WO2018083879A1 - 生体観察システム - Google Patents

生体観察システム Download PDF

Info

Publication number
WO2018083879A1
WO2018083879A1 PCT/JP2017/031746 JP2017031746W WO2018083879A1 WO 2018083879 A1 WO2018083879 A1 WO 2018083879A1 JP 2017031746 W JP2017031746 W JP 2017031746W WO 2018083879 A1 WO2018083879 A1 WO 2018083879A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
light
observation mode
fluorescence
mode
Prior art date
Application number
PCT/JP2017/031746
Other languages
English (en)
French (fr)
Inventor
圭 久保
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201780043288.2A priority Critical patent/CN109475270B/zh
Priority to JP2018524844A priority patent/JP6430074B2/ja
Publication of WO2018083879A1 publication Critical patent/WO2018083879A1/ja
Priority to US16/257,725 priority patent/US10631721B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/055Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances having rod-lens arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters

Definitions

  • the present invention relates to a living body observation system, and more particularly to a living body observation system used for observation of a living tissue.
  • Japanese Patent Application Laid-Open No. 2012-160 discloses a normal observation mode in which observation is performed by irradiating a living tissue with white light in an endoscope apparatus, and narrowband light having a central wavelength of 405 nm.
  • a configuration capable of switching between a special light observation mode in which observation is performed by irradiating a living tissue is disclosed.
  • Japanese Patent Application Laid-Open No. 2012-160 discloses an example of PDD (photodynamic diagnosis) which is emitted when excitation light having a central wavelength of 780 nm is irradiated to ICG (indocyanine green) which is a fluorescent agent.
  • ICG indocyanine green
  • a normal observation mode and a plurality of special light observation modes including a fluorescence observation mode that is an operation mode for performing fluorescence observation corresponding to PDD it is administered to a subject. It is desirable to switch between the observation modes in consideration of the fading of the fluorescence emitted from the fluorescent agent and / or the dynamics of the fluorescent agent administered to the subject. Moreover, in the configuration in which the normal observation mode and the plurality of special light observation modes can be switched, it is desirable that the operation related to switching between the observation modes is simple.
  • Japanese Patent Application Laid-Open Publication No. 2012-160 generally describes the discoloration of the fluorescence emitted from the fluorescent agent administered to the subject and / or the dynamics of the fluorescent agent administered to the subject. There is no particular disclosure about a configuration for enabling switching between an observation mode and a plurality of special light observation modes including a fluorescence observation mode by a simple operation. Therefore, according to the configuration disclosed in Japanese Patent Application Laid-Open No. 2012-160, an excessive burden is imposed on an operator who performs an operation while switching between normal observation and a plurality of special light observations including fluorescence observation. There is a problem that there are cases.
  • the present invention has been made in view of the circumstances described above, and is a living body observation that can reduce the burden on an operator who performs an operation while switching between normal observation and a plurality of special light observations including fluorescence observation.
  • the purpose is to provide a system.
  • the living body observation system excites white observation light for obtaining a white observation image of the subject and a fluorescent agent administered to the subject as illumination light for illuminating the subject.
  • a light source unit capable of generating the excitation light, an imaging unit that images the subject irradiated with the illumination light, and the white observation light imaged by the imaging unit
  • An image generation unit that generates a white observation image of the subject and a fluorescence image of the subject irradiated with the excitation light imaged by the imaging unit, and an observation mode when observing the subject, Any one of a normal observation mode for displaying the white observation image as an observation image and a plurality of special light observation modes including a fluorescence observation mode for displaying an observation image generated using the fluorescence image.
  • a determination unit that performs a determination process for determining whether or not the condition is satisfied, and the determination unit can observe the fluorescence when the instruction is performed in the normal observation mode. When it is determined that the condition is satisfied, an operation for switching to the fluorescence observation mode is performed, and when it is determined that the condition for allowing the fluorescence observation is not satisfied, among the plurality of special light observation modes
  • a control unit that performs an operation for switching to a predetermined observation mode different from the fluorescence observation mode.
  • FIG. 1 is a diagram illustrating a configuration of a main part of a living body observation system according to an embodiment.
  • the endoscope 2 includes an optical viewing tube 21 having an elongated insertion portion 6 and a camera unit 22 that can be attached to and detached from the eyepiece 7 of the optical viewing tube 21.
  • the optical viewing tube 21 includes an elongated insertion portion 6 that can be inserted into a subject, a gripping portion 8 provided at the proximal end portion of the insertion portion 6, and an eyepiece portion provided at the proximal end portion of the gripping portion 8. 7.
  • FIG. 2 is a diagram for explaining an example of a specific configuration of the biological observation system according to the embodiment.
  • the exit end of the light guide 11 is disposed in the vicinity of the illumination lens 15 at the distal end of the insertion section 6 as shown in FIG. Further, the incident end portion of the light guide 11 is disposed in a light guide base 12 provided in the grip portion 8.
  • a light guide 13 for transmitting light supplied from the light source device 3 is inserted into the cable 13a.
  • a connection member (not shown) that can be attached to and detached from the light guide base 12 is provided at one end of the cable 13a.
  • a light guide connector 14 that can be attached to and detached from the light source device 3 is provided at the other end of the cable 13a.
  • an illumination lens 15 for emitting the light transmitted by the light guide 11 to the outside
  • an objective lens 17 for obtaining an optical image corresponding to the light incident from the outside. Is provided.
  • An illumination window (not shown) in which the illumination lens 15 is arranged and an observation window (not shown) in which the objective lens 17 is arranged are provided adjacent to each other on the distal end surface of the insertion portion 6. Yes.
  • a relay lens 18 including a plurality of lenses LE for transmitting an optical image obtained by the objective lens 17 to the eyepiece unit 7 is provided inside the insertion unit 6. That is, the relay lens 18 has a function as a transmission optical system that transmits light incident from the objective lens 17.
  • an eyepiece lens 19 is provided inside the eyepiece unit 7 so that the optical image transmitted by the relay lens 18 can be observed with the naked eye.
  • the camera unit 22 has a function as an imaging unit.
  • the camera unit 22 includes an excitation light cut filter 23 and an image sensor 25.
  • the camera unit 22 includes a signal cable 28 provided with an end portion of a signal connector 29 that can be attached to and detached from the processor 4.
  • the excitation light cut filter 23 is disposed in front of the image sensor 25 and is configured as an optical filter that removes reflected light of excitation light from light emitted through the eyepiece lens 19. Specifically, for example, as shown in FIG. 3, the excitation light cut filter 23 blocks IR light (described later) whose center wavelength is set to 800 nm out of light emitted through the eyepiece lens 19. Thus, it is configured as an optical filter having an optical characteristic of transmitting light other than IR light.
  • FIG. 3 is a diagram illustrating transmission characteristics as an example of optical characteristics of the excitation light cut filter provided in the camera unit of the endoscope according to the embodiment.
  • the image sensor 25 is configured to include, for example, a color CMOS image sensor.
  • the image sensor 25 is disposed in a position where the light transmitted through the excitation light cut filter 23 can be received inside the camera unit 22.
  • the imaging element 25 includes a plurality of pixels for photoelectrically imaging light that has passed through the excitation light cut filter 23, and a primary color provided on an imaging surface in which the plurality of pixels are two-dimensionally arranged. And a filter.
  • the image sensor 25 is configured to be driven in accordance with an image sensor drive signal output from the processor 4. Further, the image sensor 25 is configured to have sensitivity characteristics as exemplified in FIG. 4, for example.
  • the imaging surface of the imaging device 25 has a plurality of B pixels having sensitivity in a blue region including the wavelength bands of V light and B light described later, and a green region including a wavelength band of G light described later.
  • a plurality of G pixels and a plurality of R pixels having sensitivity in a red region to a near infrared region including wavelength bands of A light, R light, IR light, and FL light described later are provided.
  • FIG. 4 is a diagram illustrating an example of sensitivity characteristics of the image sensor provided in the camera unit of the endoscope according to the embodiment.
  • the imaging device 25 is configured to generate an imaging signal by imaging the light transmitted through the excitation light cut filter 23 and output the generated imaging signal to the processor 4 to which the signal cable 28 is connected.
  • the light source device 3 includes, for example, a light emitting unit 31, a multiplexer 32, a condenser lens 33, and a light source control unit 34, as shown in FIG.
  • the light emitting unit 31 includes an LED (light emitting diode) 31A, an LED 31B, an LED 31C, an LED 31D, an LED 31E, and an LD (laser diode) 31F.
  • LED light emitting diode
  • LED 31B light emitting diode
  • LED 31C light emitting diode
  • LED 31D light emitting diode
  • LED 31E light emitting diode
  • LD laser diode
  • the LED 31 ⁇ / b> A is configured to emit V light that is a narrowband light having a center wavelength set to 410 nm and belonging to a blue region.
  • the LED 31 ⁇ / b> A is configured to switch between a lighting state and a light-off state according to the control of the light source control unit 34.
  • the LED 31 ⁇ / b> A is configured to generate V light having an intensity according to the control of the light source control unit 34 in the lighting state.
  • FIG. 5 is a diagram illustrating an example of light emitted from the light source device according to the embodiment.
  • the LED 31 ⁇ / b> B is configured to emit B light, which is a narrowband light having a center wavelength set to 460 nm and belonging to the blue region. Further, the LED 31B is configured to be switched between a lighting state and a light-off state according to the control of the light source control unit 34. Moreover, LED31B is comprised so that the intensity
  • the LED 31 ⁇ / b> C is configured to emit G light, which is a narrowband light having a center wavelength set to 540 nm and belonging to the green region.
  • the LED 31 ⁇ / b> C is configured to switch between a lighting state and a light-off state according to the control of the light source control unit 34.
  • the LED 31C is configured to generate G light having an intensity according to the control of the light source control unit 34 in the lighting state.
  • the LED 31 ⁇ / b> D is configured to emit A light that is a narrowband light having a center wavelength set to 600 nm and belonging to the red region.
  • the LED 31 ⁇ / b> D is configured to switch between a lighting state and a light-off state according to the control of the light source control unit 34.
  • LED31D is comprised so that the intensity
  • the LED 31 ⁇ / b> E is configured to emit R light, which is a narrowband light having a center wavelength set to 630 nm and belonging to the red region. Further, the LED 31E is configured to be switched between a lighting state and a light-off state according to the control of the light source control unit 34. Moreover, LED31E is comprised so that the intensity
  • the LD 31 ⁇ / b> F is configured to emit IR light which is a narrowband light having a center wavelength set to 800 nm and belonging to the near infrared region. Further, the LD 31F is configured to be switched between a lighting state and a light-off state according to the control of the light source control unit 34. Further, the LD 31F is configured to generate IR light having an intensity according to the control of the light source control unit 34 in the lighting state.
  • the multiplexer 32 is configured to be able to multiplex each light emitted from the light emitting unit 31 so as to enter the condenser lens 33.
  • the condenser lens 33 is configured to collect the light incident through the multiplexer 32 and output it to the light guide 13.
  • the light source controller 34 includes, for example, a light source control circuit.
  • the light source control unit 34 is configured to control each light source of the light emitting unit 31 based on a system control signal output from the processor 4.
  • the light source device 3 has a function as a light source unit.
  • the light source device 3 combines the V light, B light, G light, and R light simultaneously emitted from the light emitting unit 31 with the multiplexer 32, so It is configured to generate white light (white observation light) for illuminating the specimen. Further, as will be described later, the light source device 3 is configured to generate IR light as excitation light for exciting the fluorescent agent administered to the subject.
  • the processor 4 includes an image sensor driving unit 41, an image generation unit 42, an input I / F (interface) 43, a determination unit 44, and a control unit 45. It is configured.
  • the image sensor driving unit 41 includes, for example, a driver circuit.
  • the image sensor drive unit 41 is configured to generate and output an image sensor drive signal for driving the image sensor 25 based on a system control signal output from the control unit 45.
