WO2018083419A1 - Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee - Google Patents

Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee Download PDF

Info

Publication number
WO2018083419A1
WO2018083419A1 PCT/FR2017/053004 FR2017053004W WO2018083419A1 WO 2018083419 A1 WO2018083419 A1 WO 2018083419A1 FR 2017053004 W FR2017053004 W FR 2017053004W WO 2018083419 A1 WO2018083419 A1 WO 2018083419A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
plug
fluid
pressure
container
Prior art date
Application number
PCT/FR2017/053004
Other languages
English (en)
Inventor
Jean-guy DELAGE
Original Assignee
Jalca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jalca filed Critical Jalca
Priority to EP17811984.8A priority Critical patent/EP3535190B1/fr
Priority to CN201780067173.7A priority patent/CN109890705B/zh
Priority to JP2019523104A priority patent/JP2019536701A/ja
Priority to BR112019008996A priority patent/BR112019008996A2/pt
Priority to US16/347,444 priority patent/US11034475B2/en
Publication of WO2018083419A1 publication Critical patent/WO2018083419A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • B65B31/046Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzles co-operating, or being combined, with a device for opening or closing the container or wrapper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/006Adding fluids for preventing deformation of filled and closed containers or wrappers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • B65B31/08Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzle being adapted to pierce the container or wrapper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B57/00Automatic control, checking, warning, or safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C2003/226Additional process steps or apparatuses related to filling with hot liquids, e.g. after-treatment

Definitions

  • the present invention relates to the field of bottling, and relates in particular to a device and a method for pressure-conditioning a container to be treated. at least partially filled with a content and sealingly sealed by a plug disposed above a headspace of the container, and on an associated pressure conditioning machine.
  • content is understood to mean a liquid or semi-liquid food product intended to be marketed outside the cold chain such as an acidic fruit juice, in a container, a container within the meaning of the present invention being an envelope polymeric material such as a bottle, provided with a plug of known type, for hermetically closing the bottle after filling, usually screw.
  • liquid or semi-liquid food contents are sensitive to microbial growth and the organoleptic qualities are very rapidly modified in the absence of sterilization treatment of the pathogenic organisms and / or the presence of oxygen.
  • the high temperature heat treatment of the order of 90 ° C for a few seconds is also applied to liquids or semi-liquid foods with a pH lower than 4.7, such as juices. example.
  • the liquid is treated in a specific unit, prior to the filling which must be performed in a sterile manner. It must therefore be ensured that the chain remains sterile.
  • This known filling method consists in cold filling in a sterile environment, the container and its cap being cold sterilized by means of a sterilizing liquid and then rinsing and the contents then being introduced into this container in an aseptic atmosphere.
  • the advantage is to use packaging that requires little material because the necessary mechanical properties are limited. The process does not cause volume variations due to temperature variations.
  • a last solution among the main solutions known from the prior art is to heat-fill a package, that is to say to introduce the contents brought to a high temperature directly into the container without it having undergone a sterilization treatment.
  • it is the content itself that ensures the sterilization of the container because it is introduced at a temperature allowing the destruction of pathogenic organisms, so greater than 73 ° C, generally 85 ° C.
  • the package is closed and immediately agitated, generally by turning, to heat treat all internal surfaces of the container, including the inner face of the cap.
  • the plug in the case of hot plugging is a known type of plug, monomatiere, obtained by molding, controlled before installation to avoid any installation of a faulty plug.
  • Such caps are extremely inexpensive.
  • the disadvantage of hot filling is to require a package that withstands both the temperature and secondly the collapse phenomenon related to the retraction of the volume of the liquid during cooling, this which depresses the interior of said container.
  • the oxygen of the air trapped during filling is also "consumed" after cooling by the liquid or semi-liquid food composition, which causes a delayed depression which may also cause additional deformation of the container.
  • the packaging must therefore be mechanically resistant and / or deformable, requires a large amount of material and often a specific architecture with panels to resist the deformations of this package and / or to compensate for the depression by appropriate deformations.
  • funds can take two positions, one deformation inwardly under the effect of the depression so as to compensate said depression.
  • the deformation of the bottom being under the bottle, this does not cause stability problem of the bottle when it is placed on said bottom, only the digging of the bottom is more pronounced, which is invisible, except to look from below. It is understood that such a background must be sophisticated, complex to achieve and induces a clear overhead.
  • the purpose which is also that of the present invention is to be able to proceed in particular hot filling using bottles having an overweight of material as low as possible compared to the containers used for filling in sterile environment, cold.
  • Patents which have proposed a method of compensation, such as patent applications FR 2322062 A1 and US 2015/0121807 A1 which propose injecting a gaseous fluid into the headspace through a specific closure member.
  • a device consists in introducing a needle through the closure member, injecting a gas through the needle into the head space and removing said needle, the closure member ensuring itself a seal.
  • a membrane which can only be a barrier to the liquid during hot filling for example because the liquid will not pass behind the membrane, then the closure member is perforated which introduces possible organisms understood behind the membrane that will migrate into the container.
  • Another device also uses an even more specific cap, that described in the patent application WO 2009142510 A1.
  • This plug is manufactured with an opening. After filling, the head space is placed in a pressure vessel, a plug is inserted into the hole provided for this purpose, said plug being immobilized in the hole by means mechanical.
  • Such a process is totally unimaginable industrially, both from the point of view of rates and price and control difficulties and even implementation.
  • the devices known in the prior art do not allow to accurately check the sealing quality of the hole formed in the plug to ensure a perfect seal of the container.
  • the present invention aims to solve the disadvantages of the prior art, by proposing a device and a method for pressure packaging a container to be treated at least partially filled with a content and sealed with a stopper arranged above a head space of the container, said device comprising a hood with a needle and a heating cannula disposed therein so that their respective axes of movement are intersecting at a point in the material of the cap or above the material of the cap when the cap is approached on the cap, the end of the heating cannula being convex, preferably hemispherical, which allows to proceed in particular to a hot filling using bottles having a overweight material as low as possible compared to the containers used for filling in cold sterile environment, and allowing and also to compensate for depression in cold-filled containers that may experience deformation by depression, especially if the containers themselves have low mechanical strength.
  • the convex shape of the end of the heating cannula makes it possible to carry out a precise verification of the quality of the shutter by the heating can
  • the subject of the present invention is therefore a device for pressure-conditioning a container to be treated at least partially filled with a content and sealed with a stopper placed above a head space of the container, said device comprising a cover which includes inside thereof a piercing needle, fluid injection means and a fused shutter heating cannula, said cap configured to be sealingly abutted against the outer surface of the cap; said needle being adapted to move linearly to drill a hole through the plug, said fluid injection means being configured to introduce a fluid into the head space through said hole, said heating cannula being adapted to linearly moving to close said hole by melting the material of the plug, characterized in that the needle and the heating cannula are arranged in the hood so that their respective axes of movement are intersecting at a point in the material of the cap or above the material of the cap when the hood is approached on the cap, and in that the end of the heating cannula is convex.
  • the end of the heating cannula is preferably hemispherical.
  • said device for pressure-conditioning a container to be treated makes it possible in particular to perform a hot filling using bottles having an overweight of material as low as possible compared to containers used for filling in cold sterile environment, and allows also to compensate for the depression in cold-filled containers that may suffer deformation by depression, especially if the containers themselves have a low mechanical strength.
  • the needle and the heating cannula are inclined with respect to each other so that their respective longitudinal axes of displacement intersect at the same point in the material of the plug or above the material of the plug.
  • said point is at the center of the upper surface of the plug.
  • the skilled person can easily proceed by trial and measurement to ensure that in the closed position of the heating cannula on the cap, the top of the convex shape of the cannula coincides with the hole formed by the needle: the axes of displacement are thus intersecting on the material of the cap or above it, depending on the convex shape adopted by the end of the heating cannula.
  • the needle is movable, in the position of docking the cap on the cap, between a retracted position and a piercing position to pierce the cap.
  • the heating cannula is movable, in the position of docking the cover on the cap, between a rest position and a closed position to seal the hole formed in the stopper by the needle, the plastic material of the plug in contact with the heating cannula.
  • the needle is never in contact with the contents during drilling.
  • the plug used in the context of the invention and therefore in this process is a conventional one-piece cap, without internal membrane and therefore inexpensive and easy to recycle.
  • the invention is however not limited to this respect.
  • the following plugs are also within the scope of the present invention, and may be used with the method of the invention:
  • a plug comprising an annular membrane (or liner or liner) hollowed out in its central part,
  • a plug comprising a solid membrane (or inner liner or solid liner) but with a central thickness less than the minimum thickness necessary for self-sealing in the case of a drilling and a subsequent withdrawal of a needle from the plug, this minimum thickness required being below 0.2 mm,
  • a plug comprising a solid membrane (or inner liner or solid liner) of thickness between 0.2 mm and 0.8 mm, with a polyethylene / ethylene-vinyl acetate (PE / EVA) type material which does not possess no known self-sealing characteristic after removal of a piercing needle with a diameter of between 0.1 mm and 3 mm.
  • PE / EVA polyethylene / ethylene-vinyl acetate
  • This device is preferably used for hot content filling, but can also be used for cold content filling.
  • the heating cannula reseals, by fusion of the plastic material of the cap, the hole formed in the cap by the needle, which ensures the final seal of the container while compensating for the depression in the container.
  • the container thus contains a content with a pressure balanced for the least and preferably under a slight pressure so that the pressure difference internal with the external pressure of the container avoids generating any collapse of the container.
  • the convex, preferably hemispherical, shape of the end of the heating cannula makes it possible to carry out a precise verification of the quality of closure by the heating cannula of a hole formed in the stopper by the needle.
  • the shape of the obturation formed by the convex heating cannula depends on the shape of the end of the heating cannula, the temperature of the end of the heating cannula, the contact time of the heating cannula with the cap and the depth of penetration of the heating cannula into the cap.
  • the temperature of the end of the heating cannula determined according to the material constituting the cap, the contact time determined as a function of the desired treatment time, the Those skilled in the art will be able to adapt the depth of penetration into the cap by tests and measurements. A characteristic mark of a certain diameter will be formed on the upper surface of the plug, which, because of the shape, the temperature of the tip of the cannula and the contact time, will ensure that the heating cannula has had sufficient penetration to ensure a tight seal.
  • the device further comprises an optical means configured to check the quality of closing the hole in the plug by the heating cannula.
  • the optical means may be a camera or an optical fiber connected to an optical sensor.
  • the optical means may be arranged in the hood or at a station downstream on a production line having the device of the invention.
  • the device further comprises an optical or inductive means arranged in the cover and configured to check the integrity of the needle after drilling the hole.
  • a remote optical camera can control the filling level of the container at the end of the pressure conditioning process to detect a possible breakage of the needle. Indeed, during normal processing, the content level must drop to a predetermined level, while in case of non-drilling and therefore no introduction of fluid, the level of content will not drop.
  • a proximity sensor system could also control the presence of the complete and unbroken needle. Such proximity sensor systems could for example be a photoelectric or magnetic cell.
  • the needle has a pointed end in the form of a cone.
  • said needle is more solid compared to a hypodermic needle with beveled end used in the prior art, which prevents the needle from breaking during the piercing step.
  • Said needle ensures a hole by penetration into the plastic material of the plug, by deformation and repoussage of the material, without tearing material. No plastic waste plug thus falls into the contents of the container.
  • the diameter of the drilling hole must allow to combine rapid inflation (largest diameter possible) and welding safety (smallest possible diameter).
  • a 0.7 mm diameter needle seems to be a good compromise.
  • the diameter of the needle may be between 0.3 and 0.8 times the thickness of the plug.
  • the thickness of the plug is defined as the maximum thickness of the flat surface of the plug from which extends the skirt of the cap bearing the thread.
  • the needle is full, the fluid injection means comprising at least one fluid inlet adapted to receive a fluid under pressure and to inject it into the inside of the hood is sealed against the cap.
  • the solid needle is withdrawn from the hole formed in the plug to allow the introduction of the fluid into the head space of the container through said hole.
  • a sterilization of the outer surface of the plug before berthing the cap on the cap is mandatory so as not to pollute the contents during the introduction of the fluid into the headspace.
  • the removal of the needle during the injection of fluid also avoids any splashing of the content on the needle during the introduction of fluid that creates turbulence of the surface of the contents, for improved hygiene.
  • the pointed end of the needle is solid, and the remainder of the needle comprises a longitudinal central bore and at least two opposite lateral holes connecting said central bore with the outside of the needle.
