WO2018083889A1 - Boiler system - Google Patents

Boiler system Download PDF

Info

Publication number
WO2018083889A1
WO2018083889A1 PCT/JP2017/033136 JP2017033136W WO2018083889A1 WO 2018083889 A1 WO2018083889 A1 WO 2018083889A1 JP 2017033136 W JP2017033136 W JP 2017033136W WO 2018083889 A1 WO2018083889 A1 WO 2018083889A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer medium
heat transfer
steam
heat
heat exchanger
Prior art date
Application number
PCT/JP2017/033136
Other languages
French (fr)
Japanese (ja)
Inventor
一芳 伊藤
建聖 渡邊
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to MYPI2019002223A priority Critical patent/MY194582A/en
Priority to KR1020197008124A priority patent/KR102337478B1/en
Publication of WO2018083889A1 publication Critical patent/WO2018083889A1/en
Priority to PH12019500909A priority patent/PH12019500909A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/42Applications, arrangements, or dispositions of alarm or automatic safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/01Fluidised bed combustion apparatus in a fluidised bed of catalytic particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/16Fluidised bed combustion apparatus specially adapted for operation at superatmospheric pressures, e.g. by the arrangement of the combustion chamber and its auxiliary systems inside a pressure vessel

Definitions

  • the present invention relates to a boiler system.
  • the heated heat transfer medium circulates in a circulation system in the system.
  • a circulation system there is a place where the heat transfer medium is stored.
  • the boiler system includes a heat exchanger buried in the heat transfer medium at the location where the heat transfer medium is stored in this manner. A fluid flows inside the heat exchanger, and heat exchange is performed between the fluid and the heat transfer medium.
  • the boiler system as described above may be urgently stopped for a predetermined reason.
  • the fluid flowing in the heat exchanger buried in the heat transfer medium decreases or the fluid does not flow in the heat exchanger.
  • the cooling function of a heat exchanger falls and the temperature of a heat exchanger may become high too much with the heat of the surrounding heat-transfer medium.
  • This invention aims at providing the boiler system which can protect appropriately the heat exchanger buried in the heat-transfer medium at the time of emergency stop.
  • a boiler system is embedded in a furnace that heats a heat transfer medium by combustion of fuel and a heat transfer medium heated in the furnace, and performs heat exchange with the heat transfer medium.
  • the boiler system includes a heat exchanger through which a fluid that exchanges heat with the heat transfer medium flows. This heat exchanger is buried in a heat transfer medium heated in a furnace.
  • the boiler system also includes a removal unit that controls the removal unit and removes the heat transfer medium from the periphery of the heat exchanger at the time of an emergency stop in which the flow of the fluid in the heat exchanger is reduced or stopped. Therefore, even if the flow of fluid in the heat exchanger decreases or stops during an emergency stop, the heat transfer medium is removed from the surroundings of the heat exchanger, so the temperature of the heat exchanger increases due to the heat of the heat transfer medium. It can suppress that it is too much. As described above, the heat exchanger buried in the heat transfer medium at the time of emergency stop can be appropriately protected.
  • the boiler system may further include a turbine that rotates with steam generated by combustion in the furnace, and the heat exchanger may be a reheater that superheats steam discharged from the turbine as a fluid.
  • the boiler system includes a circulation system that circulates the heat transfer medium, including at least a furnace, and the removal unit removes the heat transfer medium from the surroundings of the heat exchanger by discharging the heat transfer medium out of the circulation system. You can do it. With this configuration, the heat exchanger can be protected with a simple configuration in which the heat transfer medium is discharged out of the circulation system during an emergency stop.
  • the evacuation unit has a control unit that controls the boiler system, and the control unit detects the flow state of the steam to the reheater and reduces or stops the flow of the steam to the reheater.
  • the control unit detects, you may perform control which removes a heat-transfer medium from the circumference
  • the heat exchanger buried in the heat transfer medium is appropriately protected during an emergency stop.
  • the boiler system 100 is an external circulation type (circulating fluidized bed type) circulating fluidized bed boiler.
  • the boiler system 100 includes a fluidized bed furnace 3 having a vertically long cylindrical shape.
  • a fuel supply port 3a for supplying fuel is provided in the middle part of the furnace 3, and a gas outlet 3b for discharging combustion gas is provided in the upper part.
  • the fuel supplied from the fuel supply device 5 to the furnace 3 is supplied into the furnace 3 through the fuel supply port 3a.
  • a cyclone 7 that functions as a solid-gas separator is connected to the gas outlet 3 b of the furnace 3.
  • the discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line.
  • a return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the furnace 3.
  • the solid material containing the fuel supplied from the fuel supply port 3a flows by the combustion / flowing air introduced from the lower air supply line 3c, and the fuel flows while the fuel flows, for example, about 800 to 900.
  • Burn at °C. A combustion gas generated in the furnace 3 is introduced into the cyclone 7 with accompanying solid particles.
  • the cyclone 7 separates solid particles and gas by a centrifugal separation action, returns the solid particles separated via the return line 9 to the furnace 3, and removes the combustion gas from which the solid particles have been removed from the discharge port 7 a to the gas line. To the subsequent gas processing system.
  • in-furnace bed material a solid material called “in-furnace bed material” is generated and collected at the bottom, and the bed material is sintered and melted and solidified by the concentration of impurities (low melting point materials, etc.) in the in-furnace bed material, or It is necessary to suppress malfunctions caused by incombustible impurities. For this reason, in the furnace 3, the in-furnace bed material is discharged
  • the gas treatment system includes a gas heat exchange device 13 connected to the discharge port 7a of the cyclone 7 via a gas line, and a dust collector 15 connected to the discharge port 13a of the gas heat exchange device 13 via a gas line. And.
  • the gas heat exchanger 13 is provided with a boiler tube 13b that superheats steam so as to cross the exhaust gas flow path.
  • the dust collector 15 removes fine particles such as fly ash that are still accompanying the combustible gas.
  • a bag filter or an electric dust collector is adopted as the dust collector 15. The clean gas discharged from the discharge port 15 a of the dust collector 15 is discharged to the outside through the gas line and the pump 17 from the chimney 19.
  • Solid particles generated in the furnace 3 circulate in the circulation system 21 including the furnace 3, the cyclone 7, and the return line 9.
  • the fluid of solid particles is referred to as a heat transfer medium.
  • a heat exchange chamber 20 is formed between the return line 9 and the bottom of the furnace 3.
  • a heat transfer medium is stored in the heat exchange chamber 20 (see FIGS. 2 and 3).
  • a heat exchanger 22 is provided in the heat exchange chamber 20. Detailed configurations of the heat exchange chamber 20 and the heat exchanger 22 will be described later.
  • the boiler system 100 includes a turbine that rotates with steam generated by the combustion of the furnace 3.
  • the configuration around the turbine will be described with reference to FIG.
  • the boiler system 100 includes an evaporation pipe 31, a steam / water separator 32, a superheater 33, turbines 50 and 51, a steam supply unit 37, and a reheat functioning as a heat exchanger 22.
  • the evaporation pipe 31 generates steam by evaporating water using the heat of the boiler furnace.
  • the evaporation pipe 31 evaporates the water supplied from the upstream side, and then supplies the steam, which is in the state of an air / water mixture, to the air / water separator 32.
  • the steam separator 32 separates the steam from the steam / water mixture from the evaporation pipe 31.
  • the steam separated by the steam separator 32 flows to the superheater 33 on the downstream side.
  • the superheater 33 superheats the steam from the steam separator 32 and supplies the turbine 50 as superheated steam by further heating the saturated steam.
  • the superheater 33 includes an introduction part 41 that introduces steam, a superheat part 42 that superheats the steam introduced from the introduction part 41, and a discharge part 43 that exhausts the steam superheated by the superheat part 42. .
  • the introduction part 41 is constituted by a line connecting the steam separator 32 and the superheat part 42.
  • the overheating unit 42 includes heat exchange units 44, 46, and 48 and adjustment units 45 and 47.
  • the heat exchanging units 44, 46, and 48 superheat the steam by heat exchange.
  • the steam is heated to about 350 to 470 ° C.
  • the steam is heated to about 450 to 570 ° C.
  • the temperature of the steam is appropriately changed depending on the plant and is not particularly limited.
  • the adjusting units 45 and 47 adjust the superheated steam to a target temperature by supplying water to the steam.
  • the adjustment unit 45 is disposed between the heat exchange unit 44 and the heat exchange unit 46.
  • the adjustment unit 47 is disposed between the heat exchange unit 46 and the heat exchange unit 48.
  • the configuration of the superheater 42 is not limited to such a configuration.
  • the discharge part 43 is configured by a line connecting the heat exchange part 48 and the turbine 50.
  • the turbine 50 rotates by being supplied with the steam discharged from the discharge part 43 of the superheater 33, and generates electricity. Further, the turbine 51 is provided at the rear stage of the turbine 50 and rotates by being supplied with the steam supplied from the reheater 34 to generate electricity. Therefore, the pressure and temperature of the steam discharged from the turbine 50 are lower than the steam in the discharge part 43 of the superheater 33.
  • the pressure of the steam supplied to the turbine 50 is about 10 to 17 MPa (gauge pressure), and the temperature is about 530 to 570 ° C.
  • the pressure of the steam discharged from the turbine 50 is about 3 to 5 MPa (gauge pressure), and the temperature is about 350 to 400 ° C.