  • the image generation unit 42 includes, for example, an image generation circuit. Further, the image generation unit 42 generates an image corresponding to the light imaged by the imaging element 25 based on the imaging signal output from the endoscope 2 and the system control signal output from the control unit 45. It is configured as follows. Further, the image generation unit 42 is configured to output a fluorescence image generated according to the fluorescence imaged by the imaging element 25 to the determination unit 44 based on a system control signal output from the control unit 45. The image generation unit 42 is configured to generate an observation image corresponding to the observation mode of the living body observation system 1 based on the system control signal output from the control unit 45 and output the observation image to the display device 5.
  • the input I / F 43 includes a switch that can give an instruction or the like according to a user operation.
  • the input I / F 43 is a single push button switch that can instruct the control unit 45 to start observation of the subject by the living body observation system 1 in response to a user pressing.
  • the observation start switch SA (hereinafter also simply referred to as a switch SA) is configured.
  • the input I / F 43 is an observation mode for observing the subject by the living body observation system 1 in response to a user's pressing, and is any one of a normal observation mode and a plurality of special light observation modes.
  • the observation mode changeover switch SB (hereinafter, also simply referred to as a switch SB) configured as a single push button switch capable of giving an instruction for switching to is provided.
  • the input I / F 43 is configured as a single push button switch that can instruct the control unit 45 to end the observation of the subject by the living body observation system 1 in response to the user's pressing.
  • the observation end switch SC (hereinafter also simply referred to as a switch SC) is provided.
  • the determination unit 44 includes, for example, a determination circuit. Further, the determination unit 44 performs a process for acquiring a predetermined parameter corresponding to the amount of fluorescence emitted from the fluorescent agent administered to the subject based on the fluorescence image output from the image generation unit 42. It is configured. The determination unit 44 is configured to perform determination processing for determining whether or not the predetermined parameter acquired as described above satisfies a predetermined condition. The determination unit 44 is configured to output the determination result obtained by the above-described determination process to the control unit 45.
  • the control unit 45 includes, for example, a control circuit such as a CPU or FPGA (Field Programmable Gate Array). Further, when the control unit 45 detects that an instruction corresponding to the pressing of the switch SA is performed, the control unit 45 sets the observation mode of the living body observation system 1 to the normal observation mode, and performs an operation according to the normal observation mode. A system control signal to be performed is generated, and the generated system control signal is output to the light source control unit 34, the image sensor driving unit 41, and the image generation unit 42. Further, when the control unit 45 detects that an instruction corresponding to the pressing of the switch SB has been performed after detecting an instruction corresponding to the pressing of the switch SA, the control unit 45 displays the determination result output from the determining unit 44 or the like.
  • a control circuit such as a CPU or FPGA (Field Programmable Gate Array).
  • control unit 45 Based on this, an operation for setting the observation mode of the biological observation system 1 to one of the normal observation mode and the plurality of special light observation modes is performed.
  • control unit 45 generates a system control signal for performing an operation according to the observation mode set as described above, and the generated system control signal is used as the light source control unit 34, the image sensor driving unit 41, and the image. It is configured to output to the generation unit 42.
  • the control unit 45 is a system for stopping the supply of light to the endoscope 2 and the imaging of the subject by the endoscope 2 when detecting that an instruction corresponding to the pressing of the switch SC has been performed. A control signal is generated, and the generated system control signal is output to the light source control unit 34 and the image sensor driving unit 41.
  • the display device 5 includes, for example, an LCD (liquid crystal display) and the like, and is configured to display an observation image output from the processor 4.
  • LCD liquid crystal display
  • a fluorescent agent such as indocyanine green, which is excited by irradiation with IR light as excitation light and generates FL light as near-infrared fluorescence having a longer wavelength than the IR light, is applied to the subject.
  • IR light as excitation light
  • FL light as near-infrared fluorescence having a longer wavelength than the IR light
  • a user such as a surgeon connects each part of the living body observation system 1 and turns on the power, and then presses the switch SA of the input I / F 43 to instruct to start observation by the living body observation system 1. I do.
  • control unit 45 When the control unit 45 detects that an instruction corresponding to the pressing of the switch SA of the input I / F 43 is performed, the control unit 45 sets the observation mode of the living body observation system 1 to the normal observation mode, and according to the normal observation mode.
  • the system control signal for performing the above operation is generated, and the generated system control signal is output to the light source control unit 34, the image sensor driving unit 41, and the image generation unit 42.
  • the light source control unit 34 controls the light emitting unit 31 to turn off the LEDs 31D and LD 31F while simultaneously turning on the LEDs 31A, 31B, 31C, and 31E.
  • WL light which is white light (white observation light) combined in step 1
  • the light source device 3 is supplied from the light source device 3 to the light guide 13 of the endoscope 2, and the desired light in the subject is irradiated with the WL light.
  • WR light which is a reflected light of WL light irradiated to the subject, enters from the objective lens 17 as return light, and The WR light passes through the excitation light cut filter 23 and reaches the imaging surface of the imaging element 25.
  • the image sensor 25 is a monochrome image sensor having sensitivity from at least the visible region to the near infrared region
  • the light source control unit 34 generates a white observation image and a green observation image.
  • control is performed on the light emitting unit 31 such that irradiation with V light, B light, G light, and R light is performed in a time-sharing manner. It may be.
  • the imaging element 25 generates an imaging signal by imaging the WR light that has passed through the excitation light cut filter 23, and outputs the generated imaging signal to the processor 4.
  • the V light and B light included in the WR light transmitted through the excitation light cut filter 23 are imaged by the B pixel, and the G light included in the WR light is An image is captured by the pixel, and the R light included in the WR light is captured by the R pixel.
  • the image generation unit 42 generates a normal observation image corresponding to the WR light imaged by the imaging device 25 based on the imaging signal output from the endoscope 2 and the system control signal output from the control unit 45. To do. Further, the image generation unit 42 outputs the normal observation image to the display device 5 as an observation image based on the system control signal output from the control unit 45.
  • the observation mode of the biological observation system 1 is set to the normal observation mode, for example, when the biological tissue or the like in the subject is viewed with the naked eye.
  • a normal observation image having substantially the same color tone is displayed on the display device 5 as an observation image.
  • the user inserts the insertion portion 6 into the subject while confirming the normal observation image displayed on the display device 5. Then, the user presses the switch SB of the input I / F 43 at an appropriate timing in a state where the distal end portion of the insertion unit 6 is disposed in the vicinity of the desired subject existing in the subject, and the user Make observations.
  • FIG. 6 is a flowchart for explaining a specific example of an operation performed in the living body observation system according to the embodiment.
  • the control unit 45 performs an operation for detecting an instruction in response to pressing of the switch SB (step S1 in FIG. 6).
  • the control unit 45 maintains the currently set observation mode when an instruction corresponding to the depression of the switch SB cannot be detected in step S1 of FIG. 6 (S1: NO). Further, when the control unit 45 can detect an instruction in response to pressing of the switch SB in step S1 of FIG. 6 (S1: YES), whether or not the currently set observation mode is the deep blood vessel observation mode. This determination process is performed (step S2 in FIG. 6).
  • step S2 of FIG. 6 the control unit 45 obtains a determination result that the currently set observation mode is the deep blood vessel observation mode in step S2 of FIG. 6 (S2: YES)
  • the process of step S8 of FIG. To continue.
  • step S2 of FIG. 6 the control unit 45 obtains a determination result that the currently set observation mode is not the deep blood vessel observation mode (S2: NO), that is, the currently set observation mode is
  • a system control signal for irradiating excitation light with a predetermined light amount PA during a predetermined time PT is generated to generate a light source It outputs to the control part 34 (step S3 of FIG. 6).
  • a system control signal is generated and output to the light source controller 34.
  • control unit 45 generates a system control signal for outputting the fluorescent image generated during the predetermined time PT to the determination unit 44 and outputs it to the image generation unit 42 in conjunction with the operation of step S3 in FIG. To do.
  • the WL light and the IR light are not transmitted in the subject until the predetermined time PT elapses after the operation of step S3 in FIG. 6 is started. Irradiating the desired subject in a time-sharing manner or alternately, WR light that is reflected light of the WL light, and FL light that is fluorescent light emitted from the fluorescent agent excited by the irradiation of the IR light The reflected light of the IR light is sequentially incident from the objective lens 17 as return light. Further, according to the operation of the control unit 45 as described above, the WR transmitted through the excitation light cut filter 23 during the period from the start of the control in step S3 in FIG.
  • the determination unit 44 determines from the fluorescent drug administered to the subject. As a predetermined parameter corresponding to the amount of emitted FL light (fluorescence), a process for acquiring the average luminance value AVF of the fluorescent image is performed. Then, the determination unit 44 performs a determination process regarding whether or not the average luminance value AVF acquired as described above is equal to or greater than a predetermined threshold THA (step S4 in FIG. 6), and is obtained by the determination process. The determination result is output to the control unit 45. That is, the determination unit 44 performs a determination process in step S4 of FIG. 6 to determine whether or not the average luminance value AVF of the fluorescent image satisfies a condition that allows fluorescence observation.
  • the control unit 45 is the living body observation system 1 Is set to the fluorescence observation mode (step S5 in FIG. 6), a system control signal for performing an operation according to the fluorescence observation mode is generated, and the generated system control signal is used as the light source control unit 34, The image is output to the image sensor drive unit 41 and the image generation unit 42. That is, when the determination result indicating that the FL light emitted from the fluorescent agent administered to the subject can be observed based on the determination result output from the determination unit 44, the control unit 45 obtains the determination result. Then, an operation for switching the observation mode of the living body observation system 1 to the fluorescence observation mode is performed.
  • the light source control unit 34 controls to turn off the LEDs 31D and LD 31F while turning on the LEDs 31A, 31B, 31C, and 31E, and turns off the LEDs 31A to 31E. Control for turning on the LD 31F and the light emitting unit 31 are alternately performed.
  • the observation mode of the living body observation system 1 when the observation mode of the living body observation system 1 is set to the fluorescence observation mode, WL light and IR light are emitted from the light source device 3 to the light of the endoscope 2. While being supplied to the guide 13 in a time division manner or alternately, the WL light and the IR light are irradiated to a desired subject in the subject in a time division manner or alternately.
  • the observation mode of the living body observation system 1 is set to the fluorescence observation mode
  • WR light, FL light, and reflected light of IR light are incident as return light from the objective lens 17 and The WR light and the FL light pass through the excitation light cut filter 23 and sequentially reach the imaging surface of the imaging element 25.
  • the amount of IR light supplied from the light source device 3 to the endoscope 2 in the fluorescence observation mode may be different from the predetermined light amount PA or the same as the predetermined light amount PA. It may be.
  • the imaging element 25 generates an imaging signal by imaging the WR light and the FL light that have passed through the excitation light cut filter 23, and outputs the generated imaging signal to the processor 4.
  • the V light and B light included in the WR light transmitted through the excitation light cut filter 23 are imaged by the B pixel, and the G light included in the WR light is An image is captured by the pixel, and the R light included in the WR light is captured by the R pixel. Further, according to the operation of the imaging element 25 as described above, the FL light transmitted through the excitation light cut filter 23 is imaged by the R pixel.
  • the image generation unit 42 based on the imaging signal output from the endoscope 2 and the system control signal output from the control unit 45, a normal observation image corresponding to the WR light imaged by the imaging device 25, A fluorescence image corresponding to the FL light imaged by the imaging element 25 is generated. Further, based on the system control signal output from the control unit 45, the observation image is generated using the normal observation image and the fluorescence image, and the generated observation image is output to the display device 5.
  • the observation mode of the living body observation system 1 when the observation mode of the living body observation system 1 is set to the fluorescence observation mode, for example, it is emitted from the fluorescent agent accumulated in the lesioned part in the subject.
