JPH06281103A - Emergency water supplying device for fluidized bed type boiler - Google Patents

Emergency water supplying device for fluidized bed type boiler

Info

Publication number
JPH06281103A
JPH06281103A JP7025993A JP7025993A JPH06281103A JP H06281103 A JPH06281103 A JP H06281103A JP 7025993 A JP7025993 A JP 7025993A JP 7025993 A JP7025993 A JP 7025993A JP H06281103 A JPH06281103 A JP H06281103A
Authority
JP
Japan
Prior art keywords
supplied
hot water
emergency
water
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7025993A
Other languages
Japanese (ja)
Inventor
Akio Nishiyama
明雄 西山
Taro Sakata
太郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP7025993A priority Critical patent/JPH06281103A/en
Publication of JPH06281103A publication Critical patent/JPH06281103A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a heat transfer pipe part to be cooled easily, in less-expensive manner and rapidly in the case of emergency state without requiring any special pressurizing device and the like by a method wherein a hot water tank for heating stored water is installed, and the hot water stored in the hot water tank is supplied to a heat transfer pipe in a fluidized bed type boiler due to a difference in gravity. CONSTITUTION:Air compressed by an air compressor 1 is supplied to a pressure container 2. Combustion gas generated by a fludized bed type furnace 3 installed within the pressurized container 2 is supplied to a gas turbine 4, thereafter passes through a discharged gas heat exchanger 5 and is discharged from a chimney 6. On the other hand, water supplied from a boiler water supplying pump 7 is heated by a discharged gas heat exchanger 5, thereafter the water is supplied from a water supplying pipe 8 to an evaporator 9 within the furnace 3 so as to generate steam. The steam passes through a gas-water separator 10 and an over-heating pipe 11 and is supplied to a steam turbine 14. In this case, if the emergency case occurs, hot water stored in an emergency hot water tank 39 is supplied under a difference in gravity. With such an arrangement as above, the hot water is immediately evaporated so as to generate steam and then the over-heating pipe 11 is cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流動層ボイラに関し、特
に非常時の燃焼ボイラ給水を供給するのに好適な給水装
置を備えた流動層ボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed boiler, and more particularly to a fluidized bed boiler equipped with a water supply device suitable for supplying combustion boiler feed water in an emergency.

【0002】[0002]

【従来の技術】図3に特開平1−211624号公報に
開示された流動層ボイラの代表例である従来の加圧流動
層ボイラの非常時給水を含む給水系統図を示す。加圧流
動層ボイラではコンプレッサー51により圧縮された空
気が風道52および風量調節弁53を経て圧力容器54
に供給される。圧力容器54内には流動層火炉55が設
置され、その中にはベッドマテリアル(BM)が入って
おり、火炉55には図示しない経路より燃料が供給さ
れ、火炉55の下部から供給される加圧空気によりBM
と共に流動化されながら燃焼している。流動層が形成さ
れる領域には伝熱管56が配置されていて伝熱管56内
の水は加熱されて蒸気を生成する。また、火炉55で生
成した燃焼ガスは集塵器57、煙道58、59および開
閉弁60を経由してガスタービン62に導かれる。
2. Description of the Related Art FIG. 3 shows a water supply system diagram including an emergency water supply of a conventional pressurized fluidized bed boiler which is a representative example of the fluidized bed boiler disclosed in Japanese Patent Laid-Open No. 1-211624. In the pressurized fluidized bed boiler, the air compressed by the compressor 51 passes through the air passage 52 and the air volume control valve 53, and then the pressure container 54.
Is supplied to. A fluidized bed furnace 55 is installed in the pressure vessel 54, and a bed material (BM) is contained therein, and fuel is supplied to the furnace 55 through a route (not shown) and is supplied from a lower portion of the furnace 55. BM by compressed air
It is burning while being fluidized with it. A heat transfer tube 56 is arranged in a region where the fluidized bed is formed, and the water in the heat transfer tube 56 is heated to generate steam. Further, the combustion gas generated in the furnace 55 is guided to the gas turbine 62 via the dust collector 57, the flues 58 and 59, and the opening / closing valve 60.