  • the steam supply unit 37 extracts steam from the discharge unit 43 of the superheater 33 and supplies the extracted steam to the reheater 34.
  • the steam supply unit 37 includes a line 53 that bypasses the turbine 50 by directly connecting the discharge unit 43 of the superheater 33 and the line 61, and a valve 54 provided on the line 53.
  • the valve 54 is an open / close valve that opens and closes based on a control signal from the control unit 30.
  • the valve 54 includes a mechanism for pouring water into the passing steam, and can cool (and reduce pressure) the steam.
  • the steam supply unit 37 is used to prevent the reheater 34 from being blown when the boiler system 100 is activated.
  • the reheater 34 reheats the steam discharged from the turbine 50.
  • the turbine 50 and the reheater 34 are connected by a line 61 for supplying the steam discharged from the turbine 51 to the reheater 34.
  • the reheater 34 and the turbine 51 are connected by a line 62 for supplying steam reheated by the reheater 34 to the turbine 51. Therefore, the steam supplied to the reheater 34 via the line 61 is resuperheated by heat exchange in the reheater 34 and then supplied to the turbine 51 on the rear stage side via the line 62.
  • the reheater 34 functions as the heat exchanger 22 disposed in the heat exchange chamber 20.
  • FIG. 3 is an enlarged view showing a schematic structure around the heat exchange chamber 20.
  • the structure around the heat exchange chamber 20 will be described in detail with reference to FIG.
  • the heat exchange chamber 20 is provided below the return line 9.
  • the return line 9 and the lower end portion of the furnace 3 are connected via a loop seal portion 23.
  • the loop seal portion 23 is where the flow path of the heat transfer medium W is narrowed.
  • the heat transfer medium W flows in and is discharged in a state where a predetermined amount of the heat transfer medium W is stored in the heat exchange chamber 20.
  • the heat transfer medium W in the heat exchange chamber 20 is heated in the furnace 3 and is in a high temperature state, and is about 700 to 900 ° C.
  • the heat exchanger 22 is provided in the heat exchange chamber 20. Therefore, during normal operation of the boiler system 100, the heat exchanger 22 is embedded in the heat transfer medium heated in the furnace 3.
  • the heat exchanger 22 constituted by the reheater 34 is constituted by a pipe through which a fluid that exchanges heat with the heat transfer medium W flows.
  • steam flows as a fluid in the heat exchanger 22.
  • the piping is stretched so as to meander in a predetermined direction (vertical direction in the figure).
  • how the pipes are stretched is not particularly limited, and the pipes may meander in the horizontal direction or spirally.
  • the removing unit 24 removes the heat transfer medium W from the periphery of the heat exchanger 22.
  • the removal unit 24 illustrated in FIG. 3 includes a discharge line 26 provided in the heat exchange chamber 20 and a switching valve 27 provided on the discharge line 26.
  • the removing unit 24 discharges the heat transfer medium W out of the circulation system 21. Therefore, one end side of the discharge line 26 is connected to the heat exchange chamber 20, and the other end side is opened outside the system.
  • a tank 28 for receiving the discharged heat transfer medium W is provided on the other end side of the discharge line 26. When a certain amount or more of the heat transfer medium W is stored in the tank 28, the heat transfer medium W in the tank 28 may be returned to the circulation system 21. Alternatively, the tank 28 may not be provided and may be disposed when the heat transfer medium W is discharged from the discharge line 26. In the removal unit 24, the heat transfer medium W may be discharged from the heat exchange chamber 20 by gravity.
  • the switching valve 27 is a valve for switching opening and closing on the discharge line 26.
  • the switching valve 27 is connected to the control unit 30 and switches between opening and closing based on a control signal from the control unit 30.
  • the switching valve 27 is closed, the heat transfer medium W in the heat exchange chamber 20 is held in the heat exchange chamber 20.
  • the switching valve 27 is opened, the heat transfer medium W in the heat exchange chamber 20 is discharged.
  • the control unit 30 is a device that can control the entire boiler system 100.
  • the control unit 30 includes an ECU (electric / electronic control unit), a memory, and the like.
  • the control unit 30 has a function of controlling the removal unit 24 to remove the heat transfer medium W from the surroundings of the heat exchanger 22 at least during an emergency stop in which the flow of fluid in the heat exchanger 22 is reduced or stopped.
  • the functional module that performs the removal control process of the control unit 30 constitutes a part of the “removal unit” in the claims. That is, it can be said that the removing unit 24 includes the control unit 30 (part of the functional modules).
  • the emergency stop is a state in which the flow of the fluid in the heat exchanger 22 is reduced or stopped as compared with the normal operation by stopping the entire system or a part thereof for a predetermined cause.
  • the cause of the emergency stop may be a failure or abnormality of a component in the boiler system 100, or an all-in-house stop.
  • all the station stops are the states which lost all the power supplies in a power plant.
  • the circulation of the heat transfer medium W in the circulation system 21 may be stopped. Since power is not supplied to the control unit 30 during a power failure, the control unit 30 may be moved with an emergency battery or the like.
  • the switching valve 27 may be a valve that automatically opens when power supply is lost.
  • the control unit 30 when the controller 30 detects the flow state of the steam to the reheater 34 and detects a decrease or stop of the flow of the steam to the reheater 34, the control unit 30 starts the heat transfer medium from around the reheater 34. Control to remove. Specifically, the control unit 30 can detect the flow state of the steam in the reheater 34 by installing a sensor or the like at the position of the turbine 50 and the steam supply unit 37 and monitoring the flow rate of the steam. .
  • the control unit 30 can switch between opening and closing of the valve 54 by transmitting a control signal to the valve 54 of the steam supply unit 37.
  • the control unit 30 controls the steam supply unit 37 when starting the boiler, thereby bypassing the turbine 50 and supplying steam to the reheater 34. Can do.
  • a boiler system that does not have a removal unit is examined.
  • the fluid does not flow to the heat exchanger embedded in the heat transfer medium W during an emergency stop.
  • the cooling function by the fluid cannot be obtained, there is a possibility that the tube of the heat exchanger is damaged due to the heat of the heat transfer medium W.
  • the boiler system 100 includes a heat exchanger 22 through which a fluid that exchanges heat with a heat transfer medium flows.
  • the heat exchanger 22 is buried in the heat transfer medium W heated in the furnace 3.
  • the boiler system 100 also includes a removal unit 24 that removes the heat transfer medium from the periphery of the heat exchanger 22 at least during an emergency stop in which the flow of fluid in the heat exchanger 22 decreases or stops. Therefore, even if the flow of fluid in the heat exchanger 22 decreases or stops during an emergency stop, the heat transfer medium W is removed from the surroundings of the heat exchanger 22, so the heat exchanger 22 is heated by the heat of the heat transfer medium W. It is possible to suppress the temperature of the tube from becoming too high. As described above, it is possible to appropriately protect the heat exchanger 22 buried in the heat transfer medium W during an emergency stop.
  • the boiler system 100 further includes a turbine 50 that rotates with steam generated by combustion in a furnace, and the heat exchanger 22 is a reheater 34 that superheats steam discharged from the turbine 50 as a fluid. It may be. With this configuration, the reheater 34 buried in the heat transfer medium W at the time of an emergency stop can be appropriately protected.
  • the boiler system 100 includes at least the furnace 3 and includes a circulation system 21 that circulates the heat transfer medium W, and the removal unit 24 discharges the heat transfer medium W out of the circulation system.
  • the heat transfer medium W may be removed from the periphery of the heat exchanger 22. With this configuration, the heat exchanger 22 can be protected with a simple configuration in which the heat transfer medium W is simply discharged out of the circulation system 21 during an emergency stop.
  • the removal unit 24 includes a control unit 30 that controls the boiler system 100, and the control unit 30 detects the flow state of the steam to the reheater 34 and performs reheating.
  • control for removing the heat transfer medium W from the periphery of the reheater 34 may be performed.
  • the present invention is not limited to the above embodiment.
  • the configuration for removing the heat transfer medium W from the heat exchange chamber 20 is not limited.
  • the above-described removing unit 24 moves the heat transfer medium W by weight
  • the heat transfer medium W may be moved using a device such as a blower.
  • the removal part 73 provided with the connection pipe 71 which connected the heat exchange chamber 20 and the furnace 3, and the switching valve 72 provided in the connection pipe 71 may be employ
  • the removing unit 73 can directly supply the heat transfer medium W in the heat exchange chamber 20 to the furnace 3.
  • the connection part between the heat exchange chamber 20 and the connection pipe 71 is located higher than the connection part between the furnace 3 and the connection pipe 71 so that the heat transfer medium W can move by gravity.
  • the conveying means 83 may be configured by a screw conveyor or the like.
  • the transport means 83 may transport the heat transfer medium W supplied from the connection pipe 81 to a cooler or the like. Thereby, the heat transfer medium W can be cooled.
  • the conveyance means and the cooler may be moved by electric power such as an emergency battery in the event of a power failure.
  • any heat exchanger in the boiler system may be buried in the heat transfer medium W to provide a removal unit.
  • the inner pipe existing in the furnace 3 may be buried in the heat transfer medium W as the heat exchanger 22.
  • a part of the superheater arranged on the upstream side of the turbine may be embedded in the heat transfer medium W as the heat exchanger 22.
  • an evaporation pipe that generates steam by the heat of the furnace 3 may be buried in the heat transfer medium W as the heat exchanger 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