  • the needle near the sharp end of the needle, the fluid injection means comprising at least one fluid inlet adapted to receive a fluid under pressure and to inject it into the central bore of the needle at the end of the needle opposite the pointed end of the needle.
  • the needle is full at its tip but pierced at its center with two lateral openings, which makes it possible to introduce a fluid into the headspace of the container while the needle is still in its piercing position, the fluid being diffused laterally in the head space by the two lateral holes of the needle, thus making it possible to avoid the setting in eventual turbulence of the contents and splashing during the introduction of fluid.
  • This second embodiment avoids the prior sterilization of the outer surface of the plug, which is an important point from an industrial point of view.
  • the needle is heated by a heating means.
  • the heating of the needle makes it possible both to sterilize the needle and to facilitate the drilling of the plastic material of the stopper.
  • the needle is preferably heated to a temperature above 95 ° C for sterilization and below 130 ° C to prevent possible melting of the plastic material of the plug during drilling and gluing of plastic particles on the needle that could then come off when drilling the cap of another container in a next cycle.
  • the temperature of the needle is preferably maintained and continuously monitored by a resistor / probe placed in the needle holder.
  • the subject of the present invention is also a process for the pressure-packing of a container to be treated at least partially filled with a content and sealed with a stopper placed above a head space of the container, at the same time.
  • a pressure conditioning device as described above, characterized in that it comprises the following steps: sealing the cover of said device on the outer surface of the plug; drilling a hole through the stopper with the needle of said device; introducing a fluid into the head space of the container via said hole, formed through the cap, using the fluid injection means of said device, so as to obtain a residual pressure at least equal to the atmospheric pressure in the headspace of the container; closing said hole by melting the plug material with the aid of the heating cannula; and removing the hood.
  • said pressure-conditioning method of a container to be treated makes it possible in particular to perform a hot filling using bottles having an overweight of material as low as possible compared to the containers used for filling in cold sterile environment, and also makes it possible to compensate for the depression in cold-filled containers which can undergo deformation by depression, especially if the containers themselves have a low mechanical strength.
  • the temperature of the heating cannula and the contact time can be set individually to obtain the desired penetration / weld and are continuously monitored by the pressure conditioning device.
  • the temperature at the end of the heating cannula is of the order of 140 ° C - 220 ° C to ensure rapid melting of the plastic material of the cap.
  • a minimum force for example using a cylinder controlled at 7 bar, is applied to the heating cannula to ensure a significant compression of the plastic during the melting phase to fill the hole.
  • An insufficient pressure of the heating cannula despite the good temperature and the good contact time compromises the quality / sealing of the weld.
  • the Applicant has found good weld impressions for a contact time of 0.4-0.5 seconds at 7 bars, with a temperature of 180 ° C at the end of the cannula, for plugs in high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • the heating of the cannula is provided by a resistance / temperature probe connected to the device.
  • a water cooling circuit placed in the hood preferably ensures the hood is held at a "reasonable" temperature.
  • the needle is withdrawn from the hole before the fluid introduction step.
  • the needle can be raised, before the fluid injection step, while maintaining the pressure between the cap and the cap, the piercing is therefore "clean "without chips or waste by pushing the plastic material of the cap only, the removal of the needle during the injection of fluid also to avoid splashing of the contents on the needle when introducing the fluid that creates turbulence of the surface of the contents, for improved hygiene.
  • the needle is held in the hole during the fluid introduction step, the fluid introduction being through the central bore and the at least two side holes of the needle.
  • the fluid is diffused laterally in the head space by the two lateral holes of the needle, thereby avoiding the possible turbulence of the contents and splashing during the introduction of fluid, and also to prevent prior sterilization of the outer surface of the cap.
  • the method further comprises, after the shutter step, a step of checking the quality of closing the hole in the stopper with the aid of the optical means.
  • Leak test systems are currently available to test the quality of the weld. However, for a hole of about one micron (which allows the return of atmospheric pressure of the container in a week), the control time is about thirty seconds, so it would take a number of control covers fifteen times greater than number of treatment covers, which is prohibitive.
  • the optical means therefore allows the verification of the shutter quality immediately after the shutter step when the cover is still docked on the stopper, or on a downstream station on a production line in which the device is placed according to 1 invention.
  • the verification step comprises the following substeps: capturing, by the optical means, an image of the plug at the level of the circular closure formed by the convex heating cannula; measuring the diameter of the captured circular filling; and comparing the measured diameter to a threshold value to determine whether or not the shutter quality is acceptable.
  • the optical means allows a visual control of the melt shutter to measure the penetration of the cannula and guarantee the quality of the weld.
  • the step of introducing fluid into the headspace comprises introducing a fluid into an initial phase at a first pressure value, and then introducing a fluid into a final phase at a first stage. second pressure value lower than the first pressure value for an acceleration of the process according to the invention.
  • the fluid in the case of a hot filling at a temperature above 73 ° C., the fluid is introduced into the headspace after cooling the contents to a temperature below 45 ° C. .
  • the fluid introduction pressure is configured to generate a residual pressure in the container, between 1.01 bars and 2.5 bars, and preferably between 1.01 bars and 1, 4 bars.
  • the fluid is an inert and sterile gas such as nitrogen, especially in gaseous form.
  • the method further comprises, before, during and / or after the bonnet docking step, a step of circulating sterile fluid between the cap and the cap, preferably an inert gas, more preferably nitrogen.
  • this circulation of sterile fluid prevents bacteria from entering the space between the cap and the cap from the outside, to ensure the sterility of the container.
  • An overpressure is created between the cap and the cap to maintain a positive pressure greater than or equal to the internal pressure of the container to the melt shutter.
  • the method further comprises, before the cap berthing step on the cap, a step of sterilizing the outer surface of the cap by one or more of a punctual heating, a chemical sterilization , a vapor, a pulsed light emission or the like.
  • punctual heating or chemical sterilization using a sterilizing liquid ensures the destruction of pathogenic organisms present on the outer surface of the plug.
  • the present invention further relates to a pressure conditioning machine comprising at least one pressure conditioning device as described above, said pressure conditioning machine further comprising a means for holding in the container position with respect to which the cover of the at least one pressure conditioning device is movable between a rest position remote from the holding means in the container position and a docking position in which the cover is sealed against the cap of the container to be treated.
  • FIG. 1 is a perspective view of a pressure conditioning device of a container to be treated according to the present invention
  • Figure 2 is a sectional view of the device of Figure 1 in the non-docked position
  • Figure 3 is a sectional view similar to Figure 2 during the docking step
  • Figure 4 is a sectional view similar to Figure 2 during the piercing step
  • Figure 5 is a sectional view similar to Figure 2 during the fluid introduction step according to a first embodiment of the invention
  • Figure 6 is a sectional view similar to Figure 2 during the sealing step
  • Figure 7 is a sectional view of the heating cannula of the device of Figure 1;
  • Figure 8 is a perspective view of the end of the heating cannula of Figure 7;
  • Figure 9 is a sectional view of the needle of the device of Figure 1 according to a second embodiment of the invention. With reference to FIG. 1, it can be seen that there is shown a device for pressure conditioning 1 of a container to be treated 2.
  • the container to be treated 2 is at least partially filled with a content and sealed with a plug 3 disposed above a head space of the container 2.
  • the container 2 undergoes a hot filling, and is a bottle, in particular of PET (polyethylene terephthalate), of low basis weight, with a content, such as a fruit juice, brought to a temperature capable of destroying pathogenic organisms, namely a temperature greater than 73 ° C., in this case 85 ° C.
  • PET polyethylene terephthalate
  • a content such as a fruit juice
  • the container 2 is filled with the hot content, it is plugged by the plug 3 of known type, namely a monolithic and monomatized injection-molded or compression-molded screw plug without any additional sealing element.
  • the seal is obtained by contact under mechanical pressure of the material of the plug 3, in this case its inner face on the material of the peripheral edge of the neck 2a of the container 2, the screwing to exert said mechanical pressure required.
  • said cap 3 When closing, said cap 3 leaves a head space. This space results from filling without overflow because the content should in no way overflow and end up on the lip of the neck 2a before closing because the content would then be an entry door under the cap 3 and the container 2 would be unfit for sale .
  • the plug 3 is free from any mechanism or other pressure compensation accessory.
  • the air trapped in the head space is hot but at atmospheric pressure.
  • the present invention also applies to certain plugs commonly used, particularly in the United States, which are bi-material type with an inner membrane used to ensure only the seal between the surface of the neck of the container 2 and the cap 3 by compression during screwing, unlike the inner lip for the monomatiere-type plugs.
  • this inner membrane for such a bi-material cap does not have the necessary characteristics to ensure a self-sealing of the plug in the case of a piercing with a needle and then a withdrawal of the needle out of the cap.
  • the container 2 is able to receive a content at the sterilization temperature retained without degradation but is free of depression compensation means.
  • the container 2 is set in motion immediately after filling with the contents, in order to put all the internal surfaces of the container 2 in contact with the contents brought to the sterilizing temperature.
  • the container 2 and its contents are then cooled in a cooling tunnel by spraying water, for example to bring the assembly close to the ambient temperature.
  • the pressure conditioning device 1 comprises a cover 4, also called docking head, which comprises inside the latter piercing means 5, fluid injection means 6 and closure means by merger 7.
  • the pressure conditioning device 1 further comprises a horizontal lower support 8 on which is positioned the container 2, a horizontal upper support 9 comprising a notch 9a in which is inserted the neck 2a of the container 2, and a vertical support 10 to which are connected the lower support 8 and the upper support 9.
  • the cover 4 is vertically movable, by means of a vertical displacement motor 11, between a rest position remote from the upper support 9 and a docking position in which the cover 4 is sealed against the stopper 3 of the container to be treated 2. It is understood that the invention is not limited in this respect: either the hood is movable, docked on the container brought under the hood, or the hood is fixed, the container being brought into the hood.
  • the pressure conditioning device 1 is configured to implement a pressure-conditioning process of the container to be treated 2 which comprises the following steps: sealing the bonnet 4 on the outer surface of the plug 3; drilling a hole through the stopper 3 by lowering the piercing means 5 towards the stopper 3; introducing a fluid into the head space of the container 2 through said hole, formed through the cap 3, using the fluid injection means 6, so as to to obtain a residual pressure at least equal to the atmospheric pressure in the head space of the container 2; closing said plug hole 3 by melting the plug material 3 by lowering the muffling closure means 7 towards the plug 3; and removing the cover 4.
  • the various process steps will be described in more detail in Figures 2 to 6.
  • the piercing means 5 can be reassembled, before the fluid injection step, while maintaining the pressure between the cover 4 and the plug 3, the bore is "clean" without chips or waste by pushing the plastic of the cap 3 only, the removal of the piercing means 5 during the injection of fluid also allowing d avoid any splashing of the contents on the piercing means 5 for improved hygiene.
  • the plug 3 used in this process is a conventional one-piece plug, without internal membrane and therefore inexpensive.
  • the container 2 thus contains a content with a pressure balanced for the least and preferably under a slight pressure so that the internal pressure difference with the external pressure of the container 2 avoids generating any collapse of the container 2.
  • the container 2 is partially filled with a content 12 so that a head space 13 without content remains at the neck 2a of the container 2, the container 2 being sealed by the cap 3 disposed above the head space 13 of the container 2.
  • the piercing means 5 comprise a piston 14 at the end of which is fixed a needle 15, said piston 14 being able to move linearly in a cylinder 16 formed on the cover 4, the stroke of the piston 14 being limited by a chamber of piston 17 formed in the upper end of the cylinder 16.
  • the needle 15 is configured to pierce the cap 3 when the cap 4 is docked on the cap 3 and the piston 14 is in its extended position.
  • the melt sealing means 7 comprise a piston 18 at the end of which is fixed a heating cannula 19, said piston 18 being able to move linearly in a cylinder 20 formed on the cover 4, the piston 18 being limited stroke by a piston chamber 21 formed in the upper end of the cylinder 20.
  • the heating cannula 19 is configured to melt seal the hole formed in the cap 3 by the needle 15 when the cap 4 is docked on the cap 3 and the piston 18 is in its extended position, the plastic material of the cap 3 melting in contact with the heating cannula 19.
  • the needle 15 and the heating cannula 19 are located in an internal cavity 22 of the cover 4.
  • the pistons 14 and 18 can be actuated electrically or hydraulically. In order not to overload the figures, the power supply or hydraulic actuation son of the pistons 14 and 18 have not been shown in the figures. Similarly, the heating elements for heating the needle 15 or the heating cannula 19, as well as their power supplies respective electric wires, have not been shown to avoid overloading the figures.