  • An image obtained by adding (superimposing) information indicating the generation location of the FL light to the normal observation image is displayed on the display device 5 as an observation image.
  • an observation image using a fluorescence image is generated and displayed in the fluorescence observation mode
  • an observation image different from that described above is generated and displayed in the fluorescence observation mode. May be.
  • the control unit 45 observes the living body.
  • the observation mode of the system 1 is set to the deep blood vessel observation mode (step S6 in FIG. 6), a system control signal for performing an operation according to the deep blood vessel observation mode is generated, and the generated system control signal is used as the light source.
  • the data is output to the control unit 34, the image sensor drive unit 41, and the image generation unit 42. That is, the control unit 45 obtains a determination result indicating that it is impossible to observe the FL light emitted from the fluorescent agent administered to the subject based on the determination result output from the determination unit 44. Performs an operation for switching the observation mode of the living body observation system 1 to the deep blood vessel observation mode.
  • the light source control unit 34 controls the LED 31A, 31C, 31D, and LD 31F to be turned off while turning on the LED 31B and LED 31E, and turns on the LED 31D while turning on the LED 31D. Control for turning off 31C, 31E, and LD 31F and the light emitting unit 31 are alternately performed.
  • the mixing is performed by combining the B light and the R light with the multiplexer 32.
  • ML light and A light which are light, are supplied from the light source device 3 to the light guide 13 of the endoscope 2 in a time-division or alternately manner, and the ML light and the A light are desired in the subject.
  • the subject is irradiated in time division or alternately.
  • the imaging element 25 generates an imaging signal by imaging the MR light and the AR light that have passed through the excitation light cut filter 23, and outputs the generated imaging signal to the processor 4.
  • the B light included in the MR light transmitted through the excitation light cut filter 23 is imaged by the B pixel, and the R light included in the MR light is imaged by the R pixel. Is done. Further, according to the operation of the imaging element 25 as described above, the AR light transmitted through the excitation light cut filter 23 is imaged by the R pixel.
  • the image generation unit 42 Based on the imaging signal output from the endoscope 2 and the system control signal output from the control unit 45, the image generation unit 42 corresponds to the B light included in the MR light imaged by the imaging element 25. A blue light image, a red light image corresponding to the R light included in the MR light, and an amber light image corresponding to the AR light captured by the imaging element 25 are generated. The image generation unit 42 generates an observation image using the blue light image, the amber light image, and the red light image based on the system control signal output from the control unit 45, and the generated observation image is displayed on the display device. Output to 5.
  • the observation mode of the living body observation system 1 is set to the deep blood vessel observation mode, for example, a thick object existing in the deep part of the desired subject in the subject.
  • An image in which the diameter blood vessel is emphasized is displayed on the display device 5 as an observation image.
  • the control unit 45 performs an operation for detecting an instruction in response to pressing of the switch SB after completing the operation in step S6 in FIG. 6 (step S7 in FIG. 6).
  • control unit 45 If the control unit 45 cannot detect an instruction in response to pressing of the switch SB in step S7 of FIG. 6 (S7: NO), the control unit 45 maintains the deep blood vessel observation mode set by the operation of step S6 of FIG. To do. In addition, when the control unit 45 can detect an instruction in response to pressing of the switch SB in step S7 of FIG. 6 (S7: YES), the observation mode of the living body observation system 1 is set to the normal observation mode. (Step S8 in FIG. 6), a system control signal for performing an operation according to the normal observation mode is generated, and the generated system control signal is used as the light source control unit 34, the image sensor driving unit 41, and the image generation unit. Output to 42.
  • control unit 45 repeatedly performs the series of operations in FIG. 6 during a period from when the switch SA is pressed to when the switch SC is pressed, thereby changing the observation mode of the living body observation system 1 to the normal observation mode and the fluorescence.
  • the observation mode is set to one of the observation mode and the deep blood vessel observation mode.
  • the observation mode of the biological observation system 1 is the fluorescence observation.
  • the mode is not switched. That is, according to the present embodiment, for example, when the fluorescence emitted from the fluorescent agent administered to the subject is almost completely faded and / or when the fluorescent agent is substantially excreted through metabolism, The observation mode of the observation system 1 is not switched to the fluorescence observation mode. Further, as described above, according to the present embodiment, switching between the three observation modes of the normal observation mode, the fluorescence observation mode, and the deep blood vessel observation mode can be performed by pressing the single switch SB. I am doing so. Therefore, according to this embodiment, it is possible to reduce the burden on the operator who performs the operation while switching between normal observation and a plurality of special light observations including fluorescence observation.
  • the control unit 45 when the observation mode of the biological observation system 1 is set to the normal observation mode, the control unit 45 time-divides the WL light and the IR light with the predetermined light amount PA. A system control signal to be generated alternately is generated and output to the light source control unit 34, and a fluorescence image generated based on an imaging signal output from the endoscope 2 is output to the determination unit 44 while A system control signal for outputting the normal observation image generated based on the imaging signal output from the mirror 2 to the display device 5 may be generated and output to the image generation unit 42.
  • the determination unit when the observation mode of the living body observation system 1 is set to the normal observation mode, the determination unit is configured to display the normal observation image on the display device 5 as the observation image.
  • the process related to the acquisition of the predetermined parameter by 44 and the determination process based on the predetermined parameter can be constantly performed in the background.
  • the determination unit 44 starts the operation of step S3 in FIG. 6 as a predetermined parameter corresponding to the amount of FL light (fluorescence) emitted from the fluorescent drug administered to the subject.
  • the number of pixels greater than or equal to a predetermined luminance value PB included in the fluorescent image output from the image generation unit 42 until the predetermined time PT elapses is determined, and determination according to the acquired number of pixels Processing may be performed.
  • the control unit 45 obtains a determination result that the number of pixels equal to or larger than the predetermined luminance value PB is equal to or larger than the predetermined threshold value THB, the observation mode of the living body observation system 1 is changed.
  • the observation mode of the living body observation system 1 is set to the deep blood vessel observation mode when the fluorescence observation mode is set and the determination result that the number of pixels equal to or greater than the predetermined luminance value PB is less than the predetermined threshold value THB is obtained. You may make it do.
  • the control unit 45 obtains a determination result that one or more pixels having a predetermined luminance value PB or more exist
  • the observation mode of the living body observation system 1 is changed to the fluorescence observation mode.
  • the observation mode of the living body observation system 1 may be set to the deep blood vessel observation mode when a determination result is obtained that there is no pixel equal to or greater than the predetermined luminance value PB.
  • controller 45 of the present embodiment may further perform, for example, the operation according to step S71 in FIG. 7 after completing the operation according to step S5 in FIG.
  • a specific example of the operation of the control unit 45 will be described below. In the following, for the sake of simplicity, a specific description of a part to which the above-described configuration or operation can be applied will be omitted as appropriate.
  • FIG. 7 is a diagram for explaining an example of an operation performed in addition to the operation of FIG.
  • the control unit 45 performs an operation for detecting an instruction in response to pressing of the switch SB after completing the operation according to step S5 in FIG. 6, that is, after setting the observation mode of the living body observation system 1 to the fluorescence observation mode. (Step S71 in FIG. 7).
  • control unit 45 If the control unit 45 cannot detect an instruction in response to pressing of the switch SB in step S71 of FIG. 7 (S71: NO), the control unit 45 maintains the fluorescence observation mode set by the operation according to step S5 of FIG. To do. In addition, when the control unit 45 can detect an instruction in response to pressing of the switch SB in step S71 in FIG. 7 (S71: YES), the control unit 45 continues to perform the same operation as in step S6 in FIG.
  • the observation mode of the living body observation system 1 can be switched from the fluorescence observation mode to the deep blood vessel observation mode.
  • control unit 45 of the present embodiment may further perform operations related to Steps S81 to S84 in FIG. 8 in the series of operations in FIG. A specific example of the operation of the control unit 45 will be described below.
  • FIG. 8 is a diagram for explaining an example of an operation performed in addition to the operation of FIG.
  • control unit 45 When the control unit 45 obtains a determination result that the currently set observation mode is not the deep blood vessel observation mode by the determination processing in step S2 of FIG. 6, the control unit 45 further determines whether or not the flag FA is on. Such determination processing is performed (step S81 in FIG. 8).
  • the flag FA is, for example, information or a value stored in a memory (not shown) provided in the processor 4. Further, the flag FA is set to off immediately after the switch SA is pressed (that is, before the operation of step S1 in FIG. 6 is performed), and the observation mode of the living body observation system 1 is set to the fluorescence observation mode. When the operation for switching to is performed, it is set to ON.
  • step S81 in FIG. 8 When the determination result in step S81 in FIG. 8 indicates that the flag FA is off (S81: NO), the controller 45 continues to perform the same operation as in step S3 in FIG. . In addition, when the determination process in step S81 in FIG. 8 obtains a determination result that the flag FA is on (S81: YES), the control unit 45 continues the same operation as in step S6 in FIG. Do it. That is, according to such an operation of the control unit 45, for example, when the switch SB is pressed again in the normal observation mode after being switched from the normal observation mode to the fluorescence observation mode in response to the pressing of the switch SB. Regardless of the predetermined parameter corresponding to the amount of fluorescent light, the observation mode of the living body observation system 1 is switched to the deep blood vessel observation mode.
  • step S4 YES
  • the determination result that the average luminance value AVF is equal to or greater than the predetermined threshold value THA is obtained based on the determination result output from the determination unit 44 through step S4 in FIG. 6 (S4: YES).
  • the flag FA is set to ON (step S82 in FIG. 8)
  • the control unit 45 obtains a determination result that the average luminance value AVF is less than the predetermined threshold THA based on the determination result output from the determination unit 44 through step S4 in FIG. 6 (S4: For NO), the same operation as step S6 in FIG. 6 is continued.
  • the control unit 45 responds to the depression of the switch SB after completing the operation according to step S5 in FIG. 6, that is, after setting the flag FA to ON and setting the observation mode of the living body observation system 1 to the fluorescence observation mode.
  • An operation for detecting the designated instruction is performed (step S83 in FIG. 8).
  • control unit 45 If the control unit 45 cannot detect an instruction in response to pressing of the switch SB in step S83 of FIG. 8 (S83: NO), the control unit 45 maintains the fluorescence observation mode set by the operation according to step S5 of FIG. To do. Further, when the control unit 45 can detect an instruction in response to pressing of the switch SB in step S83 of FIG. 8 (S83: YES), the control unit 45 sets the observation mode of the biological observation system 1 to the normal observation mode ( Step S84 in FIG. 8) generates a system control signal for performing an operation according to the normal observation mode, and sends the generated system control signal to the light source control unit 34, the image sensor driving unit 41, and the image generation unit 42. Output.
  • control unit 45 detects that an instruction corresponding to pressing of the switch SB is performed after switching from the normal observation mode to the fluorescence observation mode.
  • the current observation mode is switched to one of the normal observation mode and the deep blood vessel observation mode.
  • FIG. 9 is a diagram for explaining an example when a part of the operation of FIG. 6 is changed.
  • control unit 45 of the present embodiment determines from the fluorescent drug administered to the subject based on the determination result obtained by the determination unit 44 when the observation mode of the living body observation system 1 is set to the fluorescence observation mode.
  • the determination result indicating that the emitted FL light can be observed is maintained, the fluorescence observation mode is maintained, and when the determination result indicating that the FL light cannot be observed is obtained. May perform an operation for switching to the deep blood vessel observation mode.
  • the observation mode of the living body observation system 1 can be switched from the fluorescence observation mode to the deep blood vessel observation mode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)

