WO2018084089A1 - 有機化合物の異性化方法及び有機化合物の異性体の製造方法 - Google Patents

有機化合物の異性化方法及び有機化合物の異性体の製造方法 Download PDF

Info

Publication number
WO2018084089A1
WO2018084089A1 PCT/JP2017/038957 JP2017038957W WO2018084089A1 WO 2018084089 A1 WO2018084089 A1 WO 2018084089A1 JP 2017038957 W JP2017038957 W JP 2017038957W WO 2018084089 A1 WO2018084089 A1 WO 2018084089A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
alumina
isomerizing
desorption
partially fluorinated
Prior art date
Application number
PCT/JP2017/038957
Other languages
English (en)
French (fr)
Inventor
拓 山田
悠介 鈴木
貢 笠川
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP17868074.0A priority Critical patent/EP3536681B1/en
Priority to CN201780064220.2A priority patent/CN109843838A/zh
Priority to JP2018548986A priority patent/JP7036024B2/ja
Publication of WO2018084089A1 publication Critical patent/WO2018084089A1/ja
Priority to US16/389,398 priority patent/US10703696B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/358Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by isomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/125Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to an isomerization method of an organic compound having a halogen atom, and more particularly to an isomerization method of an organic compound using fluorinated alumina obtained by fluorination as a catalyst after selecting alumina having a predetermined property.
  • dichloropentafluoropropane represented by the chemical formula: C 3 HCl 2 F 5 .
  • a method of obtaining dichloropentafluoropropane by bringing dichlorofluoromethane into contact with tetrafluoroethylene in the presence of a modified aluminum chloride catalyst has been proposed, and the dichloropentafluoropropane obtained by this method has been proposed.
  • Techniques for performing isomerization on various isomer mixtures are disclosed (for example, see Patent Document 1 and Non-Patent Document 1).
  • HCFC-225ca which can be a starting material for synthesizing 2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CH 2 ; HFO-1234yf)
  • HFO-1234yf 2,3,3,3-tetrafluoropropene
  • the present applicant is paying attention. That is, in recent years, use of HFO-1234yf having a small ozone depletion coefficient as a refrigerant has been studied, and 1,1-dichloro-2,3,3,3-tetrafluoropropene, which is a raw material of HFO-1234yf, has been studied.
  • the usefulness of HCFC-225ca is increasing as a starting material for obtaining (CF 3 CF ⁇ CCl 2 ; CFO-1214ya).
  • the composition after fluorination and the physical properties such as the specific surface area and pore volume of alumina used as the catalyst raw material before fluorination are examined. It has been. Although there are guidelines for obtaining fluorinated alumina having a certain degree of catalytic activity depending on the composition, characteristics, etc., there is no established method for determining what kind of fluorinated alumina has catalytic activity. Therefore, it is necessary to rely on trial and error to study various fluorinated aluminas.
  • the present invention has found a useful evaluation method in order to efficiently obtain partially fluorinated alumina having good catalytic activity, and by applying the evaluation method, an organic compound having a high conversion rate in a desired isomerization reaction. It is an object of the present invention to provide a method for producing isomers of organic compounds and a method for producing isomers of organic compounds.
  • the acid amount calculated from the ammonia desorption amount at a desorption temperature of 300 ° C. or higher by the ammonia temperature-programmed desorption method is 0.10 mmol / g or more and 0.25 mmol / g or less.
  • the method for producing an isomer of an organic compound of the present invention is characterized by producing an isomer of an organic compound in which a fluorine atom of the organic compound is rearranged by the isomerization method of the organic compound.
  • a partially fluorinated alumina having a good catalytic activity can be efficiently obtained, and by using this partially fluorinated alumina as a catalyst for an isomerization reaction, it does not rely on trial and error. It is possible to carry out an isomerization reaction having a good conversion rate. By using this isomerization method, an isomer of an organic compound can be efficiently obtained.
  • an isomerization reaction can be carried out in a temperature range where side reactions can be suppressed, so that an isomer of a desired organic compound can be obtained with a high yield.
  • the graph which shows the relationship between the acid amount of an alumina, and the conversion rate of the isomerized organic compound.
  • the organic compound isomerization method and the organic compound isomer production method of the present invention will be described below with reference to embodiments.
  • the organic compound isomerization method of the present embodiment includes a step of selecting alumina, a step of fluorinating the alumina to obtain partially fluorinated alumina, and a fluorine atom using the obtained partially fluorinated alumina. Isomerizing a predetermined organic compound.
  • each process which comprises this embodiment is demonstrated in detail.
  • alumina to be a raw material for partially fluorinated alumina described later is selected.
  • Partially fluorinated alumina is used as a catalyst for the isomerization reaction in the step of isomerizing an organic compound described later.
  • alumina having predetermined characteristics it is possible to obtain partially fluorinated alumina having good catalytic activity for the isomerization reaction in the treatment described later.
  • the alumina selected here has an acid amount calculated from an ammonia desorption amount at a desorption temperature of 300 ° C. or higher by an ammonia temperature-programmed desorption method and having an acid amount of 0.10 mmol / g to 0.25 mmol / g, 0.15 mmol / g or more and 0.25 mmol / g or less are preferable.
  • this acid amount 0.10 mmol / g or more, it becomes easy to prepare a partially fluorinated alumina having a good conversion rate in the isomerization reaction described later, and by making it 0.25 mmol / g or less, the reaction temperature is reduced.
  • the ammonia thermal desorption method measures the amount of ammonia desorbed when the sample is adsorbed with ammonia (NH 3 ) and then heated at a constant rate.
  • the correlation between the ammonia desorption amount and the temperature is obtained, and the acid amount of the measurement sample is evaluated from the desorption amount, and the acid strength is evaluated from the desorption temperature.
  • the desorption temperature of ammonia varies depending on the form of ammonia adsorbed on the alumina surface. That is, on the alumina surface, ammonia adsorbed on the active site with low acid strength is desorbed on the low temperature side, and ammonia adsorbed on the active site with high acid strength is desorbed on the high temperature side. Therefore, the characteristics of the measurement sample can be determined by measuring and analyzing the ammonia desorption amount on the low temperature side and the ammonia desorption amount on the high temperature side, respectively.
