮塩水を水で希釈させるため、被処理液の濃縮率を高める観点から改良の余地があった。 The reverse osmosis membrane method requires the application of a pressure higher than the osmotic pressure of the liquid being treated, which limits how highly concentrated it can be. On the other hand, the above-mentioned conventional freshwater production method requires the concentrated saltwater to be diluted with water in the forward osmosis membrane module, which leaves room for improvement in terms of increasing the concentration rate of the liquid being treated.

そこで、本発明は、被処理液を高濃度で効率良く濃縮することができる被処理液の膜処理方法および装置の提供を目的とする。 The present invention aims to provide a membrane treatment method and device for treating a liquid that can efficiently concentrate the liquid to a high concentration.

本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、前記第2の濃縮工程は、最前段の前記半透膜ユニットに供給される前記濃縮液を、最後段の前記半透膜ユニットから排出される前記濃縮液との圧力交換により昇圧する工程を備える被処理液の膜処理方法により達成される。
The object of the present invention is achieved by a membrane treatment method for a liquid to be treated, comprising: a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane; and a second concentration step in which the produced concentrated liquid is brought into contact with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentration step comprising a step of contacting the concentrated liquid with the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two of the semipermeable membrane units are in parallel, and at least a portion of the concentrated liquid concentrated in the second concentration step is used as the recovery liquid, and the second concentration step comprises a step of pressurizing the concentrated liquid supplied to the semipermeable membrane unit of the front stage by pressure exchange with the concentrated liquid discharged from the semipermeable membrane unit of the last stage .

また、前記第2の濃縮工程は、各段の少なくともいずれかの前記半透膜ユニットから排出される前記回収液を、各段の少なくともいずれかの前記半透膜ユニットに供給される前記回収液に合流させる工程を備えることができる。 The second concentration step may also include a step of merging the recovered liquid discharged from at least one of the semipermeable membrane units in each stage with the recovered liquid supplied to at least one of the semipermeable membrane units in each stage.

あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、前記第1の濃縮工程は、前記被処理液を昇圧する前にナノろ過膜に通水する工程を備え、前記被処理液が前記ナノろ過膜を透過しない非透過液を、前記第2の濃縮工程で濃縮された濃縮液の少なくとも一部に合流させて、前記回収液として使用する被処理液の膜処理方法により達成される
Alternatively, the object of the present invention is achieved by a membrane treatment method for a liquid to be treated, which comprises a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane, and a second concentration step in which the produced concentrated liquid is brought into contact with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentration step comprising a step of contacting the concentrated liquid with the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, and the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two of the semipermeable membrane units are in parallel, and at least a portion of the concentrated liquid concentrated in the second concentration step is used as the recovery liquid, and the first concentration step comprises a step of passing the liquid to be treated through a nanofiltration membrane before the pressure of the liquid to be treated is increased, and the non-permeated liquid that does not permeate the nanofiltration membrane of the liquid to be treated is merged with at least a portion of the concentrated liquid concentrated in the second concentration step and used as the recovery liquid.

あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、前記第2の濃縮工程は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の前記半透膜ユニットに供給する被処理液の膜処理方法により達成される
Alternatively, the object of the present invention is achieved by a membrane treatment method for a liquid to be treated, comprising: a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane; and a second concentration step in which the produced concentrated liquid is brought into contact with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentration step comprising a step of contacting the concentrated liquid with the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two are in parallel, at least a portion of the concentrated liquid concentrated in the second concentration step is used as the recovery liquid, and the second concentration step comprises combining the recovery liquid supplied in parallel to at least two of the semipermeable membrane units on the latter stage and supplying it to the semipermeable membrane unit on the former stage.

あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、前記第2の濃縮工程は、後段側の前記半透膜ユニットに供給した前記回収液を、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理方法により達成される
Alternatively, the object of the present invention is achieved by a membrane treatment method for a liquid to be treated, comprising: a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without passing through the reverse osmosis membrane; and a second concentration step in which the produced concentrated liquid is brought into contact with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentration step comprising a step of contacting the concentrated liquid with the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied in series to the semipermeable membrane units of each stage, the recovery liquid is supplied to the semipermeable membrane units of each stage so that at least two are in parallel, at least a portion of the concentrated liquid concentrated in the second concentration step is used as the recovery liquid, and the second concentration step comprises supplying the recovery liquid supplied to the semipermeable membrane unit on the latter stage in parallel to at least two semipermeable membrane units on the former stage.

あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、前記第2の濃縮工程は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理方法により達成される
Alternatively, the object of the present invention is achieved by a membrane treatment method for a liquid to be treated, comprising: a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without passing through the reverse osmosis membrane; and a second concentration step in which the produced concentrated liquid is brought into contact with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentration step comprising a step of contacting the concentrated liquid with the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two are in parallel, at least a portion of the concentrated liquid concentrated in the second concentration step is used as the recovery liquid, and the second concentration step comprises combining the recovery liquid supplied in parallel to at least two of the semipermeable membrane units on the latter stage and supplying it in parallel to at least two of the semipermeable membrane units on the former stage.

