WO2018083870A1 - Current protection circuit - Google Patents

Current protection circuit Download PDF

Info

Publication number
WO2018083870A1
WO2018083870A1 PCT/JP2017/030927 JP2017030927W WO2018083870A1 WO 2018083870 A1 WO2018083870 A1 WO 2018083870A1 JP 2017030927 W JP2017030927 W JP 2017030927W WO 2018083870 A1 WO2018083870 A1 WO 2018083870A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
output
current
voltage
terminal
Prior art date
Application number
PCT/JP2017/030927
Other languages
French (fr)
Japanese (ja)
Inventor
日比 康博
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018083870A1 publication Critical patent/WO2018083870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit

Definitions

  • This disclosure relates to a current protection circuit that protects a circuit from a backflow that flows from an output terminal to an input terminal.
  • some series regulator type power supply circuits include a current protection circuit for protecting the circuit from a backflow flowing from the output terminal to the input terminal.
  • a backflow protection circuit is a configuration in which a backflow protection transistor is provided in series with the main transistor (see, for example, Patent Document 1).
  • the potential relationship between the input and output terminals is detected by a comparator, and when the potential relationship between the input and output terminals is reversed based on the output of the comparator, the reverse current protection transistor is turned off to prevent back flow. Is realized.
  • An object of the present disclosure is to provide a current protection circuit that can protect a circuit from backflow while suppressing an increase in circuit area.
  • the current protection circuit includes a MOS transistor, a current detection unit, an off drive unit, and a back gate control unit.
  • the MOS transistor is connected in series between an input terminal for inputting an input voltage and an output terminal for outputting an output voltage lower than the input voltage.
  • the MOS transistor connected to such a location is an N-channel type, its drain is connected to the input terminal side and its source is connected to the output terminal side.
  • the source is connected to the input terminal side, and the drain is connected to the output terminal side.
  • the current detection unit detects a current flowing between the input terminal and the output terminal, and outputs a detection signal indicating the direction of the detected current.
  • the off drive unit drives the MOS transistor off.
  • the back gate control unit applies a voltage on the drain side of the MOS transistor to the back gate of the MOS transistor at least during a period in which the detection signal indicating the first direction is output from the current detection unit.
  • the off drive unit drives the MOS transistor off when a detection signal representing the first direction is output from the current detection unit. As a result, backflow through the path through the channel of the MOS transistor is prevented.
  • the back gate control unit applies the voltage on the drain side of the MOS transistor to the back gate of the MOS transistor.
  • the MOS transistor is an N-channel type
  • a body diode having the anode on the drain side, that is, the input terminal side is formed between the drain and source of the MOS transistor.
  • the MOS transistor is a P-channel type
  • a body diode having an anode on the source side, that is, the input terminal side is formed between the source and drain of the MOS transistor. For this reason, backflow through the path through the body diode of the MOS transistor is also prevented.
  • the backflow that flows from the output terminal to the input terminal is controlled by controlling the driving of one MOS transistor provided in series in the path from the input terminal to the output terminal and controlling the back gate. Is prevented. Therefore, according to the said structure, the outstanding effect that a circuit can be protected from a backflow is obtained, suppressing the increase in a circuit area.
  • FIG. 1 is a diagram schematically showing the configuration of the power supply circuit according to the first embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the power supply circuit according to the second embodiment.
  • FIG. 3 is a diagram schematically showing the configuration of the power supply circuit according to the third embodiment.
  • FIG. 4 is a diagram schematically showing the configuration of the power supply circuit according to the fourth embodiment.
  • the power supply circuit 1 shown in FIG. 1 is used in, for example, an electronic control device (hereinafter also referred to as ECU) mounted on a vehicle.
  • the power supply circuit 1 is a series regulator type power supply circuit that steps down the input voltage AVDD given through the power supply input terminal Pi and outputs it as an output voltage VOUT having a desired voltage value from the power supply output terminal Po.
  • the input voltage AVDD is a battery voltage output from an in-vehicle battery (not shown) or a DC voltage output from another power supply circuit that receives the battery voltage.
  • the steady value of the input voltage AVDD is 12V, for example, and the target value of the output voltage VOUT is 5V, for example. That is, in a steady state, the input voltage AVDD and the output voltage VOUT have a relationship of “AVDD> VOUT”. Therefore, in a steady state, in the power supply circuit 1, a current flows in the forward direction from the power input terminal Pi to the power output terminal Po.
  • the power output terminal Po is led out of the ECU through, for example, wiring, and there is a possibility that the wiring or the like may be short-circuited with a high voltage portion existing outside.
  • the input voltage AVDD and the output voltage VOUT have a relationship of “AVDD ⁇ VOUT”. Therefore, at the time of abnormality, in the power supply circuit 1, a current may flow in the reverse direction from the power supply output terminal Po to the power supply output terminal Pi.
  • the power supply circuit 1 of the present embodiment includes a protection function for protecting the circuit from such a reverse current (hereinafter also referred to as a reverse flow).
  • the power supply circuit 1 includes transistors T1 and T2, a pre-driver 2, a shunt resistor Rs, a comparator CP1, inversion buffers 3 and 4, a voltage detection circuit 5, an error amplifier 6, a back gate control unit 7, and the like.
  • the transistor T1 is an N-channel power MOS transistor.
  • the drain of the transistor T1 is connected to the power input terminal Pi via the shunt resistor Rs.
  • the source of the transistor T1 is connected to the power output terminal Po. That is, the transistor T1 is interposed in series between the power input terminal Pi and the power output terminal Po, and corresponds to a main transistor.
  • a gate drive signal Sg output from the pre-driver 2 is given to the gate of the transistor T1.
  • the power input terminal Pi corresponds to an input terminal
  • the power output terminal Po corresponds to an output terminal.
  • the output signal of the comparator CP1 is supplied to the inverting buffers 3 and 4 as the detection signal Sc of the current flowing between the power input terminal Pi and the power output terminal Po.
  • the detection signal Sc has a level corresponding to the magnitude relationship between the terminal voltages of the shunt resistor Rs. Specifically, the detection signal Sc is at a high level (for example, 5 V) when one terminal voltage of the shunt resistor Rs is larger than the other terminal voltage, and the other terminal voltage of the shunt resistor Rs is one terminal voltage. If it is larger than the low level, it becomes a low level (for example, 0 V).
  • the current that flows between the power input terminal Pi and the power output terminal Po is detected by the shunt resistor Rs and the comparator CP1, and the detection signal Sc that represents the direction of the detected current is output.
  • a detection unit 8 is configured.
  • the direction of the current flowing from the power output terminal Po to the power output terminal Pi is defined as the first direction
  • the direction of the current that is, the direction of the forward current (forward current) is defined as the second direction. Therefore, the low level detection signal Sc corresponds to a detection signal representing the first direction (reverse direction), and the high level detection signal Sc corresponds to a detection signal representing the second direction (forward direction).
  • the voltage detection circuit 5 is composed of a series circuit of resistors R1 and R2.
  • the series circuit is connected between the source of the transistor T1, that is, the power supply output terminal Po, and the ground terminal Pg to which the reference potential GND (0 V) of the circuit is applied.
  • the voltage at the common connection point of the resistors R1 and R2, that is, the detection voltage Vd obtained by dividing the output voltage VOUT by the resistors R1 and R2 is applied to the inverting input terminal of the error amplifier 6.
  • the reference voltage Vr corresponding to the target value of the output voltage VOUT is given to the non-inverting input terminal of the error amplifier 6.
  • the error amplifier 6 outputs an error signal Sd corresponding to the difference between the reference voltage Vr and the detection voltage Vd.
  • the error signal Sd is given to the pre-driver 2.
  • a transistor T2 is connected between the control terminal P1 of the pre-driver 2 and the ground terminal Pg.
  • the transistor T2 is an N channel type MOS transistor.
  • the output signal of the inverting buffer 3 is given to the gate of the transistor T2. Therefore, the transistor T2 is turned on when the detection signal Sc is at a low level, and is turned off when the detection signal Sc is at a high level.
  • the control terminal P1 is pulled up inside the pre-driver 2. Therefore, the voltage level of the control terminal P1 becomes high level when the detection signal Sc becomes high level and the transistor T2 is turned off, and becomes low level when the detection signal Sc becomes low level and the transistor T2 is turned on.
  • the pre-driver 2 outputs a gate drive signal Sg corresponding to the error signal Sd when the voltage level of the control terminal P1 is high. Thereby, the drive of the transistor T1 is feedback controlled so that the output voltage VOUT matches the target value. Further, when the voltage level of the control terminal P1 is low level, the pre-driver 2 outputs the gate drive signal Sg of 0V, for example, to drive the transistor T1 off.
  • the pre-driver 2, the inverting buffer 3, and the transistor T2 constitute an off drive unit 9.
  • the back gate control unit 7 controls the voltage applied to the back gate of the transistor T1 in accordance with the detection signal Sc output from the current detection unit 8. Specifically, the back gate control unit 7 connects the back gate of the transistor T1 to the source side, that is, the power supply output terminal Po during a period in which the high level detection signal Sc is output. As a result, when a current flows in a direction flowing from the power input terminal Pi to the power output terminal Po, that is, in a steady state, the source side voltage, that is, the output voltage VOUT is applied to the back gate of the transistor T1.
  • the back gate control unit 7 connects the back gate of the transistor T1 to the drain side, that is, the power supply input terminal Pi during the period when the low level detection signal Sc is output.
  • the drain side voltage that is, the input voltage AVDD is applied to the back gate of the transistor T1.
  • the back gate control unit 7 includes transistors T3 to T6 and a current source 10.
  • the transistor T3 is an N-channel MOS transistor, and its source is connected to the ground terminal Pg.
  • the drain of the transistor T3 is connected to the power input terminal Pi via the current source 10.
  • the output signal of the inverting buffer 4 is given to the gate of the transistor T3.
  • the transistor T4 is a P-channel MOS transistor, and its source is connected to the power input terminal Pi.
  • the gate of the transistor T4 is connected to the drain of the transistor T3.
  • the drain of the transistor T4 is connected to the node N1.
  • Node N1 is connected to the back gate of transistor T1.
  • the transistors T5 and T6 are both N-channel MOS transistors, and their sources are connected to the node N1.
  • the drains of the transistors T5 and T6 are connected to the power output terminal Po.
  • the gate of the transistor T5 is connected to the power input terminal Pi.
  • the transistor T6 is driven on and off by the pre-driver 2. Specifically, the pre-driver 2 turns on the transistor T6 when the voltage level of the control terminal P1 is high. The pre-driver 2 drives off the transistor T6 when the voltage level of the control terminal P1 is low.
  • the transistor T4 when the high-level detection signal Sc is output from the current detection unit 8, the transistor T4 is turned off, thereby turning off the transistor T4. At this time, the transistor T6 is turned on by the pre-driver 2. Accordingly, the transistor T5 is also turned on. By such an operation, the node N1 is connected to the power supply output terminal Po, and the output voltage VOUT is applied to the back gate of the transistor T1.
  • the transistor T4 is turned on to turn on the transistor T4.
  • the transistor T6 is driven off by the pre-driver 2. Accordingly, the transistor T5 is turned off.
  • the node N1 is connected to the power supply input terminal Pi, and the input voltage AVDD is applied to the back gate of the transistor T1.
  • the transistor T1, the back gate control unit 7, the current detection unit 8, and the off drive unit 9 protect the circuit such as the power supply circuit 1 from the backflow that flows from the power supply output terminal Po to the power supply input terminal Pi.
  • a current protection circuit 11 that realizes the function is configured.
  • the current detection unit 8 when a backflow that flows from the power supply output terminal Po to the power supply input terminal Pi occurs, the current detection unit 8 outputs a low-level detection signal Sc.
  • the pre-driver 2 constituting the off-drive unit 9 forcibly drives the transistor T ⁇ b> 1 regardless of the error signal Sd output from the error amplifier 6. To do. Thereby, the backflow by the path
  • the back gate control unit 7 supplies the input voltage AVDD that is the voltage on the drain side of the transistor T1 to the back gate of the transistor T1.
  • AVDD the input voltage
  • a body diode having the drain side, that is, the power input terminal Pi side as an anode, is formed between the drain and source of the transistor T1. For this reason, backflow through the path through the body diode of the transistor T1 is also prevented.
  • the drive of one transistor T1 provided in series in the path from the power input terminal Pi to the power output terminal Po is controlled and the back gate is controlled to thereby control the power output terminal Po. Is prevented from flowing back to the power input terminal Pi. Therefore, according to the present embodiment, it is possible to obtain an excellent effect that the circuit can be protected from backflow while suppressing an increase in the circuit area of the power supply circuit 1.