Abstract

生体観察システムは、白色観察光と蛍光薬剤を励起するための励起光とを発生する光源部と、被検体を撮像する撮像部と、白色観察画像と蛍光画像とを生成する画像生成部と、観察モードを切り替えるための指示を行うことが可能なスイッチと、蛍光画像に基づいて取得したパラメータが蛍光の観察が可能である条件を満たすか否かを判定する判定部と、通常観察モードにおいて指示が行われた際に、蛍光の観察が可能である条件を満たす場合に蛍光観察モードに切り替え、蛍光の観察が可能である条件を満たさない場合に蛍光観察モードとは異なる所定の観察モードに切り替える制御部と、を有する。

Description

生体観察システム
 本発明は、生体観察システムに関し、特に、生体組織の観察に用いられる生体観察システムに関するものである。
 医療分野の内視鏡観察においては、例えば、被検体の体腔内に存在する生体組織等の被写体に対して白色光を照射することにより、当該被写体を肉眼で見た場合と略同様の視認性を具備する画像を表示させることが可能な通常観察が従来行われている。
 また、医療分野の内視鏡観察においては、例えば、被検体の体腔内に存在する生体組織に対し、当該生体組織に含まれる所定の対象物の特性に応じて帯域制限を施した光である特殊光を照射することにより、当該所定の対象物の視認性が通常観察に比べて向上した画像を表示させることが可能な特殊光観察が従来行われている。
 また、医療分野の内視鏡観察においては、前述の通常観察を実施するための動作モードである通常観察モードと、前述の特殊光観察を実施するための動作モードである特殊光観察モードと、を切り替え可能な構成が従来提案されている。
 具体的には、例えば、日本国特開2012-160号公報には、内視鏡装置において、白色光を生体組織に照射して観察を行う通常観察モードと、中心波長405nmの狭帯域光を生体組織に照射して観察を行う特殊光観察モードと、を切り替え可能な構成が開示されている。また、日本国特開2012-160号公報には、PDD(光線力学的診断)の一例として、蛍光薬剤であるICG(インドシアニングリーン)に対して中心波長780nmの励起光を照射した際に発せられる近赤外域の蛍光を観察する手法が開示されている。
 ここで、通常観察モードと、PDDに相当する蛍光観察を実施するための動作モードである蛍光観察モードを含む複数の特殊光観察モードと、を切り替え可能な構成においては、被検体に投与された蛍光薬剤から発せられる蛍光の退色、及び/または、被検体に投与された蛍光薬剤の動態等を勘案しつつ、各観察モード間の切り替えが行われることが望ましい。また、通常観察モードと、複数の特殊光観察モードと、を切り替え可能な構成においては、各観察モード間の切り替えに係る操作が簡便であることが望ましい。
 一方、日本国特開2012-160号公報には、被検体に投与された蛍光薬剤から発せられる蛍光の退色、及び/または、被検体に投与された蛍光薬剤の動態等を勘案しつつ、通常観察モードと蛍光観察モードを含む複数の特殊光観察モードとを簡便な操作で切り替え可能とするための構成について特に開示されていない。そのため、日本国特開2012-160号公報に開示された構成によれば、通常観察と、蛍光観察を含む複数の特殊光観察と、を切り替えつつ手術を行う術者に過度な負担を強いてしまう場合がある、という課題が生じている。
 本発明は、前述した事情に鑑みてなされたものであり、通常観察と、蛍光観察を含む複数の特殊光観察と、を切り替えつつ手術を行う術者の負担を軽減することが可能な生体観察システムを提供することを目的としている。
 本発明の一態様の生体観察システムは、被検体を照明する照明光として、前記被検体の白色観察画像を取得するための白色観察光と、前記被検体に投与された蛍光薬剤を励起するための励起光と、をそれぞれ発生することが可能な光源部と、前記照明光が照射された前記被検体を撮像する撮像部と、前記撮像部により撮像された前記白色観察光が照射された前記被検体の白色観察画像と、前記撮像部により撮像された前記励起光が照射された被検体の蛍光画像と、をそれぞれ生成する画像生成部と、前記被検体を観察する際の観察モードを、前記白色観察画像を観察画像として表示させる通常観察モードと、前記蛍光画像を用いて生成した観察画像を表示させる蛍光観察モードを含む複数の特殊光観察モードと、のうちのいずれか1つの観察モードに切り替えるための指示を行うためのスイッチと、前記画像生成部が生成した前記蛍光画像に基づいて前記蛍光の光量に対応するパラメータを取得するとともに、前記パラメータが前記蛍光の観察が可能である条件を満たすか否かを判定するための判定処理を行う判定部と、前記通常観察モードにおいて前記指示が行われたことを検出した際に、前記判定部により前記パラメータが前記蛍光の観察が可能である条件を満たすと判定された場合に前記蛍光観察モードに切り替えるための動作を行い、前記蛍光の観察が可能である条件を満たさないと判定された場合に前記複数の特殊光観察モードのうちの前記蛍光観察モードとは異なる所定の観察モードに切り替えるための動作を行う制御部と、を有する。
実施形態に係る生体観察システムの要部の構成を示す図。 実施形態に係る生体観察システムの具体的な構成の一例を説明するための図。 実施形態に係る内視鏡のカメラユニットに設けられた励起光カットフィルタの光学特性の一例としての透過特性を示す図。 実施形態に係る内視鏡のカメラユニットに設けられた撮像素子の感度特性の一例を示す図。 実施形態に係る光源装置から発せられる光の一例を示す図。 実施形態に係る生体観察システムにおいて行われる動作の具体例を説明するためのフローチャート。 図6の動作に加えて行われる動作の一例を説明するための図。 図6の動作に加えて行われる動作の一例を説明するための図。 図6の動作の一部を変更した場合の例を説明するための図。
 以下、本発明の実施形態について、図面を参照しつつ説明を行う。
 図1から図9は、本発明の実施形態に係るものである。
 内視鏡装置である生体観察システム1は、例えば、図1に示すように、被検体内に挿入されるとともに、当該被検体内における生体組織等の被写体を撮像して画像信号を出力するように構成された内視鏡2と、当該被写体に照射される光を内視鏡2に供給するように構成された光源装置3と、内視鏡2から出力される画像信号に基づいて観察画像を生成して出力するように構成されたプロセッサ4と、プロセッサ4から出力される観察画像を画面上に表示するように構成された表示装置5と、を有している。図1は、実施形態に係る生体観察システムの要部の構成を示す図である。
 内視鏡2は、細長の挿入部6を備えた光学視管21と、光学視管21の接眼部7に対して着脱可能なカメラユニット22と、を有して構成されている。
 光学視管21は、被検体内に挿入可能な細長の挿入部6と、挿入部6の基端部に設けられた把持部8と、把持部8の基端部に設けられた接眼部7と、を有して構成されている。
 挿入部6の内部には、図2に示すように、ケーブル13aを介して供給される光を伝送するためのライトガイド11が挿通されている。図2は、実施形態に係る生体観察システムの具体的な構成の一例を説明するための図である。
 ライトガイド11の出射端部は、図2に示すように、挿入部6の先端部における照明レンズ15の近傍に配置されている。また、ライトガイド11の入射端部は、把持部8に設けられたライトガイド口金12に配置されている。
 ケーブル13aの内部には、図2に示すように、光源装置3から供給される光を伝送するためのライトガイド13が挿通されている。また、ケーブル13aの一方の端部には、ライトガイド口金12に対して着脱可能な接続部材(不図示)が設けられている。また、ケーブル13aの他方の端部には、光源装置3に対して着脱可能なライトガイドコネクタ14が設けられている。
 挿入部6の先端部には、ライトガイド11により伝送された光を外部へ出射するための照明レンズ15と、外部から入射される光に応じた光学像を得るための対物レンズ17と、が設けられている。また、挿入部6の先端面には、照明レンズ15が配置された照明窓(不図示)と、対物レンズ17が配置された観察窓(不図示)と、が相互に隣接して設けられている。
 挿入部6の内部には、図2に示すように、対物レンズ17により得られた光学像を接眼部7へ伝送するための複数のレンズLEを具備するリレーレンズ18が設けられている。すなわち、リレーレンズ18は、対物レンズ17から入射した光を伝送する伝送光学系としての機能を具備して構成されている。
 接眼部7の内部には、図2に示すように、リレーレンズ18により伝送された光学像を肉眼で観察可能とするための接眼レンズ19が設けられている。
 カメラユニット22は、撮像部としての機能を具備して構成されている。また、カメラユニット22は、励起光カットフィルタ23と、撮像素子25と、を有して構成されている。また、カメラユニット22は、プロセッサ4に対して着脱可能な信号コネクタ29を端部に設けた信号ケーブル28を有して構成されている。
 励起光カットフィルタ23は、撮像素子25の前面に配置されており、接眼レンズ19を経て出射される光から励起光の反射光を除去する光学フィルタとして構成されている。具体的には、励起光カットフィルタ23は、例えば、図3に示すように、接眼レンズ19を経て出射される光のうち、中心波長が800nmに設定されたIR光(後述)を遮断する一方で、IR光以外の光を透過させる光学特性を具備する光学フィルタとして構成されている。図3は、実施形態に係る内視鏡のカメラユニットに設けられた励起光カットフィルタの光学特性の一例としての透過特性を示す図である。
 撮像素子25は、例えば、カラーCMOSイメージセンサを具備して構成されている。また、撮像素子25は、カメラユニット22の内部において、励起光カットフィルタ23を透過した光を受光可能な位置に配置されている。また、撮像素子25は、励起光カットフィルタ23を透過した光を光電変換して撮像するための複数の画素と、当該複数の画素を2次元状に配置した撮像面上に設けられた原色カラーフィルタと、を具備して構成されている。また、撮像素子25は、プロセッサ4から出力される撮像素子駆動信号に応じて駆動するように構成されている。また、撮像素子25は、例えば、図4に例示するような感度特性を具備して構成されている。すなわち、撮像素子25の撮像面には、後述のV光及びB光の波長帯域を含む青色域に感度を有する複数のB画素と、後述のG光の波長帯域を含む緑色域に感度を有する複数のG画素と、後述のA光、R光、IR光及びFL光の波長帯域を含む赤色域~近赤外域に感度を有する複数のR画素と、がそれぞれ設けられている。図4は、実施形態に係る内視鏡のカメラユニットに設けられた撮像素子の感度特性の一例を示す図である。
 撮像素子25は、励起光カットフィルタ23を透過した光を撮像することにより撮像信号を生成し、当該生成した撮像信号を信号ケーブル28が接続されたプロセッサ4へ出力するように構成されている。
 光源装置3は、例えば、図2に示すように、発光部31と、合波器32と、集光レンズ33と、光源制御部34と、を有して構成されている。
 発光部31は、LED(発光ダイオード)31Aと、LED31Bと、LED31Cと、LED31Dと、LED31Eと、LD(レーザダイオード)31Fと、を有して構成されている。
 LED31Aは、例えば、図5に示すように、中心波長が410nmに設定されかつ青色域に属する狭帯域光であるV光を発するように構成されている。また、LED31Aは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、LED31Aは、点灯状態において、光源制御部34の制御に応じた強度のV光を発生するように構成されている。図5は、実施形態に係る光源装置から発せられる光の一例を示す図である。
 LED31Bは、例えば、図5に示すように、中心波長が460nmに設定されかつ青色域に属する狭帯域光であるB光を発するように構成されている。また、LED31Bは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、LED31Bは、点灯状態において、光源制御部34の制御に応じた強度のB光を発生するように構成されている。
 LED31Cは、例えば、図5に示すように、中心波長が540nmに設定されかつ緑色域に属する狭帯域光であるG光を発するように構成されている。また、LED31Cは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、LED31Cは、点灯状態において、光源制御部34の制御に応じた強度のG光を発生するように構成されている。
 LED31Dは、例えば、図5に示すように、中心波長が600nmに設定されかつ赤色域に属する狭帯域光であるA光を発するように構成されている。また、LED31Dは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、LED31Dは、点灯状態において、光源制御部34の制御に応じた強度のA光を発生するように構成されている。
 LED31Eは、例えば、図5に示すように、中心波長が630nmに設定されかつ赤色域に属する狭帯域光であるR光を発するように構成されている。また、LED31Eは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、LED31Eは、点灯状態において、光源制御部34の制御に応じた強度のR光を発生するように構成されている。
 LD31Fは、例えば、図5に示すように、中心波長が800nmに設定されかつ近赤外域に属する狭帯域光であるIR光を発するように構成されている。また、LD31Fは、光源制御部34の制御に応じて点灯状態または消灯状態に切り替わるように構成されている。また、LD31Fは、点灯状態において、光源制御部34の制御に応じた強度のIR光を発生するように構成されている。
 合波器32は、発光部31から発せられた各光を合波して集光レンズ33に入射させることができるように構成されている。
 集光レンズ33は、合波器32を経て入射した光を集光してライトガイド13へ出射するように構成されている。
 光源制御部34は、例えば、光源制御回路等を具備して構成されている。また、光源制御部34は、プロセッサ4から出力されるシステム制御信号に基づき、発光部31の各光源に対する制御を行うように構成されている。
 すなわち、光源装置3は、光源部としての機能を具備し、例えば、発光部31から同時に発せられたV光、B光、G光及びR光を合波器32で合波することにより、被検体を照明するための白色光(白色観察光)を発生するように構成されている。また、光源装置3は、後述するように、被検体に投与された蛍光薬剤を励起するための励起光としてIR光を発生するように構成されている。