また、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、最前段の前記半透膜ユニットに供給される前記濃縮液を、最後段の前記半透膜ユニットから排出される前記濃縮液との圧力交換により昇圧するエネルギー回収装置を更に備える被処理液の膜処理装置により達成される。
あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、前記第1の濃縮装置は、ナノろ過膜を有するNF膜ユニットを更に備え、前記被処理液を昇圧する前に前記ナノろ過膜に通水し、前記被処理液が前記ナノろ過膜を透過しない非透過液を、前記第2の濃縮装置で濃縮された濃縮液の少なくとも一部に合流させて、前記回収液として使用する被処理液の膜処理装置により達成される。
あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、前記第2の濃縮装置は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の前記半透膜ユニットに供給する被処理液の膜処理装置により達成される。
あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、前記第2の濃縮装置は、後段側の前記半透膜ユニットに供給した前記回収液を、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理装置により達成される。
あるいは、本発明の前記目的は、被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、前記第2の濃縮装置は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理装置により達成される。
The object of the present invention is also achieved by a membrane treatment device for a liquid to be treated, which comprises a first concentrating device having an RO membrane unit that generates a concentrated liquid that is concentrated without permeating the reverse osmosis membrane by pressurizing the liquid to be treated and passing it through a reverse osmosis membrane, and a second concentrating device that further concentrates the generated concentrated liquid by contacting it with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentrating device being configured so that the contact between the concentrated liquid and the recovery liquid via the semipermeable membrane is performed in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied in series to the semipermeable membrane units of each stage, the recovery liquid is supplied to the semipermeable membrane units of each stage so that at least two of the semipermeable membrane units are in parallel, at least a portion of the concentrated liquid concentrated in the second concentrating device is used as the recovery liquid, and the concentrated liquid supplied to the semipermeable membrane unit of the front stage is pressurized by pressure exchange with the concentrated liquid discharged from the semipermeable membrane unit of the last stage .
Alternatively, the object of the present invention is to provide a method for treating a liquid to be treated comprising: a first concentrating device having an RO membrane unit for generating a concentrated liquid that is concentrated without permeating the reverse osmosis membrane by increasing the pressure of the liquid to be treated and passing the liquid through a reverse osmosis membrane; and a second concentrating device for further concentrating the generated concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentrating device being configured so that the contact between the concentrated liquid and the recovery liquid via the semipermeable membrane is performed in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied in series to the semipermeable membrane units of each stage, The recovery liquid is supplied to the semipermeable membrane units of each stage so that at least two are in parallel, and at least a portion of the concentrated liquid concentrated in the second concentrator is used as the recovery liquid, and the first concentrator further comprises an NF membrane unit having a nanofiltration membrane, and the treated liquid is passed through the nanofiltration membrane before being pressurized, and the non-permeated liquid of the treated liquid that does not permeate the nanofiltration membrane is merged with at least a portion of the concentrated liquid concentrated in the second concentrator, thereby achieving the above-mentioned membrane treatment device for the treated liquid to be used as the recovery liquid.
Alternatively, the object of the present invention is achieved by a membrane treatment device for a liquid to be treated, which comprises a first concentrating device having an RO membrane unit that generates a concentrated liquid that is concentrated without permeating the reverse osmosis membrane by increasing the pressure of the liquid to be treated and passing it through a reverse osmosis membrane, and a second concentrating device that further concentrates the generated concentrated liquid by contacting it with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentrating device being configured to contact the concentrated liquid and the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two of the semipermeable membrane units are in parallel, at least a portion of the concentrated liquid concentrated in the second concentrating device is used as the recovery liquid, and the second concentrating device is configured to combine the recovery liquid supplied in parallel to at least two of the semipermeable membrane units on the rear stage side and supply it to the semipermeable membrane unit on the front stage side.
Alternatively, the object of the present invention is achieved by a membrane treatment device for a liquid to be treated, which includes a first concentrating device having an RO membrane unit that generates a concentrated liquid that is concentrated without permeating the reverse osmosis membrane by increasing the pressure of the liquid to be treated and passing it through a reverse osmosis membrane, and a second concentrating device that further concentrates the generated concentrated liquid by contacting it with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentrating device being configured to contact the concentrated liquid with the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two of the semipermeable membrane units are in parallel, and at least a portion of the concentrated liquid concentrated in the second concentrating device is used as the recovery liquid, and the second concentrating device supplies the recovery liquid supplied to the semipermeable membrane unit on the rear stage to at least two semipermeable membrane units on the front stage in parallel.
Alternatively, the object of the present invention is achieved by a membrane treatment device for a liquid to be treated, which includes a first concentrating device having an RO membrane unit that generates a concentrated liquid that is concentrated without permeating the reverse osmosis membrane by increasing the pressure of the liquid to be treated and passing it through a reverse osmosis membrane, and a second concentrating device that further concentrates the generated concentrated liquid by contacting it with a recovery liquid at a lower pressure than the concentrated liquid via a semipermeable membrane, the second concentrating device being configured to contact the concentrated liquid and the recovery liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid being supplied in series to the semipermeable membrane units of each stage, the recovery liquid being supplied to the semipermeable membrane units of each stage so that at least two of the semipermeable membrane units are in parallel, and at least a portion of the concentrated liquid concentrated in the second concentrating device is used as the recovery liquid, and the second concentrating device combines the recovery liquid supplied in parallel to at least two of the semipermeable membrane units on the rear stage side and supplies it in parallel to at least two of the semipermeable membrane units on the front stage side.

本発明によれば、被処理液を高濃度で効率良く濃縮することができる被処理液の膜処理方法および装置を提供することができる。 The present invention provides a membrane treatment method and device for treating a liquid that can efficiently concentrate the liquid to a high concentration.

本発明の一実施形態に係る被処理液の膜処理装置の概略構成図である。1 is a schematic configuration diagram of a membrane treatment device for a liquid to be treated according to an embodiment of the present invention. 本発明の他の実施形態に係る被処理液の膜処理装置の概略構成図である。FIG. 11 is a schematic configuration diagram of a membrane treatment device for a liquid to be treated according to another embodiment of the present invention. 本発明の更に他の実施形態に係る被処理液の膜処理装置の概略構成図である。FIG. 13 is a schematic configuration diagram of a membrane treatment device for a liquid to be treated according to still another embodiment of the present invention. 本発明の更に他の実施形態に係る被処理液の膜処理装置の概略構成図である。FIG. 13 is a schematic configuration diagram of a membrane treatment device for a liquid to be treated according to still another embodiment of the present invention. 本発明の更に他の実施形態に係る被処理液の膜処理装置の概略構成図である。FIG. 13 is a schematic configuration diagram of a membrane treatment device for a liquid to be treated according to still another embodiment of the present invention.

以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る被処理液の膜処理装置(以下、単に「膜処理装置」という)の概略構成図である。図1に示すように、膜処理装置1は、被処理液を濃縮して濃縮液を生成する第1の濃縮装置10と、第1の濃縮装置10で生成された濃縮液を更に濃縮する第2の濃縮装置20と、第2の濃縮装置20に供給される濃縮液と第2の濃縮装置20から排出される濃縮液との間で圧力交換を行うエネルギー回収装置30とを、主な構成要素として備えている。 One embodiment of the present invention will be described below with reference to the attached drawings. FIG. 1 is a schematic diagram of a membrane treatment device for a liquid to be treated (hereinafter, simply referred to as a "membrane treatment device") according to one embodiment of the present invention. As shown in FIG. 1, the membrane treatment device 1 mainly comprises a first concentrator 10 that concentrates the liquid to be treated to produce a concentrated liquid, a second concentrator 20 that further concentrates the concentrated liquid produced by the first concentrator 10, and an energy recovery device 30 that performs pressure exchange between the concentrated liquid supplied to the second concentrator 20 and the concentrated liquid discharged from the second concentrator 20.