  • the temperature is increased from 1 ° C./min to 20 ° C./min continuously and heated from room temperature to about 1000 ° C., and the ammonia desorption amount and desorption temperature are measured. It is done by doing.
  • alumina there are two peaks of ammonia desorption amount, a first peak appearing near 200 ° C. and a second peak appearing at a temperature of 300 ° C. or higher.
  • the first peak is desorption from the active site with low acid strength
  • the second peak is desorption from the active site with high acid strength.
  • ammonia represented by the second peak The amount of desorption is directly used as the amount of acid, and this is evaluated as the catalytic activity. It is considered that the higher the acid amount, the higher the catalytic ability in the isomerization reaction of partially fluorinated alumina obtained by fluorination described later.
  • the desorption amounts on the low temperature side and the high temperature side are measured partially overlapping, and there are also fluctuations in measured values due to the influence of water, solvent, and the like. Therefore, the obtained graph is analyzed and analyzed with predetermined analysis software, the ammonia desorption amounts on the low temperature side and the high temperature side are calculated, and the acid amount is determined based on this value (ammonia desorption amount).
  • the ammonia desorption amount can be calculated by the ammonia temperature-programmed desorption method described below.
  • This ammonia temperature-programmed desorption method uses, for example, a catalyst analyzer (Microtrac Bell, BELCATII) as an analyzer, He (helium) as a carrier gas, and TCD (thermal conductivity detector) as a detector. Can be done as follows.
  • the pre-treated ⁇ -alumina is heated to 810 ° C. at a heating rate of 10 ° C./min while flowing helium at 100 ° C. and 50 mL / min.
  • the amount of acid sites is 0.99 mmol of the high peak of ZSM-5 type zeolite (product name: JRC-Z5-25H, manufactured by ExxonMobil Catalyst Co., Ltd., of the two types of observed peaks on the high temperature side).
  • a relative amount relative to this as / g.
  • the ammonia desorption amount in the temperature range from the start of measurement to the desorption temperature of 300 ° C. is defined as the weak acid amount, and the ammonia desorption amount at the desorption temperature of 300 ° C. or higher as the strong acid amount.
  • the waveform is separated by the non-linear least square method, the amount of ammonia desorption is calculated, and the acid amount is determined.
  • Alumina has various types depending on its crystal structure, but the alumina used as a raw material here is so-called activated alumina having high catalytic activity, and in this specification, acidic activated alumina satisfying the above acid amount. It is.
  • the crystal form of this activated alumina is not particularly limited, but generally preferred are ⁇ -alumina, ⁇ -alumina and the like having good activity, and among them, alumina having a ⁇ -Al 2 O 3 structure. More preferred is ⁇ -alumina.
  • the specific surface area and pore volume of alumina may be measured by a nitrogen adsorption method using 3Flex, manufactured by Micrometrics.
  • the step of obtaining the partially fluorinated alumina in the present embodiment is a step of partially fluorinating the alumina having the predetermined characteristics selected in the above step by contacting and reacting with the fluorinating agent.
  • the fluorination can be carried out, for example, by bringing alumina as a raw material into contact with a fluorinating agent in a gas phase at a high temperature to bond fluorine atoms to aluminum atoms of alumina.
  • fluorinated alumina may be obtained by other known fluorination treatments.
  • the fluorinating agent used here is not particularly limited as long as it is a compound having a fluorine source capable of fluorinating alumina.
  • it contains fluorine atoms such as hydrogen fluoride (HF), SF 4 , SOF 2 , and COF 2.
  • fluorine atoms such as hydrogen fluoride (HF), SF 4 , SOF 2 , and COF 2.
  • examples include inorganic compounds, and carbon compounds having a substituent containing a fluorine atom.
  • the carbon compound having a substituent containing a fluorine atom include fluorocarbons such as chlorofluorocarbon, hydrochlorofluorocarbon, and hydrofluorocarbon.
  • the fluorinating agent it is sufficient that alumina can be fluorinated, and an organic compound to be subjected to isomerization described in the next step may be used. That is, in that case, the fluorinating agent and the isomerization raw material compound are the same, and the type of raw material to be used can be reduced (there is no need to prepare a separate fluorinating agent). Since the structure and the like can be simplified, the implementation cost of the isomerization method can be reduced.
  • the fluorinating agent is preferably a carbon compound having 1 to 3 carbon atoms having a substituent containing hydrogen fluoride and a fluorine atom, and more preferably an organic compound having 2 or more carbon atoms.
  • the fluorinating agent is preferably a fluorine compound or hydrogen fluoride different from the organic compound having 2 or more carbon atoms.
  • the step of isomerizing a fluorine-containing organic compound is an organic compound to be isomerized, in which one or more fluorine atoms are bonded to at least one of adjacent carbon atoms and the other is a chlorine atom and / or hydrogen.
  • An organic compound having 2 or more carbon atoms in which one or more atoms are bonded is used.
  • the organic compound used here is not particularly limited as long as it is an organic compound having the above structure, and examples thereof include fluorocarbons such as chlorofluorocarbon, hydrofluorochlorocarbon, and hydrofluorocarbon.
  • chlorofluorocarbon examples include trichlorotrifluoroethane (CFC-113), dichlorotetrafluoroethane (CFC-114), and monochloropentafluoroethane (CFC-115).
  • hydrochlorofluorocarbon examples include dichlorotrifluoroethane (HCFC-123), chlorotetrafluoroethane (HCFC-124), dichlorofluoroethane (HCFC-141), dichloropentafluoropropane (HCFC-225), and the like. .
  • hydrofluorocarbon examples include difluoroethane (HFC-152), trifluoroethane (HFC-143), tetrafluoroethane (HFC-134), pentafluoroethane (HFC-125), pentafluoropropane (HFC-245), Examples include hexafluoropropane (HFC-236), heptafluoropropane (HFC-227), pentafluorobutane (HFC-365), and heptafluorocyclopentane (HFC-c447).