 プロセッサ4は、例えば、図2に示すように、撮像素子駆動部41と、画像生成部42と、入力I/F(インターフェース)43と、判定部44と、制御部45と、を有して構成されている。
 撮像素子駆動部41は、例えば、ドライバ回路等を具備して構成されている。また、撮像素子駆動部41は、制御部45から出力されるシステム制御信号に基づき、撮像素子25を駆動させるための撮像素子駆動信号を生成して出力するように構成されている。
 画像生成部42は、例えば、画像生成回路等を具備して構成されている。また、画像生成部42は、内視鏡2から出力される撮像信号と、制御部45から出力されるシステム制御信号と、に基づき、撮像素子25により撮像された光に応じた画像を生成するように構成されている。また、画像生成部42は、制御部45から出力されるシステム制御信号に基づき、撮像素子25により撮像された蛍光に応じて生成した蛍光画像を判定部44へ出力するように構成されている。また、画像生成部42は、制御部45から出力されるシステム制御信号に基づき、生体観察システム1の観察モードに応じた観察画像を生成して表示装置5へ出力するように構成されている。
 入力I/F43は、ユーザの操作に応じた指示等を行うことが可能なスイッチを具備して構成されている。具体的には、入力I/F43は、ユーザの押下に応じ、生体観察システム1による被検体の観察を開始する旨の指示を制御部45に対して行うことが可能な単一の押しボタンスイッチとして構成された観察開始スイッチSA(以降、単にスイッチSAとも称する)を具備している。また、入力I/F43は、ユーザの押下に応じ、生体観察システム1により被検体の観察を行う際の観察モードを、通常観察モード及び複数の特殊光観察モードのうちのいずれか1つの観察モードに切り替えるための指示を行うことが可能な単一の押しボタンスイッチとして構成された観察モード切替スイッチSB(以降、単にスイッチSBとも称する)を具備している。また、入力I/F43は、ユーザの押下に応じ、生体観察システム1による被検体の観察を終了する旨の指示を制御部45に対して行うことが可能な単一の押しボタンスイッチとして構成された観察終了スイッチSC(以降、単にスイッチSCとも称する)を具備している。
 判定部44は、例えば、判定回路等を具備して構成されている。また、判定部44は、画像生成部42から出力される蛍光画像に基づき、被検体に投与された蛍光薬剤から発せられる蛍光の光量に対応する所定のパラメータを取得するための処理を行うように構成されている。また、判定部44は、前述のように取得した所定のパラメータが所定の条件を満たすか否かを判定するための判定処理を行うように構成されている。また、判定部44は、前述の判定処理により得られた判定結果を制御部45へ出力するように構成されている。
 制御部45は、例えば、CPUまたはFPGA(Field Programmable Gate Array)等の制御回路を具備して構成されている。また、制御部45は、スイッチSAの押下に応じた指示が行われたことを検出した際に、生体観察システム1の観察モードを通常観察モードに設定し、当該通常観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力するように構成されている。また、制御部45は、スイッチSAの押下に応じた指示を検出した後でスイッチSBの押下に応じた指示が行われたことを検出した際に、判定部44から出力される判定結果等に基づき、生体観察システム1の観察モードを通常観察モード及び複数の特殊光観察モードのうちのいずれか1つの観察モードに設定するための動作を行うように構成されている。また、制御部45は、前述のように設定した観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力するように構成されている。また、制御部45は、スイッチSCの押下に応じた指示が行われたことを検出した際に、内視鏡2への光の供給及び内視鏡2による被写体の撮像を停止させるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34及び撮像素子駆動部41へ出力するように構成されている。
 表示装置5は、例えば、LCD(液晶ディスプレイ)等を具備し、プロセッサ4から出力される観察画像等を表示することができるように構成されている。
 次に、本実施形態の生体観察システム1の動作等について説明する。なお、以降においては、スイッチSBの押下に応じて行われる指示により切り替え可能な複数の特殊光観察モードが、蛍光観察モード及び深部血管観察モードの2つである場合を例に挙げて説明する。また、以降においては、励起光であるIR光の照射により励起されるとともに当該IR光よりも長波長な近赤外域の蛍光であるFL光を発生するインドシアニングリーン等の蛍光薬剤が被検体に投与された状態において、当該被検体の体腔内に存在する所望の被写体が観察される場合を例に挙げて説明する。
 まず、術者等のユーザは、生体観察システム1の各部を接続して電源を投入した後、入力I/F43のスイッチSAを押下することにより、生体観察システム1による観察を開始する旨の指示を行う。
 制御部45は、入力I/F43のスイッチSAの押下に応じた指示が行われたことを検出した際に、生体観察システム1の観察モードを通常観察モードに設定し、当該通常観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力する。
 光源制御部34は、制御部45から出力されるシステム制御信号に基づき、LED31A、31B、31C及び31Eを同時に点灯させつつ、LED31D及びLD31Fを消灯させるための制御を発光部31に対して行う。
 すなわち、前述のような光源制御部34の動作によれば、生体観察システム1の観察モードが通常観察モードに設定された際に、V光、B光、G光及びR光を合波器32で合波した白色光(白色観察光)であるWL光が光源装置3から内視鏡2のライトガイド13に供給されるとともに、当該WL光が被検体内の所望の被写体に対して照射される。また、生体観察システム1の観察モードが通常観察モードに設定された際には、被写体に対して照射されたWL光の反射光であるWR光が戻り光として対物レンズ17から入射されるとともに、当該WR光が励起光カットフィルタ23を透過して撮像素子25の撮像面に到達する。なお、本実施形態においては、撮像素子25が少なくとも可視域から近赤外域に感度を有するモノクロ撮像素子である場合に、光源制御部34が、白色観察画像を生成するための青色観察画像と緑色観察画像と赤色観察画像とを生成するために、V光、B光の照射と、G光の照射と、R光の照射とを時分割で行うような制御を発光部31に対して行うものであってもよい。
 撮像素子25は、励起光カットフィルタ23を透過したWR光を撮像することにより撮像信号を生成し、当該生成した撮像信号をプロセッサ4へ出力する。
 すなわち、前述のような撮像素子25の動作によれば、励起光カットフィルタ23を透過したWR光に含まれるV光及びB光がB画素で撮像され、当該WR光に含まれるG光がG画素で撮像され、当該WR光に含まれるR光がR画素で撮像される。
 画像生成部42は、内視鏡2から出力される撮像信号と、制御部45から出力されるシステム制御信号と、に基づき、撮像素子25により撮像されたWR光に応じた通常観察画像を生成する。また、画像生成部42は、制御部45から出力されるシステム制御信号に基づき、通常観察画像を観察画像として表示装置5へ出力する。
 すなわち、前述のような画像生成部42の動作によれば、生体観察システム1の観察モードが通常観察モードに設定された際に、例えば、被検体内の生体組織等を肉眼で見た場合と略同様の色調を具備する通常観察画像が観察画像として表示装置5に表示される。
 一方、ユーザは、表示装置5に表示される通常観察画像を確認しつつ、挿入部6を被検体内に挿入してゆく。そして、ユーザは、被検体内に存在する所望の被写体の近傍に挿入部6の先端部を配置した状態において、入力I/F43のスイッチSBを適宜のタイミングで押下しつつ、当該所望の被写体の観察を行う。
 ここで、スイッチSBの押下に応じて行われる観察モードの設定に係る動作等の具体例について、図6を参照しつつ説明する。図6は、実施形態に係る生体観察システムにおいて行われる動作の具体例を説明するためのフローチャートである。
 制御部45は、スイッチSBの押下に応じた指示を検出するための動作を行う(図6のステップS1)。
 制御部45は、図6のステップS1において、スイッチSBの押下に応じた指示を検出できなかった場合(S1:NO)には、現在設定中の観察モードを維持する。また、制御部45は、図6のステップS1において、スイッチSBの押下に応じた指示を検出できた場合(S1:YES)には、現在設定中の観察モードが深部血管観察モードであるか否かに係る判定処理を行う(図6のステップS2)。
 制御部45は、図6のステップS2において、現在設定中の観察モードが深部血管観察モードであるとの判定結果を得た場合(S2:YES)には、後述の図6のステップS8の処理を続けて行う。また、制御部45は、図6のステップS2において、現在設定中の観察モードが深部血管観察モードではないとの判定結果を得た場合(S2:NO)、すなわち、現在設定中の観察モードが通常観察モードまたは蛍光観察モードのいずれかであるとの判定結果を得た場合には、所定の時間PTの間に所定の光量PAの励起光を照射させるためのシステム制御信号を生成して光源制御部34へ出力する(図6のステップS3)。
 具体的には、制御部45は、図6のステップS3において、例えば、WL光と、所定の光量PAのIR光と、を所定の時間PTの間だけ時分割にまたは交互に発生させるためのシステム制御信号を生成して光源制御部34へ出力する。
 また、制御部45は、図6のステップS3の動作に併せ、所定の時間PTの間に生成した蛍光画像を判定部44へ出力させるためのシステム制御信号を生成して画像生成部42へ出力する。
 そして、以上に述べたような制御部45の動作によれば、図6のステップS3の動作が開始されてから所定の時間PTが経過するまでの間において、WL光及びIR光が被検体内の所望の被写体に対して時分割にまたは交互に照射されるとともに、当該WL光の反射光であるWR光と、当該IR光の照射により励起された蛍光薬剤から発せられる蛍光であるFL光と、当該IR光の反射光と、が戻り光として対物レンズ17から順次入射される。また、以上に述べたような制御部45の動作によれば、図6のステップS3の制御が開始されてから所定の時間PTが経過するまでの間において、励起光カットフィルタ23を透過したWR光及びFL光が撮像素子25によりそれぞれ撮像され、当該WR光に応じた通常観察画像及び当該FL光に応じた蛍光画像が画像生成部42によりそれぞれ生成され、当該蛍光画像が判定部44へ出力される。
 判定部44は、図6のステップS3の動作が開始されてから所定の時間PTが経過するまでの間に画像生成部42から出力される蛍光画像に基づき、被検体に投与された蛍光薬剤から発せられるFL光(蛍光)の光量に対応する所定のパラメータとして、当該蛍光画像の平均輝度値AVFを取得するための処理を行う。そして、判定部44は、前述のように取得した平均輝度値AVFが所定の閾値THA以上であるか否かに係る判定処理を行う(図6のステップS4)とともに、当該判定処理により得られた判定結果を制御部45へ出力する。すなわち、判定部44は、図6のステップS4において、蛍光画像の平均輝度値AVFが蛍光の観察が可能である条件を満たすか否かを判定するための判定処理を行っている。
 制御部45は、判定部44から出力される判定結果に基づき、平均輝度値AVFが所定の閾値THA以上であるとの判定結果が得られた場合(S4:YES)には、生体観察システム1の観察モードを蛍光観察モードに設定し(図6のステップS5)、当該蛍光観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力する。すなわち、制御部45は、判定部44から出力される判定結果に基づき、被検体に投与された蛍光薬剤から発せられるFL光の観察が可能であることを示す判定結果が得られた場合には、生体観察システム1の観察モードを蛍光観察モードに切り替えるための動作を行う。
 光源制御部34は、制御部45から出力されるシステム制御信号に基づき、例えば、LED31A、31B、31C及び31Eを点灯させつつLED31D及びLD31Fを消灯させるための制御と、LED31A~31Eを消灯させつつLD31Fを点灯させるための制御と、を発光部31に対して交互に行う。
 すなわち、前述のような光源制御部34の動作によれば、生体観察システム1の観察モードが蛍光観察モードに設定された際に、WL光及びIR光が光源装置3から内視鏡2のライトガイド13に時分割にまたは交互に供給されるとともに、当該WL光及び当該IR光が被検体内の所望の被写体に対して時分割にまたは交互に照射される。また、生体観察システム1の観察モードが蛍光観察モードに設定された際には、WR光と、FL光と、IR光の反射光と、が戻り光として対物レンズ17から入射されるとともに、当該WR光及び当該FL光が励起光カットフィルタ23を透過して撮像素子25の撮像面に順次到達する。
 なお、本実施形態においては、蛍光観察モード時に光源装置3から内視鏡2に供給されるIR光の光量が、所定の光量PAとは異なっていてもよく、または、所定の光量PAと同じであってもよい。
 撮像素子25は、励起光カットフィルタ23を透過したWR光及びFL光をそれぞれ撮像することにより撮像信号を生成し、当該生成した撮像信号をプロセッサ4へ出力する。
 すなわち、前述のような撮像素子25の動作によれば、励起光カットフィルタ23を透過したWR光に含まれるV光及びB光がB画素で撮像され、当該WR光に含まれるG光がG画素で撮像され、当該WR光に含まれるR光がR画素で撮像される。また、前述のような撮像素子25の動作によれば、励起光カットフィルタ23を透過したFL光がR画素で撮像される。
 画像生成部42は、内視鏡2から出力される撮像信号と、制御部45から出力されるシステム制御信号と、に基づき、撮像素子25により撮像されたWR光に応じた通常観察画像と、撮像素子25により撮像されたFL光に応じた蛍光画像と、をそれぞれ生成する。また、制御部45から出力されるシステム制御信号に基づき、通常観察画像及び蛍光画像を用いて観察画像を生成するとともに、当該生成した観察画像を表示装置5へ出力する。