第1の濃縮装置10は、ケーシング内にRO膜(逆浸透膜)モジュールが配置されて構成されたRO膜ユニット12を備えており、RO膜を透過しない被処理液が濃縮液として排出される。第1の濃縮装置10は、RO膜ユニット12を複数段に配置した構成であってもよく、前段のRO膜ユニット12で濃縮された被処理液を後段のRO膜ユニット12に供給して更に濃縮することにより、濃縮液を生成することができる。RO膜の材質や型式は特に限定されないが、例えば、ポリアミドや酢酸セルロース等からなる中空糸膜型や平膜型等を挙げることができる。 The first concentrator 10 includes an RO membrane unit 12 configured by arranging an RO membrane (reverse osmosis membrane) module in a casing, and the liquid to be treated that does not permeate the RO membrane is discharged as a concentrated liquid. The first concentrator 10 may be configured with a plurality of RO membrane units 12 arranged in stages, and the liquid to be treated concentrated in the RO membrane unit 12 in the first stage is supplied to the RO membrane unit 12 in the second stage for further concentration to produce a concentrated liquid. The material and type of the RO membrane are not particularly limited, and examples thereof include a hollow fiber membrane type or a flat membrane type made of polyamide, cellulose acetate, or the like.

第2の濃縮装置20は、2段の半透膜ユニット21-1,21-2を備えている。各半透膜ユニット21-1,21-2は、ケーシング内が半透膜で仕切られることにより高圧室22および低圧室23が形成されている。高圧室22および低圧室23は、導入口からそれぞれ濃縮液および回収液が供給されて、排出口から排出される間に濃縮液および回収液が半透膜を介して接触するように構成されている。半透膜は、平膜以外に中空糸膜であってもよい。半透膜は、FO膜(正浸透膜)を好適に使用することができるが、RO膜などの他の半透膜であってもよい。各半透膜ユニット21-1,21-2の高圧室22には濃縮液が直列に供給される一方、各半透膜ユニット21-1,21-2の低圧室23には回収液が並列に供給される。 The second concentrator 20 is equipped with two stages of semipermeable membrane units 21-1 and 21-2. The inside of the casing of each semipermeable membrane unit 21-1 and 21-2 is partitioned by a semipermeable membrane to form a high-pressure chamber 22 and a low-pressure chamber 23. The high-pressure chamber 22 and the low-pressure chamber 23 are configured so that the concentrated liquid and the recovered liquid are supplied from the inlet, respectively, and come into contact with each other via the semipermeable membrane while being discharged from the outlet. The semipermeable membrane may be a hollow fiber membrane other than a flat membrane. The semipermeable membrane may preferably be an FO membrane (forward osmosis membrane), but may also be another semipermeable membrane such as an RO membrane. The concentrated liquid is supplied in series to the high-pressure chamber 22 of each semipermeable membrane unit 21-1 and 21-2, while the recovered liquid is supplied in parallel to the low-pressure chamber 23 of each semipermeable membrane unit 21-1 and 21-2.

エネルギー回収装置30は、ターボチャージャからなり、第2の濃縮装置20の最後段の半透膜ユニット21-2から排出された濃縮液によりタービンを回転させ、この動力を利用して、最前段の半透膜ユニット21-1に供給される濃縮液を昇圧する。エネルギー回収装置30の構成は、第2の濃縮装置20から排出される濃縮液のエネルギーを回収して、第2の濃縮装置20に供給される濃縮液を昇圧可能であれば特に限定されるものではなく、例えば、タービン型以外にロータ型やピストン型などの他のエネルギー回収装置であってもよい。 The energy recovery device 30 is composed of a turbocharger, and rotates a turbine using the concentrated liquid discharged from the semipermeable membrane unit 21-2 in the final stage of the second concentrator 20, and uses this power to pressurize the concentrated liquid supplied to the semipermeable membrane unit 21-1 in the first stage. The configuration of the energy recovery device 30 is not particularly limited as long as it can recover the energy of the concentrated liquid discharged from the second concentrator 20 and pressurize the concentrated liquid supplied to the second concentrator 20, and for example, it may be a rotor type, piston type, or other energy recovery device other than the turbine type.

次に、上記の構成を備える膜処理装置1を使用した被処理液の膜処理方法を説明する。まず、海水等の被処理液を高圧ポンプ2により昇圧して、第1の濃縮装置10に供給することにより、第1の濃縮工程を行う。RO膜ユニット12においては、被処理液がRO膜を透過することより淡水が生成されると共に、RO膜ユニット12のRO膜を透過せずに濃縮された濃縮液が生成される。 Next, a membrane treatment method for a liquid to be treated using the membrane treatment device 1 having the above configuration will be described. First, the liquid to be treated, such as seawater, is pressurized by the high-pressure pump 2 and supplied to the first concentrator 10, thereby carrying out a first concentration step. In the RO membrane unit 12, fresh water is produced by the liquid to be treated passing through the RO membrane, and a concentrated liquid is produced that is concentrated without passing through the RO membrane of the RO membrane unit 12.

ついで、第1の濃縮工程で生成された濃縮液を、昇圧ポンプ3により昇圧して第2の濃縮装置20に供給し、第2の濃縮工程を行う。各半透膜ユニット21-1,21-2の高圧室22には、第1の濃縮装置10を通過して昇圧された高圧の濃縮液が直列に供給される。一方、各半透膜ユニット21-1,21-2の低圧室23には、半透膜ユニット21-1,21-2の高圧室22を通過後の濃縮液の一部が、フィルタ4を通過後に回収液として並列に供給される。これにより、低圧の回収液の圧力損失を軽減して、各半透膜ユニット21-1,21-2に確実に供給することができ、被処理液の濃縮率を高めることができる。フィルタ4は必須の構成ではなく、フィルタ4を備えない構成であってもよい。半透膜ユニット21-1,21-2の段数は、複数段であれば特に限定されるものではなく、3段以上であってもよい。回収液として利用されない濃縮液の残部は、系外に排出されて、例えば、正浸透発電、製塩蒸発濃縮による淡水化などの他のプロセスで利用することができる。 Then, the concentrated liquid produced in the first concentration step is boosted by the boost pump 3 and supplied to the second concentration device 20 to perform the second concentration step. The high-pressure concentrated liquid that has been boosted by passing through the first concentration device 10 is supplied in series to the high-pressure chamber 22 of each semipermeable membrane unit 21-1, 21-2. On the other hand, a part of the concentrated liquid after passing through the high-pressure chamber 22 of the semipermeable membrane unit 21-1, 21-2 is supplied in parallel as a recovered liquid after passing through the filter 4 to the low-pressure chamber 23 of each semipermeable membrane unit 21-1, 21-2. This reduces the pressure loss of the low-pressure recovered liquid, and can be reliably supplied to each semipermeable membrane unit 21-1, 21-2, thereby increasing the concentration rate of the treated liquid. The filter 4 is not an essential component, and the configuration may not include the filter 4. The number of stages of the semipermeable membrane units 21-1, 21-2 is not particularly limited as long as it is a plurality of stages, and may be three or more stages. The remainder of the concentrated liquid that is not used as the recovered liquid is discharged outside the system and can be used in other processes, such as forward osmosis power generation and desalination by evaporative concentration for salt production.