  • hydrofluorochloropropane is preferable, and in particular, 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC-225cb) and 2,2-dichloro-1,1,1 , 3,3-pentafluoropropane (HCFC-225aa) is preferred, and when these are used alone or as a mixed raw material, the isomer of the organic compound obtained by isomerization is 3,3-dichloro- 1,1,1,2,2-pentafluoropropane (HCFC-225ca).
  • HCFC-225ca can be used as a starting material for obtaining CFO-1214ya, which is a raw material for synthesis of HFO-1234yf.
  • Such a predetermined organic compound is brought into contact with the partially fluorinated alumina obtained above to isomerize the organic compound.
  • the organic compound is rearranged to a carbon atom or the like in which the bonding position of the fluorine atom to the carbon atom is adjacent. That is, the obtained organic compound after isomerization is obtained by replacing the position of a fluorine atom and a chlorine atom or a hydrogen atom with an organic compound as a raw material, and has an isomer relationship with each other.
  • the fluorine atom may move to two or more carbon atoms away from the carbon atom to which the fluorine atom was originally bonded.
  • this isomerization reaction it is preferable to isomerize by bringing the organic compound as a raw material into vapor phase contact with the partially fluorinated alumina.
  • This isomerization reaction can be carried out under heating at a reaction temperature of 150 ° C. or more and 500 ° C. or less.
  • the reaction conditions may be set so that an isomer of a desired organic compound can be obtained.
  • the reaction temperature in this embodiment is preferably 150 to 500 ° C., more preferably 200 to 450 ° C. preferable.
  • the starting compound used is preferably a compound that exists as a gas without being decomposed at the reaction temperature.
  • partially fluorinated alumina having good catalytic activity is used, so that the reaction can be advanced even by low-temperature heating as described above.
  • Method for producing isomer of organic compound uses the organic compound isomerization method described above to rearrange (isomerize) the fluorine atoms of the raw organic compound. To produce isomers of organic compounds.
  • This method for producing an isomer of an organic compound uses the above-mentioned isomerization method for an organic compound, and is expressed from the product compound side, so that the substantial contents are the same. Therefore, since the content of this invention is demonstrated by the above-mentioned description, detailed description is abbreviate
  • Example 1 Alumina (hereinafter referred to as alumina 1) having a specific surface area of 229 m 2 / g of ⁇ -Al 2 O 3 and a total pore volume of 0.69 mL / g prepared by calcining boehmite was prepared. 0.10 g of this alumina 1 was taken as a sample, and the acid point was measured with NH 3 -TPD. From the obtained measurement data, it was assumed that the peaks of the weak acid point and the strong acid point respectively follow a normal distribution, and the acid amount was calculated by waveform separation by the nonlinear least square method. As a result, the desorption temperature (acid strength) of the strong acid point of alumina 1 was 321 ° C., and the acid amount was 0.132 mmol / g.
  • alumina 1 Alumina having a specific surface area of 229 m 2 / g of ⁇ -Al 2 O 3 and a total pore volume of 0.69 mL / g prepared by calc
  • the conversion rate was calculated from the amount of HCFC-225cb contained after isomerization with respect to the amount of HCFC-225cb contained in the raw material.
  • the raw material composition used in this example was Asahi Clin AK-225G (HCFC-225cb, manufactured by Asahi Glass Co., Ltd.).
  • Example 2 Except that the alumina used was changed to the alumina shown below, the acid amount of alumina was measured by the same operation as in Example 1, and then partially fluorinated alumina was prepared and used to isomerize organic compounds. Reaction was performed. The used alumina is as follows. These physical properties and the conversion ratio in the isomerization reaction are summarized in Table 1 as in Example 1.
  • Alumina 2 Product name SAS-200 (manufactured by BASF; specific surface area 200 m 2 / g, total pore volume 0.50 mL / g)
  • Alumina 3 Product name F-200 (manufactured by BASF) was calcined at 600 ° C. for 10 hours in an Air atmosphere to form a ⁇ -Al 2 O 3 structure (specific surface area 184 m 2 / g, total pore volume 0.23 mL) / G)
  • Alumina 4 Product name Axsorb AB (manufactured by Nippon Light Metal Co., Ltd.) was calcined at 600 ° C.
  • Alumina 5 ⁇ -Al 2 O 3 prepared by calcining boehmite (specific surface area 178 m 2 / g, total pore volume 0.72 mL / g)
  • Alumina 6 ⁇ -Al 2 O 3 prepared by firing boehmite (specific surface area 180 m 2 / g, total pore volume 0.73 mL / g)
  • Alumina 7 ⁇ -Al 2 O 3 prepared by calcining boehmite (specific surface area 172 m 2 / g, total pore volume 0.78 mL / g)
  • Alumina 8 ⁇ -Al 2 O 3 prepared by calcining boehmite (specific surface area 188 m 2 / g, total pore volume 0.81 mL / g)
  • Alumina 9 ⁇ -Al 2 O 3 prepared by firing boehmite (specific surface area 175 m 2 / g, total pore volume 0.78 mL / g)
  • Example 1 Comparative Example 1
  • alumina C1 trade name sorbsorb COS (manufactured by BASF, specific surface area 150 m 2 / g, total pore volume 0.46 mL / g). Isomerization reaction was performed. The physical properties of the alumina used and the conversion in the isomerization reaction are shown in Table 1 as in Example 1.
  • zeolite trade name HSZ-330H (manufactured by Tosoh Corporation; specific surface area: 269 m 2 / g, total pore volume: 0.18 mL / g) was used as it was and the same as in Example 1.
  • HSZ-330H manufactured by Tosoh Corporation; specific surface area: 269 m 2 / g, total pore volume: 0.18 mL / g
  • Total pore volume Measured by a nitrogen adsorption method using 3Flex manufactured by Micrometrics.
  • Acid amount (ammonia desorption amount): Using catalyst analyzer BEACT II (trade name, manufactured by Microtrack Bell), alumina used in each example was heated from room temperature to 810 ° C. at a heating rate of 10 ° C./min. The sample was heated and the amount of desorption was measured with respect to the desorption temperature of ammonia. The ammonia desorption amount at a desorption temperature of 300 ° C. or higher was calculated from the obtained graph, and this was used as the acid amount of alumina.
  • BEACT II trade name, manufactured by Microtrack Bell
  • conversion rate The conversion rate was calculated by the following equation. It was calculated from [Area% of the gas composition by gas chromatographic analysis] [content of HCFC-225cb in raw material ⁇ content of HCFC-225cb after isomerization].
  • a partially fluorinated alumina having a good conversion rate can be obtained by selecting alumina having predetermined characteristics.
  • an isomerization reaction having a high conversion rate can be carried out without relying on trial and error.
  • an isomer of an organic compound can be efficiently obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