A boiler system, provided with: a furnace that heats a heat conduction medium by the burning of a fuel; a heat exchanger embedded in the heat conduction medium heated by the furnace, the heat exchanger channeling a fluid that exchanges heat with the heat conduction medium; and a removal part that, during an emergency stop when the flow of the fluid at least in the heat exchanger decreases or stops, controls a removal part and removes the heat conduction medium from around the heat exchanger.

Description

ボイラシステムBoiler system
 本発明は、ボイラシステムに関する。 The present invention relates to a boiler system.
 従来のボイラシステムとして、燃料を燃焼させることによって伝熱媒体を加熱するものが知られている(例えば、特許文献1参照)。加熱された伝熱媒体は、システム内の循環系を循環している。このような循環系の中には伝熱媒体が貯められた箇所が存在している。ボイラシステムは、このように伝熱媒体が貯められた箇所で、伝熱媒体に埋められた熱交換器を備えている。熱交換器の内部には流体が流れており、当該流体と伝熱媒体との間で熱交換が行われる。 As a conventional boiler system, one that heats a heat transfer medium by burning fuel is known (see, for example, Patent Document 1). The heated heat transfer medium circulates in a circulation system in the system. In such a circulation system, there is a place where the heat transfer medium is stored. The boiler system includes a heat exchanger buried in the heat transfer medium at the location where the heat transfer medium is stored in this manner. A fluid flows inside the heat exchanger, and heat exchange is performed between the fluid and the heat transfer medium.
特開2001-41415号公報JP 2001-41415 A
 ここで、上述のようなボイラシステムは、所定の理由によって緊急停止する場合がある。緊急停止時には、伝熱媒体に埋められた熱交換器内を流れる流体が減少し、または熱交換器内に流体が流れなくなる。当該状態では、熱交換器の冷却機能が低下することで、周囲の伝熱媒体の熱によって熱交換器の温度が高くなりすぎる可能性がある。 Here, the boiler system as described above may be urgently stopped for a predetermined reason. At the time of emergency stop, the fluid flowing in the heat exchanger buried in the heat transfer medium decreases or the fluid does not flow in the heat exchanger. In the said state, the cooling function of a heat exchanger falls and the temperature of a heat exchanger may become high too much with the heat of the surrounding heat-transfer medium.
 本発明は、緊急停止時に伝熱媒体に埋められた熱交換器を適切に保護することができるボイラシステムを提供することを目的とする。 This invention aims at providing the boiler system which can protect appropriately the heat exchanger buried in the heat-transfer medium at the time of emergency stop.
 本発明の一形態に係るボイラシステムは、燃料の燃焼によって伝熱媒体を加熱する火炉と、火炉で加熱された伝熱媒体中に埋められており、伝熱媒体との間で熱交換を行う流体が流れる熱交換器と、少なくとも熱交換器内の流体の流れが減少又は停止する緊急停止時において、除去部を制御して熱交換器の周囲から伝熱媒体を除去する除去部と、を備える。 A boiler system according to an embodiment of the present invention is embedded in a furnace that heats a heat transfer medium by combustion of fuel and a heat transfer medium heated in the furnace, and performs heat exchange with the heat transfer medium. A heat exchanger through which the fluid flows, and a removal unit that controls the removal unit and removes the heat transfer medium from the periphery of the heat exchanger at an emergency stop in which the flow of the fluid in the heat exchanger is reduced or stopped. Prepare.
 ボイラシステムは、伝熱媒体との間で熱交換を行う流体が流れる熱交換器を備える。この熱交換器は、火炉で加熱された伝熱媒体中に埋められている。また、ボイラシステムは、少なくとも熱交換器内の流体の流れが減少又は停止する緊急停止時において、除去部を制御して熱交換器の周囲から伝熱媒体を除去する除去部を備えている。従って、緊急停止時に熱交換器内の流体の流れが減少又は停止しても、熱交換器の周囲から伝熱媒体が除去されるため、伝熱媒体の熱によって熱交換器の温度が高くなりすぎることを抑制できる。以上により、緊急停止時に伝熱媒体に埋められた熱交換器を適切に保護することができる。 The boiler system includes a heat exchanger through which a fluid that exchanges heat with the heat transfer medium flows. This heat exchanger is buried in a heat transfer medium heated in a furnace. The boiler system also includes a removal unit that controls the removal unit and removes the heat transfer medium from the periphery of the heat exchanger at the time of an emergency stop in which the flow of the fluid in the heat exchanger is reduced or stopped. Therefore, even if the flow of fluid in the heat exchanger decreases or stops during an emergency stop, the heat transfer medium is removed from the surroundings of the heat exchanger, so the temperature of the heat exchanger increases due to the heat of the heat transfer medium. It can suppress that it is too much. As described above, the heat exchanger buried in the heat transfer medium at the time of emergency stop can be appropriately protected.
 ボイラシステムにおいて、火炉の燃焼によって発生した蒸気で回転するタービンを更に備え、熱交換器は、流体として、タービンから排出された蒸気を過熱する再熱器であってよい。この構成により、緊急停止時に伝熱媒体に埋められた再熱器を適切に保護することができる。 The boiler system may further include a turbine that rotates with steam generated by combustion in the furnace, and the heat exchanger may be a reheater that superheats steam discharged from the turbine as a fluid. With this configuration, it is possible to appropriately protect the reheater buried in the heat transfer medium during an emergency stop.
 ボイラシステムにおいて、少なくとも火炉を含み、伝熱媒体を循環させる循環系を備え、除去部は、伝熱媒体を循環系の系外へ排出することで、熱交換器の周囲から伝熱媒体を除去してよい。この構成により、緊急停止時に伝熱媒体を循環系の系外へ排出するだけのシンプルな構成にて、熱交換器を保護することができる。 The boiler system includes a circulation system that circulates the heat transfer medium, including at least a furnace, and the removal unit removes the heat transfer medium from the surroundings of the heat exchanger by discharging the heat transfer medium out of the circulation system. You can do it. With this configuration, the heat exchanger can be protected with a simple configuration in which the heat transfer medium is discharged out of the circulation system during an emergency stop.
 ボイラシステムにおいて、退避部は、ボイラシステムを制御する制御部を有し、制御部は、再熱器への蒸気の流通状態を検知し、再熱器への蒸気の流れの減少、又は停止を検知した場合、再熱器の周囲から伝熱媒体を除去する制御を行ってよい。この構成により、実際に再熱器への蒸気の流れが減少、又は停止したことを確認した上で、再熱器の周囲から伝熱媒体を除去することができる。これにより、適切なタイミングで再熱器を保護することができる。 In the boiler system, the evacuation unit has a control unit that controls the boiler system, and the control unit detects the flow state of the steam to the reheater and reduces or stops the flow of the steam to the reheater. When it detects, you may perform control which removes a heat-transfer medium from the circumference | surroundings of a reheater. With this configuration, it is possible to remove the heat transfer medium from the periphery of the reheater after confirming that the flow of steam to the reheater has actually decreased or stopped. Thereby, the reheater can be protected at an appropriate timing.
 本発明によれば、緊急停止時に伝熱媒体に埋められた熱交換器を適切に保護する。 According to the present invention, the heat exchanger buried in the heat transfer medium is appropriately protected during an emergency stop.
本発明の実施形態に係るボイラシステムの概略構成図である。It is a schematic structure figure of a boiler system concerning an embodiment of the present invention. 図1に示すボイラシステムのタービン周辺の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the turbine periphery of the boiler system shown in FIG. 図1に示すボイラシステムの熱交換チャンバ周辺の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the heat exchange chamber periphery of the boiler system shown in FIG. 変形例に係るボイラシステムの熱交換チャンバ付近の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the heat exchange chamber vicinity of the boiler system which concerns on a modification.
 本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. However, the following embodiments are merely examples for explaining the present invention and are not intended to limit the present invention to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
 図1を参照して、本実施形態に係るボイラシステム100の構成について説明する。ボイラシステム100は、外部循環型(Circulating Fluidized Bed型)の循環流動層ボイラである。このボイラシステム100は、縦長の筒形状をなす流動層型の火炉3を備えている。火炉3の中間部には、燃料を供給する燃料供給口3aと、上部には燃焼ガスを排出するガス出口3bと、が設けられている。燃料供給装置5からこの火炉3に供給される燃料は、燃料供給口3aを介して火炉3の内部に供給される。 The configuration of the boiler system 100 according to the present embodiment will be described with reference to FIG. The boiler system 100 is an external circulation type (circulating fluidized bed type) circulating fluidized bed boiler. The boiler system 100 includes a fluidized bed furnace 3 having a vertically long cylindrical shape. A fuel supply port 3a for supplying fuel is provided in the middle part of the furnace 3, and a gas outlet 3b for discharging combustion gas is provided in the upper part. The fuel supplied from the fuel supply device 5 to the furnace 3 is supplied into the furnace 3 through the fuel supply port 3a.
 火炉3のガス出口3bには固気分離装置として機能するサイクロン7が接続されている。サイクロン7の排出口7aはガスラインを介して後段のガス処理系に接続されている。また、サイクロン7の底部出口からはダウンカマーと称されるリターンライン9が下方に延びており、リターンライン9の下端は火炉3の中間部側面に接続されている。 A cyclone 7 that functions as a solid-gas separator is connected to the gas outlet 3 b of the furnace 3. The discharge port 7a of the cyclone 7 is connected to a downstream gas processing system via a gas line. A return line 9 called a downcomer extends downward from the bottom outlet of the cyclone 7, and the lower end of the return line 9 is connected to the intermediate side surface of the furnace 3.