  • the fluid injection means 6 comprise a plurality of fluid inlets adapted to receive a pressurized fluid and to inject it into the internal cavity 22 of the cover 4, the cover 4 being able to contain up to five inputs of fluid 6.
  • the pressure-conditioning method also comprises, before the step of docking the cap 4 on the cap 3, a step of sterilizing the outer surface of the cap 3 by point heating, by chemical sterilization using a sterilizing liquid, by steam, by pulsed light emission or by another similar process, in order to ensure the destruction of the pathogenic organisms present on the outer surface of the stopper 3.
  • the internal cavity 22 of the cover 4 is always overpressured with sterile gas by a first fluid inlet 6, even before docking to maintain the sterility of the plug 3 previously made.
  • the last two fluid inlets 6 could be used for the injection of a sterilizing fluid after the docking and drilling and a rapid suction evacuation of the sterilizing fluid before drilling.
  • the device 1 further comprises an optical camera C disposed in the internal cavity 22 of the cover 4 and configured to check the quality of closing the hole in the plug 3 by the heating cannula 19. This step Verification of shutter quality will be described in more detail with reference to Figure 6.
  • the pistons 14 and 18 respectively of the needle 15 and the heating cannula 19 are in their retracted positions, also called rest positions.
  • the cover 4 is sealed against the outer surface of the stopper 3 so that at least a portion of the stopper 3 is inserted into at least a portion of the internal cavity 22 of the cover 4.
  • the pistons 14 and 18 are arranged in the cap 4 so that their respective axes of displacement are intersecting at a point in the material of the cap
  • the pressure conditioning process may also comprise, after the step of docking the cover 4 on the plug 3, a step of circulating sterile fluid, preferably an inert gas such as nitrogen, into the internal cavity 22 of the cover 4 via some of the fluid inlets 6. An overpressure is thus created between the cap 3 and the hood
  • the piston 14 of the needle 15 is in its extended position, so that the needle 15 is lowered to the cap 3 and pierces a hole 23 through the material of the cap 3.
  • the needle 15 is never in contact with the contents 12 during drilling.
  • the needle 15 makes the hole 23 by penetration into the plastic material of the plug 3, by deformation and embossing of the material, without tearing material.
  • this drilling step is immediately followed by a step of raising the needle 15 in the rest position of the piston 14.
  • the pressure conditioning method can also comprise a verification step, using an optical camera or optical fiber connected to an additional sensor (not shown in FIG. 4) disposed in the cover 4, of the integrity of the the needle 15 after the step of raising the needle 15, thus making it possible to optically verify whether the needle 15 is or not broken after the piercing step.
  • An additional optical camera remote hood can control the filling level of the container 2 at the end of the pressure conditioning process to detect a possible breakage of the needle 15. Indeed, during normal processing, the level of content 12 must drop to a predetermined level, while in case of no drilling and therefore no introduction of fluid, the level of the content 12 will not drop.
  • a proximity sensor system could also control the presence of the complete and unbroken needle without departing from the scope of the present invention.
  • FIG. 5 it can be seen that there is shown the pressure conditioning device 1 during the fluid introduction step according to the first embodiment of the invention.
  • the needle 15 is cylindrical and solid and has a pointed end in the form of a cone.
  • the needle 15 is preferably heated by a heating means (not shown in FIG. 5), the heating of the needle 15 making it possible both to sterilize the needle 15 and to facilitate the drilling of the plastics material.
  • the needle 15 is preferably heated to a temperature above 95 ° C for sterilization and below 130 ° C to prevent possible melting of the plastic material of the plug 3 during drilling and gluing. plastic particles on the needle 15 which could then become detached during the drilling of the cap 3 of another container 2.
  • the temperature of the needle 15 is preferably maintained and continuously controlled by a resistor / probe placed in the piston 14.
  • the pistons 14 and 18 respectively of the needle 15 and of the heating cannula 19 are in their rest positions, the needle 15 the solid is thus removed from the hole 23 formed in the plug 3.
  • the sterilization of the outer surface of the plug 3 before the berthing of the cover 4 on the plug 3 is mandatory in order not to pollute the contents 12 during the introduction of fluid into the head space 13.
  • a fluid 24 is introduced into the internal cavity 22 of the cover 4 and then into the head space 13 of the container 2 via the hole 23, formed through the stopper 3, using one of the inputs of FIG. fluid 6, so as to obtain a residual pressure at least equal to the atmospheric pressure in the head space 13 of the container 2.
  • the fluid 24 is an inert and sterile gas such as nitrogen, especially in gaseous form, which makes it possible not to cause subsequent oxidation of the contents 12, subsequent to bottling. This avoids over-collapsing due to the subsequent oxygen consumption as there is none or very little, the inert gas having largely replaced the initially confined air.
  • an inert and sterile gas such as nitrogen, especially in gaseous form, which makes it possible not to cause subsequent oxidation of the contents 12, subsequent to bottling. This avoids over-collapsing due to the subsequent oxygen consumption as there is none or very little, the inert gas having largely replaced the initially confined air.
  • the fluid 24 is introduced into the head space 13 after cooling the contents 12 to a temperature below 45 ° C.
  • the fluid introduction pressure 24 is configured to generate a residual pressure in the container 2, between 1.01 bar and 2.5 bar, and preferably between 1.01 bar and 1.4 bar.
  • the step of introducing the fluid 24 into the head space 13 preferably comprises a fluid introduction 24 in an initial phase at a first pressure value, then a fluid introduction 24 in a final phase at a second pressure value lower than the first pressure value. It is thus possible to increase the pressure in the initial phase of the pressurization immediately after drilling, and to have a lower pressure in the final phase. to adjust the final pressure just before the melt shutter.
  • the piston 18 of the heating cannula 19 is in its extended position, so that the heating cannula 19 is lowered to the hole 23 formed in the stopper 3 by the needle 15.
  • the heating cannula 19 can, by melting the plastic material of the plug 3, seal up the hole 23 formed in the plug 3, which makes it possible to guarantee the final seal of the container 2 while compensating for the depression in the container 2.
  • the shutter step is performed within a period of between 0 and 5 seconds.
  • the pressure conditioning method may also comprise a step of verifying, by means of the optical camera C disposed in the internal cavity 22 of the cover 4, the quality of closing the hole 23 by the heating cannula 19, which Thus, it is possible to optically verify whether the quality of closure of the hole 23 by the heating cannula 19 is good or bad.
  • the closure leaves on the upper surface of the stopper a characteristic mark of the quality of closure by the heating cannula 19.
  • Said verification step comprises the following sub-steps: the capture, by the optical camera C, of an image of the plug 3 at the circular closure formed by the hemispherical heating cannula 19; measuring the diameter of the captured circular filling; and comparing the measured diameter to a threshold value to determine whether or not the shutter quality is acceptable.
  • the optical camera C thus allows a visual control of the shutter to measure the penetration of the heating cannula 19 and guarantee the quality of the weld.
  • the shutter step is followed by a step of raising the heating cannula 19 in the rest position of the piston 18, then a step of removing the cover 4 from the stopper 3.
  • the method according to the present invention allows the hot filling in containers 2, for example PET, with reduced grammages of the order of 15% compared to the hot filling process with deformation of the container, which is a reduction considerable material in view of the coefficient multiplier of the number of containers 2 products.
  • the forms of containers 2 are in fact much more free and sober, and recycling is less expensive since the amount of material used is less.
  • the method according to the present invention applies to all the filling modes and even for a pressurization of cold-filled containers 2 in a sterile environment, of which it would be desirable not only to compensate for a possible decrease in the volume of the head space 13 by a consumption of oxygen but also put in slight overpressure to reinforce the mechanical strength, or even inject a neutral gas to replace the confined air in the head space 13 in order to retain all the organoleptic qualities of the products that the oxidation can alter.
  • the heating cannula 19 comprises a cannula end 25 (which will be described in more detail in FIG. 8) and a hollow and cylindrical cannula holder 26 in which a portion of the cannula end 25 is force-fitted, part of the cannula holder 26 being force-fitted into the lower part of the piston 18 which is hollow.
  • a heating resistor / temperature probe 27 is disposed within the hollow cannula holder 26, the lower portion of the heating resistor / temperature probe 27 being in contact with the cannula end 25, and the upper portion of the heating resistor / temperature probe 27 being connected to two electrical wires 28 configured to bring a power supply to the heating resistor / temperature probe 27.
  • the temperature of the cannula end 25 and the contact time can be set individually to obtain the desired penetration / weld and are continuously monitored by the pressure conditioning device 1.
  • the temperature of the cannula end 25 is of the order of 140 ° C - 220 ° C, preferably of the order of 180 ° C - 200 ° C, depending on the material constituting the plug 3, to ensure rapid melting of the plastic material of the cap 3.
  • a minimum force for example using a cylinder controlled at 7 bar, is applied to the heating cannula 19 to ensure a significant compression of the plastic during the melting phase to fill the hole 23.
  • a water cooling circuit (not shown in Figure 7) placed in the cover 4 preferably ensures the maintenance of the hood 4 at a "reasonable" temperature.
  • the cannula end 25 comprises a plate 25a, one of whose faces comprises a projection 25b configured to be force-fitted into the cannula holder 26, and the other opposite face comprises a hemispherical stud 25c. It should be noted that the hemispherical shape shown is not limiting, and that any convex shape of the end of the heating cannula is within the scope of the present invention.
  • the hemispherical shape of the stud 25c makes it possible to carry out a precise verification of the quality of closure by the heating cannula 19 of the hole 23 formed in the stopper 3 by the needle 15.
  • the filling formed by the shaped nipple hemispherical 25c is circular, which allows to measure, with the aid of the optical camera C, the diameter of the circular shutter made to determine whether the shutter quality is acceptable or not.
  • FIG. 9 it can be seen that there is shown a needle 29 of the pressure conditioning 1 according to the second embodiment of the invention.
  • the pointed end 29a of the needle 29 is full, and the remainder of the needle comprises a longitudinal central bore 30 and two opposite lateral holes 31 connecting said central bore 30 with the outside the needle 29 near the pointed end 29a of the needle 29.
  • the needle 29 could also comprise at least three lateral holes 31, without departing from the scope of the present invention.
  • the fluid injection means 6 comprise at least one fluid inlet adapted to receive the fluid 24 and to inject it into the central bore 30 of the needle 29 at the end. the needle 29 opposite the pointed end 29a. The needle 29 is held in the hole 23 during the fluid introducing step, the introduction of fluid being through the central bore 30 and then the two lateral holes 31.
  • the device, the method and the machine according to the invention can be implemented in a line of production, with one or more stations upstream or downstream, in which case a conveying device will transport the container to the position of the production line embodying the invention.

Abstract

L'invention a pour objet un dispositif et un procédé de conditionnement en pression (1) d'un contenant à traiter (2) bouché par un bouchon (3), ledit dispositif (1) comprenant un capot (4) qui comprend une aiguille (15), des moyens d'injection de fluide (6) et une canule chauffante (19), ledit capot (4) étant configuré pour être accosté de manière étanche sur le bouchon (3), ladite aiguille (15) étant apte à se déplacer pour percer un trou (23) à travers le bouchon (3), ladite canule (19) étant apte à se déplacer pour obturer ledit trou (23) par fusion de la matière du bouchon (3), l'aiguille (15) et la canule (19) étant disposées de façon à ce que leurs axes de déplacement soient sécants en un point situé dans le bouchon (3), l'extrémité (25) de la canule (19) étant convexe.

Description

DISPOSITIF ET PROCEDE DE CONDITIONNEMENT EN PRESSION D'UN CONTENANT A TRAITER ET MACHINE DE CONDITIONNEMENT EN PRESSION ASSOCIEE La présente invention concerne le domaine de l'embouteillage, et porte en particulier sur un dispositif et un procédé de conditionnement en pression d'un contenant à traiter au moins partiellement rempli avec un contenu et bouché de manière étanche par un bouchon disposé au-dessus d'un espace de tête du contenant, et sur une machine de conditionnement en pression associée.
On entend pour la suite par contenu un produit liquide ou semi-liquide alimentaire destiné à être commercialisé en dehors de la chaîne de froid tel qu'un jus de fruit acide, dans un contenant, un contenant au sens de la présente invention étant une enveloppe en matériau polymère tel qu'une bouteille, munie d'un bouchon de type connu, destiné à obturer de façon hermétique la bouteille après remplissage, généralement à vis.