触媒活性の良好な部分フッ素化アルミナを効率良く得る有用な評価方法を見出し、所望の異性化反応において転化率を向上させることができる有機化合物の異性化方法を提供する。アンモニア昇温脱離法により脱離温度300℃以上におけるアンモニア脱離量から算出された酸量が0.10mmol/g以上0.25mmol/g以下であるアルミナを選定する工程と、選定されたアルミナをフッ素化剤によりフッ素化して部分フッ素化アルミナを得る工程と、得られた部分フッ素化アルミナを用いて、隣接する炭素原子の少なくとも一方にフッ素原子が一つ以上結合し他方に塩素原子又は水素原子が一つ以上結合している、炭素数2以上の有機化合物を異性化する工程と、を有する有機化合物の異性化方法。

Description

有機化合物の異性化方法及び有機化合物の異性体の製造方法
 本発明はハロゲン原子を有する有機化合物の異性化方法に係り、特に、所定の特性を有するアルミナを選定した後、フッ素化処理により得られるフッ素化アルミナを触媒として用いる有機化合物の異性化方法に関する。
 従来、化学式:CHClで表わされるジクロロペンタフルオロプロパン(HCFC-225)類を製造する方法として、様々な方法が提案されている。例えば、改質された塩化アルミニウム触媒の存在下でジクロロフルオロメタンをテトラフルオロエチレンと接触させることで、ジクロロペンタフルオロプロパンを得る方法が提案されており、この方法で得られたジクロロペンタフルオロプロパンの各種の異性体混合物に対して、異性化を行なう技術が開示されている(例えば、特許文献1、非特許文献1参照。)。
 このジクロロペンタフルオロプロパン(HCFC-225)類の中でも、2,3,3,3-テトラフルオロプロペン(CFCF=CH;HFO-1234yf)を合成するための出発物質になりうるHCFC-225caに本出願人は注目している。すなわち、近年、オゾン破壊係数等が小さいHFO-1234yfは、その冷媒としての使用が検討されており、HFO-1234yfの原料である1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl;CFO-1214ya)を得るための出発物質として、HCFC-225caの有用性が高まっている。
 このような状況の中、HCFC-225caを効率的に得るために、所定の原料を、部分的にフッ素化されたフッ素化アルミナにより異性化反応させることで、HCFC-225caを効率的に得る方法を見出している(特許文献2参照)。
 また、上記化合物に限らず、所望の化合物を得るために、塩素原子やフッ素原子を含有する有機化合物を原料として、置換基を転位させて異性化する種々の方法が知られている。このとき異性化反応の触媒として、アルミナを部分的にフッ素化したフッ素化アルミナが有用であることが知られている(例えば、特許文献3,4等参照。)。
米国特許第51557171号明細書 特許第5598333号公報 特開平02-108639号公報 特開平07-241474号公報
Applied Catalysis A:General,348,p236-240(2008)
 異性化反応の触媒においては、触媒活性の良好な化合物を得るために、フッ素化した後の組成や、フッ素化前の触媒原料となるアルミナの比表面積や細孔容積等の物性値等が検討されてきた。これらの組成、特性等によって、ある程度の触媒活性を有するフッ素化アルミナを得るための指針はあるが、どのようなフッ素化アルミナが触媒活性を有するかの判断方法は確立されておらず、触媒活性の良好なフッ素化アルミナを得るには種々のフッ素化アルミナを検討する試行錯誤に頼らざるを得ない。
 そこで、本発明は、触媒活性の良好な部分フッ素化アルミナを効率良く得るために、有用な評価方法を見出し、その評価方法を適用することで、所望の異性化反応において転化率の良い有機化合物の異性化方法及び有機化合物の異性体の製造方法の提供を目的とする。
 本発明の有機化合物の異性化方法は、アンモニア昇温脱離法により脱離温度300℃以上におけるアンモニア脱離量から算出された酸量が0.10mmol/g以上0.25mmol/g以下であるアルミナを選定する工程と、選定されたアルミナをフッ素化剤によりフッ素化して部分フッ素化アルミナを得る工程と、得られた部分フッ素化アルミナを用いて、隣接する炭素原子の少なくとも一方にフッ素原子が一つ以上結合し他方に塩素原子及び/又は水素原子が一つ以上結合している、炭素数2以上の有機化合物を異性化する工程と、を有することを特徴とする。
 また、本発明の有機化合物の異性体の製造方法は、上記有機化合物の異性化方法により、前記有機化合物のフッ素原子が転位した有機化合物の異性体を製造することを特徴とする。
 本発明の有機化合物の異性化方法によれば、触媒活性の良好な部分フッ素化アルミナを効率良く得ることができ、この部分フッ素化アルミナを異性化反応の触媒として用いることで試行錯誤に頼らずに転化率の良い異性化反応を行うことができる。この異性化方法を用いることで、有機化合物の異性体を効率よく得ることができる。
 触媒活性の良好な部分フッ素化アルミナを効率良く得ることにより、副反応を抑制可能な温度領域で異性化反応を実施できるため、所望の有機化合物の異性体を収率良く得ることができる。
 本発明の異性化方法を用いることで、所望の有機化合物を効率よく製造でき、製造コストを低減することができる。
アルミナの酸量と、異性化した有機化合物の転化率の関係を示すグラフ。
 本発明の有機化合物の異性化方法及び有機化合物の異性体の製造方法について、以下、実施形態を参照しながら説明する。
 本実施形態の有機化合物の異性化方法は、アルミナを選定する工程と、該アルミナをフッ素化して部分フッ素化アルミナを得る工程と、得られた部分フッ素化アルミナを用いて、フッ素原子を含有する所定の有機化合物を異性化する工程と、を有する。以下、本実施形態を構成する各工程について詳細に説明する。
[有機化合物の異性化方法]
(アルミナを選定する工程)
 アルミナを選定する工程で、後述する部分フッ素化アルミナの原料となるアルミナを選定する。部分フッ素化アルミナは、後述する有機化合物を異性化する工程において、異性化反応の触媒として用いられる。ここで、所定の特性を有するアルミナを選定することで、後述する処理において異性化反応に対する触媒活性の良好な部分フッ素化アルミナを得ることができる。
 ここで選定されるアルミナは、アンモニア昇温脱離法により脱離温度300℃以上におけるアンモニア脱離量から算出された酸量が0.10mmol/g以上0.25mmol/g以下のものであり、0.15mmol/g以上0.25mmol/g以下が好ましい。この酸量を0.10mmol/g以上とすることで、後述する異性化反応における転化率の良好な部分フッ素化アルミナを作成しやすくなり、0.25mmol/g以下とすることで、反応温度を抑制することにより副反応を抑制でき、所望の有機化合物の異性体の収率が向上する。0.15mmol/g以上0.25mmol/g以下であれば特に部分フッ素化アルミナを作成しやすく、かつ、副反応を抑制し異性体の収率が向上する。
 ここで、アンモニア昇温脱離法(NH-TPD)は、測定サンプルに対しアンモニア(NH)を吸着させた後、一定の速度で昇温させたときのアンモニアの脱離量を測定し、温度に対するアンモニア脱離量の相関関係を得て、脱離量から測定サンプルの酸量、脱離温度から酸強度を評価する方法である。
 この方法において、アンモニアのアルミナ表面に吸着する形態によってアンモニアの脱離温度が異なる。すなわち、アルミナ表面において、酸強度の低い活性点に吸着したアンモニアは低温側で脱離し、酸強度の高い活性点に吸着したアンモニアは高温側で脱離する。したがって、低温側でのアンモニア脱離量及び高温側でのアンモニア脱離量をそれぞれ測定、分析することで、測定サンプルの特性を判定することができる。