  • the reverse flow does not flow because the transistor T1 is driven off by the pre-driver 2 at the time of abnormality. Then, since the detection signal Sc output from the current detection unit 8 turns to a high level, the transistor T1 is turned on by the pre-driver 2 so that a reverse flow can flow again. When the reverse flow again flows, the detection signal Sc output from the current detection unit 8 turns to a low level, so that the transistor T1 is driven off by the pre-driver 2.
  • an abnormal state that is, when a backflow can flow from the power supply output terminal Po to the power supply input terminal Pi
  • the transistor T1 is repeatedly turned on and off in this manner, so that the power supply circuit 1 is protected from the backflow. It has become.
  • the back gate control unit 7 may apply the voltage on the drain side of the transistor T1 to the back gate at least during the period when the low level detection signal Sc is output from the current detection unit 8.
  • the back gate controller 7 may always apply the drain side voltage of the transistor T1 to the back gate. Even with such a configuration, the effect of preventing the above-described backflow can be obtained.
  • a body diode whose drain side is the anode is always formed between the drain and source of the transistor T1. Therefore, in a steady state, a current (forward current) flows through the path through the body diode of the transistor T1, and the loss increases accordingly.
  • the back gate control unit 7 connects the back gate of the transistor T1 to the source side, that is, the power supply output terminal Po during the period when the high level detection signal Sc is output from the current detection unit 8.
  • the back gate control unit 7 connects the back gate of the transistor T1 to the source side, that is, the power supply output terminal Po during the period when the high level detection signal Sc is output from the current detection unit 8.
  • a body diode having the anode on the source side is formed between the drain and source of the transistor T1. Therefore, in a steady state, forward current does not flow through a path through the body diode of the transistor T1, so that an increase in loss can be prevented.
  • the power supply circuit 21 of the present embodiment is different from the power supply circuit 1 of the first embodiment in that a comparator CP21 and a D-type flip-flop 22 are added.
  • the output voltage VOUT is applied to the inverting input terminal of the comparator CP21, and the input voltage AVDD is applied to the non-inverting input terminal.
  • the output signal Sa of the comparator CP21 is at a high level when the input voltage AVDD is higher than the output voltage VOUT, and is at a low level when the output voltage VOUT is higher than the input voltage AVDD.
  • the comparator CP21 corresponds to a voltage detection unit that detects the input voltage AVDD and the output voltage VOUT.
  • the output signal Sa of the comparator CP21 is given to the clock terminal of the flip-flop 22.
  • a high level (for example, + 5V) signal is applied to the input terminal D of the flip-flop 22.
  • a detection signal Sc output from the current detection unit 8 is given to the reset terminal R bar of the flip-flop 22. In FIG. 2, the reset terminal R bar is indicated by “-” on the R.
  • the output signal Sf output from the output terminal Q of the flip-flop 22 is given to the inverting buffers 3 and 4.
  • the flip-flop 22 when the detection signal Sc output from the current detection unit 8 becomes low level, the flip-flop 22 outputs a low level output signal Sf. The output state continues until the output signal Sa of the comparator CP21 applied to the clock terminal changes from the low level to the high level.
  • the voltage level of the control terminal P1 of the pre-driver 2 is high when the output signal Sf is high, and is low when the output signal Sf is low. Therefore, when the output signal Sf is at the high level, the pre-driver 2 drives the transistor T1 by outputting the gate drive signal Sg corresponding to the error signal Sd. Further, when the output signal Sf is at a low level, the pre-driver 2 forcibly turns off the transistor T1 regardless of the error signal Sd.
  • the back gate controller 7 controls the voltage applied to the back gate of the transistor T1 according to the output signal Sf of the flip-flop 22. Specifically, the back gate control unit 7 connects the back gate of the transistor T1 to the power supply output terminal Po during a period in which the high level output signal Sf is output, so that the output voltage VOUT is applied to the back gate of the transistor T1. give. Further, the back gate control unit 7 applies the input voltage AVDD to the back gate of the transistor T1 by connecting the back gate of the transistor T1 to the power supply input terminal Pi during the period when the low level output signal Sf is output.
  • the pre-driver 2, the inverting buffer 3, the transistor T2, and the flip-flop 22 constitute an off drive unit 23.
  • the off drive unit 23 continues the off drive of the transistor T1 if the output signal Sa of the comparator CP21 does not change from the low level to the high level after the low level detection signal Sc is output, and the output signal Sa changes from the low level to the high level.
  • the off-drive of the transistor T1 is released.
  • the transistor T1, the back gate control unit 7, the current detection unit 8, and the off drive unit 23 constitute a current protection circuit 24.
  • the output signal Sa may change from the low level to the high level. Therefore, the off-drive of the transistor T1 by the pre-driver 2 is also continued.
  • the state in which the reverse flow can flow that is, when the input voltage AVDD becomes larger than the output voltage VOUT, the output signal Sa changes from the low level to the high level, and thus the pre-driver 2 releases the off drive of the transistor T1 Is done.
  • the off driving unit 23 continues the off driving of the transistor T1 unless the output signal Sa of the comparator CP21 changes from the low level to the high level after the low level detection signal Sc is output.
  • the transistor T1 is turned off. Therefore, when the transistor T1 is turned off in a state in which a reverse flow can flow, that is, in a state of “AVDD ⁇ VOUT”, the transistor T1 is continuously turned off unless the state in which the reverse flow can flow is eliminated. Therefore, in this embodiment, when the circuit is protected from the backflow, the transistor T1 is not repeatedly turned on and off, so that the fluctuation of the output voltage VOUT can be suppressed.
  • the power supply circuit 31 of the present embodiment is different from the power supply circuit 1 of the first embodiment in that a transistor T31 is provided instead of the transistor T1, and that the back gate control unit 7 The difference is that the gate control unit 32 is provided and the inversion buffer 4 is omitted.
  • the transistor T31 is a P-channel type power MOS transistor.
  • the source of the transistor T31 is connected to the power input terminal Pi via the shunt resistor Rs.
  • the drain of the transistor T31 is connected to the power output terminal Po. That is, the transistor T31 is interposed in series between the power input terminal Pi and the power output terminal Po, and corresponds to a main transistor.
  • a gate drive signal Sg output from the pre-driver 2 is given to the gate of the transistor T31.
  • the back gate control unit 32 controls the voltage applied to the back gate of the transistor T31 according to the detection signal Sc output from the current detection unit 8. Specifically, the back gate control unit 32 connects the back gate of the transistor T31 to the source side, that is, the power input terminal Pi during a period in which the high level detection signal Sc is output. As a result, when a current flows in a direction flowing from the power input terminal Pi to the power output terminal Po, that is, in a steady state, the source side voltage, that is, the input voltage AVDD is applied to the back gate of the transistor T31.
  • the back gate control unit 32 connects the back gate of the transistor T31 to the drain side, that is, the power supply output terminal Po during the period when the low level detection signal Sc is output.
  • the drain side voltage that is, the output voltage VOUT is applied to the back gate of the transistor T31.
  • the back gate control unit 32 includes transistors T33 to T36 and a current source 33.
  • the transistor T33 is a P-channel MOS transistor, and its source is connected to the power input terminal Pi.
  • the drain of the transistor T33 is connected to the ground terminal Pg through the current source 33.
  • a detection signal Sc is supplied to the gate of the transistor T33.
  • the transistor T34 is an N-channel MOS transistor, and its source is connected to the power output terminal Po.
  • the gate of the transistor T34 is connected to the drain of the transistor T33.
  • the drain of the transistor T34 is connected to the node N31.
  • the node N31 is connected to the back gate of the transistor T31.
  • the transistors T35 and T36 are both P-channel MOS transistors, and their sources are connected to the node N31.
  • the drains of the transistors T35 and T36 are connected to the power input terminal Pi.
  • the gate of the transistor T35 is connected to the power supply output terminal Po.
  • the transistor T36 is driven on and off by the pre-driver 2. Specifically, the pre-driver 2 turns on the transistor T36 when the voltage level of the control terminal P1 is high. Further, the pre-driver 2 drives the transistor T36 off when the voltage level of the control terminal P1 is low.
  • the transistor T33 when the high-level detection signal Sc is output from the current detection unit 8, the transistor T33 is turned off, thereby turning off the transistor T34. At this time, the transistor T36 is turned on by the pre-driver 2. Accordingly, the transistor T35 is also turned on. By such an operation, the node N31 is connected to the power supply input terminal Pi, and the input voltage AVDD is applied to the back gate of the transistor T31.
  • the transistor T33 is turned on to turn on the transistor T34.
  • the transistor T36 is driven off by the pre-driver 2. Accordingly, the transistor T35 is turned off.
  • the node N31 is connected to the power supply output terminal Po, and the output voltage VOUT is given to the back gate of the transistor T31.
  • the transistor T31, the back gate control unit 32, the current detection unit 8, and the off drive unit 9 protect the circuit such as the power supply circuit 31 from the backflow that flows from the power supply output terminal Po to the power supply input terminal Pi.
  • a current protection circuit 34 for realizing the function is configured.
  • the same operation and effect as the first embodiment can be obtained. That is, in the power supply circuit 31 configured as described above, when a backflow that flows from the power supply output terminal Po to the power supply input terminal Pi occurs as in the power supply circuit 1 of the first embodiment, the current detection unit 8 generates the low level detection signal Sc. Output. When the low-level detection signal Sc is output from the current detection unit 8, the pre-driver 2 that configures the off-drive unit 9 forcibly drives the transistor T31 off regardless of the error signal Sd output from the error amplifier 6. To do. Thereby, the backflow by the path
  • the back gate control unit 32 supplies the output voltage VOUT, which is the voltage on the drain side of the transistor T31, to the back gate of the transistor T31.
  • VOUT the voltage on the drain side of the transistor T31
  • the drive of one transistor T31 provided in series in the path from the power input terminal Pi to the power output terminal Po is controlled, and the back gate is controlled to control the power output terminal Po. Is prevented from flowing back to the power input terminal Pi. Therefore, also in the present embodiment, as in the first embodiment, an excellent effect that the circuit can be protected from the backflow while suppressing an increase in the circuit area of the power supply circuit 31 is obtained.
  • the power supply circuit 41 of this embodiment is different from the power supply circuit 1 of the first embodiment in that a current detection unit 42 is provided instead of the current detection unit 8.
  • the current detection unit 42 includes a transistor T41 and a current source 43 in addition to the configuration included in the current detection unit 8.
  • the drain of the transistor T1 is directly connected to the power input terminal Pi.
  • the transistor T41 is an N-channel MOS transistor, and its drain is connected to the power input terminal Pi via the shunt resistor Rs.
  • the source and gate of the transistor T41 are commonly connected, and the commonly connected source and gate are connected to the gate of the transistor T1 and to the ground terminal Pg via the current source 43.
  • the back gate of the transistor T41 is connected to the ground terminal Pg.
  • the transistor T1 and the transistor T41 constitute a current mirror circuit. Therefore, a current (hereinafter referred to as a detection current) corresponding to the current flowing through the transistor T1 flows through the transistor T41.
  • the detection current is determined by the size ratio of the transistor T1 and the transistor T41. Therefore, the transistor T41 corresponds to a current detection transistor that supplies a detection current corresponding to the current flowing through the transistor T1. That is, the current detection unit 42 of the present embodiment detects the current flowing through the transistor T1 based on the detection current flowing through the transistor T41.
  • the transistor T1, the back gate control unit 7, the current detection unit 42, and the off drive unit 9 protect the circuit such as the power supply circuit 41 from the backflow that flows from the power supply output terminal Po to the power supply input terminal Pi.
  • a current protection circuit 44 that realizes the function is configured.
  • the shunt resistor Rs is not interposed in the power supply path from the power input terminal Pi to the power output terminal Po. Therefore, according to the present embodiment, it is possible to further reduce the resistance of the power supply path, and as a result, it is possible to further reduce power loss and improve the accuracy of voltage control. The effect is obtained.
  • the specific configuration of the back gate control units 7 and 32 is not limited to the configuration shown in FIGS. 1 and 3 and the like, and can be appropriately changed as long as a desired operation can be realized.
  • the present disclosure is not limited to a power supply circuit included in an electronic control device mounted on a vehicle, and is a circuit having an input terminal for inputting an input voltage and an output terminal for outputting an output voltage lower than the input voltage.
  • the present invention can be applied to all circuits in which a backflow may flow from the output terminal to the input terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electronic Switches (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