Les contenus liquides ou semi-liquides alimentaires sont sensibles au développement microbien et les qualités organoleptiques sont très rapidement modifiées en l'absence d'un traitement de stérilisation des organismes pathogènes et/ou de la présence d'oxygène.
De façon connue, le traitement thermique à haute température de l'ordre de 90 °C pendant quelques secondes, dit aussi flash pasteurisation, est appliqué aussi aux liquides ou semi-liquides alimentaires ayant un pH inférieur à 4,7, comme les jus par exemple. Dans ce procédé connu, le liquide est traité dans une unité spécifique, préalablement au remplissage qui doit être effectué de façon stérile. Il faut donc veiller à ce que la chaîne reste stérile. Ce procédé connu de remplissage consiste à remplir à froid en ambiance stérile, le contenant et son bouchon étant stérilisés à froid au moyen d'un liquide de stérilisation puis d'un rinçage et le contenu étant ensuite introduit dans ce contenant en atmosphère aseptique. L'avantage est de recourir à des emballages qui nécessitent peu de matière car les propriétés mécaniques nécessaires sont limitées. Le procédé n'engendre pas de variations de volume liées aux variations de température. De plus, les propriétés mécaniques nécessaires étant limitées, les formes esthétiques extérieures sont plus libres. Néanmoins, l'oxygène contenu dans l'espace de tête peut être consommé et il se produit alors une dépression dans la bouteille. Il faut donc prévoir soit une bouteille résistant à cette dépression, soit une compensation de cette dépression.
Cette technique "stérile" induit des installations complexes, coûteuses et d'un entretien rigoureux et lui-même coûteux. De plus, le contrôle de qualité ne peut être réalisé que par échantillonnage, il n'y a donc pas de contrôle systématique et donc pas de certitude quant à la stérilisation du contenu liquide ou semi-liquide alimentaire ainsi conditionné.
Une autre solution connue est celle de la stérilisation simultanément au remplissage en introduisant un liquide stérilisant. On comprend que l'adjonction d'un produit stérilisant, qui est un composé chimique, n'est pas nécessairement acceptée par toutes les législations sanitaires des pays et que le consommateur lui-même peut être réticent à absorber non pas seulement le produit alimentaire liquide ou semi-liquide qu'il a choisi mais aussi le produit stérilisant introduit résiduel. De tels agents conservateurs peuvent induire des modifications des qualités organoleptiques tant au cours de la conservation qu'après ouverture de l'emballage.
Une dernière solution parmi les solutions principales connues de l'art antérieur, consiste à remplir à chaud un emballage, c'est-à-dire à introduire le contenu porté à une température élevée directement dans le contenant sans que celui-ci ait subi un traitement de stérilisation. Dans ce cas, c'est le contenu lui-même qui assure la stérilisation du contenant car il est introduit à une température permettant la destruction des organismes pathogènes, donc supérieure à 73°C, généralement 85°C. L'emballage est fermé puis immédiatement agité, généralement par retournement, afin de traiter par la chaleur toutes les surfaces internes du contenant, y compris la face intérieure du bouchon.
Le bouchon dans le cas du bouchage à chaud est un bouchon de type connu, monomatière, obtenu par moulage, contrôlé avant mise en place pour éviter toute pose d'un bouchon défectueux. De tels bouchons coûtent extrêmement peu cher.
Cette solution est intéressante car elle garantit que chaque emballage est nécessairement stérilisé intérieurement, sans qu'il puisse y avoir de manque.
Si le bouchon est peu cher, l'inconvénient du remplissage à chaud est de nécessiter un emballage qui résiste d'une part à la température et d'autre part au phénomène de collapsage lié à la rétraction du volume du liquide lors du refroidissement, ce qui met en dépression l'intérieur dudit contenant. De plus, l'oxygène de l'air emprisonné lors du remplissage est aussi "consommé" après refroidissement par la composition liquide ou semi-liquide alimentaire, ce qui provoque une dépression différée qui peut aussi provoquer une déformation additionnelle du contenant .
L'emballage doit donc être mécaniquement résistant et/ou déformable, nécessite une quantité de matière importante et souvent une architecture spécifique avec des panneaux pour résister aux déformations de cet emballage et/ou pour compenser la dépression par des déformations appropriées. Ainsi des fonds peuvent prendre deux positions dont une de déformation vers 1 ' intérieur sous l'effet de la dépression de façon à compenser ladite dépression. La déformation du fond étant sous la bouteille, ceci ne provoque pas de problème de stabilité de la bouteille lorsqu'elle est posée sur ledit fond, seul le creusement du fond est plus prononcé, ce qui est invisible, sauf à regarder par le dessous. On comprend qu'un tel fond doit être sophistiqué, complexe à réaliser et induit un surcoût évident .
Il est à noter que ceci va aussi dans le sens contraire des besoins de développement durable qui visent une diminution des quantités de matière polymère utilisées, ce qui a aussi un impact sur le prix de la fabrication et une incidence sur le recyclage donc par conséquent sur le prix final .
Néanmoins, ce procédé est celui qui nécessite les lignes de conditionnement les plus simples tant en installation qu'en maintenance, qui est simple à contrôler puisque le contrôle principal porte sur un seul paramètre : la température du contenu.
D'autres solutions de compensation ont été mises en œuvre, l'une d'elles par exemple consiste à introduire une goutte d'azote liquide dans l'espace de tête immédiatement avant bouchage. L'azote liquide passe à l'état gazeux avec une très forte augmentation de volume, ce qui place le volume de la bouteille sous pression et permet de compenser au fur et à mesure du refroidissement le volume de rétraction du liquide. A l'état final, à température ambiante, l'équilibre est trouvé et l'azote ne peut que provoquer un inertage supplémentaire. Cependant, ce procédé est relativement complexe à maîtriser et assez difficilement reproductible.
Des progrès dans les procédés et dans les matériaux des contenants ont permis d'améliorer les performances. Néanmoins, le but qui est aussi celui de la présente invention, est de pouvoir procéder notamment au remplissage à chaud en utilisant des bouteilles ayant un surpoids de matière le plus faible possible par rapport aux contenants utilisés pour le remplissage en ambiance stérile, à froid.
Il est aussi utile de pouvoir compenser la dépression dans des contenants remplis à froid qui peuvent aussi subir des déformations par dépression, ou encore pour améliorer leur tenue mécanique, surtout si les contenants eux-mêmes ont une faible résistance mécanique, ce qui est aussi un objectif de la présente invention.
Il est donc nécessaire de proposer un procédé de compensation de la dépression dans un contenant, au minimum, et plus généralement de maîtrise de la surpression, notamment dans le cas d'un remplissage à chaud. Cette surpression, après refroidissement, permet de compenser la diminution de volume de l'espace de tête qui est de quelques pourcents au refroidissement. Cette surpression permet de compenser aussi à terme la diminution de pression liée à la consommation d'oxygène.
Ces différentes sources de diminution de la pression, lorsqu ' aucune compensation voire aucune mise en surpression n'est prévue, provoquent une déformation de la bouteille et la rend impropre à la commercialisation. Ces mises en dépression conduisent aussi à une mauvaise préhension par les consommateurs mais aussi à une mauvaise tenue mécanique des contenants durant le transport par palettes, même filmées.
On connaît des brevets qui ont proposé un procédé de compensation, comme les demandes de brevets FR 2322062 Al et US 2015/0121807 Al qui proposent d'injecter un fluide gazeux dans 1 ' espace de tête à travers un organe de bouchage spécifique. Un tel dispositif consiste à introduire une aiguille à travers l'organe de bouchage, à injecter un gaz à travers l'aiguille dans l'espace de tête et à retirer ladite aiguille, l'organe de bouchage assurant lui-même 1 ' étanchéité . Il se trouve qu'il faut un organe de bouchage muni de moyens spécifiques, ce qui est totalement rédhibitoire en regard du prix de l'emballage. En plus du prix et en complément, ceci engendre des problèmes complexes liés à la présence de plusieurs matériaux, à la complexité du contrôle de la qualité, aux difficultés au recyclage et à la non certitude du bouchage de qualité. En l'occurrence, il est prévu une membrane qui ne peut que faire barrière au liquide lors du remplissage à chaud par exemple car le liquide ne passera pas derrière la membrane, puis l'organe de bouchage est perforé ce qui introduit d'éventuels organismes compris derrière la membrane qui vont migrer dans le contenant .
Un autre dispositif recourt aussi à un bouchon encore plus spécifique, celui décrit dans la demande de brevet WO 2009142510 Al. Ce bouchon est issu de fabrication avec une ouverture. Après remplissage, l'espace de tête est placé dans une enceinte sous pression, un pion de bouchage est introduit dans le trou ménagé à cet effet, ledit bouchon étant immobilisé dans le trou par des moyens mécaniques. Un tel procédé est totalement inenvisageable industriellement, tant du point de vue des cadences que du prix et que des difficultés de contrôle et même de mise en place .
En outre, les dispositifs connus dans l'état antérieur de la technique ne permettent pas de vérifier avec précision la qualité d'obturation du trou formé dans le bouchon afin de garantir une étanchéité parfaite du contenant .
La présente invention vise à résoudre les inconvénients de l'état antérieur de la technique, en proposant un dispositif et un procédé de conditionnement en pression d'un contenant à traiter au moins partiellement rempli avec un contenu et bouché de manière étanche par un bouchon disposé au-dessus d'un espace de tête du contenant, ledit dispositif comprenant un capot avec une aiguille et une canule chauffante disposées dans celui-ci de façon à ce que leurs axes de déplacement respectifs soient sécants en un point situé dans la matière du bouchon ou au-dessus de la matière du bouchon lorsque le capot est accosté sur le bouchon, l'extrémité de la canule chauffante étant convexe, de préférence hémisphérique, ce qui permet de pouvoir procéder notamment à un remplissage à chaud en utilisant des bouteilles ayant un surpoids de matière le plus faible possible par rapport aux contenants utilisés pour le remplissage en ambiance stérile à froid, et ce qui permet également de compenser la dépression dans des contenants remplis à froid qui peuvent subir des déformations par dépression, surtout si les contenants eux-mêmes ont une faible résistance mécanique. De plus, la forme convexe de l'extrémité de la canule chauffante permet de réaliser une vérification avec précision de la qualité d'obturation par la canule chauffante du trou formé dans le bouchon par 1 ' aiguille .
La présente invention a donc pour objet un dispositif de conditionnement en pression d'un contenant à traiter au moins partiellement rempli avec un contenu et bouché de manière étanche par un bouchon disposé au-dessus d'un espace de tête du contenant, ledit dispositif comprenant un capot qui comprend à l'intérieur de celui-ci une aiguille de perçage, des moyens d'injection de fluide et une canule chauffante d'obturation par fusion, ledit capot étant configuré pour être accosté de manière étanche sur la surface extérieure du bouchon, ladite aiguille étant apte à se déplacer linéairement pour percer un trou à travers le bouchon, lesdits moyens d'injection de fluide étant configurés pour introduire un fluide dans l'espace de tête par l'intermédiaire dudit trou, ladite canule chauffante étant apte à se déplacer linéairement pour obturer ledit trou par fusion de la matière du bouchon, caractérisé par le fait que l'aiguille et la canule chauffante sont disposées dans le capot de façon à ce que leurs axes de déplacement respectifs soient sécants en un point situé dans la matière du bouchon ou au-dessus de la matière du bouchon lorsque le capot est accosté sur le bouchon, et par le fait que l'extrémité de la canule chauffante est convexe.
L'extrémité de la canule chauffante est de préférence hémisphérique.
Ainsi, ledit dispositif de conditionnement en pression d'un contenant à traiter permet de procéder notamment à un remplissage à chaud en utilisant des bouteilles ayant un surpoids de matière le plus faible possible par rapport aux contenants utilisés pour le remplissage en ambiance stérile à froid, et permet également de compenser la dépression dans des contenants remplis à froid qui peuvent subir des déformations par dépression, surtout si les contenants eux-mêmes ont une faible résistance mécanique.
L'aiguille et la canule chauffante sont inclinées l'une par rapport à l'autre de telle sorte que leurs axes longitudinaux de déplacement respectifs sont sécants en un même point dans la matière du bouchon ou au-dessus de la matière du bouchon. De préférence, ledit point se situe au niveau du centre de la surface supérieure du bouchon.