 このアンモニア昇温脱離法は、例えば、昇温速度1℃/分~20℃/分の速度で、連続的に室温~1000℃程度まで加熱し、アンモニア脱離量と脱離温度とを測定することで行われる。
 アルミナにおいては、200℃付近に現れる第1ピークと300℃以上の温度で現れる第2ピークとの、二つのアンモニア脱離量のピークがある。ここで第1ピークが上記酸強度の低い活性点からの脱離、第2ピークが上記酸強度の高い活性点からの脱離であり、本明細書においては、第2ピークで表されるアンモニア脱離量をそのまま酸量とし、これを触媒活性として評価する。酸量が高いほど、後述するフッ素化して得られる部分フッ素化アルミナの異性化反応における触媒能が高いものと考えられる。
 なお、実際には、低温側と高温側での脱離量は、一部重複して測定され、また、それ以外にも水や溶媒等の影響による測定値の変動がある。そのため、得られるグラフを所定の解析ソフトで分析解析して、低温側及び高温側のアンモニア脱離量を算出し、この値(アンモニア脱離量)を基に酸量を決定する。
 アンモニア脱離量は、以下に記載のアンモニア昇温脱離法により算出できる。
 このアンモニア昇温脱離法は、例えば、分析装置として触媒分析装置(マイクロトラック・ベル社製、 BELCATII)、キャリアーガスとしてHe(ヘリウム)、検出器としてTCD(熱伝導型検出器)、を用いて次のように行うことができる。
(前処理)
 まず、TPD測定用セル内に0.10g精秤したγ-アルミナを、50mL/minでのヘリウム流通下、500℃まで10℃/minで昇温し、500℃で1時間保持して脱水する。
(NH処理)
 脱水後のγ-アルミナを100℃に降温し、100mL/minでの0.5%NH/He流通下、30分間保持し、NHを吸着する。
(後処理)
 NH吸着処理後のγ-アルミナを、50mL/minでのヘリウム流通下、100℃で30分間保持し、TPD測定用セル内で物理吸着しているNHを脱離させる。
(TPD測定)
 前処理したγ-アルミナへ100℃、50mL/minでのヘリウム流通下、昇温速度10℃/minで810℃まで昇温する。
 酸点の量は、ZSM-5型ゼオライト(エクソンモービルカタリスト社製、商品名: JRC-Z5-25H)のhighピーク(観測される2種のピークのうち、高温側のピーク)を0.99mmol/gとしてこれに対する相対的な量として決定する。
(解析方法)
 本実施形態では、測定開始から脱離温度300℃までの温度範囲におけるアンモニア脱離量を弱酸量、脱離温度300℃以上におけるアンモニア脱離量を強酸量とし、得られた測定データからそれぞれのピークを正規分布に従うと仮定して非線形最小二乗法で波形分離し、それぞれのアンモニア脱離量を算出し、酸量を決定する。
 また、アルミナはその結晶構造によって種々の種類があるが、ここで原料として用いるアルミナは、いわゆる活性アルミナと呼ばれる触媒活性の高いアルミナであり、本明細書においては上記酸量を満たす酸性の活性アルミナである。この活性アルミナの結晶型としては、特に限定されないが、一般的に活性の良好なγ-アルミナ、η-アルミナ等が好ましいものとして挙げられ、この中でもγ-Al構造を有するアルミナであるγ-アルミナがより好ましい。
 結晶構造は、XRD(X-Ray Diffractometer、リガク社製、商品名:SmartLab)で測定した回折パターンにより、d=1.40、1.99、2.4Åの回折ピークから主生成物をγーアルミナと同定できる。
 また、アルミナの比表面積、細孔容積はマイクロメトリックス社製、3Flexによって窒素吸着法により測定すればよい。
(部分フッ素化アルミナを得る工程)
 本実施形態における部分フッ素化アルミナを得る工程は、上記工程で選定された所定の特性を有するアルミナを、フッ素化剤と接触、反応させて部分的にフッ素化させる工程である。ここで、フッ素化は、例えば、原料となるアルミナを高温下でフッ素化剤と気相で接触させることにより、アルミナのアルミニウム原子にフッ素原子を結合させて行うことができる。また、その他の公知のフッ素化処理によってフッ素化アルミナとしてもよい。
 ここで用いるフッ素化剤は、アルミナをフッ素化できるフッ素源を有する化合物であれば特に限定されず、例えば、フッ化水素(HF)、SF,SOF,COF等のフッ素原子を含有する無機化合物が挙げられ、また、フッ素原子を含有する置換基を有する炭素化合物が挙げられる。フッ素原子を含有する置換基を有する炭素化合物としては、例えば、クロロフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、等のフルオロカーボン類が挙げられる。
 ここで、フッ素化剤としては、アルミナをフッ素化できればよく、次工程で説明する異性化の対象となる有機化合物を用いてもよい。すなわち、その場合には、フッ素化剤と異性化の原料化合物とが同一のものとなり、使用する原材料の種類を少なくでき(フッ素化剤を別に用意する必要がなく)、また、それに伴い装置の構造等も簡素化できるため、異性化方法の実施コストを低減できる。
 コークの析出が低減できる観点からは、フッ素化剤としては、フッ化水素及びフッ素原子を含有する置換基を有する炭素数1~3の炭素化合物が好ましく、炭素数2以上の有機化合物がより好ましい。次工程で説明する異性化の対象となる有機化合物を用いない場合、フッ素化剤は前記炭素数2以上の有機化合物とは異なるフッ素化合物またはフッ化水素が好ましい。
(有機化合物を異性化する工程)
 本実施形態におけるフッ素を含有する有機化合物を異性化する工程は、異性化対象となる有機化合物として、隣接する炭素原子の少なくとも一方にフッ素原子が一つ以上結合し他方に塩素原子及び/又は水素原子が一つ以上結合している、炭素数2以上の有機化合物を用いるものである。
 ここで用いる有機化合物としては、上記構造を有する有機化合物であれば特に限定されるものではなく、例えば、クロロフルオロカーボン、ハイドロフルオロクロロカーボン、ハイドロフルオロカーボン等のフルオロカーボンが挙げられる。
 クロロフルオロカーボン(CFC)としては、例えば、トリクロロトリフルオロエタン(CFC-113)、ジクロロテトラフルオロエタン(CFC-114)、モノクロロペンタフルオロエタン(CFC-115)等が挙げられる。
 ハイドロクロロフルオロカーボンとしては、例えば、ジクロロトリフルオロエタン(HCFC-123)、クロロテトラフルオロエタン(HCFC-124)、ジクロロフルオロエタン(HCFC-141)、ジクロロペンタフルオロプロパン(HCFC-225)等が挙げられる。
 ハイドロフルオロカーボンとしては、例えば、ジフルオロエタン(HFC-152)、トリフルオロエタン(HFC-143)、テトラフルオロエタン(HFC-134)、ペンタフルオロエタン(HFC-125)、ペンタフルオロプロパン(HFC-245)、ヘキサフルオロプロパン(HFC-236)、ヘプタフルオロプロパン(HFC-227)、ペンタフルオロブタン(HFC-365)、ヘプタフルオロシクロペンタン(HFC-c447)等が挙げられる。
 この有機化合物としては、ハイドロフルオロクロロプロパンが好ましく、特に、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(HCFC-225cb)や2,2-ジクロロ-1,1,1,3,3-ペンタフルオロプロパン(HCFC-225aa)が好ましいものとして挙げられ、これらを単独で又は混合した原料として用いた場合、異性化して得られる有機化合物の異性体は3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)である。HCFC-225caは、HFO-1234yfの合成原料となるCFO-1214yaを得るための出発物質として用いることができる。