【0003】上記加圧流動層ボイラの運転中において、
例えば、何らかの原因で発電所内全部の機器の電源が喪
失し、運転停止が発生した場合、図示しないボイラ給水
ポンプもトリップし、火炉55の給水が止まることにな
る。そのため、BMに触れている伝熱管56には給水が
されないことから火炉55壁面と伝熱管56が焼損され
るおそれがありる。これを避けるためには、まず、コン
プレッサー51からの空気を止めて、流動層の流動を停
止させ、流動層からの熱伝導を抑制した後冷却する。し
かも、給水停止後約1分以内に定格の10〜20%の給
水量を確保し、かつ、伝熱管56内で蒸気を発生させて
冷却を行い、焼損を防ぐ必要がある。
During operation of the pressurized fluidized bed boiler,
For example, if the power supply to all the equipment in the power plant is lost for some reason and the operation is stopped, the boiler water supply pump (not shown) also trips and the water supply to the furnace 55 is stopped. Therefore, water is not supplied to the heat transfer tube 56 that is in contact with the BM, so that the wall surface of the furnace 55 and the heat transfer tube 56 may be burned. In order to avoid this, first, the air from the compressor 51 is stopped, the flow of the fluidized bed is stopped, the heat conduction from the fluidized bed is suppressed, and then the fluidized bed is cooled. In addition, it is necessary to secure a water supply amount of 10 to 20% of the rated value within about 1 minute after stopping the water supply, and to generate steam in the heat transfer tube 56 for cooling to prevent burnout.

【0004】発電所内全部の機器の非常停止時には、ガ
スタービン62も停止するので、弁53、60ともに閉
鎖して、火炉55内の排ガスを煙道58から流路63に
導き、熱交換器64で冷却し、窒素ガスタンク65から
窒素ガス供給管、窒素ガス調節弁66、67を介して供
給される窒素ガスと共に火炉55内に供給して、BMを
流動化させてBMを冷却する。
At the time of an emergency stop of all the equipment in the power plant, the gas turbine 62 is also stopped. Therefore, both valves 53 and 60 are closed to guide the exhaust gas in the furnace 55 from the flue 58 to the flow passage 63, and the heat exchanger 64. Then, the BM is cooled and supplied into the furnace 55 together with the nitrogen gas supplied from the nitrogen gas tank 65 through the nitrogen gas supply pipe and the nitrogen gas control valves 66 and 67 to fluidize the BM and cool the BM.

【0005】BMが所定の温度まで冷却されるまでは、
火炉55の壁面、伝熱管56を焼損から保護するための
非常用給水設備が必要である。この非常用給水装置に
は、別途設置される所内非常用ディーゼル発電機(図示
せず)を起動し、電源供給を受けて運転する非常用給水
ポンプ(図示せず)と、ディーゼル発電機が起動するま
での約5分間(余裕時間を含む)の給水を行う初期給水
設備が必要である。初期給水設備の中には、1分以内に
ボイラに給水を供給することが要求されるので、高圧の
不活性ガス、例えば250kg/cm2程度の窒素ガス
を用いて貯水タンクから水を押し出すための設備を設け
る必要がある。そのため、窒素ガスタンク65は高圧設
計(約250kg/cm2)の厚肉容器であって、しか
も、約60m3の容量が必要であり、その製造および定
期検査時の点検に費用が掛かる問題点があった。さら
に、冷水を供給するのでは、蒸気発生量が不十分であ
り、伝熱管56等の焼損防止に必要な蒸気が得られない
という問題があった。
Until the BM is cooled to a predetermined temperature,
An emergency water supply facility is required to protect the wall surface of the furnace 55 and the heat transfer tubes 56 from burnout. In this emergency water supply system, an on-site emergency diesel generator (not shown) is started, and an emergency water supply pump (not shown) that operates by receiving power supply is also started. It is necessary to have an initial water supply facility that supplies water for about 5 minutes (including the allowance time). Since some initial water supply facilities are required to supply water to the boiler within one minute, in order to push out water from the water storage tank using high-pressure inert gas, for example, nitrogen gas of about 250 kg / cm 2. It is necessary to install the equipment of. Therefore, the nitrogen gas tank 65 is a thick container with a high-pressure design (about 250 kg / cm 2 ), and needs a capacity of about 60 m 3 , which is a problem in that its manufacturing and inspection at the time of periodic inspection are expensive. there were. Further, if cold water is supplied, the amount of steam generated is insufficient, and there is a problem that steam necessary for preventing burnout of the heat transfer tubes 56 and the like cannot be obtained.