A current protection circuit (11, 24, 34, 44), provided with an MOS transistor (T1, T31), a current detector (8, 42), an off driving unit (9, 23), and a back gate control unit (7, 32). The MOS transistor is serially connected between an input terminal (Pi) for inputting an input voltage and an output terminal (Po) for outputting an output voltage lower than the input voltage. The current detector detects a current flowing between the input terminal and the output terminal and outputs a detection signal representing the direction of the detected current. When a detection signal representing a first direction, which is the direction of a current flowing from the output terminal to the input terminal, is outputted, the off driving unit performs off-driving of the MOS transistor. At least while the detection signal representing the first direction is being outputted from the current detector, the back gate control unit applies the voltage of the drain side of the MOS transistor to the back gate of the MOS transistor.

Description

電流保護回路Current protection circuit 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年11月7日に出願された日本出願番号2016-217162号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-217162 filed on November 7, 2016, the contents of which are incorporated herein by reference.
 本開示は、出力端子から入力端子へと流れる逆流から回路を保護する電流保護回路に関する。 This disclosure relates to a current protection circuit that protects a circuit from a backflow that flows from an output terminal to an input terminal.
 例えばシリーズレギュレータ形式の電源回路には、出力端子から入力端子へと流れる逆流から回路を保護するための電流保護回路を備えるものがある。このような逆流保護回路としては、主トランジスタと直列に逆流保護用のトランジスタを設ける構成(例えば、特許文献1参照)を挙げることができる。この場合、入出力端子の電位関係をコンパレータで検出し、コンパレータの出力に基づいて入出力端子の電位関係が逆転したことを検出すると、逆流保護用のトランジスタをオフ駆動することで、逆流の防止を実現している。 For example, some series regulator type power supply circuits include a current protection circuit for protecting the circuit from a backflow flowing from the output terminal to the input terminal. An example of such a backflow protection circuit is a configuration in which a backflow protection transistor is provided in series with the main transistor (see, for example, Patent Document 1). In this case, the potential relationship between the input and output terminals is detected by a comparator, and when the potential relationship between the input and output terminals is reversed based on the output of the comparator, the reverse current protection transistor is turned off to prevent back flow. Is realized.
特開2004-312231号公報Japanese Patent Laid-Open No. 2004-312231
 上記した従来技術の構成では、電源回路の入力端子から出力端子に至る電源供給経路に対し、2つのトランジスタが直列に介在している。電源供給経路は、損失低減などの目的から低抵抗化が必要であるため、これらのトランジスタのサイズを大きくしなければならず、その結果、回路面積が増加することになる。 In the configuration of the conventional technique described above, two transistors are interposed in series with respect to the power supply path from the input terminal to the output terminal of the power supply circuit. Since the power supply path needs to have a low resistance for the purpose of reducing loss, the size of these transistors must be increased, resulting in an increase in circuit area.
 本開示の目的は、回路面積の増加を抑制しつつ、逆流から回路を保護することができる電流保護回路を提供することにある。 An object of the present disclosure is to provide a current protection circuit that can protect a circuit from backflow while suppressing an increase in circuit area.
 本開示の第一の態様において、電流保護回路は、MOSトランジスタ、電流検出部、オフ駆動部およびバックゲート制御部を備える。MOSトランジスタは、入力電圧を入力するための入力端子および入力電圧よりも低い出力電圧を出力するための出力端子の間に直列接続されている。なお、一般に、このような箇所に接続されるMOSトランジスタは、Nチャネル型であれば、そのドレインが入力端子側に接続されるとともに、そのソースが出力端子側に接続される。また、Pチャネル型であれば、そのソースが入力端子側に接続されるとともに、そのドレインが出力端子側に接続される。 In the first aspect of the present disclosure, the current protection circuit includes a MOS transistor, a current detection unit, an off drive unit, and a back gate control unit. The MOS transistor is connected in series between an input terminal for inputting an input voltage and an output terminal for outputting an output voltage lower than the input voltage. In general, if the MOS transistor connected to such a location is an N-channel type, its drain is connected to the input terminal side and its source is connected to the output terminal side. In the case of the P channel type, the source is connected to the input terminal side, and the drain is connected to the output terminal side.
 電流検出部は、入力端子および出力端子の間に流れる電流を検出し、その検出した電流の向きを表す検出信号を出力する。オフ駆動部は、出力端子から入力端子へと流れる電流の向きである第1方向を表す検出信号が出力されると、MOSトランジスタをオフ駆動する。バックゲート制御部は、少なくとも電流検出部から第1方向を表す検出信号が出力される期間、MOSトランジスタのドレイン側の電圧をMOSトランジスタのバックゲートに与える。 The current detection unit detects a current flowing between the input terminal and the output terminal, and outputs a detection signal indicating the direction of the detected current. When the detection signal indicating the first direction, which is the direction of the current flowing from the output terminal to the input terminal, is output, the off drive unit drives the MOS transistor off. The back gate control unit applies a voltage on the drain side of the MOS transistor to the back gate of the MOS transistor at least during a period in which the detection signal indicating the first direction is output from the current detection unit.
 このような構成において、出力端子から入力端子へと流れる逆流が発生すると、電流検出部は、出力端子から入力端子へと流れる電流の向きである第1方向(=逆方向)を表す検出信号を出力する。オフ駆動部は、電流検出部から第1方向を表す検出信号が出力されると、MOSトランジスタをオフ駆動する。これにより、MOSトランジスタのチャネルを介した経路による逆流が阻止される。 In such a configuration, when a backflow that flows from the output terminal to the input terminal occurs, the current detection unit generates a detection signal that represents the first direction (= reverse direction) that is the direction of the current that flows from the output terminal to the input terminal. Output. The off drive unit drives the MOS transistor off when a detection signal representing the first direction is output from the current detection unit. As a result, backflow through the path through the channel of the MOS transistor is prevented.
 また、このとき、バックゲート制御部は、MOSトランジスタのドレイン側の電圧をMOSトランジスタのバックゲートに与える。このようにすれば、MOSトランジスタがNチャネル型である場合、MOSトランジスタのドレイン・ソース間に、ドレイン側つまり入力端子側をアノードとしたボディダイオードが形成された状態となる。また、MOSトランジスタがPチャネル型である場合、MOSトランジスタのソース・ドレイン間に、ソース側つまり入力端子側をアノードとしたボディダイオードが形成された状態となる。そのため、MOSトランジスタのボディダイオードを介した経路による逆流も阻止される。 At this time, the back gate control unit applies the voltage on the drain side of the MOS transistor to the back gate of the MOS transistor. In this way, when the MOS transistor is an N-channel type, a body diode having the anode on the drain side, that is, the input terminal side, is formed between the drain and source of the MOS transistor. When the MOS transistor is a P-channel type, a body diode having an anode on the source side, that is, the input terminal side, is formed between the source and drain of the MOS transistor. For this reason, backflow through the path through the body diode of the MOS transistor is also prevented.
 このように、上記構成では、入力端子から出力端子に至る経路に直列に設けられた1つのMOSトランジスタの駆動を制御するとともに、バックゲートを制御することにより、出力端子から入力端子へと流れる逆流の発生を防止している。したがって、上記構成によれば、回路面積の増加を抑制しつつ、逆流から回路を保護することができるという優れた効果が得られる。 As described above, in the above configuration, the backflow that flows from the output terminal to the input terminal is controlled by controlling the driving of one MOS transistor provided in series in the path from the input terminal to the output terminal and controlling the back gate. Is prevented. Therefore, according to the said structure, the outstanding effect that a circuit can be protected from a backflow is obtained, suppressing the increase in a circuit area.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る電源回路の構成を模式的に示す図であり、 図2は、第2実施形態に係る電源回路の構成を模式的に示す図であり、 図3は、第3実施形態に係る電源回路の構成を模式的に示す図であり、 図4は、第4実施形態に係る電源回路の構成を模式的に示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram schematically showing the configuration of the power supply circuit according to the first embodiment. FIG. 2 is a diagram schematically showing the configuration of the power supply circuit according to the second embodiment. FIG. 3 is a diagram schematically showing the configuration of the power supply circuit according to the third embodiment. FIG. 4 is a diagram schematically showing the configuration of the power supply circuit according to the fourth embodiment.
 以下、複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
   (第1実施形態)
 以下、第1実施形態について図1を参照して説明する。
Hereinafter, a plurality of embodiments will be described with reference to the drawings. In each embodiment, substantially the same components are denoted by the same reference numerals and description thereof is omitted.
(First embodiment)
The first embodiment will be described below with reference to FIG.
 図1に示す電源回路1は、例えば車両に搭載される電子制御装置(以下、ECUとも呼ぶ)において用いられる。電源回路1は、電源入力端子Piを通じて与えられる入力電圧AVDDを降圧して電源出力端子Poから所望の電圧値を持つ出力電圧VOUTとして出力するシリーズレギュレータ形式の電源回路である。なお、入力電圧AVDDは、車載のバッテリ(図示略)から出力されるバッテリ電圧、または、そのバッテリ電圧を入力とする別の電源回路から出力される直流電圧である。 The power supply circuit 1 shown in FIG. 1 is used in, for example, an electronic control device (hereinafter also referred to as ECU) mounted on a vehicle. The power supply circuit 1 is a series regulator type power supply circuit that steps down the input voltage AVDD given through the power supply input terminal Pi and outputs it as an output voltage VOUT having a desired voltage value from the power supply output terminal Po. The input voltage AVDD is a battery voltage output from an in-vehicle battery (not shown) or a DC voltage output from another power supply circuit that receives the battery voltage.
 この場合、入力電圧AVDDの定常値は例えば12Vであり、出力電圧VOUTの目標値は例えば5Vである。つまり、定常時、入力電圧AVDDおよび出力電圧VOUTは、「AVDD>VOUT」という関係になっている。そのため、定常時、電源回路1では、電源入力端子Piから電源出力端子Poへと順方向に電流が流れる。 In this case, the steady value of the input voltage AVDD is 12V, for example, and the target value of the output voltage VOUT is 5V, for example. That is, in a steady state, the input voltage AVDD and the output voltage VOUT have a relationship of “AVDD> VOUT”. Therefore, in a steady state, in the power supply circuit 1, a current flows in the forward direction from the power input terminal Pi to the power output terminal Po.
 また、電源出力端子Poは、例えば配線などを通じてECUの外部に導出されており、その配線などが外部に存在する高電圧部分とショートする可能性がある。電源出力端子Poが高電圧部分とショートする故障が生じたとき(以下、異常時とも呼ぶ)、入力電圧AVDDおよび出力電圧VOUTは、「AVDD<VOUT」という関係となる。そのため、異常時、電源回路1では、電源出力端子Poから電源出力端子Piへと逆方向に電流が流れるおそれがある。詳細は後述するが、本実施形態の電源回路1は、このような逆方向の電流(以下、逆流とも呼ぶ)から回路を保護するための保護機能を備えている。 Also, the power output terminal Po is led out of the ECU through, for example, wiring, and there is a possibility that the wiring or the like may be short-circuited with a high voltage portion existing outside. When a failure occurs in which the power supply output terminal Po is short-circuited with a high voltage portion (hereinafter also referred to as an abnormality), the input voltage AVDD and the output voltage VOUT have a relationship of “AVDD <VOUT”. Therefore, at the time of abnormality, in the power supply circuit 1, a current may flow in the reverse direction from the power supply output terminal Po to the power supply output terminal Pi. Although details will be described later, the power supply circuit 1 of the present embodiment includes a protection function for protecting the circuit from such a reverse current (hereinafter also referred to as a reverse flow).
 電源回路1は、トランジスタT1、T2、プリドライバ2、シャント抵抗Rs、コンパレータCP1、反転バッファ3、4、電圧検出回路5、誤差アンプ6、バックゲート制御部7などを備えている。トランジスタT1は、Nチャネル型のパワーMOSトランジスタである。 The power supply circuit 1 includes transistors T1 and T2, a pre-driver 2, a shunt resistor Rs, a comparator CP1, inversion buffers 3 and 4, a voltage detection circuit 5, an error amplifier 6, a back gate control unit 7, and the like. The transistor T1 is an N-channel power MOS transistor.