 火炉3内では、下部の給気ライン3cから導入される燃焼・流動用の空気により、燃料供給口3aから供給された燃料を含む固形物が流動し、燃料は流動しながら例えば約800~900℃で燃焼する。サイクロン7には、火炉3で発生した燃焼ガスが固体粒子を同伴しながら導入される。サイクロン7は、遠心分離作用により固体粒子と気体とを分離し、リターンライン9を介して分離された固体粒子を火炉3に戻すと共に、固体粒子が除かれた燃焼ガスを排出口7aからガスラインを通じて後段のガス処理系に送出する。 In the furnace 3, the solid material containing the fuel supplied from the fuel supply port 3a flows by the combustion / flowing air introduced from the lower air supply line 3c, and the fuel flows while the fuel flows, for example, about 800 to 900. Burn at ℃. A combustion gas generated in the furnace 3 is introduced into the cyclone 7 with accompanying solid particles. The cyclone 7 separates solid particles and gas by a centrifugal separation action, returns the solid particles separated via the return line 9 to the furnace 3, and removes the combustion gas from which the solid particles have been removed from the discharge port 7 a to the gas line. To the subsequent gas processing system.
 この火炉3では「炉内ベット材」と呼ばれる固形物が発生し底部に溜まるが、この炉内ベット材で不純物(低融点物質等)が濃縮されて起こるベット材の焼結及び溶融固化、或いは不燃夾雑物による動作不良を抑制することが必要である。このため、火炉3では、底部の排出口3dから炉内ベット材が定期的または連続的に外部に排出されている。排出されたベット材は、循環ライン(図示せず)上で金属や粗大粒径などの不適物を取り除いた後、再び火炉3に供給される。 In this furnace 3, a solid material called “in-furnace bed material” is generated and collected at the bottom, and the bed material is sintered and melted and solidified by the concentration of impurities (low melting point materials, etc.) in the in-furnace bed material, or It is necessary to suppress malfunctions caused by incombustible impurities. For this reason, in the furnace 3, the in-furnace bed material is discharged | emitted regularly or continuously outside from the discharge port 3d of the bottom part. The discharged bed material is supplied to the furnace 3 again after removing unsuitable materials such as metal and coarse particle diameter on a circulation line (not shown).
 上記のガス処理系は、サイクロン7の排出口7aにガスラインを介して接続されたガス熱交換装置13と、このガス熱交換装置13の排出口13aにガスラインを介して接続された集塵機15とを備えている。ガス熱交換装置13には、排ガスの流路を横切るように蒸気を過熱するボイラチューブ13bが設けられている。サイクロン7から送られた高温の排ガスがこのボイラチューブ13bに接触することで、排ガスの熱がチューブ内の水に回収され、発生した高温の水蒸気がボイラチューブ13bを通じて発電用のタービンに送られる。集塵機15は、この可燃性ガスに未だ同伴している飛灰等の微粒子を除去する。集塵機15として、例えばバグフィルタや電気集塵機などが採用される。集塵機15の排出口15aから排出された清浄なガスはガスライン及びポンプ17を経由して煙突19から外部に排出される。 The gas treatment system includes a gas heat exchange device 13 connected to the discharge port 7a of the cyclone 7 via a gas line, and a dust collector 15 connected to the discharge port 13a of the gas heat exchange device 13 via a gas line. And. The gas heat exchanger 13 is provided with a boiler tube 13b that superheats steam so as to cross the exhaust gas flow path. When the high-temperature exhaust gas sent from the cyclone 7 comes into contact with the boiler tube 13b, the heat of the exhaust gas is recovered in the water in the tube, and the generated high-temperature steam is sent to the turbine for power generation through the boiler tube 13b. The dust collector 15 removes fine particles such as fly ash that are still accompanying the combustible gas. As the dust collector 15, for example, a bag filter or an electric dust collector is adopted. The clean gas discharged from the discharge port 15 a of the dust collector 15 is discharged to the outside through the gas line and the pump 17 from the chimney 19.
 火炉3で発生した固体粒子は、火炉3、サイクロン7、及びリターンライン9で構成される循環系21内を循環する。なお、以降の説明においては、固体粒子の流動物を伝熱媒体と称する。循環系21のうち、リターンライン9と火炉3の底部との間には熱交換チャンバ20が形成される。熱交換チャンバ20内には伝熱媒体が貯められる(図2,3参照)。また、熱交換チャンバ20内には、熱交換器22が設けられている。熱交換チャンバ20及び熱交換器22の詳細な構成については後述する。 Solid particles generated in the furnace 3 circulate in the circulation system 21 including the furnace 3, the cyclone 7, and the return line 9. In the following description, the fluid of solid particles is referred to as a heat transfer medium. In the circulation system 21, a heat exchange chamber 20 is formed between the return line 9 and the bottom of the furnace 3. A heat transfer medium is stored in the heat exchange chamber 20 (see FIGS. 2 and 3). A heat exchanger 22 is provided in the heat exchange chamber 20. Detailed configurations of the heat exchange chamber 20 and the heat exchanger 22 will be described later.
 ボイラシステム100は、火炉3の燃焼によって発生した蒸気で回転するタービンを備える。図2を参照して、タービン周辺の構成について説明する。図3に示すように、ボイラシステム100は、蒸発管31と、気水分離器32と、過熱器33と、タービン50,51と、蒸気供給部37と、熱交換器22として機能する再熱器34と、熱交換チャンバ20と、除去部24と、制御部30と、を備えている。 The boiler system 100 includes a turbine that rotates with steam generated by the combustion of the furnace 3. The configuration around the turbine will be described with reference to FIG. As shown in FIG. 3, the boiler system 100 includes an evaporation pipe 31, a steam / water separator 32, a superheater 33, turbines 50 and 51, a steam supply unit 37, and a reheat functioning as a heat exchanger 22. A vessel 34, a heat exchange chamber 20, a removal unit 24, and a control unit 30.
 蒸発管31は、ボイラ火炉の熱を用いて水を蒸発させて蒸気を生成する。蒸発管31は、上流側から供給される水を蒸発させた後、気水混合物の状態である当該蒸気を気水分離器32へ供給する。気水分離器32は、蒸発管31からの気水混合物から蒸気を分離する。気水分離器32で分離された蒸気は、下流側の過熱器33へ流れる。 The evaporation pipe 31 generates steam by evaporating water using the heat of the boiler furnace. The evaporation pipe 31 evaporates the water supplied from the upstream side, and then supplies the steam, which is in the state of an air / water mixture, to the air / water separator 32. The steam separator 32 separates the steam from the steam / water mixture from the evaporation pipe 31. The steam separated by the steam separator 32 flows to the superheater 33 on the downstream side.
 過熱器33は、気水分離器32からの蒸気を過熱するものであり、飽和蒸気を更に熱することにより、過熱蒸気としてタービン50へ供給するものである。過熱器33は、蒸気を導入する導入部41と、当該導入部41から導入された蒸気を過熱する過熱部42と、当該過熱部42で過熱された蒸気を排出する排出部43と、を有する。 The superheater 33 superheats the steam from the steam separator 32 and supplies the turbine 50 as superheated steam by further heating the saturated steam. The superheater 33 includes an introduction part 41 that introduces steam, a superheat part 42 that superheats the steam introduced from the introduction part 41, and a discharge part 43 that exhausts the steam superheated by the superheat part 42. .
 導入部41は、気水分離器32と過熱部42とを接続するラインによって構成される。過熱部42は、熱交換部44,46,48と、調整部45,47と、を備えている。熱交換部44,46,48は、熱交換によって蒸気を過熱するものである。最上段の熱交換部44では、蒸気を約350~470℃程度に過熱する。最下段の熱交換部48では、蒸気を約450~570℃に過熱する。ただし、蒸気の温度はプラントによって適宜変わるものであり、特に限定されるものではない。調整部45,47は、蒸気に水を供給することで過熱された蒸気を目的の温度に調整するものである。調整部45は、熱交換部44と熱交換部46との間に配置されている。調整部47は、熱交換部46と熱交換部48との間に配置される。ただし、過熱部42の構成はこのような構成に限定されない。排出部43は、熱交換部48とタービン50とを接続するラインによって構成されている。 The introduction part 41 is constituted by a line connecting the steam separator 32 and the superheat part 42. The overheating unit 42 includes heat exchange units 44, 46, and 48 and adjustment units 45 and 47. The heat exchanging units 44, 46, and 48 superheat the steam by heat exchange. In the uppermost heat exchange section 44, the steam is heated to about 350 to 470 ° C. In the lowermost heat exchange section 48, the steam is heated to about 450 to 570 ° C. However, the temperature of the steam is appropriately changed depending on the plant and is not particularly limited. The adjusting units 45 and 47 adjust the superheated steam to a target temperature by supplying water to the steam. The adjustment unit 45 is disposed between the heat exchange unit 44 and the heat exchange unit 46. The adjustment unit 47 is disposed between the heat exchange unit 46 and the heat exchange unit 48. However, the configuration of the superheater 42 is not limited to such a configuration. The discharge part 43 is configured by a line connecting the heat exchange part 48 and the turbine 50.
 タービン50は、過熱器33の排出部43から排出された蒸気を供給されることによって回転し、電気を発電するものである。また、タービン51は、タービン50の後段に設けられ、再熱器34から供給された蒸気を供給されることによって回転し、電気を発電するものである。従って、タービン50から排出された蒸気の圧力と温度は、過熱器33の排出部43における蒸気よりも低い。特に限定されるものではないが、タービン50へ供給される蒸気の圧力は、約10~17MPa(ゲージ圧)程度であり、温度は約530~570℃程度となる。タービン50から排出された蒸気の圧力は、約3~5MPa(ゲージ圧)程度であり、温度は約350~400℃程度となる。 The turbine 50 rotates by being supplied with the steam discharged from the discharge part 43 of the superheater 33, and generates electricity. Further, the turbine 51 is provided at the rear stage of the turbine 50 and rotates by being supplied with the steam supplied from the reheater 34 to generate electricity. Therefore, the pressure and temperature of the steam discharged from the turbine 50 are lower than the steam in the discharge part 43 of the superheater 33. Although not particularly limited, the pressure of the steam supplied to the turbine 50 is about 10 to 17 MPa (gauge pressure), and the temperature is about 530 to 570 ° C. The pressure of the steam discharged from the turbine 50 is about 3 to 5 MPa (gauge pressure), and the temperature is about 350 to 400 ° C.