低圧室23に供給される回収液は、各半透膜ユニット21-1,21-2の通過により減圧されるため、高圧室22に供給される濃縮液よりも低圧であると共に、高圧室22に供給される濃縮液と浸透圧差が小さいことから、高圧室22と低圧室23との圧力差により、半透膜を介した高圧室22から低圧室23への水の移動が促される。したがって、高圧ポンプ2の性能や数を特に増大させることなく濃縮液を更に濃縮することができ、省エネルギーで高濃度に濃縮することができる。第2の濃縮装置20で濃縮された濃縮液は、エネルギー回収装置30の通過により、自身が減圧されると共に第2の濃縮装置20に供給される濃縮液を昇圧するため、高圧室22と低圧室23との圧力差をより大きくすることができる。 The recovery liquid supplied to the low pressure chamber 23 is depressurized by passing through each semipermeable membrane unit 21-1, 21-2, so it is at a lower pressure than the concentrated liquid supplied to the high pressure chamber 22, and the osmotic pressure difference between the concentrated liquid supplied to the high pressure chamber 22 is small, so the pressure difference between the high pressure chamber 22 and the low pressure chamber 23 promotes the movement of water from the high pressure chamber 22 to the low pressure chamber 23 via the semipermeable membrane. Therefore, the concentrated liquid can be further concentrated without particularly increasing the performance or number of the high pressure pumps 2, and can be concentrated to a high concentration with reduced energy. The concentrated liquid concentrated in the second concentrator 20 is depressurized by passing through the energy recovery device 30, and the concentrated liquid supplied to the second concentrator 20 is pressurized, so the pressure difference between the high pressure chamber 22 and the low pressure chamber 23 can be increased.

第2の濃縮装置20において濃縮液から水を回収した回収液は、後段の半透膜ユニット21-2から排出される回収液の一部が循環ポンプ5により戻されて、各半透膜ユニット21-1,21-2に再び並列供給される。残りの回収液は、高圧ポンプ2の上流側で被処理液に合流されて、第1の濃縮装置10に再び供給される。これらにより、第1の濃縮装置10における淡水の製造効率を高めることができると共に、被処理液が希釈されて浸透圧が低下することによりRO膜ユニット12に低圧で供給することができ、高圧ポンプ2の省エネルギー化を図ることができる。 In the second concentrator 20, water is recovered from the concentrated liquid, and a portion of the recovered liquid discharged from the subsequent semipermeable membrane unit 21-2 is returned by the circulation pump 5 and supplied again in parallel to each semipermeable membrane unit 21-1, 21-2. The remaining recovered liquid is merged with the liquid being treated upstream of the high-pressure pump 2 and supplied again to the first concentrator 10. This increases the efficiency of freshwater production in the first concentrator 10, and the liquid being treated is diluted and its osmotic pressure is reduced, allowing it to be supplied to the RO membrane unit 12 at low pressure, thereby saving energy for the high-pressure pump 2.

図2は、本発明の他の実施形態に係る膜処理装置の概略構成図である。図2に示す膜処理装置101は、図1に示す膜処理装置1において、第1の濃縮装置10が、RO膜ユニット12の他にNF膜ユニット14を備えている。図2において、図1と同様の構成部分には同一の符号を付している(後述する図3から図5においても同様)。 Figure 2 is a schematic diagram of a membrane treatment device according to another embodiment of the present invention. The membrane treatment device 101 shown in Figure 2 is the membrane treatment device 1 shown in Figure 1, in which the first concentration device 10 is equipped with an NF membrane unit 14 in addition to the RO membrane unit 12. In Figure 2, components similar to those in Figure 1 are given the same reference numerals (the same applies to Figures 3 to 5 described below).

NF膜ユニット14は、ケーシング内にNF膜(ナノろ過膜)モジュールが配置されて構成されており、NF膜ユニット14のNF膜を透過した被処理液が、RO膜ユニット12に供給される。NF膜についても、RO膜と同様に材質や型式は特に限定されない。NF膜ユニット14は、1段に構成する代わりに複数段に構成してもよい。 The NF membrane unit 14 is configured with an NF membrane (nanofiltration membrane) module arranged inside a casing, and the liquid to be treated that has permeated the NF membrane of the NF membrane unit 14 is supplied to the RO membrane unit 12. As with the RO membrane, there are no particular limitations on the material or type of the NF membrane. The NF membrane unit 14 may be configured in multiple stages instead of in one stage.

第2の濃縮装置20は、3段の半透膜ユニット21-1,21-2,21-3を備えている。各半透膜ユニット21-1,21-2,21-3の構成は、図1に示す半透膜ユニット21-1,21-2と同様であり、それぞれの高圧室22には、RO膜ユニット12から濃縮液が直列に供給される一方、それぞれの低圧室23には、高圧室22を通過した濃縮液の一部にNF膜ユニット14からの非透過液を合流させた回収液が、給水ポンプ7の作動により並列に供給される。各半透膜ユニット21-1,21-2,21-3に回収液を並列供給することにより圧力損失を軽減できるため、給水ポンプ7を設けない構成であってもよい。各半透膜ユニット21-1,21-2,21-3の低圧室23に供給される回収液の流量は、流量制御弁40a,40b,40cの開度調節により個別に制御することができ、これによって半透膜ユニット21-1,21-2,21-3ごとに回収液を適切な流量で供給することができる。 The second concentrator 20 is equipped with three stages of semipermeable membrane units 21-1, 21-2, and 21-3. The configuration of each semipermeable membrane unit 21-1, 21-2, and 21-3 is the same as that of the semipermeable membrane units 21-1 and 21-2 shown in FIG. 1, and the concentrated liquid is supplied in series from the RO membrane unit 12 to each high-pressure chamber 22, while the recovery liquid, which is a mixture of a part of the concentrated liquid that has passed through the high-pressure chamber 22 and the non-permeated liquid from the NF membrane unit 14, is supplied in parallel to each low-pressure chamber 23 by the operation of the feed water pump 7. Since pressure loss can be reduced by supplying the recovery liquid in parallel to each semipermeable membrane unit 21-1, 21-2, and 21-3, the configuration may not require the provision of a feed water pump 7. The flow rate of the recovery liquid supplied to the low pressure chamber 23 of each semipermeable membrane unit 21-1, 21-2, 21-3 can be individually controlled by adjusting the opening of the flow control valves 40a, 40b, 40c, so that the recovery liquid can be supplied at an appropriate flow rate to each of the semipermeable membrane units 21-1, 21-2, 21-3.