 トランジスタT1のドレインは、シャント抵抗Rsを介して電源入力端子Piに接続されている。トランジスタT1のソースは、電源出力端子Poに接続されている。つまり、トランジスタT1は、電源入力端子Piおよび電源出力端子Poの間に直列に介在するものであり、主トランジスタに相当する。トランジスタT1のゲートには、プリドライバ2から出力されるゲート駆動信号Sgが与えられている。なお、この場合、電源入力端子Piは入力端子に相当し、電源出力端子Poは出力端子に相当する。 The drain of the transistor T1 is connected to the power input terminal Pi via the shunt resistor Rs. The source of the transistor T1 is connected to the power output terminal Po. That is, the transistor T1 is interposed in series between the power input terminal Pi and the power output terminal Po, and corresponds to a main transistor. A gate drive signal Sg output from the pre-driver 2 is given to the gate of the transistor T1. In this case, the power input terminal Pi corresponds to an input terminal, and the power output terminal Po corresponds to an output terminal.
 電源入力端子Piおよび電源出力端子Poの間に直列に介在するシャント抵抗Rsの一方の端子電圧(=入力電圧AVDD)は、コンパレータCP1の非反転入力端子に与えられる。シャント抵抗Rsの他方の端子電圧(=トランジスタT1のドレイン電圧)は、コンパレータCP1の反転入力端子に与えられる。コンパレータCP1の出力信号は、電源入力端子Piおよび電源出力端子Poの間を流れる電流の検出信号Scとして反転バッファ3、4に与えられる。 One terminal voltage (= input voltage AVDD) of the shunt resistor Rs interposed in series between the power input terminal Pi and the power output terminal Po is given to the non-inverting input terminal of the comparator CP1. The other terminal voltage of the shunt resistor Rs (= the drain voltage of the transistor T1) is applied to the inverting input terminal of the comparator CP1. The output signal of the comparator CP1 is supplied to the inverting buffers 3 and 4 as the detection signal Sc of the current flowing between the power input terminal Pi and the power output terminal Po.
 上記構成において、検出信号Scは、シャント抵抗Rsの各端子電圧の大小関係に応じたレベルとなる。具体的には、検出信号Scは、シャント抵抗Rsの一方の端子電圧が他方の端子電圧よりも大きい場合にはハイレベル(例えば5V)となり、シャント抵抗Rsの他方の端子電圧が一方の端子電圧よりも大きい場合にはロウレベル(例えば0V)となる。このように、本実施形態では、シャント抵抗RsおよびコンパレータCP1により、電源入力端子Piおよび電源出力端子Poの間に流れる電流を検出し、その検出した電流の向きを表す検出信号Scを出力する電流検出部8が構成されている。 In the above configuration, the detection signal Sc has a level corresponding to the magnitude relationship between the terminal voltages of the shunt resistor Rs. Specifically, the detection signal Sc is at a high level (for example, 5 V) when one terminal voltage of the shunt resistor Rs is larger than the other terminal voltage, and the other terminal voltage of the shunt resistor Rs is one terminal voltage. If it is larger than the low level, it becomes a low level (for example, 0 V). As described above, in the present embodiment, the current that flows between the power input terminal Pi and the power output terminal Po is detected by the shunt resistor Rs and the comparator CP1, and the detection signal Sc that represents the direction of the detected current is output. A detection unit 8 is configured.
 本実施形態では、電源出力端子Poから電源出力端子Piへと流れる電流の向き、つまり逆方向の電流(逆電流)の向きを第1方向とし、電源入力端子Piから電源出力端子Poへと流れる電流の向き、つまり順方向の電流(順電流)の向きを第2方向とする。そのため、ロウレベルの検出信号Scが第1方向(逆方向)を表す検出信号に相当し、ハイレベルの検出信号Scが第2方向(順方向)を表す検出信号に相当する。 In the present embodiment, the direction of the current flowing from the power output terminal Po to the power output terminal Pi, that is, the direction of the reverse current (reverse current) is defined as the first direction, and the current flows from the power input terminal Pi to the power output terminal Po. The direction of the current, that is, the direction of the forward current (forward current) is defined as the second direction. Therefore, the low level detection signal Sc corresponds to a detection signal representing the first direction (reverse direction), and the high level detection signal Sc corresponds to a detection signal representing the second direction (forward direction).
 電圧検出回路5は、抵抗R1およびR2の直列回路により構成されている。その直列回路は、トランジスタT1のソース、つまり電源出力端子Poと、回路の基準電位GND(0V)が与えられるグランド端子Pgとの間に接続されている。抵抗R1、R2の共通接続点の電圧、つまり出力電圧VOUTを抵抗R1、R2により分圧して得られる検出電圧Vdは、誤差アンプ6の反転入力端子に与えられている。 The voltage detection circuit 5 is composed of a series circuit of resistors R1 and R2. The series circuit is connected between the source of the transistor T1, that is, the power supply output terminal Po, and the ground terminal Pg to which the reference potential GND (0 V) of the circuit is applied. The voltage at the common connection point of the resistors R1 and R2, that is, the detection voltage Vd obtained by dividing the output voltage VOUT by the resistors R1 and R2, is applied to the inverting input terminal of the error amplifier 6.
 誤差アンプ6の非反転入力端子には、出力電圧VOUTの目標値に対応した基準電圧Vrが与えられている。誤差アンプ6は、基準電圧Vrおよび検出電圧Vdの差に応じた誤差信号Sdを出力する。誤差信号Sdは、プリドライバ2に与えられている。プリドライバ2の制御端子P1とグランド端子Pgとの間には、トランジスタT2が接続されている。トランジスタT2は、Nチャネル型のMOSトランジスタである。 The reference voltage Vr corresponding to the target value of the output voltage VOUT is given to the non-inverting input terminal of the error amplifier 6. The error amplifier 6 outputs an error signal Sd corresponding to the difference between the reference voltage Vr and the detection voltage Vd. The error signal Sd is given to the pre-driver 2. A transistor T2 is connected between the control terminal P1 of the pre-driver 2 and the ground terminal Pg. The transistor T2 is an N channel type MOS transistor.
 トランジスタT2のゲートには、反転バッファ3の出力信号が与えられている。そのため、トランジスタT2は、検出信号Scがロウレベルのときにオンされ、検出信号Scがハイレベルのときにオフされる。制御端子P1は、プリドライバ2の内部においてプルアップされている。したがって、制御端子P1の電圧レベルは、検出信号ScがハイレベルとなってトランジスタT2がオフされるとハイレベルとなり、検出信号ScがロウレベルとなってトランジスタT2がオンされるとロウレベルとなる。 The output signal of the inverting buffer 3 is given to the gate of the transistor T2. Therefore, the transistor T2 is turned on when the detection signal Sc is at a low level, and is turned off when the detection signal Sc is at a high level. The control terminal P1 is pulled up inside the pre-driver 2. Therefore, the voltage level of the control terminal P1 becomes high level when the detection signal Sc becomes high level and the transistor T2 is turned off, and becomes low level when the detection signal Sc becomes low level and the transistor T2 is turned on.
 プリドライバ2は、制御端子P1の電圧レベルがハイレベルである場合、誤差信号Sdに対応したゲート駆動信号Sgを出力する。これにより、出力電圧VOUTが目標値に一致するようにトランジスタT1の駆動がフィードバック制御される。また、プリドライバ2は、制御端子P1の電圧レベルがロウレベルである場合、例えば0Vのゲート駆動信号Sgを出力することにより、トランジスタT1をオフ駆動する。本実施形態では、プリドライバ2、反転バッファ3およびトランジスタT2により、オフ駆動部9が構成されている。 The pre-driver 2 outputs a gate drive signal Sg corresponding to the error signal Sd when the voltage level of the control terminal P1 is high. Thereby, the drive of the transistor T1 is feedback controlled so that the output voltage VOUT matches the target value. Further, when the voltage level of the control terminal P1 is low level, the pre-driver 2 outputs the gate drive signal Sg of 0V, for example, to drive the transistor T1 off. In the present embodiment, the pre-driver 2, the inverting buffer 3, and the transistor T2 constitute an off drive unit 9.
 バックゲート制御部7は、電流検出部8から出力される検出信号Scに応じてトランジスタT1のバックゲートに与える電圧を制御する。具体的には、バックゲート制御部7は、ハイレベルの検出信号Scが出力される期間、トランジスタT1のバックゲートをソース側、つまり電源出力端子Poに接続する。これにより、電源入力端子Piから電源出力端子Poへと流れる向きに電流が流れているとき、つまり定常時、トランジスタT1のバックゲートにはソース側の電圧、つまり出力電圧VOUTが与えられる。 The back gate control unit 7 controls the voltage applied to the back gate of the transistor T1 in accordance with the detection signal Sc output from the current detection unit 8. Specifically, the back gate control unit 7 connects the back gate of the transistor T1 to the source side, that is, the power supply output terminal Po during a period in which the high level detection signal Sc is output. As a result, when a current flows in a direction flowing from the power input terminal Pi to the power output terminal Po, that is, in a steady state, the source side voltage, that is, the output voltage VOUT is applied to the back gate of the transistor T1.
 また、バックゲート制御部7は、ロウレベルの検出信号Scが出力される期間、トランジスタT1のバックゲートをドレイン側、つまり電源入力端子Piに接続する。これにより、電源出力端子Poから電源入力端子Piへと流れる向きに電流が流れているとき、つまり逆流時、トランジスタT1のバックゲートにはドレイン側の電圧、つまり入力電圧AVDDが与えられる。 Further, the back gate control unit 7 connects the back gate of the transistor T1 to the drain side, that is, the power supply input terminal Pi during the period when the low level detection signal Sc is output. As a result, when a current flows in the direction of flowing from the power supply output terminal Po to the power supply input terminal Pi, that is, in a reverse flow, the drain side voltage, that is, the input voltage AVDD is applied to the back gate of the transistor T1.
 バックゲート制御部7の具体的な構成としては、例えば図1に示すような構成を採用することができる。すなわち、バックゲート制御部7は、トランジスタT3~T6および電流源10を備えている。トランジスタT3は、Nチャネル型のMOSトランジスタであり、そのソースはグランド端子Pgに接続されている。トランジスタT3のドレインは、電流源10を介して電源入力端子Piに接続されている。トランジスタT3のゲートには、反転バッファ4の出力信号が与えられている。 As a specific configuration of the back gate control unit 7, for example, a configuration as shown in FIG. 1 can be adopted. That is, the back gate control unit 7 includes transistors T3 to T6 and a current source 10. The transistor T3 is an N-channel MOS transistor, and its source is connected to the ground terminal Pg. The drain of the transistor T3 is connected to the power input terminal Pi via the current source 10. The output signal of the inverting buffer 4 is given to the gate of the transistor T3.
 トランジスタT4は、Pチャネル型のMOSトランジスタであり、そのソースは電源入力端子Piに接続されている。トランジスタT4のゲートは、トランジスタT3のドレインに接続されている。トランジスタT4のドレインは、ノードN1に接続されている。ノードN1は、トランジスタT1のバックゲートに接続されている。 The transistor T4 is a P-channel MOS transistor, and its source is connected to the power input terminal Pi. The gate of the transistor T4 is connected to the drain of the transistor T3. The drain of the transistor T4 is connected to the node N1. Node N1 is connected to the back gate of transistor T1.
 トランジスタT5、T6は、いずれもNチャネル型のMOSトランジスタであり、それらのソースはノードN1に接続されている。トランジスタT5、T6の各ドレインは、電源出力端子Poに接続されている。トランジスタT5のゲートは、電源入力端子Piに接続されている。 The transistors T5 and T6 are both N-channel MOS transistors, and their sources are connected to the node N1. The drains of the transistors T5 and T6 are connected to the power output terminal Po. The gate of the transistor T5 is connected to the power input terminal Pi.
 トランジスタT6は、プリドライバ2によりオンオフ駆動される。具体的には、プリドライバ2は、制御端子P1の電圧レベルがハイレベルであるときに、トランジスタT6をオン駆動する。また、プリドライバ2は、制御端子P1の電圧レベルがロウレベルであるときに、トランジスタT6をオフ駆動する。 The transistor T6 is driven on and off by the pre-driver 2. Specifically, the pre-driver 2 turns on the transistor T6 when the voltage level of the control terminal P1 is high. The pre-driver 2 drives off the transistor T6 when the voltage level of the control terminal P1 is low.
 このような構成によれば、電流検出部8からハイレベルの検出信号Scが出力されると、トランジスタT3がオフすることによりトランジスタT4がオフされる。また、このとき、トランジスタT6はプリドライバ2によりオン駆動される。そして、これに伴い、トランジスタT5もオンされる。このような動作により、ノードN1が電源出力端子Poに接続され、トランジスタT1のバックゲートに出力電圧VOUTが与えられる。 According to such a configuration, when the high-level detection signal Sc is output from the current detection unit 8, the transistor T4 is turned off, thereby turning off the transistor T4. At this time, the transistor T6 is turned on by the pre-driver 2. Accordingly, the transistor T5 is also turned on. By such an operation, the node N1 is connected to the power supply output terminal Po, and the output voltage VOUT is applied to the back gate of the transistor T1.
 また、電流検出部8からロウレベルの検出信号Scが出力されると、トランジスタT3がオンすることによりトランジスタT4がオンされる。また、このとき、トランジスタT6はプリドライバ2によりオフ駆動される。そして、これに伴い、トランジスタT5がオフされる。このような動作により、ノードN1が電源入力端子Piに接続され、トランジスタT1のバックゲートに入力電圧AVDDが与えられる。 Further, when the low-level detection signal Sc is output from the current detection unit 8, the transistor T4 is turned on to turn on the transistor T4. At this time, the transistor T6 is driven off by the pre-driver 2. Accordingly, the transistor T5 is turned off. By such an operation, the node N1 is connected to the power supply input terminal Pi, and the input voltage AVDD is applied to the back gate of the transistor T1.
 上記構成において、トランジスタT1、バックゲート制御部7、電流検出部8およびオフ駆動部9により、電源出力端子Poから電源入力端子Piへと流れる逆流から電源回路1などの回路を保護するための保護機能を実現する電流保護回路11が構成されている。 In the above configuration, the transistor T1, the back gate control unit 7, the current detection unit 8, and the off drive unit 9 protect the circuit such as the power supply circuit 1 from the backflow that flows from the power supply output terminal Po to the power supply input terminal Pi. A current protection circuit 11 that realizes the function is configured.