 このような所定の有機化合物を、上記で得られた部分フッ素化アルミナと接触させて、有機化合物を異性化させる。このとき、有機化合物は、そのフッ素原子の炭素原子との結合位置が隣接する炭素原子等に転位する。すなわち、得られる異性化後の有機化合物は、原料となる有機化合物とはフッ素原子と塩素原子又は水素原子との位置が入れ替わったもので、互いに異性体の関係を有する。
 また、このような反応が連続して起こることで、フッ素原子が元々結合していた炭素原子とは2つ以上離れた炭素原子にフッ素原子が移動する場合もある。
 この異性化反応においては、部分フッ素化アルミナに対して原料となる有機化合物を気相接触させることで異性化することが好ましい。この異性化反応にあたっては、その反応温度として150℃以上500℃以下の加熱下で行うことができる。
 使用する原料化合物や、その化合物の種類、比率等によって、好適な反応温度が変化するため、所望の有機化合物の異性体が得られるように、反応条件を設定すればよい。一般に、反応温度が高くなると異性体化合物の間で不均化反応が進行して副生成物が生成するため、本実施形態における反応温度は、150~500℃が好ましく、200~450℃がより好ましい。使用する原料化合物は、前記反応温度において分解することなく、気体として存在する化合物が好ましい。本実施形態においては、触媒活性の良好な部分フッ素化アルミナを用いているため、上記のような低温加熱でも反応を進行させることができる。
[有機化合物の異性体の製造方法]
 また、本実施形態の有機化合物の異性体の製造方法は、上記説明した有機化合物の異性化方法を用いて、原料の有機化合物に対して、そのフッ素原子を転位させて(異性化させて)、有機化合物の異性体を製造する。
 この有機化合物の異性体の製造方法は、上記有機化合物の異性化方法を用いており、生成化合物側から表現したものであるため、実質的な内容は同一である。そのため、この発明の内容は上記した記載により説明されているため、詳細な説明を省略する。
 以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらの記載によってなんら限定されるものではない。
(実施例1)
 ベーマイトを焼成することにより調製したγ-Al 比表面積 229m/g、全細孔容積 0.69mL/gのアルミナ(以下、アルミナ1と称する)を用意した。
 このアルミナ1の0.10gをサンプルとして採取し、NH-TPDにて酸点の測定を行った。得られた測定データから弱酸点、強酸点それぞれのピークが正規分布に従うと仮定し、非線形最小二乗法で波形分離して酸量を算出した。その結果、アルミナ1の強酸点の脱離温度(酸強度)は321℃、酸量は0.132mmol/gであった。
 このアルミナ1を25mL秤量し、内径1.09cm、長さ350cmのSUS-316製反応管に充填し、管状電気炉内に設置し、窒素を流通しながら触媒充填部を管状炉で250℃に加熱して触媒を脱水した。その後400℃に昇温し、窒素/HCFC-225cbの2/1(モル/モル)混合ガスを接触時間20秒で流通することで、アルミナ触媒のフッ素化を行いつつ4時間流通させてHCFC-225caへの異性化反応を実施した。原料の転化率は反応器出口より取り出したガスをガスクロマトグラフで分析し、得られたGCチャートのArea%より算出することで行った。
 このとき、原料に含まれるHCFC-225cbの量に対して、異性化処理後に含まれるHCFC-225cbの量から、転化率を算出した。
 なお、本例で用いた原料組成物は、アサヒクリンAK-225G(HCFC-225cb、旭硝子社製)を用いた。
(実施例2~9)
 使用するアルミナを以下に示したアルミナに変更した以外は、実施例1と同様の操作により、アルミナの酸量を測定した後、部分フッ素化アルミナを作成し、これを用いて有機化合物の異性化反応を行った。使用したアルミナは、以下の通りである。これらの物性と、異性化反応における転化率は実施例1と同様に表1にまとめて示した。
 なお、使用したアルミナは以下の通りである。
 アルミナ2:商品名 SAS-200(BASF製;比表面積 200m/g、全細孔容積 0.50mL/g)
 アルミナ3:商品名 F-200(BASF製)をAir雰囲気下で600℃で10時間焼成し、γ-Al構造とした触媒(比表面積 184m/g、全細孔容積 0.23mL/g)
 アルミナ4:商品名 Axsorb AB(日本軽金属製)をAir雰囲気下で600℃で10時間焼成し、γ-Al構造とした触媒(比表面積 177m/g、全細孔容積 0.48mL/g)
 アルミナ5:ベーマイトを焼成することにより調製したγ-Al(比表面積 178m/g、全細孔容積 0.72mL/g)
 アルミナ6:ベーマイトを焼成することにより調製したγ-Al(比表面積 180m/g、全細孔容積 0.73mL/g)
 アルミナ7:ベーマイトを焼成することにより調製したγ-Al(比表面積 172m/g、全細孔容積 0.78mL/g)
 アルミナ8:ベーマイトを焼成することにより調製したγ-Al(比表面積 188m/g、全細孔容積 0.81mL/g)
 アルミナ9:ベーマイトを焼成することにより調製したγ-Al(比表面積 175m/g、全細孔容積 0.78mL/g)
(比較例1)
 使用するアルミナをアルミナC1:商品名 selexsorb COS(BASF製、比表面積 150m/g、全細孔容積 0.46mL/g)に変更した以外は、実施例1と同様の操作により、有機化合物の異性化反応を行った。使用したアルミナの物性と、異性化反応における転化率は実施例1と同様に表1に示した。
(参考例1)
 異性化反応の触媒としてゼオライト:商品名 HSZ-330H(東ソー株式会社製;比表面積 269m/g、全細孔容積 0.18mL/g)を用い、これをそのまま用いて実施例1と同様の操作により、有機化合物の異性化反応を行った。使用したゼオライトの物性と、異性化反応における転化率は実施例1と同様に表1に示した。
Figure JPOXMLDOC01-appb-T000001
[比表面積]:マイクロメトリックス社製、3Flexによって窒素吸着法により測定した。
[全細孔容積]:マイクロメトリックス社製、3Flexによって窒素吸着法により測定した。
[酸量(アンモニア脱離量)]:触媒分析装置 BEACT II(マイクロトラック・ベル社製、商品名)を用い、各例に用いるアルミナを、昇温速度10℃/分で室温から810℃まで加熱し、アンモニアの脱離温度に対して脱離量を測定した。得られたグラフから脱離温度300℃以上におけるアンモニア脱離量を算出し、これをアルミナの酸量とした。
[転化率]:転化率の算出は、次の式により行った。
 ガスクロマトグラフ分析によるガス組成のArea%より、[原料中のHCFC-225cbの含有量-異性化処理後のHCFC-225cbの含有量]で算出した。
 また、上記実施例及び比較例における、使用したアルミナ及びゼオライトの酸量(アンモニア脱離量)と異性化反応の転化率との関係を図1に示した。図1から、酸量の高いアルミナを部分フッ素化することにより、転化率の高い触媒が得られる傾向があることがわかった。
 本発明の有機化合物の異性化方法によれば、所定の特性のアルミナを選定することにより、転化率の良好な部分フッ素化アルミナを得ることができる。これにより試行錯誤に頼らずに転化率の良い異性化反応を行うことができる。この異性化方法を用いることで、有機化合物の異性体を効率よく得ることができる。