 蒸気供給部37は、過熱器33の排出部43から蒸気を抽出して、当該抽出した蒸気を再熱器34へ供給するものである。蒸気供給部37は、過熱器33の排出部43とライン61とを直接接続することで、タービン50をバイパスするライン53と、ライン53上に設けられる弁54と、によって構成される。弁54は、制御部30の制御信号に基づいて開閉する開閉弁である。また、弁54は、通過する蒸気に対して水を注水する機構を備えており、当該蒸気を冷却(及び減圧)することができる。蒸気供給部37は、ボイラシステム100の起動時に、再熱器34の空焚きを防ぐために用いられる。 The steam supply unit 37 extracts steam from the discharge unit 43 of the superheater 33 and supplies the extracted steam to the reheater 34. The steam supply unit 37 includes a line 53 that bypasses the turbine 50 by directly connecting the discharge unit 43 of the superheater 33 and the line 61, and a valve 54 provided on the line 53. The valve 54 is an open / close valve that opens and closes based on a control signal from the control unit 30. The valve 54 includes a mechanism for pouring water into the passing steam, and can cool (and reduce pressure) the steam. The steam supply unit 37 is used to prevent the reheater 34 from being blown when the boiler system 100 is activated.
 再熱器34は、タービン50から排出された蒸気を再過熱するものである。タービン50と再熱器34とは、タービン51から排出された蒸気を再熱器34へ供給するためのライン61で接続されている。また、再熱器34とタービン51とは、再熱器34で再過熱された蒸気をタービン51へ供給するためのライン62で接続されている。よって、ライン61を介して再熱器34へ供給された蒸気は、当該再熱器34で熱交換によって再過熱された後、ライン62を介して後段側のタービン51へ供給される。ここで、本実施形態においては、再熱器34が熱交換チャンバ20内に配置される熱交換器22として機能する。 The reheater 34 reheats the steam discharged from the turbine 50. The turbine 50 and the reheater 34 are connected by a line 61 for supplying the steam discharged from the turbine 51 to the reheater 34. Further, the reheater 34 and the turbine 51 are connected by a line 62 for supplying steam reheated by the reheater 34 to the turbine 51. Therefore, the steam supplied to the reheater 34 via the line 61 is resuperheated by heat exchange in the reheater 34 and then supplied to the turbine 51 on the rear stage side via the line 62. Here, in the present embodiment, the reheater 34 functions as the heat exchanger 22 disposed in the heat exchange chamber 20.
 ここで、図3は、熱交換チャンバ20の周辺の概略構造を示す拡大図である。図3を参照して熱交換チャンバ20周辺の構造について詳細に説明する。 Here, FIG. 3 is an enlarged view showing a schematic structure around the heat exchange chamber 20. The structure around the heat exchange chamber 20 will be described in detail with reference to FIG.
 熱交換チャンバ20は、リターンライン9の下部に設けられている。リターンライン9と火炉3の下端部とは、ループシール部23を介して接続されている。ループシール部23は、伝熱媒体Wの流路が絞られた箇所である。これにより、熱交換チャンバ20には所定量の伝熱媒体Wが貯められた状態にて、伝熱媒体Wが流れ込み、且つ排出される。また、熱交換チャンバ20内の伝熱媒体Wは、火炉3で加熱されて高温状態となっており、約700~900℃程度となっている。熱交換器22は、熱交換チャンバ20内に設けられる。従って、ボイラシステム100の通常運転時には、熱交換器22は、火炉3で加熱された伝熱媒体中に埋められている。 The heat exchange chamber 20 is provided below the return line 9. The return line 9 and the lower end portion of the furnace 3 are connected via a loop seal portion 23. The loop seal portion 23 is where the flow path of the heat transfer medium W is narrowed. Thereby, the heat transfer medium W flows in and is discharged in a state where a predetermined amount of the heat transfer medium W is stored in the heat exchange chamber 20. Further, the heat transfer medium W in the heat exchange chamber 20 is heated in the furnace 3 and is in a high temperature state, and is about 700 to 900 ° C. The heat exchanger 22 is provided in the heat exchange chamber 20. Therefore, during normal operation of the boiler system 100, the heat exchanger 22 is embedded in the heat transfer medium heated in the furnace 3.
 再熱器34によって構成される熱交換器22は、伝熱媒体Wとの間で熱交換を行う流体が流れる配管によって構成されている。ここでは、熱交換器22には流体として蒸気が流れる。熱交換チャンバ20内では、配管は所定の方向(図では上下方向)に蛇行するように張り巡らされている。ただし、配管をどのように張り巡らせるかは特に限定されず、水平方向に蛇行してもよく、螺旋状に張り巡らせてもよい。 The heat exchanger 22 constituted by the reheater 34 is constituted by a pipe through which a fluid that exchanges heat with the heat transfer medium W flows. Here, steam flows as a fluid in the heat exchanger 22. In the heat exchange chamber 20, the piping is stretched so as to meander in a predetermined direction (vertical direction in the figure). However, how the pipes are stretched is not particularly limited, and the pipes may meander in the horizontal direction or spirally.
 除去部24は、熱交換器22の周囲から伝熱媒体Wを除去する。図3に示す除去部24は、熱交換チャンバ20に設けられた排出ライン26と、排出ライン26上に設けられた切替弁27と、によって構成されている。本実施形態では、除去部24は、伝熱媒体Wを循環系21の系外へ排出する。従って、排出ライン26の一端側は熱交換チャンバ20に接続され、他端側は系外に開放されている。なお、排出ライン26の他端側には、排出された伝熱媒体Wを受けるためのタンク28が設けられている。タンク28に一定量以上の伝熱媒体Wが貯まったら、タンク28内の伝熱媒体Wを循環系21の系内へ戻してもよい。あるいは、タンク28を設けなくともよく、排出ライン26から伝熱媒体Wが排出されたら処分してもよい。なお、除去部24では、重力によって伝熱媒体Wを熱交換チャンバ20から排出してよい。 The removing unit 24 removes the heat transfer medium W from the periphery of the heat exchanger 22. The removal unit 24 illustrated in FIG. 3 includes a discharge line 26 provided in the heat exchange chamber 20 and a switching valve 27 provided on the discharge line 26. In the present embodiment, the removing unit 24 discharges the heat transfer medium W out of the circulation system 21. Therefore, one end side of the discharge line 26 is connected to the heat exchange chamber 20, and the other end side is opened outside the system. Note that a tank 28 for receiving the discharged heat transfer medium W is provided on the other end side of the discharge line 26. When a certain amount or more of the heat transfer medium W is stored in the tank 28, the heat transfer medium W in the tank 28 may be returned to the circulation system 21. Alternatively, the tank 28 may not be provided and may be disposed when the heat transfer medium W is discharged from the discharge line 26. In the removal unit 24, the heat transfer medium W may be discharged from the heat exchange chamber 20 by gravity.
 切替弁27は、排出ライン26上において開閉を切り替えるための弁である。切替弁27は、制御部30に接続されており、当該制御部30の制御信号に基づいて開閉を切り替える。切替弁27が閉じているときは、熱交換チャンバ20内の伝熱媒体Wは当該熱交換チャンバ20内に保持される。切替弁27が開くことによって、熱交換チャンバ20内の伝熱媒体Wが排出される。 The switching valve 27 is a valve for switching opening and closing on the discharge line 26. The switching valve 27 is connected to the control unit 30 and switches between opening and closing based on a control signal from the control unit 30. When the switching valve 27 is closed, the heat transfer medium W in the heat exchange chamber 20 is held in the heat exchange chamber 20. When the switching valve 27 is opened, the heat transfer medium W in the heat exchange chamber 20 is discharged.
 制御部30は、ボイラシステム100全体の制御を行うことができる装置である。制御部30は、ECU(電気・電子制御ユニット)、メモリ等によって構成されている。制御部30は、少なくとも熱交換器22内の流体の流れが減少又は停止する緊急停止時において、除去部24を制御して熱交換器22の周囲から伝熱媒体Wを除去する機能を有する。なお、制御部30の除去制御処理を行う機能モジュールは、請求項における「除去部」の一部を構成するものとする。すなわち、除去部24は、制御部30(の一部の機能モジュール)を有していると言える。ここで、緊急停止とは、所定の原因によってシステム全体又は一部を停止することで、熱交換器22内の流体の流れが通常運転時よりも減少又は停止する状態である。例えば、緊急停止の原因は、ボイラシステム100内の構成要素の故障や異常等が挙げられ、または所内全停も挙げられる。なお、所内全停とは、発電所内の全ての電源を喪失した状態のことである。緊急停止時は、循環系21内の伝熱媒体Wの循環は停止していてよい。なお、停電時は制御部30に電力が供給されなくなるので、非常用バッテリー等で制御部30を可動させてよい。あるいは、切替弁27として、電力供給が無くなったときに自動的に開となる弁を用いてよい。 The control unit 30 is a device that can control the entire boiler system 100. The control unit 30 includes an ECU (electric / electronic control unit), a memory, and the like. The control unit 30 has a function of controlling the removal unit 24 to remove the heat transfer medium W from the surroundings of the heat exchanger 22 at least during an emergency stop in which the flow of fluid in the heat exchanger 22 is reduced or stopped. The functional module that performs the removal control process of the control unit 30 constitutes a part of the “removal unit” in the claims. That is, it can be said that the removing unit 24 includes the control unit 30 (part of the functional modules). Here, the emergency stop is a state in which the flow of the fluid in the heat exchanger 22 is reduced or stopped as compared with the normal operation by stopping the entire system or a part thereof for a predetermined cause. For example, the cause of the emergency stop may be a failure or abnormality of a component in the boiler system 100, or an all-in-house stop. In addition, all the station stops are the states which lost all the power supplies in a power plant. At the time of emergency stop, the circulation of the heat transfer medium W in the circulation system 21 may be stopped. Since power is not supplied to the control unit 30 during a power failure, the control unit 30 may be moved with an emergency battery or the like. Alternatively, the switching valve 27 may be a valve that automatically opens when power supply is lost.