 すなわち、前述のような画像生成部42の動作によれば、生体観察システム1の観察モードが蛍光観察モードに設定された際に、例えば、被検体内の病変部に集積した蛍光薬剤から発せられるFL光の発生箇所を示す情報が通常観察画像に対して付加(重畳)された画像が観察画像として表示装置5に表示される。
 なお、本実施形態によれば、蛍光画像を用いた観察画像が蛍光観察モードにおいて生成及び表示される限りにおいては、前述のものとは異なる観察画像が蛍光観察モードにおいて生成及び表示されるようにしてもよい。
 一方、制御部45は、判定部44から出力される判定結果に基づき、平均輝度値AVFが所定の閾値THA未満であるとの判定結果が得られた場合(S4:NO)には、生体観察システム1の観察モードを深部血管観察モードに設定し(図6のステップS6)、当該深部血管観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力する。すなわち、制御部45は、判定部44から出力される判定結果に基づき、被検体に投与された蛍光薬剤から発せられるFL光の観察が不可能であることを示す判定結果が得られた場合には、生体観察システム1の観察モードを深部血管観察モードに切り替えるための動作を行う。
 光源制御部34は、制御部45から出力されるシステム制御信号に基づき、LED31B及びLED31Eを点灯させつつLED31A、31C、31D及びLD31Fを消灯させるための制御と、LED31Dを点灯させつつLED31A、31B、31C、31E及びLD31Fを消灯させるための制御と、を発光部31に対して交互に行う。
 すなわち、前述のような光源制御部34の動作によれば、生体観察システム1の観察モードが深部血管観察モードに設定された際に、B光及びR光を合波器32で合波した混合光であるML光と、A光と、が光源装置3から内視鏡2のライトガイド13に時分割にまたは交互に供給されるとともに、当該ML光及び当該A光が被検体内の所望の被写体に対して時分割にまたは交互に照射される。また、生体観察システム1の観察モードが深部血管観察モードに設定された際には、被写体に対して照射されたML光の反射光であるMR光と、当該被写体に対して照射されたA光の反射光であるAR光と、が戻り光として対物レンズ17から入射されるとともに、当該MR光及び当該AR光が励起光カットフィルタ23を透過して撮像素子25の撮像面に順次到達する。
 撮像素子25は、励起光カットフィルタ23を透過したMR光及びAR光をそれぞれ撮像することにより撮像信号を生成し、当該生成した撮像信号をプロセッサ4へ出力する。
 すなわち、前述のような撮像素子25の動作によれば、励起光カットフィルタ23を透過したMR光に含まれるB光がB画素で撮像され、当該MR光に含まれるR光がR画素で撮像される。また、前述のような撮像素子25の動作によれば、励起光カットフィルタ23を透過したAR光がR画素で撮像される。
 画像生成部42は、内視鏡2から出力される撮像信号と、制御部45から出力されるシステム制御信号と、に基づき、撮像素子25により撮像されたMR光に含まれるB光に応じた青色光画像と、当該MR光に含まれるR光に応じた赤色光画像と、撮像素子25により撮像されたAR光に応じた琥珀色光画像と、をそれぞれ生成する。また、画像生成部42は、制御部45から出力されるシステム制御信号に基づき、青色光画像、琥珀色光画像及び赤色光画像を用いて観察画像を生成するとともに、当該生成した観察画像を表示装置5へ出力する。
 すなわち、前述のような画像生成部42の動作によれば、生体観察システム1の観察モードが深部血管観察モードに設定された際に、例えば、被検体内の所望の被写体の深部に存在する太径の血管が強調された画像が観察画像として表示装置5に表示される。
 制御部45は、図6のステップS6の動作を完了した後に、スイッチSBの押下に応じた指示を検出するための動作を行う(図6のステップS7)。
 制御部45は、図6のステップS7において、スイッチSBの押下に応じた指示を検出できなかった場合(S7:NO)には、図6のステップS6の動作により設定した深部血管観察モードを維持する。また、また、制御部45は、図6のステップS7において、スイッチSBの押下に応じた指示を検出できた場合(S7:YES)には、生体観察システム1の観察モードを通常観察モードに設定し(図6のステップS8)、当該通常観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力する。
 そして、制御部45は、スイッチSAが押下されてからスイッチSCが押下されるまでの期間において、図6の一連の動作を繰り返し行うことにより、生体観察システム1の観察モードを通常観察モード、蛍光観察モード及び深部血管観察モードのうちのいずれか1つの観察モードに設定する。
 以上に述べたように、本実施形態によれば、被検体に投与された蛍光薬剤から発せられる蛍光の観察が不可能であると判定された場合において、生体観察システム1の観察モードが蛍光観察モードに切り替わらないようにしている。すなわち、本実施形態によれば、例えば、被検体に投与された蛍光薬剤から発せられる蛍光が略退色し尽くした場合、及び/または、当該蛍光薬剤が代謝を経て略排泄された場合において、生体観察システム1の観察モードが蛍光観察モードに切り替わらないようにしている。また、以上に述べたように、本実施形態によれば、通常観察モード、蛍光観察モード及び深部血管観察モードの3つの観察モード間の切り替えを、単一のスイッチSBの押下により行うことができるようにしている。従って、本実施形態によれば、通常観察と、蛍光観察を含む複数の特殊光観察と、を切り替えつつ手術を行う術者の負担を軽減することができる。
 なお、本実施形態においては、例えば、生体観察システム1の観察モードが通常観察モードに設定されている場合に、制御部45が、WL光と所定の光量PAのIR光とを時分割にまたは交互に発生させるためのシステム制御信号を生成して光源制御部34へ出力するとともに、内視鏡2から出力される撮像信号に基づいて生成した蛍光画像を判定部44へ出力させつつ、内視鏡2から出力される撮像信号に基づいて生成した通常観察画像を表示装置5へ出力させるためのシステム制御信号を生成して画像生成部42へ出力するようにしてもよい。そして、このような制御部45の動作によれば、生体観察システム1の観察モードが通常観察モードに設定されている場合に、通常観察画像を観察画像として表示装置5に表示させつつ、判定部44による所定のパラメータの取得に係る処理及び当該所定のパラメータに基づく判定処理をバックグラウンドで常時行わせることができる。
 また、本実施形態においては、例えば、判定部44が、被検体に投与された蛍光薬剤から発せられるFL光(蛍光)の光量に対応する所定のパラメータとして、図6のステップS3の動作が開始されてから所定の時間PTが経過するまでの間に画像生成部42から出力される蛍光画像に含まれる所定の輝度値PB以上の画素数を取得するとともに、当該取得した画素数に応じた判定処理を行うようにしてもよい。また、このような場合において、例えば、制御部45が、所定の輝度値PB以上の画素数が所定の閾値THB以上であるとの判定結果が得られた場合に生体観察システム1の観察モードを蛍光観察モードに設定し、かつ、所定の輝度値PB以上の画素数が所定の閾値THB未満であるとの判定結果が得られた場合に生体観察システム1の観察モードを深部血管観察モードに設定するようにしてもよい。または、前述のような場合において、例えば、制御部45が、所定の輝度値PB以上の画素が1つ以上存在するとの判定結果が得られた場合に生体観察システム1の観察モードを蛍光観察モードに設定し、かつ、所定の輝度値PB以上の画素が存在しないとの判定結果が得られた場合に生体観察システム1の観察モードを深部血管観察モードに設定するようにしてもよい。
 また、本実施形態の制御部45は、図6のステップS5に係る動作を完了した後に、例えば、図7のステップS71に係る動作をさらに行うものであってもよい。このような制御部45の動作の具体例について、以下に説明する。以降においては、簡単のため、既述の構成または動作等を適用可能な部分に関する具体的な説明を適宜省略するものとする。図7は、図6の動作に加えて行われる動作の一例を説明するための図である。
 制御部45は、図6のステップS5に係る動作を完了した後に、すなわち、生体観察システム1の観察モードを蛍光観察モードに設定した後に、スイッチSBの押下に応じた指示を検出するための動作を行う(図7のステップS71)。
 制御部45は、図7のステップS71において、スイッチSBの押下に応じた指示を検出できなかった場合(S71:NO)には、図6のステップS5に係る動作により設定した蛍光観察モードを維持する。また、制御部45は、図7のステップS71において、スイッチSBの押下に応じた指示を検出できた場合(S71:YES)には、図6のステップS6と同様の動作を続けて行う。
 そして、以上に述べたような、図7のステップS71に係る動作が行われた場合には、例えば、被検体に投与された蛍光薬剤から発せられる蛍光が退色し尽くす前の所望のタイミングにおいて、生体観察システム1の観察モードを蛍光観察モードから深部血管観察モードへ切り替えることができる。
 また、本実施形態の制御部45は、例えば、図6の一連の動作において、図8のステップS81~ステップS84に係る動作をさらに行うものであってもよい。このような制御部45の動作の具体例について、以下に説明する。図8は、図6の動作に加えて行われる動作の一例を説明するための図である。
 制御部45は、図6のステップS2の判定処理により、現在設定中の観察モードが深部血管観察モードではないとの判定結果を得た場合に、さらに、フラグFAがオンであるか否かに係る判定処理を行う(図8のステップS81)。
 なお、フラグFAは、例えば、プロセッサ4に設けられた図示しないメモリに格納されている情報または値であるものとする。また、フラグFAは、例えば、スイッチSAが押下された直後に(すなわち図6のステップS1の動作が行われるより前に)オフに設定されるとともに、生体観察システム1の観察モードを蛍光観察モードに切り替えるための動作が行われた場合にオンに設定されるものとする。
 制御部45は、図8のステップS81の判定処理により、フラグFAがオフであるとの判定結果を得た場合(S81:NO)には、図6のステップS3と同様の動作を続けて行う。また、制御部45は、図8のステップS81の判定処理により、フラグFAがオンであるとの判定結果を得た場合(S81:YES)には、図6のステップS6と同様の動作を続けて行う。すなわち、このような制御部45の動作によれば、例えば、スイッチSBの押下に応じて通常観察モードから蛍光観察モードへ切り替えられた後に、通常観察モードにおいて再度スイッチSBが押下された場合には、蛍光の光量に対応する所定のパラメータに関係なく、生体観察システム1の観察モードが深部血管観察モードに切り替わる。
 制御部45は、図6のステップS4を経て判定部44から出力される判定結果に基づき、平均輝度値AVFが所定の閾値THA以上であるとの判定結果が得られた場合(S4:YES)には、フラグFAをオンに設定した(図8のステップS82)後、図6のステップS5と同様の動作を続けて行う。また、制御部45は、図6のステップS4を経て判定部44から出力される判定結果に基づき、平均輝度値AVFが所定の閾値THA未満であるとの判定結果が得られた場合(S4:NO)には、図6のステップS6と同様の動作を続けて行う。
 制御部45は、図6のステップS5に係る動作を完了した後に、すなわち、フラグFAをオンに設定しかつ生体観察システム1の観察モードを蛍光観察モードに設定した後に、スイッチSBの押下に応じた指示を検出するための動作を行う(図8のステップS83)。
 制御部45は、図8のステップS83において、スイッチSBの押下に応じた指示を検出できなかった場合(S83:NO)には、図6のステップS5に係る動作により設定した蛍光観察モードを維持する。また、制御部45は、図8のステップS83において、スイッチSBの押下に応じた指示を検出できた場合(S83:YES)には、生体観察システム1の観察モードを通常観察モードに設定し(図8のステップS84)、当該通常観察モードに応じた動作を行わせるためのシステム制御信号を生成し、当該生成したシステム制御信号を光源制御部34、撮像素子駆動部41及び画像生成部42へ出力する。
 すなわち、以上に述べたような動作によれば、制御部45は、通常観察モードから蛍光観察モードへの切り替えを行った後でスイッチSBの押下に応じた指示が行われたことを検出した際に、現在の観察モードを通常観察モード及び深部血管観察モードのうちのいずれか一方の観察モードに切り替える。
 そして、以上に述べたような、図8のステップS81~ステップS84に係る動作が行われた場合には、スイッチSAが押下されてからスイッチSCが押下されるまでの期間における通常観察モードから蛍光観察モードへの切り替えを1回までに制限することができるため、スイッチSBの押下に応じて生体観察システム1の観察モードを効率的に切り替えることができる。
 また、本実施形態によれば、例えば、図9に示すように、制御部45が図6のステップS5に係る動作を完了してから一定期間が経過する毎に、図6のステップS3及びステップS4に係る動作が行われるようにしてもよい。図9は、図6の動作の一部を変更した場合の例を説明するための図である。
 換言すると、本実施形態の制御部45は、生体観察システム1の観察モードを蛍光観察モードに設定した際に、判定部44により得られた判定結果に基づき、被検体に投与された蛍光薬剤から発せられるFL光の観察が可能であることを示す判定結果が得られた場合には蛍光観察モードを維持し、当該FL光の観察が不可能であることを示す判定結果が得られた場合には深部血管観察モードに切り替えるための動作を行うようにしてもよい。
 そして、以上に述べたような動作が行われた場合には、例えば、被検体に投与された蛍光薬剤から発せられる蛍光が退色し尽くした際に、スイッチSBの押下に応じた指示が行われずとも、生体観察システム1の観察モードを蛍光観察モードから深部血管観察モードに切り替えることができる。
 本発明は、上述した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。
 本出願は、2016年11月1日に日本国に出願された特願2016-214563号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (6)