NF膜ユニット14で生成された非透過液は、溶質の濃度上昇により浸透圧が高くなるため、非透過液を回収液に含めた場合でも、第2の濃縮装置20において濃縮液との浸透圧差を小さく維持することができる。回収液には、第2の濃縮装置20から排出された濃縮液が含まれていればよく、NF膜ユニット14の非透過液と共に、あるいは、NF膜ユニット14の非透過液に代えて、第2の濃縮装置20から排出される濃縮液の濃度に近い濃度を有する他の液を合流させてもよい。 The non-permeated liquid generated in the NF membrane unit 14 has a high osmotic pressure due to an increase in the concentration of solutes, so even if the non-permeated liquid is included in the recovery liquid, the osmotic pressure difference with the concentrated liquid in the second concentrator 20 can be kept small. The recovery liquid only needs to contain the concentrated liquid discharged from the second concentrator 20, and other liquids having a concentration close to that of the concentrated liquid discharged from the second concentrator 20 may be merged together with the non-permeated liquid of the NF membrane unit 14 or instead of the non-permeated liquid of the NF membrane unit 14.

エネルギー回収装置30は、最前段の半透膜ユニット21-1に供給される濃縮液が、最後段の半透膜ユニット21-3から排出される濃縮液により昇圧される。これにより、各半透膜ユニット21-1,21-2,21-3に濃縮液を確実に供給して回収液との圧力差を確保することができ、第2の濃縮装置20における濃縮を促すことができる。 In the energy recovery device 30, the concentrated liquid supplied to the semipermeable membrane unit 21-1 in the front stage is pressurized by the concentrated liquid discharged from the semipermeable membrane unit 21-3 in the last stage. This ensures that the concentrated liquid is supplied to each semipermeable membrane unit 21-1, 21-2, and 21-3, ensuring a pressure difference with the recovered liquid, and promoting concentration in the second concentrator 20.

各半透膜ユニット21-1,21-2,21-3から排出される回収液は、合流された後に一部が循環ポンプ5により各半透膜ユニット21-1,21-2,21-3に個別に循環されることにより、系外に排出される残りの回収液を希釈することができる。各半透膜ユニット21-1,21-2,21-3への循環流量は、流量制御弁40d,40e,40fの開度調節により個別に制御することができる。 The recovered liquid discharged from each semipermeable membrane unit 21-1, 21-2, 21-3 is merged and then part of it is circulated individually to each semipermeable membrane unit 21-1, 21-2, 21-3 by the circulation pump 5, thereby diluting the remaining recovered liquid discharged outside the system. The circulation flow rate to each semipermeable membrane unit 21-1, 21-2, 21-3 can be individually controlled by adjusting the opening of the flow control valves 40d, 40e, 40f.

循環ポンプ5により回収液を循環させる構成は、本実施形態の構成に限定されず、各段の少なくともいずれかの各半透膜ユニット21-1,21-2,21-3から排出される回収液を、各段の少なくともいずれかの各半透膜ユニット21-1,21-2,21-3に供給される回収液に合流させる構成であればよい。また、循環ポンプ5による回収液の循環は、本発明において必須ではなく、回収液を循環させない構成であってもよい。 The configuration for circulating the recovery liquid by the circulation pump 5 is not limited to the configuration of this embodiment, and may be any configuration in which the recovery liquid discharged from at least any of the semipermeable membrane units 21-1, 21-2, 21-3 in each stage is merged with the recovery liquid supplied to at least any of the semipermeable membrane units 21-1, 21-2, 21-3 in each stage. Furthermore, circulation of the recovery liquid by the circulation pump 5 is not essential to the present invention, and the recovery liquid may not be circulated.

図1および図2に示す膜処理装置1,101は、第2の濃縮工程において、全ての半透膜ユニットに対して回収液を並列に供給するように構成しているが、回収液を各段の半透膜ユニットに対して少なくとも2つが並列となるように供給する構成であればよく、各半透膜ユニットに供給する回収液の流量制御や、回収液と濃縮液との濃度差制御が困難になるおそれがある場合には、一部の半透膜ユニット間で回収液を直列に供給してもよい。 The membrane treatment device 1, 101 shown in Figures 1 and 2 is configured to supply the recovery liquid to all semipermeable membrane units in parallel in the second concentration step, but it is sufficient that the recovery liquid is supplied to at least two semipermeable membrane units in each stage in parallel. If there is a risk that it will be difficult to control the flow rate of the recovery liquid supplied to each semipermeable membrane unit or to control the concentration difference between the recovery liquid and the concentrated liquid, the recovery liquid may be supplied in series between some of the semipermeable membrane units.

例えば、図3に示すように、3つの半透膜ユニット21-1,21-2,21-3を備える膜処理装置201において、後段側の2つの半透膜ユニット21-2,21-3に並列に供給した回収液を合流して、前段側の半透膜ユニット21-1に供給することができる。合流した回収液は、ブースターポンプ8の作動によって半透膜ユニット21-1に確実に供給することができるが、合流後の回収液の圧力によってはブースターポンプ8を備えない構成であってもよい。後段側において回収液を並列に供給する半透膜ユニットの数は3つ以上であってもよく、並列に配置された各半透膜ユニットの少なくとも一部に、回収液を直列に供給する半透膜ユニットが付加されてもよい。また、前段側において直列に供給される半透膜ユニットの数は、2つ以上であってもよい。 For example, as shown in FIG. 3, in a membrane treatment device 201 equipped with three semipermeable membrane units 21-1, 21-2, and 21-3, the recovery liquid supplied in parallel to the two semipermeable membrane units 21-2 and 21-3 on the rear stage can be merged and supplied to the semipermeable membrane unit 21-1 on the front stage. The merged recovery liquid can be reliably supplied to the semipermeable membrane unit 21-1 by the operation of the booster pump 8, but depending on the pressure of the recovery liquid after merging, the booster pump 8 may not be provided. The number of semipermeable membrane units that supply the recovery liquid in parallel on the rear stage side may be three or more, and a semipermeable membrane unit that supplies the recovery liquid in series may be added to at least some of the semipermeable membrane units arranged in parallel. The number of semipermeable membrane units that are supplied in series on the front stage side may be two or more.

あるいは、図4に示すように、3つの半透膜ユニット21-1,21-2,21-3を備える膜処理装置301において、後段側の半透膜ユニット21-3に供給した回収液を、ブースターポンプ8の作動により前段側の2つの半透膜ユニット21-1,21-2に並列に供給することができる。前段側において回収液を並列に供給する半透膜ユニットの数は3つ以上であってもよく、並列に配置された各半透膜ユニットの少なくとも一部に、回収液を直列に供給する半透膜ユニットが付加されてもよい。また、後段側において直列に供給される半透膜ユニットの数は、2つ以上であってもよい。図4に示す膜処理装置301においても、ブースターポンプ8を備えない構成にすることができる。 Alternatively, as shown in FIG. 4, in a membrane treatment device 301 equipped with three semipermeable membrane units 21-1, 21-2, and 21-3, the recovery liquid supplied to the semipermeable membrane unit 21-3 on the rear stage can be supplied in parallel to the two semipermeable membrane units 21-1 and 21-2 on the front stage by operating the booster pump 8. The number of semipermeable membrane units that supply the recovery liquid in parallel on the front stage side may be three or more, and a semipermeable membrane unit that supplies the recovery liquid in series may be added to at least some of the semipermeable membrane units arranged in parallel. In addition, the number of semipermeable membrane units that are supplied in series on the rear stage side may be two or more. The membrane treatment device 301 shown in FIG. 4 can also be configured without the booster pump 8.