L'homme du métier pourra facilement procéder par essais et mesures pour faire en sorte que dans la position d'obturation de la canule chauffante sur le bouchon, le sommet de la forme convexe de la canule coïncide avec le trou formé par l'aiguille : les axes de déplacement sont ainsi sécants sur la matière du bouchon ou au-dessus de celle-ci, en fonction de la forme convexe adoptée par l'extrémité de la canule chauffante.
L'aiguille est déplaçable, dans la position d'accostage du capot sur le bouchon, entre une position rétractée et une position de perçage pour percer le bouchon. La canule chauffante est déplaçable, dans la position d'accostage du capot sur le bouchon, entre une position de repos et une position d'obturation pour obturer par fusion le trou formé dans le bouchon par l'aiguille, la matière plastique du bouchon fondant au contact de la canule chauffante.
L'aiguille n'est jamais en contact avec le contenu lors du perçage.
Le bouchon utilisé dans le cadre de l'invention et donc dans ce procédé est un bouchon classique monobloc, sans membrane interne et donc peu onéreux et facile à recycler. L'invention n'est toutefois pas limitée à cet égard. A titre d'exemple non limitatif, les bouchons suivants entrent également dans le cadre de la présente invention, et peuvent être utilisés avec le procédé de l'invention :
- un bouchon comprenant une membrane (ou revêtement intérieur ou liner) annulaire évidé dans sa partie centrale,
- un bouchon comprenant une membrane pleine (ou revêtement intérieur ou liner plein) mais avec une épaisseur centrale inférieure à l'épaisseur minimale nécessaire pour une auto-étanchéité dans le cas d'un perçage et d'un retrait consécutif d'une aiguille du bouchon, cette épaisseur minimale nécessaire étant en dessous de 0,2 mm,
- un bouchon comprenant une membrane pleine (ou revêtement intérieur ou liner plein) d'épaisseur comprise entre 0,2 mm et 0,8 mm, avec un matériau de type polyéthylène/éthylène-acétate de vinyle (PE/EVA) qui ne possède pas de caractéristique d'auto-bouchage avérée après retrait d'une aiguille de perçage d'un diamètre compris entre 0,1 mm et 3 mm.
Ce dispositif est, de préférence, utilisé pour un remplissage de contenu à chaud, mais peut également être utilisé pour un remplissage de contenu à froid.
La canule chauffante permet de reboucher, par fusion de la matière plastique du bouchon, le trou formé dans le bouchon par l'aiguille, ce qui permet de garantir l'étanchéité finale du contenant tout en compensant la dépression dans le contenant.
Le contenant contient ainsi un contenu avec une pression équilibrée pour le moins et préférentiellement sous une légère pression afin que la différence de pression interne avec la pression extérieure du contenant évite de générer un quelconque collapsage du contenant.
De plus, la forme convexe, de préférence hémisphérique, de l'extrémité de la canule chauffante permet de réaliser une vérification avec précision de la qualité d'obturation par la canule chauffante d'un trou formé dans le bouchon par l'aiguille. En effet, la forme de l'obturation formée par la canule chauffante convexe dépend de la forme de l'extrémité de la canule chauffante, de la température de l'extrémité de la canule chauffante, du temps de contact de la canule chauffante avec le bouchon et de la profondeur de pénétration de la canule chauffante dans le bouchon. Une fois la forme convexe de l'extrémité de la canule chauffante connue, la température de l'extrémité de la canule chauffante déterminée en fonction de la matière constituant le bouchon, le temps de contact déterminé en fonction du temps de traitement souhaité, l'homme du métier pourra adapter la profondeur de pénétration dans le bouchon par essais et mesures. Une marque caractéristique d'un certain diamètre sera formée sur la surface supérieure du bouchon, ce qui, la forme, la température de l'extrémité de la canule et le temps de contact étant connus, permettra d'assurer que la canule chauffante a eu une pénétration suffisante pour garantir une obturation étanche . Il est bien entendu que l'homme du métier peut, seule la forme convexe de l'extrémité de la canule chauffante étant imposée, fixer deux paramètres parmi la température de l'extrémité de la canule chauffante, le temps de contact et la profondeur de pénétration pour adapter le troisième paramètre en vue de déterminer la marque de la canule chauffante sur la surface supérieure du bouchon qui garantit une obturation optimale étanche . Selon une caractéristique particulière de l'invention, le dispositif comprend en outre un moyen optique configuré pour vérifier la qualité d'obturation du trou dans le bouchon par la canule chauffante. Le moyen optique peut être une caméra ou une fibre optique reliée à un capteur optique. Le moyen optique peut être disposé dans le capot ou sur un poste en aval sur une ligne de production ayant le dispositif de l'invention.
Ainsi, on peut vérifier optiquement, à l'aide de la caméra optique, si la qualité d'obturation du trou par la canule chauffante est bonne ou mauvaise, afin de réaliser une nouvelle fois l'étape d'obturation par fusion ou de jeter le bouchon/le contenant dans le cas où une mauvaise qualité d'obturation est détectée.
Selon une caractéristique particulière de l'invention, le dispositif comprend en outre un moyen optique ou inductif disposé dans le capot et configuré pour vérifier l'intégrité de l'aiguille après le perçage du trou .
Ainsi, on peut vérifier optiquement, à l'aide de ce moyen optique ou inductif, si l'aiguille est ou non cassée après l'étape de perçage, afin de remplacer l'aiguille et de jeter le contenu du contenant dans le cas où une cassure de l'aiguille est détectée.
Une caméra optique déportée peut contrôler le niveau de remplissage du contenant à la fin du procédé de conditionnement en pression pour détecter une éventuelle cassure de l'aiguille. En effet, lors d'un traitement normal, le niveau de contenu doit baisser à un niveau prédéterminé, alors qu'en cas de non perçage et donc de non introduction de fluide, le niveau de contenu ne baissera pas . Un système de détecteur de proximité pourrait également contrôler la présence de l'aiguille complète et non cassée. De tels systèmes de détecteur de proximité pourraient par exemple être une cellule photoélectrique ou magnétique.
Selon une caractéristique particulière de l'invention, l'aiguille possède une extrémité pointue en forme de cône .
Ainsi, ladite aiguille est plus solide comparée à une aiguille hypodermique à extrémité biseautée utilisée dans l'état antérieur de la technique, ce qui permet d'éviter que ladite aiguille ne se casse lors de l'étape de perçage .
Ladite aiguille assure un trou par pénétration dans la matière plastique du bouchon, par déformation et repoussage de la matière, sans arrachement de matière. Aucun déchet de matière plastique de bouchon ne tombe ainsi dans le contenu du contenant .
Le diamètre du trou de perçage doit permettre de combiner un gonflage rapide (diamètre le plus gros possible) et une sécurité de soudure (diamètre le plus petit possible). A titre d'exemple non limitatif, une aiguille de diamètre 0,7 mm semble constituer un bon compromis. Il est bien entendu que l'invention n'est pas limitée à cet égard, le diamètre de l'aiguille pouvant être compris entre 0,3 et 0,8 fois l'épaisseur du bouchon. L'épaisseur du bouchon est définie comme l'épaisseur maximale de la surface plane du bouchon à partir de laquelle s'étend la jupe du bouchon portant le pas de vis.
Selon un premier mode de réalisation de l'invention, l'aiguille est pleine, les moyens d'injection de fluide comprenant au moins une entrée de fluide apte à recevoir un fluide sous pression et à injecter celui-ci à l'intérieur du capot accosté de manière étanche sur le bouchon .
Ainsi, lors de l'injection de fluide, l'aiguille pleine est retirée du trou formé dans le bouchon afin de permettre l'introduction du fluide dans l'espace de tête du contenant par l'intermédiaire dudit trou. Dans ce premier mode de réalisation, une stérilisation de la surface extérieure du bouchon avant l'accostage du capot sur le bouchon est obligatoire afin de ne pas polluer le contenu lors de l'introduction du fluide dans l'espace de tête.
Le retrait de l'aiguille lors de l'injection de fluide permet également d'éviter des éclaboussures éventuelles du contenu sur l'aiguille lors de l'introduction de fluide qui crée une turbulence de la surface du contenu, pour une hygiène améliorée.
Selon un second mode de réalisation de l'invention, l'extrémité pointue de l'aiguille est pleine, et le reste de l'aiguille comprend un alésage central longitudinal et au moins deux trous latéraux opposés reliant ledit alésage central avec l'extérieur de l'aiguille à proximité de l'extrémité pointue de l'aiguille, les moyens d'injection de fluide comprenant au moins une entrée de fluide apte à recevoir un fluide sous pression et à injecter celui-ci dans l'alésage central de l'aiguille au niveau de l'extrémité de l'aiguille opposée à l'extrémité pointue de l'aiguille.
Ainsi, l'aiguille est pleine en sa pointe mais percée en son centre avec deux ouvertures latérales, ce qui permet de réaliser une introduction de fluide dans l'espace de tête du contenant pendant que l'aiguille est encore dans sa position de perçage, le fluide étant diffusé latéralement dans l'espace de tête par les deux trous latéraux de l'aiguille, permettant ainsi d'éviter la mise en turbulence éventuelle du contenu et des éclaboussures lors de l'introduction de fluide. Ce second mode de réalisation permet d'éviter la stérilisation préalable de la surface extérieure du bouchon, ce qui est un point important d'un point de vue industriel.
Selon une caractéristique particulière de l'invention, l'aiguille est chauffée par un moyen de chauffage .
Ainsi, la chauffe de l'aiguille permet à la fois de stériliser l'aiguille et de faciliter le perçage de la matière plastique du bouchon. L'aiguille est, de préférence, chauffée à une température supérieure à 95 °C pour sa stérilisation et inférieure à 130°C pour éviter la fonte possible de la matière plastique du bouchon lors du perçage et un collage de particules de plastique sur l'aiguille qui pourraient ensuite se détacher lors du perçage du bouchon d'un autre contenant dans un prochain cycle .
La température de l'aiguille est, de préférence, maintenue et contrôlée en permanence par une résistance/sonde placée dans le support de l'aiguille.
La présente invention a également pour objet un procédé de conditionnement en pression d'un contenant à traiter au moins partiellement rempli avec un contenu et bouché de manière étanche par un bouchon disposé au-dessus d'un espace de tête du contenant, à l'aide d'un dispositif de conditionnement en pression tel que décrit ci-dessus, caractérisé par le fait qu'il comprend les étapes suivantes : l'accostage de manière étanche du capot dudit dispositif sur la surface extérieure du bouchon ; le perçage d'un trou à travers le bouchon à l'aide de l'aiguille dudit dispositif ; l'introduction d'un fluide dans l'espace de tête du contenant par l'intermédiaire dudit trou, ménagé à travers le bouchon, à l'aide des moyens d'injection de fluide dudit dispositif, de façon à obtenir une pression résiduelle au moins égale à la pression atmosphérique dans l'espace de tête du contenant ; l'obturation dudit trou par fusion de la matière du bouchon à l'aide de la canule chauffante ; et le retrait du capot.
Ainsi, ledit procédé de conditionnement en pression d'un contenant à traiter permet de procéder notamment à un remplissage à chaud en utilisant des bouteilles ayant un surpoids de matière le plus faible possible par rapport aux contenants utilisés pour le remplissage en ambiance stérile à froid, et permet également de compenser la dépression dans des contenants remplis à froid qui peuvent subir des déformations par dépression, surtout si les contenants eux-mêmes ont une faible résistance mécanique.
La température de la canule chauffante et le temps de contact peuvent être paramétrés individuellement pour obtenir la pénétration/soudure voulue et sont contrôlés en continu par le dispositif de conditionnement en pression.
La température à l'extrémité de la canule chauffante est de l'ordre de 140°C - 220°C pour assurer la fonte rapide de la matière plastique du bouchon.
Une force minimale, par exemple à l'aide d'un vérin commandé à 7 bars, est appliquée à la canule chauffante pour assurer une compression importante du plastique lors de la phase de fonte pour remplir le trou. Une pression insuffisante de la canule chauffante malgré la bonne température et le bon temps de contact compromet la qualité/étanchéité de la soudure. Expérimentalement, la demanderesse a constaté de bonnes empreintes de soudure pour un temps de contact de 0,4-0,5 seconde, sous 7 bars, avec une température de 180 °C en bout de canule, pour des bouchons en polyéthylène haute densité (HDPE) .
Le chauffage de la canule est assuré par une résistance/sonde de température reliée au dispositif.
Un circuit de refroidissement par eau placé dans le capot assure, de préférence, le maintien du capot à une température « raisonnable ».
Selon le premier mode de réalisation du dispositif de conditionnement en pression de l'invention, l'aiguille est retirée du trou avant l'étape d'introduction de fluide.