【0006】また、特開昭61−22103号公報には
図4に示すように、ボイラ循環ポンプ70により、缶水
をボイラドラム71と流動層内伝熱管72との間で強制
循環させる流動層ボイラが開示され、ボイラの非常停止
時には緊急補給水系統73により、強制循環用のポンプ
70をバイパスするバイパス管75により、缶水を自然
循環させて流動層の残熱により層内伝熱管72内の給水
を蒸発させて流動層火炉74内の伝熱管72と火炉壁の
焼損防止を図るものである。このとき、自然循環により
発生した蒸気は系外に排出して自然循環力を保持する
が、ボイラドラム71内の缶水が減少して、自然循環力
がなくなると、緊急動力系統により作動するポンプ76
により缶水を補給することができる。なお、図4におい
て、給水は復水器77、脱気器78、ボイラ給水ポンプ
79および節炭器80をへてボイラドラム71に供給さ
れる。この発明の非常用給水装置は、別途設置される所
内非常用ディーゼル発電機等から電源供給を受ける非常
用給水ポンプ76が必要であり、このディーゼル発電機
を起動するためには、少なくとも約5分の起動時間が必
要である等の問題点があった。
Further, as shown in FIG. 4 of Japanese Patent Laid-Open No. 61-22103, a fluidized bed in which boiler water is forcedly circulated between a boiler drum 71 and a heat transfer tube 72 in a fluidized bed by a boiler circulation pump 70. A boiler is disclosed, and in the case of an emergency stop of the boiler, the canister water is naturally circulated by the emergency makeup water system 73 and the bypass pipe 75 that bypasses the pump 70 for forced circulation. Is intended to prevent the heat transfer tubes 72 in the fluidized bed furnace 74 and the furnace wall from being burned. At this time, the steam generated by the natural circulation is discharged to the outside of the system to maintain the natural circulation force, but when the canned water in the boiler drum 71 decreases and the natural circulation force disappears, the pump operated by the emergency power system. 76
The can water can be replenished by. In FIG. 4, the water supply is supplied to the boiler drum 71 through the condenser 77, the deaerator 78, the boiler water supply pump 79 and the economizer 80. The emergency water supply device of the present invention requires an emergency water supply pump 76 which is supplied with power from a separately installed on-site emergency diesel generator or the like. In order to start this diesel generator, at least about 5 minutes are required. There was a problem that startup time was required.

【0007】[0007]

【発明が解決しようとする課題】上記第一の従来技術
は、非常用給水装置の内の窒素ガスタンク65の容量
(約60m3)の製造費用等の大幅増大についての配慮
がされておらず、設備費用が大きくなること、メンテナ
ンス、点検範囲が拡大する問題があった。 上記第二の
従来技術は、非常用給水装置のディーゼル発電機を起動
時間が長すぎて、緊急時の対策としては不十分であっ
た。本発明の目的は迅速に起動し、設備費用、メンテナ
ンス、点検範囲を縮小した流動層ボイラの非常用給水装
置を提供することにある。
The first prior art described above does not take into consideration a large increase in the manufacturing cost of the capacity (about 60 m 3 ) of the nitrogen gas tank 65 in the emergency water supply device, There was a problem that equipment cost increased and maintenance and inspection range expanded. The second prior art described above is insufficient as an emergency measure because the starting time of the diesel generator of the emergency water supply device is too long. It is an object of the present invention to provide an emergency water supply system for a fluidized bed boiler, which starts quickly and reduces the facility cost, maintenance and inspection range.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、加熱手段により内
部に蓄えられた貯水を加熱する温水タンクと、該温水タ
ンク内の温水を重力差により流動層ボイラの伝熱管部に
供給する構成を備えた流動層ボイラの非常用給水装置で
ある。このとき、温水タンクは流動層ボイラの伝熱管の
出口に接続される気水分離器と接続している構成が望ま
しい。
The above objects of the present invention can be achieved by the following constitutions. That is, an emergency water supply device for a fluidized bed boiler having a hot water tank for heating the water stored inside by the heating means and a structure for supplying the hot water in the hot water tank to the heat transfer pipe section of the fluidized bed boiler by a gravity difference. Is. At this time, it is desirable that the hot water tank is connected to a steam separator connected to the outlet of the heat transfer tube of the fluidized bed boiler.