  1.  被検体を照明する照明光として、前記被検体の白色観察画像を取得するための白色観察光と、前記被検体に投与された蛍光薬剤を励起するための励起光と、をそれぞれ発生することが可能な光源部と、
     前記照明光が照射された前記被検体を撮像する撮像部と、
     前記撮像部により撮像された前記白色観察光が照射された前記被検体の白色観察画像と、前記撮像部により撮像された前記励起光が照射された被検体の蛍光画像と、をそれぞれ生成する画像生成部と、
     前記被検体を観察する際の観察モードを、前記白色観察画像を観察画像として表示させる通常観察モードと、前記蛍光画像を用いて生成した観察画像を表示させる蛍光観察モードを含む複数の特殊光観察モードと、のうちのいずれか1つの観察モードに切り替えるための指示を行うためのスイッチと、
     前記画像生成部が生成した前記蛍光画像に基づいて前記蛍光の光量に対応するパラメータを取得するとともに、前記パラメータが前記蛍光の観察が可能である条件を満たすか否かを判定するための判定処理を行う判定部と、
     前記通常観察モードにおいて前記指示が行われたことを検出した際に、前記判定部により前記パラメータが前記蛍光の観察が可能である条件を満たすと判定された場合に前記蛍光観察モードに切り替えるための動作を行い、前記蛍光の観察が可能である条件を満たさないと判定された場合に前記複数の特殊光観察モードのうちの前記蛍光観察モードとは異なる所定の観察モードに切り替えるための動作を行う制御部と、
     を有することを特徴とする生体観察システム。
  2.  前記制御部は、前記蛍光観察モードにおいて前記指示が行われたことを検出した際に、前記所定の観察モードに切り替えるための動作を行う
     ことを特徴とする請求項1に記載の生体観察システム。
  3.  前記制御部は、前記通常観察モードから前記蛍光観察モードへの切り替えを行った後で前記指示が行われたことを検出した際に、現在の観察モードを前記通常観察モード及び前記所定の観察モードのうちのいずれか一方の観察モードに切り替えるための動作を行う
     ことを特徴とする請求項1に記載の生体観察システム。
  4.  前記制御部は、前記通常観察モードから前記蛍光観察モードへの切り替えを行った後で、前記通常観察モード時に前記指示が行われたことを検出した際に、現在の観察モードを前記パラメータによらずに前記通常観察モードから前記所定の観察モードに切り替えるための動作を行う
     ことを特徴とする請求項1に記載の生体観察システム。
  5.  前記制御部は、前記蛍光観察モードにおいて、前記判定部により前記蛍光の観察が可能である条件を満たすと判定された場合に前記蛍光観察モードを維持し、前記蛍光の観察が可能である条件を満たさないと判定された場合に前記所定の観察モードに切り替えるための動作を行う
     ことを特徴とする請求項1に記載の生体観察システム。
  6.  前記制御部は、前記通常観察モードまたは前記蛍光観察モードにおいて前記指示が行われたことを検出した際に、所定の時間の間に所定の光量の前記励起光を照射させるための動作を行う
     ことを特徴とする請求項1に記載の生体観察システム。
PCT/JP2017/031746 2016-11-01 2017-09-04 生体観察システム WO2018083879A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780043288.2A CN109475270B (zh) 2016-11-01 2017-09-04 活体观察系统
JP2018524844A JP6430074B2 (ja) 2016-11-01 2017-09-04 生体観察システム
US16/257,725 US10631721B2 (en) 2016-11-01 2019-01-25 Living body observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016214563 2016-11-01
JP2016-214563 2016-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/257,725 Continuation US10631721B2 (en) 2016-11-01 2019-01-25 Living body observation system