 また、制御部30は、再熱器34への蒸気の流通状態を検知し、再熱器34への蒸気の流れの減少、又は停止を検知した場合、再熱器34の周囲から伝熱媒体を除去する制御を行う。具体的には、制御部30は、タービン50、蒸気供給部37の位置にセンサ等を設置し、蒸気の流量を監視することによって、再熱器34の蒸気の流通状態を検知することができる。 In addition, when the controller 30 detects the flow state of the steam to the reheater 34 and detects a decrease or stop of the flow of the steam to the reheater 34, the control unit 30 starts the heat transfer medium from around the reheater 34. Control to remove. Specifically, the control unit 30 can detect the flow state of the steam in the reheater 34 by installing a sensor or the like at the position of the turbine 50 and the steam supply unit 37 and monitoring the flow rate of the steam. .
 なお、制御部30は、蒸気供給部37の弁54に対して制御信号を送信することによって、当該弁54の開閉を切り替えることができる。ここで、ボイラ起動時は、タービン50を回転させることができる程度に蒸気が高圧になっていない場合がある。当該場合に再熱器34の空焚きを防止するため、制御部30は、ボイラ起動時に、蒸気供給部37を制御することで、タービン50をバイパスして再熱器34へ蒸気を供給することができる。 The control unit 30 can switch between opening and closing of the valve 54 by transmitting a control signal to the valve 54 of the steam supply unit 37. Here, when the boiler is started, the steam may not be high enough to rotate the turbine 50. In this case, in order to prevent the reheater 34 from being aired, the control unit 30 controls the steam supply unit 37 when starting the boiler, thereby bypassing the turbine 50 and supplying steam to the reheater 34. Can do.
 次に、本実施形態に係るボイラシステム100の作用・効果について説明する。 Next, operations and effects of the boiler system 100 according to the present embodiment will be described.
 まず、比較例に係るボイラシステムとして、除去部を有さないボイラシステムについて検討する。このようなボイラシステムにあっては、緊急停止時に、伝熱媒体Wに埋まっている熱交換器に流体が流れなくなる。この場合、流体による冷却機能が得られないため、熱交換器の管が伝熱媒体Wの熱の影響によりダメージを受ける可能性がある。熱交換器の管がダメージを受けないようにするために、管の材質として使用温度の高い材質を選択する必要が生じてしまう。 First, as a boiler system according to a comparative example, a boiler system that does not have a removal unit is examined. In such a boiler system, the fluid does not flow to the heat exchanger embedded in the heat transfer medium W during an emergency stop. In this case, since the cooling function by the fluid cannot be obtained, there is a possibility that the tube of the heat exchanger is damaged due to the heat of the heat transfer medium W. In order to prevent damage to the heat exchanger tube, it is necessary to select a material having a high operating temperature as the material of the tube.
 本実施形態に係るボイラシステム100は、伝熱媒体との間で熱交換を行う流体が流れる熱交換器22を備える。この熱交換器22は、火炉3で加熱された伝熱媒体W中に埋められている。また、ボイラシステム100は、少なくとも熱交換器22内の流体の流れが減少又は停止する緊急停止時において、熱交換器22の周囲から伝熱媒体を除去する除去部24を備えている。従って、緊急停止時に熱交換器22内の流体の流れが減少又は停止しても、熱交換器22の周囲から伝熱媒体Wが除去されるため、伝熱媒体Wの熱によって熱交換器22の管の温度が高くなりすぎることを抑制できる。以上により、緊急停止時に伝熱媒体Wに埋められた熱交換器22を適切に保護することができる。 The boiler system 100 according to the present embodiment includes a heat exchanger 22 through which a fluid that exchanges heat with a heat transfer medium flows. The heat exchanger 22 is buried in the heat transfer medium W heated in the furnace 3. The boiler system 100 also includes a removal unit 24 that removes the heat transfer medium from the periphery of the heat exchanger 22 at least during an emergency stop in which the flow of fluid in the heat exchanger 22 decreases or stops. Therefore, even if the flow of fluid in the heat exchanger 22 decreases or stops during an emergency stop, the heat transfer medium W is removed from the surroundings of the heat exchanger 22, so the heat exchanger 22 is heated by the heat of the heat transfer medium W. It is possible to suppress the temperature of the tube from becoming too high. As described above, it is possible to appropriately protect the heat exchanger 22 buried in the heat transfer medium W during an emergency stop.
 本実施形態に係るボイラシステム100において、火炉の燃焼によって発生した蒸気で回転するタービン50を更に備え、熱交換器22は、流体として、タービン50から排出された蒸気を過熱する再熱器34であってよい。この構成により、緊急停止時に伝熱媒体Wに埋められた再熱器34を適切に保護することができる。 The boiler system 100 according to the present embodiment further includes a turbine 50 that rotates with steam generated by combustion in a furnace, and the heat exchanger 22 is a reheater 34 that superheats steam discharged from the turbine 50 as a fluid. It may be. With this configuration, the reheater 34 buried in the heat transfer medium W at the time of an emergency stop can be appropriately protected.
 本実施形態に係るボイラシステム100において、少なくとも火炉3を含み、伝熱媒体Wを循環させる循環系21を備え、除去部24は、伝熱媒体Wを循環系の系外へ排出することで、熱交換器22の周囲から伝熱媒体Wを除去してよい。この構成により、緊急停止時に伝熱媒体Wを循環系21の系外へ排出するだけのシンプルな構成にて、熱交換器22を保護することができる。 The boiler system 100 according to the present embodiment includes at least the furnace 3 and includes a circulation system 21 that circulates the heat transfer medium W, and the removal unit 24 discharges the heat transfer medium W out of the circulation system. The heat transfer medium W may be removed from the periphery of the heat exchanger 22. With this configuration, the heat exchanger 22 can be protected with a simple configuration in which the heat transfer medium W is simply discharged out of the circulation system 21 during an emergency stop.
 本実施系地に係るボイラシステム100において、除去部24は、ボイラシステム100を制御する制御部30を有し、制御部30は、再熱器34への蒸気の流通状態を検知し、再熱器への蒸気の流れの減少、又は停止を検知した場合、再熱器34の周囲から伝熱媒体Wを除去する制御を行ってよい。この構成により、実際に再熱器34に蒸気が流れていないことを確認した上で、再熱器34の周囲から伝熱媒体を除去することができる。これにより、適切なタイミングで再熱器を保護することができる。 In the boiler system 100 according to the present implementation site, the removal unit 24 includes a control unit 30 that controls the boiler system 100, and the control unit 30 detects the flow state of the steam to the reheater 34 and performs reheating. When the decrease or stop of the steam flow to the heater is detected, control for removing the heat transfer medium W from the periphery of the reheater 34 may be performed. With this configuration, it is possible to remove the heat transfer medium from the periphery of the reheater 34 after confirming that steam does not actually flow through the reheater 34. Thereby, the reheater can be protected at an appropriate timing.
 本発明は上記の実施形態に限定されるもではない。 The present invention is not limited to the above embodiment.
 例えば、熱交換チャンバ20から伝熱媒体Wを除去するための構成は限定されない。例えば、上述の除去部24は、重量によって伝熱媒体Wを移動させていたが、送風機等の機器を用いて伝熱媒体Wを移動させてもよい。あるいは、図4に示すように、熱交換チャンバ20と火炉3とを接続した接続管71と、接続管71に設けられた切替弁72と、を備える除去部73が採用されてもよい。この除去部73は、熱交換チャンバ20内の伝熱媒体Wを直接火炉3へ供給することができる。重力で伝熱媒体Wが移動できるように、熱交換チャンバ20と接続管71との接続部は、火炉3と接続管71との接続部よりも高い位置にある。あるいは、接続管81、切替弁82、及び搬送手段83を備える除去部84が採用されてもよい。搬送手段83は、スクリューコンベア等によって構成されてもよい。搬送手段83は、接続管81から供給された伝熱媒体Wをクーラー等に搬送してよい。これにより、伝熱媒体Wを冷却することができる。なお、搬送手段やクーラーは、停電時の場合には非常用バッテリー等の電力によって動いてよい。 For example, the configuration for removing the heat transfer medium W from the heat exchange chamber 20 is not limited. For example, although the above-described removing unit 24 moves the heat transfer medium W by weight, the heat transfer medium W may be moved using a device such as a blower. Or as shown in FIG. 4, the removal part 73 provided with the connection pipe 71 which connected the heat exchange chamber 20 and the furnace 3, and the switching valve 72 provided in the connection pipe 71 may be employ | adopted. The removing unit 73 can directly supply the heat transfer medium W in the heat exchange chamber 20 to the furnace 3. The connection part between the heat exchange chamber 20 and the connection pipe 71 is located higher than the connection part between the furnace 3 and the connection pipe 71 so that the heat transfer medium W can move by gravity. Or the removal part 84 provided with the connection pipe 81, the switching valve 82, and the conveyance means 83 may be employ | adopted. The conveying means 83 may be configured by a screw conveyor or the like. The transport means 83 may transport the heat transfer medium W supplied from the connection pipe 81 to a cooler or the like. Thereby, the heat transfer medium W can be cooled. In addition, the conveyance means and the cooler may be moved by electric power such as an emergency battery in the event of a power failure.
 また、伝熱媒体Wに埋められる熱交換器22として再熱器を例示したが、ボイラシステム内のあらゆる熱交換器を伝熱媒体Wに埋めて除去部を設けてもよい。例えば、火炉3の中に存在する層内管を、熱交換器22として伝熱媒体Wに埋めてもよい。また、タービンよりも上流側に配置される過熱器の一部を熱交換器22として伝熱媒体Wに埋めてもよい。また、火炉3の熱で蒸気を発生させる蒸発管を熱交換器22として伝熱媒体Wに埋めてもよい。 Further, although the reheater is illustrated as the heat exchanger 22 buried in the heat transfer medium W, any heat exchanger in the boiler system may be buried in the heat transfer medium W to provide a removal unit. For example, the inner pipe existing in the furnace 3 may be buried in the heat transfer medium W as the heat exchanger 22. Further, a part of the superheater arranged on the upstream side of the turbine may be embedded in the heat transfer medium W as the heat exchanger 22. Further, an evaporation pipe that generates steam by the heat of the furnace 3 may be buried in the heat transfer medium W as the heat exchanger 22.
 3…火炉、21…循環系、22…熱交換器、24…除去部、30…制御部、34…再熱器、50…タービン、100…ボイラシステム。 3 ... Furnace, 21 ... Circulation system, 22 ... Heat exchanger, 24 ... Removal part, 30 ... Control part, 34 ... Reheater, 50 ... Turbine, 100 ... Boiler system.