【0009】[0009]

【作用】発電所内全部の機器の非常停止時には、給水停
止後約1分以内に定格の10〜20%の給水量を確保
し、伝熱管で蒸気を発生させて火炉壁と伝熱管とを冷却
し、焼損を防ぐ必要がある。本発明の構成によれば、温
水タンク内の貯留水は流動層ボイラの蒸発器に注水され
ると、すぐに蒸気を作り出し、その蒸気で過熱器を冷却
できるように蒸気圧力の飽和温度近くまで加熱手段(例
えば、電熱ヒータ等)で常に加温されている。そして、
ボイラの非常停止時には、電気的動力源等の特別な動力
源に頼る事なく、温水タンク内の温水を重力差により流
動層ボイラの伝熱管に供給できるので、伝熱管と火炉壁
が焼損するおそれがなくなる。
[Operation] During an emergency stop of all the equipment in the power plant, secure a 10 to 20% of the rated water supply within about 1 minute after the water supply is stopped, and generate steam in the heat transfer tube to cool the furnace wall and the heat transfer tube. However, it is necessary to prevent burnout. According to the configuration of the present invention, when the stored water in the hot water tank is poured into the evaporator of the fluidized bed boiler, steam is immediately produced, and the steam can reach the saturation temperature of the steam pressure so as to cool the superheater. It is constantly heated by a heating means (for example, an electric heater). And
At the time of emergency stop of the boiler, hot water in the hot water tank can be supplied to the heat transfer tube of the fluidized bed boiler by gravity difference without relying on a special power source such as an electric power source, so the heat transfer tube and the furnace wall may be burned out. Disappears.

【0010】また、この温水タンクを流動層ボイラの伝
熱管の出口に接続される気水分離器と接続しておけば、
温水タンク内が減圧されることなく、スムーズに伝熱管
に温水が供給される。本発明の伝熱管が蒸発器または過
熱器としての機能を持つ場合は温水タンクから供給され
る温水は、まず蒸発器で蒸気を生成しながら、この蒸発
器を冷却し、発生した蒸気は過熱器に送られて、過熱器
の冷却に使用される。こうして、本発明では従来技術の
窒素ガスでの加圧系統は不要となり、製造費用、メンテ
ナンス、点検範囲の削減が図れる。
If this hot water tank is connected to a steam separator connected to the outlet of the heat transfer tube of the fluidized bed boiler,
Hot water is smoothly supplied to the heat transfer tubes without depressurizing the inside of the hot water tank. When the heat transfer tube of the present invention has a function as an evaporator or a superheater, the hot water supplied from the hot water tank cools the evaporator while first generating steam in the evaporator, and the generated steam is the superheater. Sent to and used to cool the superheater. Thus, according to the present invention, the conventional nitrogen gas pressurizing system is unnecessary, and the manufacturing cost, maintenance, and inspection range can be reduced.