Claims (9)

  1.  アンモニア昇温脱離法により脱離温度300℃以上におけるアンモニア脱離量から算出された酸量が0.10mmol/g以上0.25mmol/g以下であるアルミナを選定する工程と、
     選定されたアルミナをフッ素化剤によりフッ素化して部分フッ素化アルミナを得る工程と、
     得られた部分フッ素化アルミナを用いて、隣接する炭素原子の少なくとも一方にフッ素原子が一つ以上結合し他方に塩素原子及び/又は水素原子が一つ以上結合している、炭素数2以上の有機化合物を異性化する工程と、
     を有することを特徴とする有機化合物の異性化方法。
  2.  前記アルミナがγ-Al構造を有するアルミナである請求項1に記載の有機化合物の異性化方法。
  3.  前記フッ素化剤が、前記炭素数2以上の有機化合物である請求項1又は2に記載の有機化合物の異性化方法。
  4.  前記フッ素化剤が、前記炭素数2以上の有機化合物とは異なるフッ素化合物またはフッ化水素である請求項1又は2に記載の有機化合物の異性化方法。
  5.  気相において、前記アルミナを、前記フッ素化剤によりフッ素化して部分フッ素化アルミナを得る請求項1~4のいずれか一項に記載の有機化合物の異性化方法。
  6.  前記酸量が0.15mmol/g以上0.25mmol/g以下である請求項1~5のいずれか1項に記載の有機化合物の異性化方法。
  7.  前記有機化合物が、ハイドロフルオロクロロプロパンである請求項1~6のいずれか1項に記載の有機化合物の異性化方法。
  8.  前記ハイドロフルオロクロロプロパンが、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパンを含み、異性化により3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンを得る請求項7に記載の有機化合物の異性化方法。
  9.  請求項1~8のいずれか1項記載の有機化合物の異性化方法により、前記有機化合物のフッ素原子が転位した有機化合物の異性体を製造することを特徴とする有機化合物の異性体の製造方法。
PCT/JP2017/038957 2016-11-01 2017-10-27 有機化合物の異性化方法及び有機化合物の異性体の製造方法 WO2018084089A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17868074.0A EP3536681B1 (en) 2016-11-01 2017-10-27 Method for isomerizing organic compound, and method for producing isomer of organic compound
CN201780064220.2A CN109843838A (zh) 2016-11-01 2017-10-27 有机化合物的异构化方法以及有机化合物的异构体的制造方法
JP2018548986A JP7036024B2 (ja) 2016-11-01 2017-10-27 有機化合物の異性化方法及び有機化合物の異性体の製造方法
US16/389,398 US10703696B2 (en) 2016-11-01 2019-04-19 Method for isomerizing organic compound, and method for producing isomer of organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214247 2016-11-01
JP2016-214247 2016-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/389,398 Continuation US10703696B2 (en) 2016-11-01 2019-04-19 Method for isomerizing organic compound, and method for producing isomer of organic compound