 次に、上記構成の電源回路1の動作について説明する。
  [1]入力電圧AVDD>出力電圧VOUTのとき
 定常時、入力電圧AVDDおよび出力電圧VOUTは、「AVDD>VOUT」という関係になる。このような場合、電流検出部8からハイレベルの検出信号Scが出力される。これに伴い、バックゲート制御部7は、トランジスタT1のバックゲートを電源出力端子Poに接続する。そして、オフ駆動部9を構成するプリドライバ2は、出力電圧VOUTが目標値に一致するようにトランジスタT1を駆動する。
Next, the operation of the power supply circuit 1 having the above configuration will be described.
[1] When the input voltage AVDD> the output voltage VOUT: The input voltage AVDD and the output voltage VOUT are always in a relationship of “AVDD> VOUT”. In such a case, a high level detection signal Sc is output from the current detector 8. Accordingly, the back gate control unit 7 connects the back gate of the transistor T1 to the power output terminal Po. Then, the pre-driver 2 constituting the off drive unit 9 drives the transistor T1 so that the output voltage VOUT matches the target value.
  [2]入力電圧AVDD<出力電圧VOUTのとき
 異常時、入力電圧AVDDおよび出力電圧VOUTは、「AVDD<VOUT」という関係になる。このような場合、電流検出部8からロウレベルの検出信号Scが出力される。これに伴い、バックゲート制御部7は、トランジスタT1のバックゲートを電源入力端子Piに接続する。そして、オフ駆動部9を構成するプリドライバ2は、トランジスタT1をオフ駆動する。
[2] When the input voltage AVDD <the output voltage VOUT When an abnormality occurs, the input voltage AVDD and the output voltage VOUT have a relationship of “AVDD <VOUT”. In such a case, the low-level detection signal Sc is output from the current detection unit 8. Accordingly, the back gate control unit 7 connects the back gate of the transistor T1 to the power input terminal Pi. Then, the pre-driver 2 constituting the off drive unit 9 drives off the transistor T1.
 以上説明した本実施形態によれば、次のような効果が得られる。
 上記構成の電源回路1では、電源出力端子Poから電源入力端子Piへと流れる逆流が発生すると、電流検出部8は、ロウレベルの検出信号Scを出力する。オフ駆動部9を構成するプリドライバ2は、電流検出部8からロウレベルの検出信号Scが出力されると、誤差アンプ6から出力される誤差信号Sdに関係なく、トランジスタT1を強制的にオフ駆動する。これにより、トランジスタT1のチャネルを介した経路による逆流が阻止される。
According to this embodiment described above, the following effects can be obtained.
In the power supply circuit 1 configured as described above, when a backflow that flows from the power supply output terminal Po to the power supply input terminal Pi occurs, the current detection unit 8 outputs a low-level detection signal Sc. When the low-level detection signal Sc is output from the current detection unit 8, the pre-driver 2 constituting the off-drive unit 9 forcibly drives the transistor T <b> 1 regardless of the error signal Sd output from the error amplifier 6. To do. Thereby, the backflow by the path | route via the channel of transistor T1 is blocked | prevented.
 また、電流検出部8からロウレベルの検出信号Scが出力されている期間、バックゲート制御部7は、トランジスタT1のドレイン側の電圧である入力電圧AVDDをトランジスタT1のバックゲートに与える。このようにすれば、トランジスタT1のドレイン・ソース間に、ドレイン側つまり電源入力端子Pi側をアノードとしたボディダイオードが形成された状態となる。そのため、トランジスタT1のボディダイオードを介した経路による逆流も阻止される。 Further, during the period when the low-level detection signal Sc is output from the current detection unit 8, the back gate control unit 7 supplies the input voltage AVDD that is the voltage on the drain side of the transistor T1 to the back gate of the transistor T1. In this way, a body diode having the drain side, that is, the power input terminal Pi side as an anode, is formed between the drain and source of the transistor T1. For this reason, backflow through the path through the body diode of the transistor T1 is also prevented.
 このように、上記構成では、電源入力端子Piから電源出力端子Poに至る経路に直列に設けられた1つのトランジスタT1の駆動を制御するとともに、そのバックゲートを制御することにより、電源出力端子Poから電源入力端子Piへと流れる逆流の発生を防止している。したがって、本実施形態によれば、電源回路1の回路面積の増加を抑制しつつ、逆流から回路を保護することができるという優れた効果が得られる。 Thus, in the above configuration, the drive of one transistor T1 provided in series in the path from the power input terminal Pi to the power output terminal Po is controlled and the back gate is controlled to thereby control the power output terminal Po. Is prevented from flowing back to the power input terminal Pi. Therefore, according to the present embodiment, it is possible to obtain an excellent effect that the circuit can be protected from backflow while suppressing an increase in the circuit area of the power supply circuit 1.
 上述したように、上記構成では、異常時、プリドライバ2によりトランジスタT1がオフ駆動されることで逆流が流れなくなる。そうすると、電流検出部8から出力される検出信号Scがハイレベルに転じるため、プリドライバ2によりトランジスタT1がオン駆動されて再び逆流が流れ得る状態となる。そして、再び逆流が流れると、電流検出部8から出力される検出信号Scがロウレベルに転じるため、プリドライバ2によりトランジスタT1がオフ駆動される。上記構成では、異常時、つまり電源出力端子Poから電源入力端子Piへと逆流が流れ得る状態のとき、このようにトランジスタT1のオンオフが繰り返されることにより、その逆流から電源回路1を保護するようになっている。 As described above, in the above configuration, the reverse flow does not flow because the transistor T1 is driven off by the pre-driver 2 at the time of abnormality. Then, since the detection signal Sc output from the current detection unit 8 turns to a high level, the transistor T1 is turned on by the pre-driver 2 so that a reverse flow can flow again. When the reverse flow again flows, the detection signal Sc output from the current detection unit 8 turns to a low level, so that the transistor T1 is driven off by the pre-driver 2. In the above configuration, when an abnormal state occurs, that is, when a backflow can flow from the power supply output terminal Po to the power supply input terminal Pi, the transistor T1 is repeatedly turned on and off in this manner, so that the power supply circuit 1 is protected from the backflow. It has become.
 バックゲート制御部7は、少なくとも電流検出部8からロウレベルの検出信号Scが出力される期間、トランジスタT1のドレイン側の電圧をバックゲートに与えればよい。例えば、バックゲート制御部7は、常時、トランジスタT1のドレイン側の電圧をバックゲートに与えるようにしてもよい。このような構成によっても、上述した逆流を阻止する効果を得ることができる。ただし、この場合、トランジスタT1のドレイン・ソース間に、ドレイン側をアノードとしたボディダイオードが、常に形成された状態となる。そのため、定常時、トランジスタT1のボディダイオードを介した経路でも電流(順方向の電流)が流れることになり、その分だけ損失が増加する。 The back gate control unit 7 may apply the voltage on the drain side of the transistor T1 to the back gate at least during the period when the low level detection signal Sc is output from the current detection unit 8. For example, the back gate controller 7 may always apply the drain side voltage of the transistor T1 to the back gate. Even with such a configuration, the effect of preventing the above-described backflow can be obtained. However, in this case, a body diode whose drain side is the anode is always formed between the drain and source of the transistor T1. Therefore, in a steady state, a current (forward current) flows through the path through the body diode of the transistor T1, and the loss increases accordingly.
 そこで、本実施形態では、バックゲート制御部7は、電流検出部8からハイレベルの検出信号Scが出力される期間、トランジスタT1のバックゲートをソース側、つまり電源出力端子Poに接続する。このようにすれば、電源入力端子Piから電源出力端子Poへと順電流が流れる定常時には、トランジスタT1のドレイン・ソース間に、ソース側をアノードとしたボディダイオードが形成された状態となる。そのため、定常時、トランジスタT1のボディダイオードを介した経路で順方向の電流が流れることがなくなるため、損失が増加することを防止することができる。 Therefore, in the present embodiment, the back gate control unit 7 connects the back gate of the transistor T1 to the source side, that is, the power supply output terminal Po during the period when the high level detection signal Sc is output from the current detection unit 8. In this way, during the steady state in which forward current flows from the power supply input terminal Pi to the power supply output terminal Po, a body diode having the anode on the source side is formed between the drain and source of the transistor T1. Therefore, in a steady state, forward current does not flow through a path through the body diode of the transistor T1, so that an increase in loss can be prevented.
   (第2実施形態)
 以下、第2実施形態について図2を参照して説明する。
 図2に示すように、本実施形態の電源回路21は、第1実施形態の電源回路1に対し、コンパレータCP21およびD型のフリップフロップ22が追加されている点が異なる。コンパレータCP21の反転入力端子には出力電圧VOUTが与えられ、その非反転入力端子には入力電圧AVDDが与えられている。
(Second Embodiment)
The second embodiment will be described below with reference to FIG.
As shown in FIG. 2, the power supply circuit 21 of the present embodiment is different from the power supply circuit 1 of the first embodiment in that a comparator CP21 and a D-type flip-flop 22 are added. The output voltage VOUT is applied to the inverting input terminal of the comparator CP21, and the input voltage AVDD is applied to the non-inverting input terminal.
 そのため、コンパレータCP21の出力信号Saは、入力電圧AVDDが出力電圧VOUTよりも高い場合にはハイレベルとなり、出力電圧VOUTが入力電圧AVDDよりも高い場合にはロウレベルとなる。コンパレータCP21は、入力電圧AVDDおよび出力電圧VOUTを検出する電圧検出部に相当する。 Therefore, the output signal Sa of the comparator CP21 is at a high level when the input voltage AVDD is higher than the output voltage VOUT, and is at a low level when the output voltage VOUT is higher than the input voltage AVDD. The comparator CP21 corresponds to a voltage detection unit that detects the input voltage AVDD and the output voltage VOUT.
 コンパレータCP21の出力信号Saは、フリップフロップ22のクロック端子に与えられている。フリップフロップ22の入力端子Dには、ハイレベル(例えば+5V)の信号が与えられている。フリップフロップ22のリセット端子Rバーには、電流検出部8から出力される検出信号Scが与えられている。なお、図2では、リセット端子Rバーは、Rの上に「-」を付して示している。フリップフロップ22の出力端子Qから出力される出力信号Sfは、反転バッファ3、4に与えられている。 The output signal Sa of the comparator CP21 is given to the clock terminal of the flip-flop 22. A high level (for example, + 5V) signal is applied to the input terminal D of the flip-flop 22. A detection signal Sc output from the current detection unit 8 is given to the reset terminal R bar of the flip-flop 22. In FIG. 2, the reset terminal R bar is indicated by “-” on the R. The output signal Sf output from the output terminal Q of the flip-flop 22 is given to the inverting buffers 3 and 4.
 このような構成により、フリップフロップ22は、電流検出部8から出力される検出信号Scがロウレベルになると、ロウレベルの出力信号Sfを出力する。そして、その出力状態は、クロック端子に与えられるコンパレータCP21の出力信号Saがロウレベルからハイレベルに転じるまで継続される。 With such a configuration, when the detection signal Sc output from the current detection unit 8 becomes low level, the flip-flop 22 outputs a low level output signal Sf. The output state continues until the output signal Sa of the comparator CP21 applied to the clock terminal changes from the low level to the high level.
 この場合、プリドライバ2の制御端子P1の電圧レベルは、出力信号Sfがハイレベルのときにハイレベルとなり、出力信号Sfがロウレベルのときにロウレベルとなる。そのため、プリドライバ2は、出力信号Sfがハイレベルである場合、誤差信号Sdに対応したゲート駆動信号Sgを出力することでトランジスタT1を駆動する。また、プリドライバ2は、出力信号Sfがロウレベルである場合、誤差信号Sdに関係なく、トランジスタT1を強制的にオフ駆動する。 In this case, the voltage level of the control terminal P1 of the pre-driver 2 is high when the output signal Sf is high, and is low when the output signal Sf is low. Therefore, when the output signal Sf is at the high level, the pre-driver 2 drives the transistor T1 by outputting the gate drive signal Sg corresponding to the error signal Sd. Further, when the output signal Sf is at a low level, the pre-driver 2 forcibly turns off the transistor T1 regardless of the error signal Sd.
 また、この場合、バックゲート制御部7は、フリップフロップ22の出力信号Sfに応じてトランジスタT1のバックゲートに与える電圧を制御する。具体的には、バックゲート制御部7は、ハイレベルの出力信号Sfが出力される期間、トランジスタT1のバックゲートを電源出力端子Poに接続することにより、トランジスタT1のバックゲートに出力電圧VOUTを与える。また、バックゲート制御部7は、ロウレベルの出力信号Sfが出力される期間、トランジスタT1のバックゲートを電源入力端子Piに接続することにより、トランジスタT1のバックゲートに入力電圧AVDDを与える。 In this case, the back gate controller 7 controls the voltage applied to the back gate of the transistor T1 according to the output signal Sf of the flip-flop 22. Specifically, the back gate control unit 7 connects the back gate of the transistor T1 to the power supply output terminal Po during a period in which the high level output signal Sf is output, so that the output voltage VOUT is applied to the back gate of the transistor T1. give. Further, the back gate control unit 7 applies the input voltage AVDD to the back gate of the transistor T1 by connecting the back gate of the transistor T1 to the power supply input terminal Pi during the period when the low level output signal Sf is output.