Publications (1)

Publication Number Publication Date
WO2018083879A1 true WO2018083879A1 (ja) 2018-05-11

Family

ID=62075784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031746 WO2018083879A1 (ja) 2016-11-01 2017-09-04 生体観察システム

Country Status (4)

Country Link
US (1) US10631721B2 (ja)
JP (1) JP6430074B2 (ja)
CN (1) CN109475270B (ja)
WO (1) WO2018083879A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244407A1 (ja) * 2018-06-19 2019-12-26 オリンパス株式会社 内視鏡システム及び内視鏡システムの作動方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038641B2 (ja) * 2018-11-02 2022-03-18 富士フイルム株式会社 医療診断支援装置、内視鏡システム、及び作動方法
EP4016162A4 (en) * 2019-08-13 2022-10-12 FUJIFILM Corporation ENDOSCOPIC SYSTEM AND METHODS OF OPERATION THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172530A (ja) * 2009-01-30 2010-08-12 Fujifilm Corp 蛍光内視鏡システム、及び蛍光観察方法
JP2012152460A (ja) * 2011-01-27 2012-08-16 Fujifilm Corp 医療システム、医療システムのプロセッサ装置、及び画像生成方法
JP2016170182A (ja) * 2013-07-22 2016-09-23 オリンパスメディカルシステムズ株式会社 医療用観察装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4388318B2 (ja) * 2003-06-27 2009-12-24 オリンパス株式会社 画像処理装置
JP4575720B2 (ja) * 2004-07-23 2010-11-04 Hoya株式会社 電子内視鏡システム
JP2008161550A (ja) * 2006-12-28 2008-07-17 Olympus Corp 内視鏡システム
JP5394675B2 (ja) * 2008-08-22 2014-01-22 オリンパスメディカルシステムズ株式会社 内視鏡システム
DE102009018142A1 (de) * 2009-04-08 2010-10-14 Karl Storz Gmbh & Co. Kg Vorrichtung zur Fluoreszenzdiagnose
JP2012000160A (ja) 2010-06-14 2012-01-05 Fujifilm Corp 内視鏡装置
JP5538143B2 (ja) * 2010-08-31 2014-07-02 富士フイルム株式会社 内視鏡システム
JP5371946B2 (ja) * 2010-12-24 2013-12-18 富士フイルム株式会社 内視鏡診断装置
JP2012157383A (ja) * 2011-01-28 2012-08-23 Olympus Corp 内視鏡装置
JP5846763B2 (ja) * 2011-05-24 2016-01-20 オリンパス株式会社 内視鏡装置
JP5709691B2 (ja) * 2011-08-23 2015-04-30 富士フイルム株式会社 内視鏡装置
WO2013145410A1 (ja) * 2012-03-30 2013-10-03 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP6030035B2 (ja) * 2013-09-27 2016-11-24 富士フイルム株式会社 蛍光観察装置、内視鏡システム及びプロセッサ装置並びに作動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010172530A (ja) * 2009-01-30 2010-08-12 Fujifilm Corp 蛍光内視鏡システム、及び蛍光観察方法
JP2012152460A (ja) * 2011-01-27 2012-08-16 Fujifilm Corp 医療システム、医療システムのプロセッサ装置、及び画像生成方法
JP2016170182A (ja) * 2013-07-22 2016-09-23 オリンパスメディカルシステムズ株式会社 医療用観察装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244407A1 (ja) * 2018-06-19 2019-12-26 オリンパス株式会社 内視鏡システム及び内視鏡システムの作動方法
US11363939B2 (en) 2018-06-19 2022-06-21 Olympus Corporation Endoscope system, operation method of endoscope system and recording medium

Also Published As

Publication number Publication date
US10631721B2 (en) 2020-04-28
CN109475270B (zh) 2021-04-27
JPWO2018083879A1 (ja) 2018-11-08
JP6430074B2 (ja) 2018-11-28
CN109475270A (zh) 2019-03-15
US20190167086A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6005303B2 (ja) 蛍光観察内視鏡システム
CN109195502B (zh) 活体观察系统
JP5148054B2 (ja) 撮像システム
US9498110B2 (en) Endoscope system having narrow band observation
JP6430074B2 (ja) 生体観察システム
JP6169310B1 (ja) 内視鏡システム
JP7328432B2 (ja) 医療用制御装置、医療用観察システム、制御装置及び観察システム
JP2015196004A (ja) 観察画像取得システム及び観察画像取得方法
US20190167083A1 (en) Endoscope system
US11684238B2 (en) Control device and medical observation system
JP6293392B1 (ja) 生体観察システム
JP7059353B2 (ja) 内視鏡システム
JP6205531B1 (ja) 内視鏡システム
WO2019171703A1 (ja) 内視鏡システム
JP2004194821A (ja) 励起光光源装置
WO2018220908A1 (ja) 内視鏡システム
JP6138386B1 (ja) 内視鏡装置及び内視鏡システム
KR20170022571A (ko) 형광 영상을 촬영하는 내시경 장치
WO2018225316A1 (ja) 医療用制御装置
WO2017047141A1 (ja) 内視鏡装置及び内視鏡システム
JP2013017607A (ja) 内視鏡装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524844

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866618

Country of ref document: EP

Kind code of ref document: A1