Publications (1)

Publication Number Publication Date
WO2018084089A1 true WO2018084089A1 (ja) 2018-05-11

Family

ID=62076083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038957 WO2018084089A1 (ja) 2016-11-01 2017-10-27 有機化合物の異性化方法及び有機化合物の異性体の製造方法

Country Status (5)

Country Link
US (1) US10703696B2 (ja)
EP (1) EP3536681B1 (ja)
JP (1) JP7036024B2 (ja)
CN (1) CN109843838A (ja)
WO (1) WO2018084089A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108639A (ja) 1988-10-18 1990-04-20 Asahi Glass Co Ltd 水素含有クロロフルオロ炭化水素の異性化法
US5157171A (en) 1989-10-16 1992-10-20 E. I. Du Pont De Nemours And Company Process for chlorofluoropropanes
JPH07241474A (ja) 1990-01-25 1995-09-19 Imperial Chem Ind Plc <Ici> ハロゲン交換用及び/又は酸/塩基触媒反応用触媒、その製造方法及びフルオロ又はハロフルオロ炭化水素の製造方法
WO2010082662A1 (ja) * 2009-01-19 2010-07-22 旭硝子株式会社 1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンの製造方法
WO2011162335A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217057A (en) * 1961-05-23 1965-11-09 Gulf Research Development Co Process of olefin isomerization using an aluminum fluoride catalyst
JPS53121710A (en) * 1977-03-30 1978-10-24 Daikin Ind Ltd Preparation of isomerized chlorofluorohydrocarbon containing hydrogne
US4902838A (en) * 1988-12-28 1990-02-20 E. I. Du Pont De Nemours And Company Isomerization of saturated fluorohydrocarbons
WO1991005753A1 (en) * 1989-10-16 1991-05-02 E.I. Du Pont De Nemours And Company Process for chlorofluoropropanes
JPH03284637A (ja) * 1990-03-31 1991-12-16 Du Pont Mitsui Fluorochem Co Ltd ハイドロクロロフルオロカーボンの異性化方法
ITMI20010287A1 (it) * 2001-02-13 2002-08-13 Ausimont Spa Procedimento per ottenere cfc 113a da cfc 113

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108639A (ja) 1988-10-18 1990-04-20 Asahi Glass Co Ltd 水素含有クロロフルオロ炭化水素の異性化法
US5157171A (en) 1989-10-16 1992-10-20 E. I. Du Pont De Nemours And Company Process for chlorofluoropropanes
JPH07241474A (ja) 1990-01-25 1995-09-19 Imperial Chem Ind Plc <Ici> ハロゲン交換用及び/又は酸/塩基触媒反応用触媒、その製造方法及びフルオロ又はハロフルオロ炭化水素の製造方法
WO2010082662A1 (ja) * 2009-01-19 2010-07-22 旭硝子株式会社 1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンの製造方法
JP5598333B2 (ja) 2009-01-19 2014-10-01 旭硝子株式会社 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの製造方法
WO2011162335A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED CATALYSIS A: GENERAL, vol. 348, 2008, pages 236 - 240

Also Published As

Publication number Publication date
EP3536681A1 (en) 2019-09-11
EP3536681B1 (en) 2020-12-09
EP3536681A4 (en) 2020-05-27
JPWO2018084089A1 (ja) 2019-09-19
US20190241490A1 (en) 2019-08-08
US10703696B2 (en) 2020-07-07
CN109843838A (zh) 2019-06-04
JP7036024B2 (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
JP5722623B2 (ja) 金属フッ化物触媒上でのハロゲンおよび水素を有するアルケンの製造
US9862660B2 (en) Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene
JP5393453B2 (ja) テトラフルオロプロペンの製造方法
CN108368011B (zh) 氢氟烯烃的制造方法
JP5598333B2 (ja) 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの製造方法
KR20230107715A (ko) 2,3,3,3-테트라플루오로프로펜 생성물에서 할로겐화에틸렌 불순물을 제거하는 방법
JP6780656B2 (ja) ハイドロフルオロオレフィンの製造方法
JP5713015B2 (ja) 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの製造方法
JP7070419B2 (ja) 1-クロロ-2,3,3-トリフルオロプロペンの製造方法
WO2016172413A1 (en) PROCESS FOR REDUCING 1233xf CONCENTRATION IN 244bb
US10703696B2 (en) Method for isomerizing organic compound, and method for producing isomer of organic compound
JP2022518445A (ja) クロミア触媒を活性化するための方法
WO2016163522A1 (ja) ハイドロフルオロオレフィンの製造方法
JP2006512271A (ja) フッ化アルミニウム
Cheng et al. Investigation on supported AlCl3 catalyst in the isomerization of E-1-chloro-3, 3, 3-trifluoropropene
JP6176182B2 (ja) トリフルオロエチレンの製造方法
TW200401760A (en) Process for purifying pentafluoroethane, process for producing the same, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868074

Country of ref document: EP

Effective date: 20190603