あるいは、図5に示すように、4つの半透膜ユニット21-1,21-2,21-3,21-4を備える膜処理装置401において、後段側の2つの半透膜ユニット21-3,21-4に並列に供給した回収液を合流して、ブースターポンプ8の作動により前段側の2つの半透膜ユニット21-1,21-2に並列に供給することができる。前段側および/または後段側において回収液を並列に供給する半透膜ユニットの数は3つ以上であってもよく、並列に配置された各半透膜ユニットの少なくとも一部に、回収液を直列に供給する半透膜ユニットが付加されてもよい。図5に示す膜処理装置401においても、ブースターポンプ8を備えない構成にすることができる。 Alternatively, as shown in FIG. 5, in a membrane treatment device 401 equipped with four semipermeable membrane units 21-1, 21-2, 21-3, and 21-4, the recovery liquid supplied in parallel to the two semipermeable membrane units 21-3 and 21-4 on the rear stage can be merged and supplied in parallel to the two semipermeable membrane units 21-1 and 21-2 on the front stage by operating the booster pump 8. The number of semipermeable membrane units that supply recovery liquid in parallel on the front stage and/or rear stage may be three or more, and a semipermeable membrane unit that supplies recovery liquid in series may be added to at least some of the semipermeable membrane units arranged in parallel. The membrane treatment device 401 shown in FIG. 5 may also be configured without the booster pump 8.

このように、第2の濃縮工程における各段の半透膜ユニットに対する回収液の供給について、並列的な供給をベースとして直列的な供給を適宜組み合わせることにより、各半透膜ユニットに供給される回収液の濃度および流量を容易に調整することができる。この結果、必要となるポンプの台数を低減して大容量化によるポンプ効率の向上を図ることが可能になり、各半透膜ユニットにおける膜フラックスの均等化を図ることもできる。 In this way, by appropriately combining parallel supply with serial supply for the supply of recovery liquid to each stage of semipermeable membrane unit in the second concentration step, the concentration and flow rate of the recovery liquid supplied to each semipermeable membrane unit can be easily adjusted. As a result, it is possible to reduce the number of pumps required and improve pump efficiency by increasing the capacity, and it is also possible to equalize the membrane flux in each semipermeable membrane unit.

図3から図5に示す構成においても、図2に示す構成と同様に、各半透膜ユニット21-1,21-2,21-3を通過して合流した後の回収液の一部を、各半透膜ユニット21-1,21-2,21-3に個別に循環させることが可能であり、各半透膜ユニット21-1,21-2,21-3への循環流量は、流量制御弁の開度調節により個別に制御することができる。回収液を循環させる構成は、各段の少なくともいずれかの各半透膜ユニット21-1,21-2,21-3から排出される回収液を、各段の少なくともいずれかの各半透膜ユニット21-1,21-2,21-3に供給される回収液に合流させる構成であればよい。 In the configurations shown in Figures 3 to 5, as in the configuration shown in Figure 2, a portion of the recovered liquid that has passed through and merged with each of the semipermeable membrane units 21-1, 21-2, and 21-3 can be circulated to each of the semipermeable membrane units 21-1, 21-2, and 21-3 individually, and the circulation flow rate to each of the semipermeable membrane units 21-1, 21-2, and 21-3 can be individually controlled by adjusting the opening degree of the flow control valve. The configuration for circulating the recovered liquid may be one in which the recovered liquid discharged from at least any of the semipermeable membrane units 21-1, 21-2, and 21-3 in each stage is merged with the recovered liquid supplied to at least any of the semipermeable membrane units 21-1, 21-2, and 21-3 in each stage.

1 膜処理装置
10 第1の濃縮装置
12 RO膜ユニット
14 NF膜ユニット
20 第2の濃縮装置
21 半透膜ユニット
30 エネルギー回収装置
Reference Signs List 1 Membrane treatment device 10 First concentrator 12 RO membrane unit 14 NF membrane unit 20 Second concentrator 21 Semipermeable membrane unit 30 Energy recovery device

Claims (11)