【0011】[0011]

【実施例】本発明の実施例の流動層ボイラ系統図を、加
圧流動層ボイラを例にして図1、図2の系統図により説
明する。図1には流動層ボイラの全体の系統図を示し、
図2にはその中の非常用温水タンク部分の注水系統のみ
を示す。空気圧縮機1により圧縮された空気が圧縮機出
口弁1aを経て圧力容器2に供給される。圧力容器2内
には流動層火炉3が設置され、その中にはBMが入って
おり、火炉3には図示しない燃料管により燃料が供給さ
れ流動している。火炉3で生成した燃焼ガスはガスター
ビン入口弁4aに導かれ、ガスタービン4での仕事の
後、排ガス熱交換器5で熱回収されて、煙突6から大気
中に排出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A fluidized bed boiler system diagram of an embodiment of the present invention will be described with reference to the system diagrams of FIGS. 1 and 2 by taking a pressurized fluidized bed boiler as an example. Figure 1 shows the overall system diagram of the fluidized bed boiler.
Figure 2 shows only the water injection system of the emergency hot water tank part. The air compressed by the air compressor 1 is supplied to the pressure vessel 2 via the compressor outlet valve 1a. A fluidized bed furnace 3 is installed in the pressure vessel 2, and BM is contained therein, and fuel is supplied to the furnace 3 by a fuel pipe (not shown) to flow. The combustion gas generated in the furnace 3 is guided to the gas turbine inlet valve 4a, and after the work in the gas turbine 4, the heat is recovered in the exhaust gas heat exchanger 5 and discharged from the chimney 6 to the atmosphere.

【0012】また水蒸気系ではボイラ給水ポンプ7から
のボイラ給水は排ガス熱交換器5で排ガスで加熱された
後、給水管8から火炉3内の蒸発器9に供給され蒸気を
生成する。蒸気は気水分離器10で気水分離された後、
過熱器11で過熱蒸気となり、蒸気遮断弁13を経て蒸
気タービン14に供給される。蒸気タービン14で使用
された蒸気は復水器16を経て、再度ボイラ給水に利用
される。なお、ガスタービン4と蒸気タービン14には
それぞれ発電機15が同軸上に設けられている。また、
タービンバイパス弁17はボイラ起動時等の過熱蒸気が
十分生成されない間に使用される。
In the steam system, the boiler feedwater from the boiler feedwater pump 7 is heated by the exhaust gas in the exhaust gas heat exchanger 5, and then supplied from the feedwater pipe 8 to the evaporator 9 in the furnace 3 to generate steam. After the steam is separated into steam and water by the steam separator 10,
It becomes superheated steam in the superheater 11, and is supplied to the steam turbine 14 via the steam cutoff valve 13. The steam used in the steam turbine 14 passes through the condenser 16 and is reused for boiler water supply. A generator 15 is coaxially provided in each of the gas turbine 4 and the steam turbine 14. Also,
The turbine bypass valve 17 is used while the superheated steam is not sufficiently generated when the boiler is started.

【0013】流動層火炉3の起動時および低負荷時は、
蒸発器9内が気水混合状態であるため、気水分離器10
で気体と分離されたボイラ水は、ボイラ循環ポンプ18
を経て再び火炉3へ給水される。火炉3内には蒸発器
9、過熱器11がベッドマテリアル(BM)につかって
おり、給水量に見合った熱吸収により給水の蒸発と、発
生蒸気の過熱をするためBMタンク37内にあるBMを
出し入れして、火炉3内のBMの層高を変えるようにな
っている。BMタンク37の空塔部には排気弁38が接
続し、BMを抜出ホッパ21からBMタンク37へ輸送
する時の搬送空気の排気に用いられる。
At startup of the fluidized bed furnace 3 and at low load,
Since the inside of the evaporator 9 is in a steam-water mixed state, the steam-water separator 10
The boiler water separated from the gas in the boiler circulation pump 18
After that, water is again supplied to the furnace 3. An evaporator 9 and a superheater 11 are attached to the bed material (BM) in the furnace 3, and the BM in the BM tank 37 is used to evaporate the feed water and superheat the generated steam by absorbing heat in proportion to the amount of water supplied. Is taken in and out to change the bed height of the BM in the furnace 3. An exhaust valve 38 is connected to the empty tower portion of the BM tank 37 and is used for exhausting carrier air when the BM is transported from the extraction hopper 21 to the BM tank 37.