 本実施形態では、プリドライバ2、反転バッファ3、トランジスタT2およびフリップフロップ22によりオフ駆動部23が構成されている。オフ駆動部23は、ロウレベルの検出信号Scが出力された後、コンパレータCP21の出力信号Saがロウレベルからハイレベルに転じることがなければトランジスタT1のオフ駆動を継続し、出力信号Saがロウレベルからハイレベルに転じるとトランジスタT1のオフ駆動を解除するようになっている。また、本実施形態では、トランジスタT1、バックゲート制御部7、電流検出部8およびオフ駆動部23により電流保護回路24が構成されている。 In this embodiment, the pre-driver 2, the inverting buffer 3, the transistor T2, and the flip-flop 22 constitute an off drive unit 23. The off drive unit 23 continues the off drive of the transistor T1 if the output signal Sa of the comparator CP21 does not change from the low level to the high level after the low level detection signal Sc is output, and the output signal Sa changes from the low level to the high level. When the level is changed, the off-drive of the transistor T1 is released. In the present embodiment, the transistor T1, the back gate control unit 7, the current detection unit 8, and the off drive unit 23 constitute a current protection circuit 24.
 次に、上記構成の電源回路21の動作について説明する。
  [1]入力電圧AVDD>出力電圧VOUTのとき
 定常時、入力電圧AVDDおよび出力電圧VOUTは、「AVDD>VOUT」という関係になる。このような場合、電流検出部8からハイレベルの検出信号Scが出力されるとともにコンパレータCP21の出力信号Saがハイレベルとなる。これに伴い、フリップフロップ22の出力信号Sfがハイレベルとなるため、バックゲート制御部7は、トランジスタT1のバックゲートを電源出力端子Poに接続する。そして、オフ駆動部23を構成するプリドライバ2は、出力電圧VOUTが目標値に一致するようにトランジスタT1を駆動する。
Next, the operation of the power supply circuit 21 having the above configuration will be described.
[1] When the input voltage AVDD> the output voltage VOUT: The input voltage AVDD and the output voltage VOUT are always in a relationship of “AVDD> VOUT”. In such a case, the high-level detection signal Sc is output from the current detection unit 8, and the output signal Sa of the comparator CP21 is at the high level. Along with this, the output signal Sf of the flip-flop 22 becomes high level, so the back gate control unit 7 connects the back gate of the transistor T1 to the power supply output terminal Po. Then, the pre-driver 2 constituting the off drive unit 23 drives the transistor T1 so that the output voltage VOUT matches the target value.
  [2]入力電圧AVDD<出力電圧VOUTのとき
 異常時、入力電圧AVDDおよび出力電圧VOUTは、「AVDD<VOUT」という関係になる。このような場合、電流検出部8からロウレベルの検出信号Scが出力されるとともにコンパレータCP21の出力信号Saがロウレベルとなる。これに伴い、フリップフロップ22の出力信号Sfがロウレベルとなるため、バックゲート制御部7は、トランジスタT1のバックゲートを電源入力端子Piに接続する。そして、オフ駆動部23を構成するプリドライバ2は、トランジスタT1をオフ駆動する。
[2] When the input voltage AVDD <the output voltage VOUT When an abnormality occurs, the input voltage AVDD and the output voltage VOUT have a relationship of “AVDD <VOUT”. In such a case, the current detection unit 8 outputs the low level detection signal Sc and the output signal Sa of the comparator CP21 becomes the low level. As a result, the output signal Sf of the flip-flop 22 becomes low level, so the back gate control unit 7 connects the back gate of the transistor T1 to the power input terminal Pi. Then, the pre-driver 2 constituting the off drive unit 23 drives off the transistor T1.
 この場合、電源出力端子Poから電源入力端子Piへと逆流が流れ得る状態、つまり出力電圧VOUTが入力電圧AVDDより大きい状態が継続している場合、出力信号Saがロウレベルからハイレベルに転じることがないため、プリドライバ2によるトランジスタT1のオフ駆動も継続される。一方、逆流が流れ得る状態が解消されると、つまり入力電圧AVDDが出力電圧VOUTより大きい状態になると、出力信号Saがロウレベルからハイレベルに転じるため、プリドライバ2によるトランジスタT1のオフ駆動が解除される。 In this case, when the backflow can flow from the power output terminal Po to the power input terminal Pi, that is, when the output voltage VOUT is higher than the input voltage AVDD, the output signal Sa may change from the low level to the high level. Therefore, the off-drive of the transistor T1 by the pre-driver 2 is also continued. On the other hand, when the state in which the reverse flow can flow is eliminated, that is, when the input voltage AVDD becomes larger than the output voltage VOUT, the output signal Sa changes from the low level to the high level, and thus the pre-driver 2 releases the off drive of the transistor T1 Is done.
 本実施形態によっても第1実施形態と同様の効果が得られる。さらに、本実施形態では、オフ駆動部23は、ロウレベルの検出信号Scが出力された後、コンパレータCP21の出力信号Saがロウレベルからハイレベルに転じることがなければトランジスタT1のオフ駆動を継続し、出力信号Saがロウレベルからハイレベルに転じるとトランジスタT1のオフ駆動を解除するようになっている。そのため、逆流が流れ得る状態、つまり「AVDD<VOUT」の状態になってトランジスタT1がオフ駆動された場合、逆流が流れ得る状態が解消されない限り、トランジスタT1のオフ駆動が継続される。したがって、本実施形態では、逆流から回路を保護する際、トランジスタT1のオンオフが繰り返されることがないため、出力電圧VOUTの変動を抑制することができる。 The same effect as the first embodiment can be obtained by this embodiment. Further, in the present embodiment, the off driving unit 23 continues the off driving of the transistor T1 unless the output signal Sa of the comparator CP21 changes from the low level to the high level after the low level detection signal Sc is output. When the output signal Sa changes from the low level to the high level, the transistor T1 is turned off. Therefore, when the transistor T1 is turned off in a state in which a reverse flow can flow, that is, in a state of “AVDD <VOUT”, the transistor T1 is continuously turned off unless the state in which the reverse flow can flow is eliminated. Therefore, in this embodiment, when the circuit is protected from the backflow, the transistor T1 is not repeatedly turned on and off, so that the fluctuation of the output voltage VOUT can be suppressed.
   (第3実施形態)
 以下、第3実施形態について図3を参照して説明する。
 図3に示すように、本実施形態の電源回路31は、第1実施形態の電源回路1に対し、トランジスタT1に代えてトランジスタT31を備えている点と、バックゲート制御部7に代えてバックゲート制御部32を備えている点と、反転バッファ4が省かれている点と、が異なる。
(Third embodiment)
Hereinafter, a third embodiment will be described with reference to FIG.
As shown in FIG. 3, the power supply circuit 31 of the present embodiment is different from the power supply circuit 1 of the first embodiment in that a transistor T31 is provided instead of the transistor T1, and that the back gate control unit 7 The difference is that the gate control unit 32 is provided and the inversion buffer 4 is omitted.
 トランジスタT31は、Pチャネル型のパワーMOSトランジスタである。トランジスタT31のソースは、シャント抵抗Rsを介して電源入力端子Piに接続されている。トランジスタT31のドレインは、電源出力端子Poに接続されている。つまり、トランジスタT31は、電源入力端子Piおよび電源出力端子Poの間に直列に介在するものであり、主トランジスタに相当する。トランジスタT31のゲートには、プリドライバ2から出力されるゲート駆動信号Sgが与えられている。 The transistor T31 is a P-channel type power MOS transistor. The source of the transistor T31 is connected to the power input terminal Pi via the shunt resistor Rs. The drain of the transistor T31 is connected to the power output terminal Po. That is, the transistor T31 is interposed in series between the power input terminal Pi and the power output terminal Po, and corresponds to a main transistor. A gate drive signal Sg output from the pre-driver 2 is given to the gate of the transistor T31.
 バックゲート制御部32は、電流検出部8から出力される検出信号Scに応じてトランジスタT31のバックゲートに与える電圧を制御する。具体的には、バックゲート制御部32は、ハイレベルの検出信号Scが出力される期間、トランジスタT31のバックゲートをソース側、つまり電源入力端子Piに接続する。これにより、電源入力端子Piから電源出力端子Poへと流れる向きに電流が流れているとき、つまり定常時、トランジスタT31のバックゲートにはソース側の電圧、つまり入力電圧AVDDが与えられる。 The back gate control unit 32 controls the voltage applied to the back gate of the transistor T31 according to the detection signal Sc output from the current detection unit 8. Specifically, the back gate control unit 32 connects the back gate of the transistor T31 to the source side, that is, the power input terminal Pi during a period in which the high level detection signal Sc is output. As a result, when a current flows in a direction flowing from the power input terminal Pi to the power output terminal Po, that is, in a steady state, the source side voltage, that is, the input voltage AVDD is applied to the back gate of the transistor T31.
 また、バックゲート制御部32は、ロウレベルの検出信号Scが出力される期間、トランジスタT31のバックゲートをドレイン側、つまり電源出力端子Poに接続する。これにより、電源出力端子Poから電源入力端子Piへと流れる向きに電流が流れているとき、つまり逆流時、トランジスタT31のバックゲートにはドレイン側の電圧、つまり出力電圧VOUTが与えられる。 Further, the back gate control unit 32 connects the back gate of the transistor T31 to the drain side, that is, the power supply output terminal Po during the period when the low level detection signal Sc is output. As a result, when the current flows in the direction of flowing from the power supply output terminal Po to the power supply input terminal Pi, that is, in the reverse flow, the drain side voltage, that is, the output voltage VOUT is applied to the back gate of the transistor T31.
 バックゲート制御部32の具体的な構成としては、例えば図2に示すような構成を採用することができる。すなわち、バックゲート制御部32は、トランジスタT33~T36および電流源33を備えている。トランジスタT33は、Pチャネル型のMOSトランジスタであり、そのソースは電源入力端子Piに接続されている。トランジスタT33のドレインは、電流源33を介してグランド端子Pgに接続されている。トランジスタT33のゲートには、検出信号Scが与えられている。 As a specific configuration of the back gate control unit 32, for example, a configuration as shown in FIG. 2 can be adopted. That is, the back gate control unit 32 includes transistors T33 to T36 and a current source 33. The transistor T33 is a P-channel MOS transistor, and its source is connected to the power input terminal Pi. The drain of the transistor T33 is connected to the ground terminal Pg through the current source 33. A detection signal Sc is supplied to the gate of the transistor T33.
 トランジスタT34は、Nチャネル型のMOSトランジスタであり、そのソースは電源出力端子Poに接続されている。トランジスタT34のゲートは、トランジスタT33のドレインに接続されている。トランジスタT34のドレインは、ノードN31に接続されている。ノードN31は、トランジスタT31のバックゲートに接続されている。 The transistor T34 is an N-channel MOS transistor, and its source is connected to the power output terminal Po. The gate of the transistor T34 is connected to the drain of the transistor T33. The drain of the transistor T34 is connected to the node N31. The node N31 is connected to the back gate of the transistor T31.
 トランジスタT35、T36は、いずれもPチャネル型のMOSトランジスタであり、それらのソースはノードN31に接続されている。トランジスタT35、T36の各ドレインは、電源入力端子Piに接続されている。トランジスタT35のゲートは、電源出力端子Poに接続されている。 The transistors T35 and T36 are both P-channel MOS transistors, and their sources are connected to the node N31. The drains of the transistors T35 and T36 are connected to the power input terminal Pi. The gate of the transistor T35 is connected to the power supply output terminal Po.
 トランジスタT36は、プリドライバ2によりオンオフ駆動される。具体的には、プリドライバ2は、制御端子P1の電圧レベルがハイレベルであるときに、トランジスタT36をオン駆動する。また、プリドライバ2は、制御端子P1の電圧レベルがロウレベルであるときに、トランジスタT36をオフ駆動する。 The transistor T36 is driven on and off by the pre-driver 2. Specifically, the pre-driver 2 turns on the transistor T36 when the voltage level of the control terminal P1 is high. Further, the pre-driver 2 drives the transistor T36 off when the voltage level of the control terminal P1 is low.
 このような構成によれば、電流検出部8からハイレベルの検出信号Scが出力されると、トランジスタT33がオフすることによりトランジスタT34がオフされる。また、このとき、トランジスタT36はプリドライバ2によりオン駆動される。そして、これに伴い、トランジスタT35もオンされる。このような動作により、ノードN31が電源入力端子Piに接続され、トランジスタT31のバックゲートに入力電圧AVDDが与えられる。 According to such a configuration, when the high-level detection signal Sc is output from the current detection unit 8, the transistor T33 is turned off, thereby turning off the transistor T34. At this time, the transistor T36 is turned on by the pre-driver 2. Accordingly, the transistor T35 is also turned on. By such an operation, the node N31 is connected to the power supply input terminal Pi, and the input voltage AVDD is applied to the back gate of the transistor T31.
 また、電流検出部8からロウレベルの検出信号Scが出力されると、トランジスタT33がオンすることによりトランジスタT34がオンされる。また、このとき、トランジスタT36はプリドライバ2によりオフ駆動される。そして、これに伴い、トランジスタT35がオフされる。このような動作により、ノードN31が電源出力端子Poに接続され、トランジスタT31のバックゲートに出力電圧VOUTが与えられる。 Further, when the low level detection signal Sc is output from the current detection unit 8, the transistor T33 is turned on to turn on the transistor T34. At this time, the transistor T36 is driven off by the pre-driver 2. Accordingly, the transistor T35 is turned off. By such an operation, the node N31 is connected to the power supply output terminal Po, and the output voltage VOUT is given to the back gate of the transistor T31.
 上記構成において、トランジスタT31、バックゲート制御部32、電流検出部8およびオフ駆動部9により、電源出力端子Poから電源入力端子Piへと流れる逆流から電源回路31などの回路を保護するための保護機能を実現する電流保護回路34が構成されている。 In the above configuration, the transistor T31, the back gate control unit 32, the current detection unit 8, and the off drive unit 9 protect the circuit such as the power supply circuit 31 from the backflow that flows from the power supply output terminal Po to the power supply input terminal Pi. A current protection circuit 34 for realizing the function is configured.