被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、
前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、
前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、
前記第2の濃縮工程は、最前段の前記半透膜ユニットに供給される前記濃縮液を、最後段の前記半透膜ユニットから排出される前記濃縮液との圧力交換により昇圧する工程を備える被処理液の膜処理方法。
a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane;
A second concentration step of further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane,
The second concentration step includes a step of contacting the concentrated liquid with the recovered liquid through the semipermeable membrane in a plurality of semipermeable membrane units, supplying the concentrated liquid to the semipermeable membrane units in series in each stage, and supplying the recovered liquid to the semipermeable membrane units in each stage such that at least two of the semipermeable membrane units are in parallel,
At least a part of the concentrated liquid concentrated in the second concentration step is used as the recovered liquid ;
The second concentration step is a membrane treatment method for a liquid to be treated, comprising a step of increasing the pressure of the concentrated liquid supplied to the semipermeable membrane unit in the first stage by pressure exchange with the concentrated liquid discharged from the semipermeable membrane unit in the last stage .
前記第2の濃縮工程は、各段の少なくともいずれかの前記半透膜ユニットから排出される前記回収液を、各段の少なくともいずれかの前記半透膜ユニットに供給される前記回収液に合流させる工程を備える請求項1に記載の被処理液の膜処理方法。 2. The membrane treatment method for a liquid to be treated according to claim 1, wherein the second concentration step comprises a step of merging the recovery liquid discharged from at least any of the semipermeable membrane units in each stage with the recovery liquid supplied to at least any of the semipermeable membrane units in each stage. 被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、
前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、
前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、
前記第1の濃縮工程は、前記被処理液を昇圧する前にナノろ過膜に通水する工程を備え、前記被処理液が前記ナノろ過膜を透過しない非透過液を、前記第2の濃縮工程で濃縮された濃縮液の少なくとも一部に合流させて、前記回収液として使用する被処理液の膜処理方法。
a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane;
A second concentration step of further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane,
The second concentration step includes a step of contacting the concentrated liquid with the recovered liquid through the semipermeable membrane in a plurality of semipermeable membrane units, supplying the concentrated liquid to the semipermeable membrane units in series in each stage, and supplying the recovered liquid to the semipermeable membrane units in each stage such that at least two of the semipermeable membrane units are in parallel,
At least a part of the concentrated liquid concentrated in the second concentration step is used as the recovered liquid;
The first concentration step includes a step of passing the liquid to be treated through a nanofiltration membrane before pressurizing the liquid to be treated, and a non-permeated liquid of the liquid to be treated that does not permeate the nanofiltration membrane is merged with at least a portion of the concentrated liquid concentrated in the second concentration step to be used as the recovered liquid.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、
前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、
前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、
前記第2の濃縮工程は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の前記半透膜ユニットに供給する被処理液の膜処理方法。
a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane;
A second concentration step of further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane,
The second concentration step includes a step of contacting the concentrated liquid with the recovered liquid through the semipermeable membrane in a plurality of semipermeable membrane units, supplying the concentrated liquid to the semipermeable membrane units in series in each stage, and supplying the recovered liquid to the semipermeable membrane units in each stage such that at least two of the semipermeable membrane units are in parallel,
At least a part of the concentrated liquid concentrated in the second concentration step is used as the recovered liquid;
The second concentration step is a membrane treatment method for a liquid to be treated, in which the recovered liquid supplied in parallel to at least two of the semipermeable membrane units on the rear stage is joined together and supplied to the semipermeable membrane unit on the front stage.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、
前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、
前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、
前記第2の濃縮工程は、後段側の前記半透膜ユニットに供給した前記回収液を、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理方法。
a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane;
A second concentration step of further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane,
The second concentration step includes a step of contacting the concentrated liquid with the recovered liquid through the semipermeable membrane in a plurality of semipermeable membrane units, supplying the concentrated liquid to the semipermeable membrane units in series in each stage, and supplying the recovered liquid to the semipermeable membrane units in each stage such that at least two of the semipermeable membrane units are in parallel,
At least a part of the concentrated liquid concentrated in the second concentration step is used as the recovered liquid;
The second concentration step is a membrane treatment method for a liquid to be treated, in which the recovered liquid supplied to the semipermeable membrane unit on the rear stage side is supplied in parallel to at least two semipermeable membrane units on the front stage side.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成する第1の濃縮工程と、
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮工程とを備え、
前記第2の濃縮工程は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行う工程を備え、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、
前記第2の濃縮工程で濃縮された前記濃縮液の少なくとも一部を前記回収液として使用し、
前記第2の濃縮工程は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理方法。
a first concentration step in which the liquid to be treated is pressurized and passed through a reverse osmosis membrane to produce a concentrated liquid that is concentrated without permeating the reverse osmosis membrane;
A second concentration step of further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane,
The second concentration step includes a step of contacting the concentrated liquid with the recovered liquid through the semipermeable membrane in a plurality of semipermeable membrane units, supplying the concentrated liquid to the semipermeable membrane units in series in each stage, and supplying the recovered liquid to the semipermeable membrane units in each stage such that at least two of the semipermeable membrane units are in parallel,
At least a part of the concentrated liquid concentrated in the second concentration step is used as the recovered liquid;
The second concentration step is a membrane treatment method for a liquid to be treated , in which the recovery liquid supplied in parallel to at least two of the semipermeable membrane units on the downstream side is joined together and supplied in parallel to at least two of the semipermeable membrane units on the upstream side.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、
前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、
前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、
最前段の前記半透膜ユニットに供給される前記濃縮液を、最後段の前記半透膜ユニットから排出される前記濃縮液との圧力交換により昇圧するエネルギー回収装置を更に備える被処理液の膜処理装置。
a first concentrating device having an RO membrane unit for generating a concentrated liquid by increasing the pressure of the liquid to be treated and passing the liquid through a reverse osmosis membrane without permeating the reverse osmosis membrane;
a second concentrating device for further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane;
The second concentrating device is configured to cause contact between the concentrated liquid and the recovered liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied to the semipermeable membrane units of each stage in series, and the recovered liquid is supplied to the semipermeable membrane units of each stage such that at least two of the semipermeable membrane units are in parallel,
At least a portion of the concentrated liquid concentrated in the second concentrator is used as the recovered liquid ;
The membrane treatment device for a liquid to be treated further comprises an energy recovery device that increases the pressure of the concentrated liquid supplied to the semipermeable membrane unit in the first stage by pressure exchange with the concentrated liquid discharged from the semipermeable membrane unit in the last stage .
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、a first concentrating device having an RO membrane unit for generating a concentrated liquid by increasing the pressure of the liquid to be treated and passing the liquid through a reverse osmosis membrane without permeating the reverse osmosis membrane;
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、a second concentrating device for further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane;
前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、The second concentrating device is configured to cause contact between the concentrated liquid and the recovered liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied to the semipermeable membrane units of each stage in series, and the recovered liquid is supplied to the semipermeable membrane units of each stage such that at least two of the semipermeable membrane units are in parallel,
前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、At least a portion of the concentrated liquid concentrated in the second concentrator is used as the recovered liquid;
前記第1の濃縮装置は、ナノろ過膜を有するNF膜ユニットを更に備え、The first concentrator further comprises a NF membrane unit having a nanofiltration membrane;
前記被処理液を昇圧する前に前記ナノろ過膜に通水し、前記被処理液が前記ナノろ過膜を透過しない非透過液を、前記第2の濃縮装置で濃縮された濃縮液の少なくとも一部に合流させて、前記回収液として使用する被処理液の膜処理装置。A membrane treatment device for the treated liquid, in which the treated liquid is passed through the nanofiltration membrane before being pressurized, and the non-permeated liquid of the treated liquid that does not permeate the nanofiltration membrane is merged with at least a portion of the concentrated liquid concentrated in the second concentrator, and used as the recovered liquid.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、a first concentrating device having an RO membrane unit for generating a concentrated liquid by increasing the pressure of the liquid to be treated and passing the liquid through a reverse osmosis membrane without permeating the reverse osmosis membrane;
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、a second concentrating device for further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane;
前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、The second concentrating device is configured to cause contact between the concentrated liquid and the recovered liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied to the semipermeable membrane units of each stage in series, and the recovered liquid is supplied to the semipermeable membrane units of each stage such that at least two of the semipermeable membrane units are in parallel,
前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、At least a portion of the concentrated liquid concentrated in the second concentrator is used as the recovered liquid;
前記第2の濃縮装置は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の前記半透膜ユニットに供給する被処理液の膜処理装置。The second concentrator is a membrane treatment device for a liquid to be treated, in which the recovered liquid supplied in parallel to at least two of the semipermeable membrane units on the downstream side is joined together and supplied to the semipermeable membrane unit on the upstream side.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、a first concentrating device having an RO membrane unit that generates a concentrated liquid by increasing the pressure of the liquid to be treated and passing the liquid through a reverse osmosis membrane without permeating the reverse osmosis membrane;
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、a second concentrating device for further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane;
前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、The second concentrating device is configured to cause contact between the concentrated liquid and the recovered liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied to the semipermeable membrane units of each stage in series, and the recovered liquid is supplied to the semipermeable membrane units of each stage such that at least two of the semipermeable membrane units are in parallel,
前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、At least a portion of the concentrated liquid concentrated in the second concentrator is used as the recovered liquid;
前記第2の濃縮装置は、後段側の前記半透膜ユニットに供給した前記回収液を、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理装置。The second concentrator is a membrane treatment device for a liquid to be treated, which supplies the recovered liquid supplied to the semipermeable membrane unit on the rear stage side in parallel to at least two semipermeable membrane units on the front stage side.
被処理液を昇圧して逆浸透膜に通水することにより、前記逆浸透膜を透過せずに濃縮された濃縮液を生成するRO膜ユニットを有する第1の濃縮装置と、a first concentrating device having an RO membrane unit for generating a concentrated liquid by increasing the pressure of the liquid to be treated and passing the liquid through a reverse osmosis membrane without permeating the reverse osmosis membrane;
生成された前記濃縮液を、前記濃縮液よりも低圧の回収液に半透膜を介して接触させることにより更に濃縮する第2の濃縮装置とを備え、a second concentrating device for further concentrating the produced concentrated liquid by contacting the concentrated liquid with a recovery liquid having a lower pressure than the concentrated liquid through a semipermeable membrane;
前記第2の濃縮装置は、前記半透膜を介した前記濃縮液と前記回収液との接触を複数段の半透膜ユニットで行うように構成され、前記濃縮液を各段の前記半透膜ユニットに直列に供給して、前記回収液を各段の前記半透膜ユニットに対して少なくとも2つが並列となるように供給し、The second concentrating device is configured to cause contact between the concentrated liquid and the recovered liquid via the semipermeable membrane in a plurality of stages of semipermeable membrane units, the concentrated liquid is supplied to the semipermeable membrane units of each stage in series, and the recovered liquid is supplied to the semipermeable membrane units of each stage such that at least two of the semipermeable membrane units are in parallel,
前記第2の濃縮装置で濃縮された前記濃縮液の少なくとも一部を、前記回収液として使用し、At least a portion of the concentrated liquid concentrated in the second concentrator is used as the recovered liquid;
前記第2の濃縮装置は、後段側の少なくとも2つの前記半透膜ユニットに並列に供給した前記回収液を合流して、前段側の少なくとも2つの前記半透膜ユニットに並列に供給する被処理液の膜処理装置。The second concentrator is a membrane treatment device for a liquid to be treated, which combines the recovery liquid supplied in parallel to at least two of the semipermeable membrane units on the downstream side and supplies the combined liquid in parallel to at least two of the semipermeable membrane units on the upstream side.
JP2020041824A 2019-09-10 2020-03-11 METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED Active JP7464969B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019164579 2019-09-10
JP2019164579 2019-09-10