【0014】火炉3では通常運転中に発電所内全部の機
器の停止が発生した場合、復水器16に蒸気を入れられ
ないことからボイラ給水ポンプ7もトリップし、火炉3
の給水が止まることになり火炉3、ガスタービン4は停
止する。そのとき、BMに触れている火炉3、蒸発器
9、過熱器11は焼損を避けるために冷却する必要があ
る。つまり、給水停止後約1分以内に定格の約10〜2
0%の給水量を確保し、かつ、火炉3、蒸発器9で蒸気
を発生させて冷却を行うとともに、その発生蒸気を大気
放出弁12を開くことにより過熱器11に通気して、こ
れを冷却し、焼損を防ぐ必要がある。
In the furnace 3, if all the equipment in the power plant is stopped during normal operation, steam cannot be put into the condenser 16, so the boiler feed pump 7 also trips, and the furnace 3
The water supply to the furnace is stopped, and the furnace 3 and the gas turbine 4 are stopped. At that time, it is necessary to cool the furnace 3, the evaporator 9, and the superheater 11 which are in contact with the BM in order to avoid burning. In other words, within about 1 minute after stopping water supply
A 0% water supply amount is secured, and steam is generated in the furnace 3 and the evaporator 9 for cooling, and the generated steam is ventilated to the superheater 11 by opening the atmosphere release valve 12, and this It should be cooled to prevent burnout.

【0015】非常時の給水装置は次のような給水を蒸発
器9に行う。 (1)まず、火炉3より高い位置に配置した非常用温水
タンク39から蒸発器9に供給する。これについては図
2で詳細に説明する。 (2)純水タンク27から非常用給水ポンプ28により
非常用給水弁35と排ガス熱交換器5を経由して給水管
8から火炉の蒸発器9に給水する。
The emergency water supply device supplies the following water to the evaporator 9. (1) First, the hot water for emergency 39 provided at a position higher than the furnace 3 supplies the water to the evaporator 9. This will be described in detail with reference to FIG. (2) Water is supplied from the pure water tank 27 to the evaporator 9 of the furnace from the water supply pipe 8 via the emergency water supply valve 35 and the exhaust gas heat exchanger 5 by the emergency water supply pump 28.

【0016】上記(1)の非常用温水タンク39から蒸
発器9に供給する非常時の給水系統は図2に詳細に記載
する。非常時用のポンプ28等は所内停電時等の非常時
に直ぐには立ち上がらないが、弁40は非常時に即座に
作動して開放するので、まず、非常用温水タンク39に
は該タンク39内の温水が弁40を介して蒸発器9に注
水されてすぐに蒸発して蒸気を作り出してこれを冷却
し、さらに、その蒸気で過熱管11を冷却できる。その
ために非常用温水タンク39内の貯水は蒸気圧力の飽和
温度近く((飽和温度)−(10〜30℃))まで電熱
ヒータ42とその制御装置43で常に加熱して置く。ま
た、非常用温水タンク39は火炉3の蒸発器9より約2
0m程度上方に設置して、供給用温水の静水頭を確保す
る。こうして、蒸発器9への注水圧力を約2kg/cm
2とすることができる。また、ボイラの非常停止時には
温水タンク39の空塔部と気水分離器10との空塔部を
つなぐ配管41に設けられる均等弁44が開放し、温水
の蒸発器9への注水を円滑化する。なお、平常時には弁
40、44は閉鎖している。
The emergency water supply system for supplying the evaporator 9 from the emergency hot water tank 39 of (1) is described in detail in FIG. Although the emergency pump 28 and the like do not immediately start up in an emergency such as a power failure in the office, the valve 40 immediately operates and opens in an emergency. Therefore, first, the emergency hot water tank 39 is provided with hot water in the tank 39. Is poured into the evaporator 9 through the valve 40, and immediately evaporates to produce steam, which is cooled, and the superheated tube 11 can be cooled by the steam. Therefore, the stored water in the emergency hot water tank 39 is always heated and kept by the electric heater 42 and its control device 43 up to the saturation temperature of the steam pressure ((saturation temperature) − (10 to 30 ° C.)). In addition, the emergency hot water tank 39 is about 2 times larger than the evaporator 9 of the furnace 3.
Install it about 0m above to secure a static head of hot water for supply. In this way, the water injection pressure to the evaporator 9 is about 2 kg / cm.
It can be 2 . Further, at the time of an emergency stop of the boiler, the equalizing valve 44 provided in the pipe 41 connecting the empty tower part of the hot water tank 39 and the empty tower part of the steam separator 10 is opened, and the hot water is smoothly injected into the evaporator 9. To do. The valves 40 and 44 are normally closed.