 以上説明した本実施形態の構成によっても、第1実施形態と同様の作用および効果が得られる。すなわち、上記構成の電源回路31では、第1実施形態の電源回路1と同様、電源出力端子Poから電源入力端子Piへと流れる逆流が発生すると、電流検出部8は、ロウレベルの検出信号Scを出力する。オフ駆動部9を構成するプリドライバ2は、電流検出部8からロウレベルの検出信号Scが出力されると、誤差アンプ6から出力される誤差信号Sdに関係なく、トランジスタT31を強制的にオフ駆動する。これにより、トランジスタT31のチャネルを介した経路による逆流が阻止される。 Also by the configuration of the present embodiment described above, the same operation and effect as the first embodiment can be obtained. That is, in the power supply circuit 31 configured as described above, when a backflow that flows from the power supply output terminal Po to the power supply input terminal Pi occurs as in the power supply circuit 1 of the first embodiment, the current detection unit 8 generates the low level detection signal Sc. Output. When the low-level detection signal Sc is output from the current detection unit 8, the pre-driver 2 that configures the off-drive unit 9 forcibly drives the transistor T31 off regardless of the error signal Sd output from the error amplifier 6. To do. Thereby, the backflow by the path | route via the channel of transistor T31 is blocked | prevented.
 また、電流検出部8からロウレベルの検出信号Scが出力されている期間、バックゲート制御部32は、トランジスタT31のドレイン側の電圧である出力電圧VOUTをトランジスタT31のバックゲートに与える。このようにすれば、トランジスタT31のドレイン・ソース間に、ソース側つまり電源入力端子Pi側をアノードとしたボディダイオードが形成された状態となる。そのため、トランジスタT31のボディダイオードを介した経路による逆流も阻止される。 Further, during the period when the low-level detection signal Sc is output from the current detection unit 8, the back gate control unit 32 supplies the output voltage VOUT, which is the voltage on the drain side of the transistor T31, to the back gate of the transistor T31. In this way, a body diode having the anode on the source side, that is, the power input terminal Pi side, is formed between the drain and source of the transistor T31. For this reason, backflow by the path through the body diode of the transistor T31 is also prevented.
 このように、上記構成では、電源入力端子Piから電源出力端子Poに至る経路に直列に設けられた1つのトランジスタT31の駆動を制御するとともに、そのバックゲートを制御することにより、電源出力端子Poから電源入力端子Piへと流れる逆流の発生を防止している。したがって、本実施形態によっても、第1実施形態と同様、電源回路31の回路面積の増加を抑制しつつ、逆流から回路を保護することができるという優れた効果が得られる。 Thus, in the above configuration, the drive of one transistor T31 provided in series in the path from the power input terminal Pi to the power output terminal Po is controlled, and the back gate is controlled to control the power output terminal Po. Is prevented from flowing back to the power input terminal Pi. Therefore, also in the present embodiment, as in the first embodiment, an excellent effect that the circuit can be protected from the backflow while suppressing an increase in the circuit area of the power supply circuit 31 is obtained.
   (第4実施形態)
 以下、第4実施形態について図4を参照して説明する。
 図4に示すように、本実施形態の電源回路41は、第1実施形態の電源回路1に対し、電流検出部8に代えて電流検出部42を備えている点が異なる。電流検出部42は、電流検出部8が備える構成に加え、さらにトランジスタT41および電流源43を備えている。
(Fourth embodiment)
Hereinafter, a fourth embodiment will be described with reference to FIG.
As shown in FIG. 4, the power supply circuit 41 of this embodiment is different from the power supply circuit 1 of the first embodiment in that a current detection unit 42 is provided instead of the current detection unit 8. The current detection unit 42 includes a transistor T41 and a current source 43 in addition to the configuration included in the current detection unit 8.
 この場合、トランジスタT1のドレインは、直接、電源入力端子Piに接続されている。トランジスタT41は、Nチャネル型のMOSトランジスタであり、そのドレインはシャント抵抗Rsを介して電源入力端子Piに接続されている。トランジスタT41のソースおよびゲートは共通接続されており、それら共通接続されたソースおよびゲートは、トランジスタT1のゲートに接続されるとともに電流源43を介してグランド端子Pgに接続されている。トランジスタT41のバックゲートは、グランド端子Pgに接続されている。 In this case, the drain of the transistor T1 is directly connected to the power input terminal Pi. The transistor T41 is an N-channel MOS transistor, and its drain is connected to the power input terminal Pi via the shunt resistor Rs. The source and gate of the transistor T41 are commonly connected, and the commonly connected source and gate are connected to the gate of the transistor T1 and to the ground terminal Pg via the current source 43. The back gate of the transistor T41 is connected to the ground terminal Pg.
 上記構成において、トランジスタT1およびトランジスタT41は、カレントミラー回路を構成している。そのため、トランジスタT41には、トランジスタT1に流れる電流に応じた電流(以下、検出電流と呼ぶ)が流れる。なお、検出電流は、トランジスタT1とトランジスタT41のサイズ比などによって定まる。したがって、トランジスタT41は、トランジスタT1に流れる電流に応じた検出電流を流す電流検出用トランジスタに相当する。つまり、本実施形態の電流検出部42は、トランジスタT41に流れる検出電流に基づいてトランジスタT1に流れる電流を検出するようになっている。 In the above configuration, the transistor T1 and the transistor T41 constitute a current mirror circuit. Therefore, a current (hereinafter referred to as a detection current) corresponding to the current flowing through the transistor T1 flows through the transistor T41. The detection current is determined by the size ratio of the transistor T1 and the transistor T41. Therefore, the transistor T41 corresponds to a current detection transistor that supplies a detection current corresponding to the current flowing through the transistor T1. That is, the current detection unit 42 of the present embodiment detects the current flowing through the transistor T1 based on the detection current flowing through the transistor T41.
 上記構成において、トランジスタT1、バックゲート制御部7、電流検出部42およびオフ駆動部9により、電源出力端子Poから電源入力端子Piへと流れる逆流から電源回路41などの回路を保護するための保護機能を実現する電流保護回路44が構成されている。 In the above configuration, the transistor T1, the back gate control unit 7, the current detection unit 42, and the off drive unit 9 protect the circuit such as the power supply circuit 41 from the backflow that flows from the power supply output terminal Po to the power supply input terminal Pi. A current protection circuit 44 that realizes the function is configured.
 本実施形態によっても第1実施形態と同様の効果が得られる。さらに、本実施形態では、電源入力端子Piから電源出力端子Poへと至る電源供給経路にシャント抵抗Rsが介在しない構成となっている。したがって、本実施形態によれば、電源供給経路の更なる低抵抗化を実現することが可能となり、その結果、電力損失を一層低減することができるとともに、電圧制御の精度を向上することができるといった効果が得られる。 The same effect as the first embodiment can be obtained by this embodiment. Further, in the present embodiment, the shunt resistor Rs is not interposed in the power supply path from the power input terminal Pi to the power output terminal Po. Therefore, according to the present embodiment, it is possible to further reduce the resistance of the power supply path, and as a result, it is possible to further reduce power loss and improve the accuracy of voltage control. The effect is obtained.
   (その他の実施形態)
 なお、本開示は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
(Other embodiments)
The present disclosure is not limited to the embodiments described above and illustrated in the drawings, and can be arbitrarily modified, combined, or expanded without departing from the scope of the present disclosure.
 バックゲート制御部7、32の具体的な構成としては、図1、図3などに示した構成に限らずともよく、所望する動作を実現可能な構成であれば適宜変更することができる。
 本開示は、車両に搭載される電子制御装置が備える電源回路に限らず、入力電圧を入力するための入力端子および入力電圧よりも低い出力電圧を出力するための出力端子を有する回路であって、出力端子から入力端子へと逆流が流れる可能性のある回路全般に適用することができる。
The specific configuration of the back gate control units 7 and 32 is not limited to the configuration shown in FIGS. 1 and 3 and the like, and can be appropriately changed as long as a desired operation can be realized.
The present disclosure is not limited to a power supply circuit included in an electronic control device mounted on a vehicle, and is a circuit having an input terminal for inputting an input voltage and an output terminal for outputting an output voltage lower than the input voltage. The present invention can be applied to all circuits in which a backflow may flow from the output terminal to the input terminal.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  入力電圧を入力するための入力端子(Pi)および前記入力電圧よりも低い出力電圧を出力するための出力端子(Po)の間に直列接続されたMOSトランジスタ(T1、T31)と、
     前記入力端子および前記出力端子の間に流れる電流を検出し、その検出した電流の向きを表す検出信号を出力する電流検出部(8、42)と、
     前記出力端子から前記入力端子へと流れる電流の向きである第1方向を表す前記検出信号が出力されると、前記MOSトランジスタをオフ駆動するオフ駆動部(9、23)と、
     少なくとも前記電流検出部から前記第1方向を表す前記検出信号が出力される期間、前記MOSトランジスタのドレイン側の電圧を前記MOSトランジスタのバックゲートに与えるバックゲート制御部(7、32)と、
     を備える電流保護回路。
    MOS transistors (T1, T31) connected in series between an input terminal (Pi) for inputting an input voltage and an output terminal (Po) for outputting an output voltage lower than the input voltage;
    A current detector (8, 42) for detecting a current flowing between the input terminal and the output terminal and outputting a detection signal indicating the direction of the detected current;
    When the detection signal representing the first direction, which is the direction of the current flowing from the output terminal to the input terminal, is output, an off driving unit (9, 23) for driving the MOS transistor off;
    A back gate control unit (7, 32) that applies a voltage on the drain side of the MOS transistor to a back gate of the MOS transistor at least during a period in which the detection signal representing the first direction is output from the current detection unit;
    A current protection circuit comprising:
  2.  前記バックゲート制御部は、
     前記入力端子から前記出力端子へと流れる電流の向きである第2方向を表す前記検出信号が出力される期間、前記MOSトランジスタのソース側の電圧を前記MOSトランジスタのバックゲートに与える請求項1に記載の電流保護回路。
    The back gate controller is
    2. The source-side voltage of the MOS transistor is applied to the back gate of the MOS transistor during a period in which the detection signal representing a second direction that is a direction of a current flowing from the input terminal to the output terminal is output. The current protection circuit described.
  3.  さらに、前記入力電圧および前記出力電圧を検出する電圧検出部(CP21)を備え、
     前記オフ駆動部(23)は、前記第1方向を表す前記検出信号が出力された後、前記電圧検出部の検出値に基づいて前記出力電圧が前記入力電圧よりも高いことを検出すると前記MOSトランジスタのオフ駆動を継続し、前記入力電圧が前記出力電圧よりも高いことを検出すると前記MOSトランジスタのオフ駆動を解除する請求項1または2に記載の電流保護回路。
    Furthermore, a voltage detector (CP21) for detecting the input voltage and the output voltage is provided,
    When the off drive unit (23) detects that the output voltage is higher than the input voltage based on a detection value of the voltage detection unit after the detection signal representing the first direction is output, the MOS 3. The current protection circuit according to claim 1, wherein the transistor is continuously turned off and the MOS transistor is turned off when it is detected that the input voltage is higher than the output voltage. 4.
  4.  前記電流検出部(8)は、前記入力端子および前記出力端子の間に直列に介在するシャント抵抗(Rs)を備え、前記シャント抵抗の端子電圧に基づいて前記電流を検出する請求項1から3のいずれか一項に記載の電流保護回路。 The current detector (8) includes a shunt resistor (Rs) interposed in series between the input terminal and the output terminal, and detects the current based on a terminal voltage of the shunt resistor. The current protection circuit according to any one of the above.
  5.  前記電流検出部(42)は、前記MOSトランジスタに流れる電流に応じた検出電流を流す電流検出用トランジスタ(T41)を備え、前記電流検出用トランジスタに流れる検出電流に基づいて前記電流を検出する請求項1から3のいずれか一項に記載の電流保護回路。 The current detection unit (42) includes a current detection transistor (T41) for supplying a detection current corresponding to a current flowing through the MOS transistor, and detects the current based on the detection current flowing through the current detection transistor. Item 4. The current protection circuit according to any one of Items 1 to 3.
  6.  前記入力端子は、入力電圧を所望の出力電圧に降圧して出力する電源回路(1)における前記入力電圧を入力するための電源入力端子(Pi)であり、
     前記出力端子は、前記電源回路における前記出力電圧を出力するための電源出力端子(Po)であり、
     前記MOSトランジスタは、前記電源回路における前記電源入力端子および前記電源出力端子の間に直列に介在する主トランジスタとしても機能する請求項1から5のいずれか一項に記載の電流保護回路。
    The input terminal is a power supply input terminal (Pi) for inputting the input voltage in the power supply circuit (1) for stepping down the input voltage to a desired output voltage and outputting it,
    The output terminal is a power supply output terminal (Po) for outputting the output voltage in the power supply circuit,
    6. The current protection circuit according to claim 1, wherein the MOS transistor also functions as a main transistor interposed in series between the power input terminal and the power output terminal in the power circuit.
PCT/JP2017/030927 2016-11-07 2017-08-29 Current protection circuit WO2018083870A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016217162A JP2018078363A (en) 2016-11-07 2016-11-07 Current protecting circuit
JP2016-217162 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018083870A1 true WO2018083870A1 (en) 2018-05-11