Publications (2)

Publication Number Publication Date
JP2021045742A JP2021045742A (en) 2021-03-25
JP7464969B2 true JP7464969B2 (en) 2024-04-10

Family

ID=74877252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041824A Active JP7464969B2 (en) 2019-09-10 2020-03-11 METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED

Country Status (1)

Country Link
JP (1) JP7464969B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020512B2 (en) * 2020-06-30 2022-02-16 東洋紡株式会社 Membrane separation device and concentration method
WO2022249920A1 (en) * 2021-05-26 2022-12-01 株式会社ササクラ Method and device for treating solution with membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097331A (en) 2014-11-19 2016-05-30 東洋紡株式会社 Water generation system and water generation method
JP2018069198A (en) 2016-11-02 2018-05-10 東洋紡株式会社 Concentration method and concentrator
JP2019188330A (en) 2018-04-25 2019-10-31 株式会社東芝 Water treatment device
WO2020179594A1 (en) 2019-03-01 2020-09-10 東洋紡株式会社 Zero liquid discharge system
JP2020175319A (en) 2019-04-16 2020-10-29 株式会社ササクラ Concentration system and concentration method
JP2021037446A (en) 2019-09-02 2021-03-11 株式会社ササクラ Membrane treatment method and device for treating liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097331A (en) 2014-11-19 2016-05-30 東洋紡株式会社 Water generation system and water generation method
JP2018069198A (en) 2016-11-02 2018-05-10 東洋紡株式会社 Concentration method and concentrator
JP2019188330A (en) 2018-04-25 2019-10-31 株式会社東芝 Water treatment device
WO2020179594A1 (en) 2019-03-01 2020-09-10 東洋紡株式会社 Zero liquid discharge system
JP2020175319A (en) 2019-04-16 2020-10-29 株式会社ササクラ Concentration system and concentration method
JP2021037446A (en) 2019-09-02 2021-03-11 株式会社ササクラ Membrane treatment method and device for treating liquid

Also Published As

Publication number Publication date
JP2021045742A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US20220315469A1 (en) Cross current staged reverse osmosis
WO2018084246A1 (en) Concentration method and concentration device
US9861937B2 (en) Advancements in osmotically driven membrane systems including low pressure control
JP7464969B2 (en) METHOD AND APPARATUS FOR MEMBRANE TREATMENT OF LIQUID TO BE TREATED
US20100294718A1 (en) Liquid purification system using a medium pressure membrane
JP2019072660A (en) Seawater desalination method and seawater desalination system
Mo et al. Semi-closed reverse osmosis (SCRO): A concise, flexible, and energy-efficient desalination process
KR101926057B1 (en) Desalination apparatus and method using osmotic pressure equilibrium
JP2002085941A (en) Fresh water making process and fresh water maker
JP2003200161A (en) Water making method and water making apparatus
JP2021037446A (en) Membrane treatment method and device for treating liquid
JP2018012069A (en) Water treatment system
WO2017170014A1 (en) Desalination system
JP2022014703A (en) Membrane treatment method and apparatus for liquid to be treated
JPH09276864A (en) Seawater treatment apparatus
WO2022249920A1 (en) Method and device for treating solution with membrane
JP2020203258A (en) Seawater desalination method and apparatus thereof
JP2022001351A (en) Method and device for treating membrane of liquid to be treated
JP2022181468A (en) Solution membrane treatment method and device
JP2001149932A (en) Membrane treating device and fresh water generating method
WO2022059737A1 (en) Seawater desalination system
WO2024052721A1 (en) Saline water treatment pre-treatment or treatment system
JP2023176288A (en) Membrane treatment method and device for liquid to be treated
JP2022186382A (en) Water treatment method and water treatment apparatus
US20090223881A1 (en) Reverse Osmosis System with Dual Water Intake

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240322

R150 Certificate of patent or registration of utility model

Ref document number: 7464969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150