【0017】このように本実施例では非常用温水タンク
39は火炉3の蒸発器9より約20m程度上方に設置し
て、供給用温水の静水頭を確保するので、従来技術のよ
うな高圧設計(約250kg/cm2)の窒素ガスタン
クを設ける必要が無くなる。なお、非常時には気水分離
器10内の水を非常時用の給水ポンプ29から蒸発器9
に供給することもできる。また、ボイラの非常停止時に
は火炉3内のBMを抜き出す必要があるが、図1に示す
ようにBM抜出弁31を経てBM冷却器19にBMを抜
き出し、ここでBMを冷却した後、均圧ホッパ20とB
M抜出ホッパ21に送る。このBM冷却用の給水はBM
冷却水ポンプ22から非常時用のポンプ23により、弁
34を経てBM冷却器19に送る。また、BM冷却器1
9には純水タンク27からの冷却水も弁30を経由して
給水される。上記構成において、非常用の駆動源である
ポンプ23、28、29は別途設置される所内非常用デ
ィーゼル発電機等により電源供給を受ける。
As described above, in this embodiment, the emergency hot water tank 39 is installed about 20 m above the evaporator 9 of the furnace 3 to secure the static head of the hot water for supply. It is not necessary to provide a nitrogen gas tank (about 250 kg / cm 2 ). In an emergency, the water in the steam separator 10 is transferred from the water supply pump 29 for an emergency to the evaporator 9
Can also be supplied to. Further, at the time of an emergency stop of the boiler, it is necessary to extract the BM in the furnace 3, but as shown in FIG. 1, the BM is extracted to the BM cooler 19 via the BM extraction valve 31, and after the BM is cooled, the BM is uniformly cooled. Pressure hopper 20 and B
Send to M extraction hopper 21. This BM cooling water supply is BM
From the cooling water pump 22 to the BM cooler 19 via the valve 34 by the emergency pump 23. Also, the BM cooler 1
Cooling water from the pure water tank 27 is also supplied to the valve 9 through the valve 30. In the above configuration, the pumps 23, 28, 29, which are the drive sources for the emergency, are supplied with power from a separately installed emergency diesel generator or the like.

【0018】[0018]

【発明の効果】本発明によれば、加圧流動層ボイラへの
非常用給水タンクを加圧するための窒素ガスタンクおよ
び窒素ガス供給装置が削減できるので、設備費およびメ
ンテナンス費用、点検範囲を削減できる効果がある。
According to the present invention, since the nitrogen gas tank and the nitrogen gas supply device for pressurizing the emergency water supply tank to the pressurized fluidized bed boiler can be reduced, the facility cost, maintenance cost, and inspection range can be reduced. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の加圧流動層ボイラへの非常
用給水装置の系統図である。
FIG. 1 is a system diagram of an emergency water supply system for a pressurized fluidized bed boiler according to an embodiment of the present invention.

【図2】 図1の非常用温水タンク部分の詳細図であ
る。
2 is a detailed view of the emergency hot water tank portion of FIG. 1. FIG.

【図3】 従来技術の加圧流動層ボイラの給水装置を含
む系統図である。
FIG. 3 is a system diagram including a water supply device for a pressurized fluidized bed boiler of the related art.

【図4】 従来技術の流動層ボイラの給水装置を含む系
統図である。
FIG. 4 is a system diagram including a water supply device of a conventional fluidized bed boiler.