Claims (4)

  1.  燃料の燃焼によって伝熱媒体を加熱する火炉と、
     前記火炉で加熱された伝熱媒体中に埋められており、前記伝熱媒体との間で熱交換を行う流体が流れる熱交換器と、
     少なくとも前記熱交換器内の前記流体の流れが減少又は停止する緊急停止時において、前記熱交換器の周囲から前記伝熱媒体を除去する除去部と、を備えるボイラシステム。
    A furnace that heats the heat transfer medium by burning fuel;
    A heat exchanger that is buried in a heat transfer medium heated in the furnace and in which a fluid that exchanges heat with the heat transfer medium flows;
    A boiler system comprising: a removal unit that removes the heat transfer medium from the periphery of the heat exchanger at an emergency stop in which the flow of the fluid in the heat exchanger is reduced or stopped.
  2.  前記火炉の燃焼によって発生した蒸気で回転するタービンを更に備え、
     前記熱交換器は、前記流体として、前記タービンから排出された蒸気を過熱する再熱器である、請求項1に記載のボイラシステム。
    A turbine that rotates with steam generated by the combustion of the furnace;
    The boiler system according to claim 1, wherein the heat exchanger is a reheater that superheats steam discharged from the turbine as the fluid.
  3.  少なくとも前記火炉を含み、前記伝熱媒体を循環させる循環系を備え、
     前記除去部は、前記伝熱媒体を前記循環系の系外へ排出することで、前記熱交換器の周囲から前記伝熱媒体を除去する、請求項1又は2に記載のボイラシステム。
    Including at least the furnace, comprising a circulation system for circulating the heat transfer medium,
    The boiler system according to claim 1 or 2, wherein the removing unit removes the heat transfer medium from the periphery of the heat exchanger by discharging the heat transfer medium out of the circulation system.
  4.  前記除去部はボイラシステムの制御を行う制御部を有し、
     前記制御部は、前記再熱器への前記蒸気の流通状態を検知し、前記再熱器への前記蒸気の流れの減少、又は停止を検知した場合、前記再熱器の周囲から前記伝熱媒体を除去する制御を行う、請求項2に記載のボイラシステム。
    The removal unit has a control unit for controlling the boiler system,
    The controller detects the flow state of the steam to the reheater, and when detecting a decrease or stop of the flow of the steam to the reheater, the heat transfer from the periphery of the reheater. The boiler system of Claim 2 which performs control which removes a medium.
PCT/JP2017/033136 2016-11-04 2017-09-13 Boiler system WO2018083889A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2019002223A MY194582A (en) 2016-11-04 2017-09-13 Boiler system
KR1020197008124A KR102337478B1 (en) 2016-11-04 2017-09-13 boiler system
PH12019500909A PH12019500909A1 (en) 2016-11-04 2019-04-24 Boiler system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-216473 2016-11-04
JP2016216473A JP6712534B2 (en) 2016-11-04 2016-11-04 Boiler system