Ainsi, l'accostage du capot sur le bouchon étant réalisé de manière étanche, l'aiguille peut être remontée, avant l'étape d'injection de fluide, tout en maintenant la pression entre le capot et le bouchon, le perçage est donc "propre" sans copeaux, ni déchets par repoussage de la matière plastique du bouchon uniquement, le retrait de l'aiguille lors de l'injection de fluide permettant également d'éviter des éclaboussures éventuelles du contenu sur l'aiguille lors de l'introduction de fluide qui crée une turbulence de la surface du contenu, pour une hygiène améliorée .
Selon le second mode de réalisation du dispositif de conditionnement en pression de l'invention, l'aiguille est maintenue dans le trou pendant l'étape d'introduction de fluide, l'introduction de fluide se faisant à travers l'alésage central et les au moins deux trous latéraux de 1 ' aiguille .
Ainsi, le fluide est diffusé latéralement dans l'espace de tête par les deux trous latéraux de l'aiguille, permettant ainsi d'éviter la mise en turbulence éventuelle du contenu et des éclaboussures lors de l'introduction de fluide, et permettant également d'éviter la stérilisation préalable de la surface extérieure du bouchon.
Selon une caractéristique particulière de l'invention, le procédé comprend en outre, après l'étape d'obturation, une étape de vérification de la qualité d'obturation du trou dans le bouchon à l'aide du moyen optique .
Des systèmes de test de fuite sont actuellement disponibles pour tester la qualité de la soudure. Cependant, pour un trou d'un micron environ (qui permet le retour de la pression atmosphérique du contenant en une semaine), le temps de contrôle est d'environ trente secondes, il faudrait donc un nombre de capots de contrôle quinze fois supérieur au nombre de capots de traitement, ce qui est rédhibitoire .
Le moyen optique permet donc la vérification de la qualité d'obturation immédiatement après l'étape d'obturation lorsque le capot est encore accosté sur le bouchon, ou sur un poste en aval sur une ligne de production dans laquelle est placé le dispositif selon 1 ' invention .
Selon une caractéristique particulière de l'invention, l'étape de vérification comprend les sous- étapes suivantes : la capture, par le moyen optique, d'une image du bouchon au niveau de l'obturation circulaire formée par la canule chauffante convexe ; la mesure du diamètre de l'obturation circulaire capturée ; et la comparaison du diamètre mesuré à une valeur de seuil afin de déterminer si la qualité d'obturation est ou non acceptable.
Ainsi, le moyen optique permet un contrôle visuel de l'obturation par fusion pour mesurer la pénétration de la canule et garantir la qualité de la soudure. Selon une caractéristique particulière de l'invention, l'étape d'introduction de fluide dans l'espace de tête comprend une introduction de fluide dans une phase initiale à une première valeur de pression, puis une introduction de fluide dans une phase finale à une seconde valeur de pression inférieure à la première valeur de pression pour une accélération du procédé selon 1 ' invention .
Ainsi, il est possible d'augmenter fortement la pression dans la phase initiale de la mise sous pression immédiatement après le perçage, et d'avoir une pression moins importante dans la phase finale afin d'ajuster la pression finale juste avant l'obturation par fusion.
Selon une caractéristique particulière de l'invention, dans le cas d'un remplissage à chaud à une température supérieure à 73 °C, le fluide est introduit dans l'espace de tête après un refroidissement du contenu à une température inférieure à 45°C.
Selon une caractéristique particulière de l'invention, la pression d'introduction du fluide est configurée pour générer une pression résiduelle dans le contenant, comprise entre 1,01 bars et 2,5 bars, et de préférence entre 1,01 bars et 1,4 bars.
Selon une caractéristique particulière de l'invention, le fluide est un gaz inerte et stérile tel que de l'azote notamment sous forme gazeuse.
Ainsi, le gaz inerte et stérile permet de ne pas provoquer d'oxydation ultérieure du contenu, postérieurement à la mise en bouteille. Ceci évite le sur- collapsage du fait de la consommation d'oxygène ultérieure puisqu'il n'y en a pas ou très peu, le gaz inerte ayant remplacé en grande partie l'air initialement confiné. Selon une caractéristique particulière de l'invention, le procédé comprend en outre, avant, pendant et/ou après l'étape d'accostage du capot sur le bouchon, une étape de mise en circulation de fluide stérile entre le capot et le bouchon, de préférence un gaz inerte, de façon davantage préférée l'azote.
Ainsi, cette mise en circulation de fluide stérile permet d'empêcher que des bactéries ne rentrent dans l'espace entre le capot et le bouchon depuis l'extérieur, afin d'assurer la stérilité du contenant. Une surpression est créée entre le bouchon et le capot pour maintenir une pression positive supérieure ou égale à la pression interne du contenant jusqu'à l'obturation par fusion .
Selon une caractéristique particulière de l'invention, le procédé comprend en outre, avant l'étape d'accostage du capot sur le bouchon, une étape de stérilisation de la surface extérieure du bouchon par un ou plusieurs parmi un chauffage ponctuel, une stérilisation chimique, une vapeur, une émission de lumière puisée ou autre procédé analogue.
Ainsi, le chauffage ponctuel ou la stérilisation chimique à l'aide d'un liquide stérilisant assure la destruction des organismes pathogènes présents sur la surface extérieure du bouchon.
La présente invention a en outre pour objet une machine de conditionnement en pression comprenant au moins un dispositif de conditionnement en pression tel que décrit ci -dessus, ladite machine de conditionnement en pression comprenant en outre un moyen de maintien en position de contenant par rapport auquel le capot de l'au moins un dispositif de conditionnement en pression est déplaçable entre une position de repos distante du moyen de maintien en position de contenant et une position d'accostage dans laquelle le capot est accosté de manière étanche sur le bouchon du contenant à traiter.
Pour mieux illustrer l'objet de la présente invention, on va en décrire ci-après, à titre illustratif et non limitatif, deux modes de réalisation préférés, avec référence aux dessins annexés.
Sur ces dessins : la Figure 1 est une vue en perspective d'un dispositif de conditionnement en pression d'un contenant à traiter selon la présente invention ;
la Figure 2 est une vue en coupe du dispositif de la Figure 1 dans la position non accostée ;
la Figure 3 est une vue en coupe analogue à la Figure 2 lors de l'étape d'accostage ;
la Figure 4 est une vue en coupe analogue à la Figure 2 lors de l'étape de perçage ;
la Figure 5 est une vue en coupe analogue à la Figure 2 lors de l'étape d'introduction de fluide selon un premier mode de réalisation de l'invention ;
la Figure 6 est une vue en coupe analogue à la Figure 2 lors de l'étape d'obturation ;
la Figure 7 est une vue en coupe de la canule chauffante du dispositif de la Figure 1 ;
la Figure 8 est une vue en perspective de l'extrémité de la canule chauffante de la Figure 7 ;
la Figure 9 est une vue en coupe de l'aiguille du dispositif de la Figure 1 selon un second mode de réalisation de l'invention. Si l'on se réfère à la Figure 1, on peut voir qu'il y est représenté un dispositif de conditionnement en pression 1 d'un contenant à traiter 2.
Le contenant à traiter 2 est au moins partiellement rempli avec un contenu et bouché de manière étanche par un bouchon 3 disposé au-dessus d'un espace de tête du contenant 2.
Dans le cas de la présente description, le contenant 2 subit un remplissage à chaud, et est une bouteille, notamment en PET (polyéthylène téréphtalate) , de faible grammage, avec un contenu, tel qu'un jus de fruit, porté à une température apte à détruire les organismes pathogènes à savoir une température supérieure à 73 °C, en l'occurrence 85°C.
Une fois que le contenant 2 est rempli par le contenu chaud, il est bouché par le bouchon 3 de type connu, à savoir un bouchon à vis moulé par injection ou compression, monolithique et monomatière exempt de tout élément d'étanchéité complémentaire.
L'étanchéité est obtenue par contact sous pression mécanique de la matière du bouchon 3, en l'occurrence de sa face intérieure sur la matière du bord périphérique du goulot 2a du contenant 2, le vissage permettant d'exercer ladite pression mécanique nécessaire.
Lors de la fermeture, ledit bouchon 3 laisse subsister un espace de tête. Cet espace résulte du remplissage sans débordement car le contenu ne doit en aucun cas déborder et se retrouver sur la lèvre du goulot 2a avant fermeture car le contenu serait alors une porte d'entrée sous le bouchon 3 et le contenant 2 serait impropre à la vente.
Le bouchon 3 est exempt de tout mécanisme ou de tout autre accessoire de compensation de pression. L'air emprisonné dans l'espace de tête est chaud mais à pression atmosphérique .
Il est à noter que la présente invention s'applique également à certains bouchons couramment utilisés, notamment aux Etats-Unis, qui sont de type bi- matière avec une membrane intérieure utilisée pour assurer uniquement l'étanchéité entre la surface du goulot du contenant 2 et le bouchon 3 par compression lors du vissage, contrairement à la lèvre intérieure pour les bouchons de type monomatière. Cependant, cette membrane intérieure pour un tel bouchon bi -matière ne possède pas les caractéristiques nécessaires pour assurer une auto- étanchéité du bouchon dans le cas d'un perçage à l'aide d'une aiguille puis d'un retrait de l'aiguille hors du bouchon.
Le contenant 2 est apte à recevoir un contenu à la température de stérilisation retenue sans dégradation mais se trouve exempt de moyen de compensation de dépression .
Le contenant 2 est mis en mouvement immédiatement après remplissage avec le contenu, afin de mettre toutes les surfaces internes du contenant 2 en contact avec le contenu porté à la température stérilisante.
Le contenant 2 et son contenu sont ensuite refroidis dans un tunnel de refroidissement par aspersion d'eau par exemple pour amener l'ensemble proche de la température ambiante.
Lorsque le contenant 2 atteint une température inférieure à 75°C, du fait du matériau qui le constitue, ledit contenant 2 se collapse car le volume de gaz et de liquide se réduit jusqu'à 3 à 5% à l'intérieur du contenant 2. Cette réduction augmente au fur et à mesure du refroidissement. Le phénomène de collapsage est proche de son maximum à une température inférieure ou égale à 45°C.
Le dispositif de conditionnement en pression 1 comprend un capot 4, également appelé tête d'accostage, qui comprend à l'intérieur de celui-ci des moyens de perçage 5, des moyens d'injection de fluide 6 et des moyens d'obturation par fusion 7.
Le dispositif de conditionnement en pression 1 comprend en outre un support inférieur horizontal 8 sur lequel est positionné le contenant 2, un support supérieur horizontal 9 comprenant une encoche 9a dans laquelle est insérée le goulot 2a du contenant 2, et un support vertical 10 auquel sont reliés le support inférieur 8 et le support supérieur 9.
Le capot 4 est verticalement déplaçable, par l'intermédiaire d'un moteur de déplacement vertical 11, entre une position de repos distante du support supérieur 9 et une position d'accostage dans laquelle le capot 4 est accosté de manière étanche sur le bouchon 3 du contenant à traiter 2. Il est bien entendu que l'invention n'est pas limitée à cet égard : soit le capot est mobile, accosté sur le contenant amené sous le capot, soit le capot est fixe, le contenant étant amené dans le capot .
Le dispositif de conditionnement en pression 1 est configuré pour mettre en œuvre un procédé conditionnement en pression du contenant à traiter 2 qui comprend les étapes suivantes : l'accostage de manière étanche du capot 4 sur la surface extérieure du bouchon 3 ; le perçage d'un trou à travers le bouchon 3 par abaissement des moyens de perçage 5 vers le bouchon 3 ; l'introduction d'un fluide dans l'espace de tête du contenant 2 par l'intermédiaire dudit trou, ménagé à travers le bouchon 3, à l'aide des moyens d'injection de fluide 6, de façon à obtenir une pression résiduelle au moins égale à la pression atmosphérique dans l'espace de tête du contenant 2 ; l'obturation dudit trou du bouchon 3 par fusion de la matière du bouchon 3 par abaissement des moyens d'obturation par fusion 7 vers le bouchon 3 ; et le retrait du capot 4. Les différentes étapes du procédé seront décrites plus en détail aux Figures 2 à 6.