【符号の説明】[Explanation of symbols]

2…圧力容器、3…流動層火炉、4…ガスタービン、9
…蒸発器、10…気水分離器、11…過熱管、14…蒸
気タービン、19…BM冷却器、27…純水タンク、3
9…非常用温水タンク、42…電熱ヒータ
2 ... Pressure vessel, 3 ... Fluidized bed furnace, 4 ... Gas turbine, 9
... Evaporator, 10 ... Steam separator, 11 ... Superheat pipe, 14 ... Steam turbine, 19 ... BM cooler, 27 ... Pure water tank, 3
9 ... Emergency hot water tank, 42 ... Electric heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段により内部に蓄えられた貯水を
加熱する温水タンクと、該温水タンク内の温水を重力差
により流動層ボイラの伝熱管部に供給する構成を備えた
ことを特徴とする流動層ボイラの非常用給水装置。
1. A hot water tank for heating stored water stored therein by a heating means, and a structure for supplying hot water in the hot water tank to a heat transfer pipe section of a fluidized bed boiler by a gravity difference. Emergency water supply system for fluidized bed boiler.
【請求項2】 温水タンクは流動層ボイラの伝熱管の出
口に接続される気水分離器と接続していることを特徴と
する請求項1記載の流動層ボイラの非常用給水装置。
2. The emergency water supply system for a fluidized bed boiler according to claim 1, wherein the hot water tank is connected to a steam separator connected to the outlet of the heat transfer tube of the fluidized bed boiler.
JP7025993A 1993-03-29 1993-03-29 Emergency water supplying device for fluidized bed type boiler Pending JPH06281103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7025993A JPH06281103A (en) 1993-03-29 1993-03-29 Emergency water supplying device for fluidized bed type boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7025993A JPH06281103A (en) 1993-03-29 1993-03-29 Emergency water supplying device for fluidized bed type boiler

Publications (1)

Publication Number Publication Date
JPH06281103A true JPH06281103A (en) 1994-10-07

Family

ID=13426371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7025993A Pending JPH06281103A (en) 1993-03-29 1993-03-29 Emergency water supplying device for fluidized bed type boiler

Country Status (1)

Country Link
JP (1) JPH06281103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU90581B1 (en) * 2000-05-09 2001-11-12 Wurth Paul Sa Coolong system for a mettalurgical furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU90581B1 (en) * 2000-05-09 2001-11-12 Wurth Paul Sa Coolong system for a mettalurgical furnace
WO2001086005A1 (en) * 2000-05-09 2001-11-15 Paul Wurth S.A. Cooling system for a metallurgical furnace
US6793874B2 (en) 2000-05-09 2004-09-21 Paul Wurth S.A. Cooling system for a metallurgical furnace

Similar Documents

Publication Publication Date Title
US4873829A (en) Steam power plant
US3575002A (en) Combination fossil fuel and superheated steam nuclear power plant
KR20140054266A (en) Backup nuclear reactor auxiliary power using decay heat
US11107593B2 (en) Depressurization and cooling system for a containment of a nuclear power plant containment protection system and nuclear power plant
US8047162B2 (en) Black plant steam furnace injection
CN108843414B (en) Working method for coupling and decoupling nuclear energy and conventional energy with reheating power generation system
US4638630A (en) Cooldown control system for a combined cycle electrical power generation plant
JP2624891B2 (en) Pressurized fluidized bed boiler power plant
JPH06281103A (en) Emergency water supplying device for fluidized bed type boiler
JPH01252890A (en) Recovery of exhaust heat of metallurical furnace
FI91104C (en) Power plant with fluidizing bed working at compressed combustion
JPH09112801A (en) Pressured fluidized bed boiler generating system
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPS6337281B2 (en)
RU2707182C1 (en) Method to increase power of double circuit npp by combining with hydrogen cycle
JPH0814009A (en) Operation control method for pressurized fluidized bed boiler type composite cycle power plant
JP2019200192A (en) Decompressing and cooling system for containment of nuclear power plant
JP2995998B2 (en) Cooling method of pressurized fluidized bed boiler
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JP2675025B2 (en) Fluidized bed boiler
JPS59153003A (en) Method of stopping waste-heat recovery boiler
WO2018083889A1 (en) Boiler system
Lenev et al. On the Issue of Unloading Supercritical Steam Pressure Units Used in T-250/300-240 Cogeneration Steam Turbines
JPS6124906A (en) Steam generator