Publications (1)

Publication Number Publication Date
WO2018083889A1 true WO2018083889A1 (en) 2018-05-11

Family

ID=62075804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033136 WO2018083889A1 (en) 2016-11-04 2017-09-13 Boiler system

Country Status (5)

Country Link
JP (1) JP6712534B2 (en)
KR (1) KR102337478B1 (en)
MY (1) MY194582A (en)
PH (1) PH12019500909A1 (en)
WO (1) WO2018083889A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104007A (en) * 1982-12-02 1984-06-15 Babcock Hitachi Kk Fluidized-bed boiler device
JPH0599401A (en) * 1991-10-11 1993-04-20 Babcock Hitachi Kk Safety device for pressurized fluidized bed boiler
JPH0650509A (en) * 1992-07-31 1994-02-22 Ishikawajima Harima Heavy Ind Co Ltd Emergency operating method of pressurized fluidized bed boiler
JPH07324705A (en) * 1994-06-02 1995-12-12 Hitachi Ltd Emergency stop method for pressure fluidized bed boiler
JPH09112809A (en) * 1995-10-17 1997-05-02 Ishikawajima Harima Heavy Ind Co Ltd Generator
JPH09145004A (en) * 1995-11-21 1997-06-06 Hitachi Ltd Emergency shutdown control of device pressurized fluidized bed boiler
JP2008196718A (en) * 2007-02-08 2008-08-28 Chugoku Electric Power Co Inc:The Bed density optimization method and system for bed material in pressurized fluidized bed boiler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193826A (en) * 1992-12-21 1994-07-15 Hitachi Ltd Fluidized bed boiler equipment and composite power generating facilities
JP2001041415A (en) 1999-08-03 2001-02-13 Mitsui Eng & Shipbuild Co Ltd Combustion method and apparatus for chloride containing fuel in circulated fluidized bed boiler
US8689709B2 (en) * 2011-05-04 2014-04-08 Southern Company Oxycombustion in transport oxy-combustor
JP5925587B2 (en) * 2012-05-14 2016-05-25 住友重機械工業株式会社 Operation diagnosis method and operation diagnosis device for circulating fluidized bed boiler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104007A (en) * 1982-12-02 1984-06-15 Babcock Hitachi Kk Fluidized-bed boiler device
JPH0599401A (en) * 1991-10-11 1993-04-20 Babcock Hitachi Kk Safety device for pressurized fluidized bed boiler
JPH0650509A (en) * 1992-07-31 1994-02-22 Ishikawajima Harima Heavy Ind Co Ltd Emergency operating method of pressurized fluidized bed boiler
JPH07324705A (en) * 1994-06-02 1995-12-12 Hitachi Ltd Emergency stop method for pressure fluidized bed boiler
JPH09112809A (en) * 1995-10-17 1997-05-02 Ishikawajima Harima Heavy Ind Co Ltd Generator
JPH09145004A (en) * 1995-11-21 1997-06-06 Hitachi Ltd Emergency shutdown control of device pressurized fluidized bed boiler
JP2008196718A (en) * 2007-02-08 2008-08-28 Chugoku Electric Power Co Inc:The Bed density optimization method and system for bed material in pressurized fluidized bed boiler

Also Published As

Publication number Publication date
KR20190077315A (en) 2019-07-03
PH12019500909A1 (en) 2020-01-20
JP6712534B2 (en) 2020-06-24
MY194582A (en) 2022-12-02
JP2018071951A (en) 2018-05-10
KR102337478B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
RU2539449C2 (en) Method and installation for recovering heat from ash residues
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
CA2638330C (en) Black plant steam furnace injection
JP5818307B2 (en) Boiler equipment and method for controlling gas temperature at outlet thereof
WO2018083889A1 (en) Boiler system
EP2871336B1 (en) Method for managing a shut down of a boiler
CN112303608A (en) Boiler power generation equipment and control method thereof
CN108350369B (en) Gasification device, control device, gasification combined power generation facility, and control method
TWI522577B (en) Booster air heater for high moisture fuels
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP5956210B2 (en) Start-up method of pressurized flow furnace system
CN105387441A (en) Anti-burning-dry water storage device and anti-burning-dry boiler
JP6952108B2 (en) Air preheater
JP7408369B2 (en) Heat utilization system and its operation stop method
WO2021039311A1 (en) Boiler system, control method, and program
JPS6337281B2 (en)
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
JPS621523Y2 (en)
JP2003083501A (en) Fluidized bed boiler
JP5606592B2 (en) Temperature control system
JPH06281103A (en) Emergency water supplying device for fluidized bed type boiler
JPH06300235A (en) Fluidized-bed type refuse incinerator with waste heat boiler
JPH09137904A (en) Power plant with steam generator
JPH08296801A (en) Reheater-protecting apparatus for pressurized fluidized bed boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008124

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868193

Country of ref document: EP

Kind code of ref document: A1