L'accostage du capot 4 sur le bouchon 3 étant réalisé de manière étanche, dans le premier mode de réalisation de l'invention, les moyens de perçage 5 peuvent être remontés, avant l'étape d'injection de fluide, tout en maintenant la pression entre le capot 4 et le bouchon 3, le perçage est donc "propre" sans copeaux, ni déchets par repoussage de la matière plastique du bouchon 3 uniquement, le retrait des moyens de perçage 5 lors de l'injection de fluide permettant également d'éviter des éclaboussures éventuelles du contenu sur les moyens de perçage 5 pour une hygiène améliorée.
Le bouchon 3 utilisé dans ce procédé est un bouchon classique monobloc, sans membrane interne et donc peu onéreux.
Le contenant 2 contient ainsi un contenu avec une pression équilibrée pour le moins et préférentiellement sous une légère pression afin que la différence de pression interne avec la pression extérieure du contenant 2 évite de générer un quelconque collapsage du contenant 2.
Si l'on se réfère à la Figure 2, on peut voir qu'il y est représenté le dispositif de conditionnement en pression 1 dans la position non accostée du capot 4.
Le contenant 2 est partiellement rempli avec un contenu 12 de telle sorte qu'un espace de tête 13 sans contenu subsiste au niveau du goulot 2a du contenant 2, le contenant 2 étant bouché de manière étanche par le bouchon 3 disposé au-dessus de l'espace de tête 13 du contenant 2.
Les moyens de perçage 5 comprennent un piston 14 à l'extrémité duquel est fixée une aiguille 15, ledit piston 14 étant apte à se déplacer linéairement dans un cylindre 16 formé sur le capot 4, la course du piston 14 étant limitée par une chambre de piston 17 formée dans l'extrémité supérieure du cylindre 16.
Ainsi, l'aiguille 15 est configurée pour percer le bouchon 3 lorsque le capot 4 est accosté sur le bouchon 3 et que le piston 14 est dans sa position déployée.
Les moyens d'obturation par fusion 7 comprennent un piston 18 à l'extrémité duquel est fixée une canule chauffante 19, ledit piston 18 étant apte à se déplacer linéairement dans un cylindre 20 formé sur le capot 4, la course du piston 18 étant limitée par une chambre de piston 21 formée dans l'extrémité supérieure du cylindre 20.
Ainsi, la canule chauffante 19 est configurée pour obturer par fusion le trou formé dans le bouchon 3 par l'aiguille 15 lorsque le capot 4 est accosté sur le bouchon 3 et que le piston 18 est dans sa position déployée, la matière plastique du bouchon 3 fondant au contact de la canule chauffante 19.
L'aiguille 15 et la canule chauffante 19 sont situées dans une cavité interne 22 du capot 4.
Les pistons 14 et 18 peuvent être actionnés électriquement ou hydrauliquement . Afin de ne pas surcharger les figures, les fils d'alimentation électrique ou d' actionnement hydraulique des pistons 14 et 18 n'ont pas été représentés sur les figures. De même, les éléments chauffants permettant de chauffer l'aiguille 15 ou la canule chauffante 19, ainsi que leurs alimentations électriques respectives, n'ont pas été représentées pour ne pas surcharger les figures.
Les moyens d'injection de fluide 6 comprennent plusieurs entrées de fluide aptes à recevoir un fluide sous pression et à injecter celui-ci à l'intérieur de la cavité interne 22 du capot 4, le capot 4 pouvant contenir jusqu'à cinq entrées de fluide 6.
Dans le premier mode de réalisation de l'invention, le procédé de conditionnement en pression comprend également, avant l'étape d'accostage du capot 4 sur le bouchon 3, une étape de stérilisation de la surface extérieure du bouchon 3 par chauffage ponctuel, par stérilisation chimique à l'aide d'un liquide stérilisant, par vapeur, par émission de lumière puisée ou par un autre procédé analogue, afin d'assurer la destruction des organismes pathogènes présents sur la surface extérieure du bouchon 3.
La cavité interne 22 du capot 4 est toujours en surpression de gaz stérile par une première entrée de fluide 6, même avant l'accostage pour maintenir la stérilité du bouchon 3 réalisée préalablement.
Il y a deux autres entrées 6 de gaz stérile pour l'étape d'introduction de fluide, également appelée étape de gonflage.
Les deux dernières entrées de fluide 6 pourraient être utilisées pour l'injection d'un fluide stérilisant après l'accostage et le perçage et une évacuation rapide par aspiration du fluide stérilisant avant le perçage.
Le dispositif 1 comprend en outre une caméra optique C disposée dans la cavité interne 22 du capot 4 et configurée pour vérifier la qualité d'obturation du trou dans le bouchon 3 par la canule chauffante 19. Cette étape de vérification de qualité d'obturation sera décrite plus en détail en référence à la Figure 6.
Si l'on se réfère à la Figure 3, on peut voir qu'il y est représenté le dispositif de conditionnement en pression 1 lors de l'étape d'accostage.
Lors de l'étape d'accostage, les pistons 14 et 18 respectivement de l'aiguille 15 et de la canule chauffante 19 sont dans leurs positions rétractées, également appelées positions de repos.
Le capot 4 est accosté de manière étanche sur la surface extérieure du bouchon 3 de telle sorte qu'au moins une partie du bouchon 3 est insérée dans au moins une partie de la cavité interne 22 du capot 4.
Les pistons 14 et 18 sont disposés dans le capot 4 de façon à ce que leurs axes de déplacement respectifs soient sécants en un point situé dans la matière du bouchon
3 ou légèrement au-dessus de celui-ci lorsque le capot 4 est accosté sur le bouchon 3, ledit point se situant de préférence au niveau du centre de la surface supérieure du bouchon 3 ou légèrement au-dessus, excentré, en fonction de la forme de la canule chauffante 19.
Le procédé de conditionnement en pression peut également comprendre, après l'étape d'accostage du capot 4 sur le bouchon 3, une étape de mise en circulation de fluide stérile, de préférence un gaz inerte tel que l'azote, dans la cavité interne 22 du capot 4 par l'intermédiaire de certaines des entrées de fluide 6. Une surpression est ainsi créée entre le bouchon 3 et le capot
4 pour maintenir une pression positive supérieure ou égale à la pression interne du contenant 2 jusqu'à l'obturation par fusion. Si l'on se réfère à la Figure 4, on peut voir qu'il y est représenté le dispositif de conditionnement en pression 1 lors de l'étape de perçage.
Lors de l'étape de perçage, le piston 14 de l'aiguille 15 est dans sa position déployée, de telle sorte que l'aiguille 15 est abaissée jusqu'au bouchon 3 et perce un trou 23 à travers la matière du bouchon 3.
L'aiguille 15 n'est jamais en contact avec le contenu 12 lors du perçage.
L'aiguille 15 réalise le trou 23 par pénétration dans la matière plastique du bouchon 3, par déformation et repoussage de la matière, sans arrachement de matière.
Dans le premier mode de réalisation de l'invention, cette étape de perçage est immédiatement suivie d'une étape de remontée de l'aiguille 15 dans la position de repos du piston 14.
Le procédé de conditionnement en pression peut également comprendre une étape de vérification, à l'aide d'une caméra optique ou fibre optique reliée à un capteur supplémentaire (non représentée à la Figure 4) disposée dans le capot 4, de l'intégrité de l'aiguille 15 après l'étape de remontée de l'aiguille 15, permettant ainsi de vérifier optiquement si l'aiguille 15 est ou non cassée après l'étape de perçage.
Une caméra optique supplémentaire déportée du capot peut contrôler le niveau de remplissage du contenant 2 à la fin du procédé de conditionnement en pression pour détecter une éventuelle cassure de l'aiguille 15. En effet, lors d'un traitement normal, le niveau du contenu 12 doit baisser jusqu'à un niveau prédéterminé, alors qu'en cas de non perçage et donc de non introduction de fluide, le niveau du contenu 12 ne baissera pas. Un système de détecteur de proximité pourrait également contrôler la présence de l'aiguille 15 complète et non cassée, sans s'écarter du cadre de la présente invention .
Si l'on se réfère à la Figure 5, on peut voir qu'il y est représenté le dispositif de conditionnement en pression 1 lors de l'étape d'introduction de fluide selon le premier mode de réalisation de l'invention.
Dans le premier mode de réalisation de l'invention, l'aiguille 15 est cylindrique et pleine et possède une extrémité pointue en forme de cône.
L'aiguille 15 est, de préférence, chauffée par un moyen de chauffage (non représenté sur la Figure 5) , la chauffe de l'aiguille 15 permettant à la fois de stériliser l'aiguille 15 et de faciliter le perçage de la matière plastique du bouchon 3. L'aiguille 15 est, de préférence, chauffée à une température supérieure à 95 °C pour sa stérilisation et inférieure à 130°C pour éviter la fonte possible de la matière plastique du bouchon 3 lors du perçage et un collage de particules de plastique sur l'aiguille 15 qui pourraient ensuite se détacher lors du perçage du bouchon 3 d'un autre contenant 2.
La température de l'aiguille 15 est, de préférence, maintenue et contrôlée en permanence par une résistance/sonde placée dans le piston 14.
Dans le premier mode de réalisation de l'invention, lors de l'étape d'introduction de fluide, les pistons 14 et 18 respectivement de l'aiguille 15 et de la canule chauffante 19 sont dans leurs positions de repos, l'aiguille 15 pleine étant ainsi retirée du trou 23 formé dans le bouchon 3. Dans ce premier mode de réalisation, la stérilisation de la surface extérieure du bouchon 3 avant l'accostage du capot 4 sur le bouchon 3 est obligatoire afin de ne pas polluer le contenu 12 lors de l'introduction de fluide dans l'espace de tête 13.
Un fluide 24 est introduit dans la cavité interne 22 du capot 4 puis dans l'espace de tête 13 du contenant 2 par l'intermédiaire du trou 23, ménagé à travers le bouchon 3, à l'aide de l'une des entrées de fluide 6, de façon à obtenir une pression résiduelle au moins égale à la pression atmosphérique dans l'espace de tête 13 du contenant 2.
Le fluide 24 est un gaz inerte et stérile tel que de l'azote notamment sous forme gazeuse, ce qui permet de ne pas provoquer d'oxydation ultérieure du contenu 12, postérieurement à la mise en bouteille. Ceci évite le sur- collapsage du fait de la consommation d'oxygène ultérieure puisqu'il n'y en a pas ou très peu, le gaz inerte ayant remplacé en grande partie l'air initialement confiné.
Dans le cas d'un remplissage à chaud à une température supérieure à 73 °C, le fluide 24 est introduit dans l'espace de tête 13 après un refroidissement du contenu 12 à une température inférieure à 45°C.
La pression d'introduction du fluide 24 est configurée pour générer une pression résiduelle dans le contenant 2, comprise entre 1,01 bars et 2,5 bars, et de préférence entre 1,01 bars et 1,4 bars.
L'étape d'introduction du fluide 24 dans l'espace de tête 13 comprend, de préférence, une introduction de fluide 24 dans une phase initiale à une première valeur de pression, puis une introduction de fluide 24 dans une phase finale à une seconde valeur de pression inférieure à la première valeur de pression. Il est ainsi possible d'augmenter fortement la pression dans la phase initiale de la mise sous pression immédiatement après le perçage, et d'avoir une pression moins importante dans la phase finale afin d'ajuster la pression finale juste avant l'obturation par fusion.
Si l'on se réfère à la Figure 6, on peut voir qu'il y est représenté le dispositif de conditionnement en pression 1 lors de l'étape d'obturation.
Lors de l'étape d'obturation, le piston 18 de la canule chauffante 19 est dans sa position déployée, de telle sorte que la canule chauffante 19 est abaissée jusqu'au trou 23 formé dans le bouchon 3 par l'aiguille 15.
La canule chauffante 19 permet de reboucher, par fusion de la matière plastique du bouchon 3, le trou 23 formé dans le bouchon 3, ce qui permet de garantir l'étanchéité finale du contenant 2 tout en compensant la dépression dans le contenant 2.
L'étape d'obturation est réalisée dans un délai compris entre 0 et 5 secondes.
Le procédé de conditionnement en pression peut également comprendre une étape de vérification, à l'aide de la caméra optique C disposée dans la cavité interne 22 du capot 4, de la qualité d'obturation du trou 23 par la canule chauffante 19, ce qui permet ainsi de vérifier optiquement si la qualité d'obturation du trou 23 par la canule chauffante 19 est bonne ou mauvaise. L'obturation laisse sur la surface supérieure du bouchon une marque caractéristique de la qualité d'obturation par la canule chauffante 19.