Family

ID=62076844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030927 WO2018083870A1 (en) 2016-11-07 2017-08-29 Current protection circuit

Country Status (2)

Country Link
JP (1) JP2018078363A (en)
WO (1) WO2018083870A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021166A (en) * 2006-07-13 2008-01-31 Ricoh Co Ltd Voltage regulator
JP2009301209A (en) * 2008-06-11 2009-12-24 Mitsumi Electric Co Ltd Power control semiconductor integrated circuit
JP2015090587A (en) * 2013-11-06 2015-05-11 株式会社デンソー Current protection circuit
JP2015116042A (en) * 2013-12-11 2015-06-22 株式会社オートネットワーク技術研究所 Dc voltage conversion device, and counter flow prevention method for the same
JP2016033774A (en) * 2014-07-31 2016-03-10 株式会社東芝 Regulator circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021166A (en) * 2006-07-13 2008-01-31 Ricoh Co Ltd Voltage regulator
JP2009301209A (en) * 2008-06-11 2009-12-24 Mitsumi Electric Co Ltd Power control semiconductor integrated circuit
JP2015090587A (en) * 2013-11-06 2015-05-11 株式会社デンソー Current protection circuit
JP2015116042A (en) * 2013-12-11 2015-06-22 株式会社オートネットワーク技術研究所 Dc voltage conversion device, and counter flow prevention method for the same
JP2016033774A (en) * 2014-07-31 2016-03-10 株式会社東芝 Regulator circuit

Also Published As

Publication number Publication date
JP2018078363A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US8159302B2 (en) Differential amplifier circuit
JP6791722B2 (en) Power regulator
US10338617B2 (en) Regulator circuit
JP7271933B2 (en) Insulated gate device driver
US20180024584A1 (en) Voltage source
JP6065554B2 (en) Comparator
US9531259B2 (en) Power supply circuit
JP2017135532A (en) Voltage detection circuit and charge pump circuit
JP2012251830A (en) Semiconductor device, ecu, and automobile with ecu
JP6632851B2 (en) Input circuit
KR20210083274A (en) linear power circuit
JP2007201595A (en) Drive device
WO2018083870A1 (en) Current protection circuit
JP2016208082A (en) Current driver circuit
JP2014206386A (en) Disconnection detection circuit
JP6657649B2 (en) Voltage detection circuit
WO2018100844A1 (en) Drive device
JP4400666B2 (en) Semiconductor integrated circuit device and switch input circuit
JP5666694B2 (en) Load current detection circuit
JP6589751B2 (en) Charge pump circuit
JP6954845B2 (en) Level shift device and IC device
WO2018216338A1 (en) Driver circuit
JPWO2016002329A1 (en) Power semiconductor device current detection device
JP2009021071A (en) Disconnection and/or overcurrent detecting device of load circuit
US20230095863A1 (en) Power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868443

Country of ref document: EP

Kind code of ref document: A1