Ladite étape de vérification comprend les sous- étapes suivantes : la capture, par la caméra optique C, d'une image du bouchon 3 au niveau de l'obturation circulaire formée par la canule chauffante hémisphérique 19 ; la mesure du diamètre de l'obturation circulaire capturée ; et la comparaison du diamètre mesuré à une valeur de seuil afin de déterminer si la qualité d'obturation est ou non acceptable.
La caméra optique C permet ainsi un contrôle visuel de l'obturation pour mesurer la pénétration de la canule chauffante 19 et garantir la qualité de la soudure.
L'étape d'obturation est suivie d'une étape de remontée de la canule chauffante 19 dans la position de repos du piston 18, puis d'une étape de retrait du capot 4 depuis le bouchon 3.
Le procédé selon la présente invention permet le remplissage à chaud dans des contenants 2, par exemple en PET, avec des grammages réduits de l'ordre de 15% par rapport au procédé de remplissage à chaud avec déformation du contenant, ce qui est une réduction de matière considérable au vu du coefficient multiplicateur du nombre de contenants 2 produits.
Aucune architecture particulière doit être étudiée pour la paroi, tout panneau technique et/ou fond pétaloïde complexe devient inutile.
Les formes de contenants 2 sont de fait beaucoup plus libres et sobres, et le recyclage est moins coûteux puisque la quantité de matière utilisée est moindre.
Le fait de disposer le contenant 2 sous pression atmosphérique ou légère pression autorise un meilleur gerbage et la palettisation.
Le procédé selon la présente invention s'applique à tous les modes de remplissage et même pour une mise en pression de contenants 2 remplis à froid en ambiance stérile dont on voudrait non seulement compenser une éventuelle diminution du volume de l'espace de tête 13 par une consommation de l'oxygène mais aussi mettre en légère surpression pour renforcer la tenue mécanique, voire injecter un gaz neutre en remplacement de l'air confiné dans l'espace de tête 13 afin de conserver toutes les qualités organoleptiques des produits que l'oxydation peut altérer .
Si l'on se réfère à la Figure 7, on peut voir qu'il y est représenté la canule chauffante 19 du dispositif de conditionnement en pression 1.
La canule chauffante 19 comprend une extrémité de canule 25 (qui sera décrite plus en détail à la Figure 8) et un support de canule 26 creux et cylindrique dans lequel est emmanchée en force une partie de l'extrémité de canule 25, une partie du support de canule 26 étant emmanchée en force dans la partie inférieure du piston 18 qui est creuse .
Une résistance chauffante/sonde de température 27 est disposée à l'intérieur du support de canule 26 creux, la partie inférieure de la résistance chauffante/sonde de température 27 étant en contact avec l'extrémité de canule 25, et la partie supérieure de la résistance chauffante/sonde de température 27 étant reliée à deux fils électriques 28 configurés pour amener une alimentation électrique à la résistance chauffante/sonde de température 27.
La température de l'extrémité de canule 25 et le temps de contact peuvent être paramétrés individuellement pour obtenir la pénétration/soudure voulue et sont contrôlés en continu par le dispositif de conditionnement en pression 1.
La température de l'extrémité de canule 25 est de l'ordre de 140 °C - 220 °C, de préférence de l'ordre de 180°C - 200°C, en fonction de la matière constituant le bouchon 3, pour assurer la fonte rapide de la matière plastique du bouchon 3. Une force minimale, par exemple à l'aide d'un vérin commandé à 7 bars, est appliquée à la canule chauffante 19 pour assurer une compression importante du plastique lors de la phase de fonte pour remplir le trou 23. Une pression insuffisante de la canule chauffante 19, malgré la bonne température et le bon temps de contact, compromettrait en effet la qualité/étanchéité de la soudure .
Un circuit de refroidissement par eau (non représenté à la Figure 7) placé dans le capot 4 assure, de préférence, le maintien du capot 4 à une température « raisonnable ».
Si l'on se réfère à la Figure 8, on peut voir qu'il y est représenté l'extrémité de canule 25.
L'extrémité de canule 25 comprend une plaque 25a dont l'une des faces comprend une saillie 25b configurée pour s'emmancher en force dans le support de canule 26, et dont l'autre face opposée comprend un téton de forme hémisphérique 25c. Il est à noter que la forme hémisphérique représentée n'est pas limitative, et que toute forme convexe de l'extrémité de la canule chauffante entre dans le cadre de la présente invention.
La forme hémisphérique du téton 25c permet de réaliser une vérification avec précision de la qualité d'obturation par la canule chauffante 19 du trou 23 formé dans le bouchon 3 par l'aiguille 15. En effet, l'obturation formée par le téton de forme hémisphérique 25c est circulaire, ce qui permet de mesurer, à l'aide de la caméra optique C, le diamètre de l'obturation circulaire réalisée pour déterminer si la qualité d'obturation est ou non acceptable .
Si l'on se réfère à la Figure 9, on peut voir qu'il y est représenté une aiguille 29 du dispositif de conditionnement en pression 1 selon le second mode de réalisation de l'invention.
Dans ce second mode de réalisation de l'invention, l'extrémité pointue 29a de l'aiguille 29 est pleine, et le reste de l'aiguille comprend un alésage central longitudinal 30 et deux trous latéraux opposés 31 reliant ledit alésage central 30 avec l'extérieur de l'aiguille 29 à proximité de l'extrémité pointue 29a de l'aiguille 29.
II est à noter que l'aiguille 29 pourrait également comprendre au moins trois trous latéraux 31, sans s'écarter du cadre de la présente invention.
Dans ce second mode de réalisation, les moyens d'injection de fluide 6 comprennent au moins une entrée de fluide apte à recevoir le fluide 24 et à l'injecter dans l'alésage central 30 de l'aiguille 29 au niveau de l'extrémité de l'aiguille 29 opposée à l'extrémité pointue 29a. L'aiguille 29 est maintenue dans le trou 23 pendant l'étape d'introduction de fluide, l'introduction de fluide se faisant à travers l'alésage central 30 puis les deux trous latéraux 31.
Une introduction du fluide 24 dans l'espace de tête 13 du contenant 2 est ainsi réalisée pendant que l'aiguille 29 est encore dans sa position de perçage, le fluide 24 étant diffusé latéralement dans l'espace de tête 13 par les deux trous latéraux 31, permettant ainsi d'éviter la mise en turbulence éventuelle du contenu 12 et des éclaboussures lors de l'introduction de fluide. Ce second mode de réalisation permet également d'éviter la stérilisation préalable de la surface extérieure du bouchon 3.
Le dispositif, le procédé et la machine selon l'invention peuvent être mis en oeuvre dans une ligne de production, avec un ou plusieurs postes en amont ou en aval, auquel cas un dispositif de convoyage transportera le contenant jusqu'au poste de la ligne de production mettant en oeuvre l'invention.

Claims

REVENDICATIONS
1 - Dispositif de conditionnement en pression (1) d'un contenant à traiter (2) au moins partiellement rempli avec un contenu (12) et bouché de manière étanche par un bouchon (3) disposé au-dessus d'un espace de tête (13) du contenant (2) , ledit dispositif (1) comprenant un capot (4) qui comprend à l'intérieur de celui-ci une aiguille (15 ; 29) de perçage, des moyens d'injection de fluide (6) et une canule chauffante (19) d'obturation par fusion, ledit capot (4) étant configuré pour être accosté de manière étanche sur la surface extérieure du bouchon (3) , ladite aiguille (15 ; 29) étant apte à se déplacer linéairement pour percer un trou (23) à travers le bouchon (3) , lesdits moyens d'injection de fluide (6) étant configurés pour introduire un fluide (24) dans l'espace de tête (13) par l'intermédiaire dudit trou (23), ladite canule chauffante (19) étant apte à se déplacer linéairement pour obturer ledit trou (23) par fusion de la matière du bouchon (3) , caractérisé par le fait que l'aiguille (15 ; 29) et la canule chauffante (19) sont disposées dans le capot (4) de façon à ce que leurs axes de déplacement respectifs soient sécants en un point situé dans la matière du bouchon (3) ou au-dessus du bouchon (3) lorsque le capot (4) est accosté sur le bouchon (3), et par le fait que l'extrémité (25) de la canule chauffante (19) est convexe.
2 - Dispositif (1) selon la revendication 1, caractérisé par le fait qu'il comprend en outre un moyen optique (C) configuré pour vérifier la qualité d'obturation du trou (23) dans le bouchon (3) par la canule chauffante (19) .
3 - Dispositif (1) selon l'une des revendications 1 et 2 , caractérisé par le fait qu'il comprend en outre un moyen optique ou inductif disposé dans le capot (4) et configuré pour vérifier l'intégrité de l'aiguille (15 ; 29) après le perçage du trou (23) .
4 - Dispositif (1) selon l'une des revendications 1 à 3, caractérisé par le fait que l'aiguille (15 ; 29) possède une extrémité pointue (29a) en forme de cône.
5 - Dispositif (1) selon la revendication 4, caractérisé par le fait que l'aiguille (15) est pleine, les moyens d'injection de fluide (6) comprenant au moins une entrée de fluide apte à recevoir un fluide sous pression et à injecter celui-ci à l'intérieur du capot (4) accosté de manière étanche sur le bouchon (3) .
6 - Dispositif (1) selon la revendication 4, caractérisé par le fait que l'extrémité pointue (29a) de l'aiguille (29) est pleine, et le reste de l'aiguille (29) comprend un alésage central longitudinal (30) et au moins deux trous latéraux opposés (31) reliant ledit alésage central (30) avec l'extérieur de l'aiguille (29) à proximité de l'extrémité pointue (29a) de l'aiguille (29), les moyens d'injection de fluide (6) comprenant au moins une entrée de fluide apte à recevoir un fluide sous pression et à injecter celui-ci dans l'alésage central (30) de l'aiguille (29) au niveau de l'extrémité de l'aiguille (29) opposée à l'extrémité pointue (29a) de l'aiguille (29) .
7 - Dispositif (1) selon l'une des revendications 1 à 6, caractérisé par le fait que l'aiguille (15 ; 29) est chauffée par un moyen de chauffage.
8 - Procédé de conditionnement en pression d'un contenant à traiter (2) au moins partiellement rempli avec un contenu (12) et bouché de manière étanche par un bouchon (3) disposé au-dessus d'un espace de tête (13) du contenant (2), à l'aide d'un dispositif de conditionnement en pression (1) selon l'une des revendications 1 à 7, caractérisé par le fait qu'il comprend les étapes suivantes :
- l'accostage de manière étanche du capot (4) dudit dispositif (1) sur la surface extérieure du bouchon (3) ;
- le perçage d'un trou (23) à travers le bouchon (3) à l'aide de l'aiguille (15 ; 29) dudit dispositif (1) ;
- l'introduction d'un fluide (24) dans l'espace de tête (13) du contenant (2) par l'intermédiaire dudit trou (23), ménagé à travers le bouchon (3), à l'aide des moyens d'injection de fluide (6) dudit dispositif (1) , de façon à obtenir une pression résiduelle au moins égale à la pression atmosphérique dans l'espace de tête (13) du contenant (2) ;
- l'obturation dudit trou (23) par fusion de la matière du bouchon (3) à l'aide de la canule chauffante (19) ; et
- le retrait du capot (4) .
9 - Procédé selon la revendication 8 prise en dépendance de la revendication 5, caractérisé par le fait que l'aiguille (15) est retirée du trou (23) avant l'étape d'introduction de fluide.
10 - Procédé selon la revendication 8 prise en dépendance de la revendication 6, caractérisé par le fait que l'aiguille (29) est maintenue dans le trou (23) pendant l'étape d'introduction de fluide, l'introduction de fluide se faisant à travers l'alésage central (30) et les au moins deux trous latéraux (31) de l'aiguille (29).
11 - Procédé selon l'une des revendications 8 à 10 prise en dépendance de la revendication 2, caractérisé par le fait qu'il comprend en outre, après l'étape d'obturation, une étape de vérification de la qualité d'obturation du trou (23) dans le bouchon (3) à l'aide du moyen optique (C) .
12 - Procédé selon la revendication 11, caractérisé par le fait que l'étape de vérification comprend les sous-étapes suivantes :
- la capture, par le moyen optique (C) , d'une image du bouchon (3) au niveau de l'obturation circulaire formée par la canule chauffante (19) convexe ;
- la mesure du diamètre de l'obturation circulaire capturée ; et
- la comparaison du diamètre mesuré à une valeur de seuil afin de déterminer si la qualité d'obturation est ou non acceptable.
13 - Procédé selon l'une des revendications 8 à 12, caractérisé par le fait que l'étape d'introduction de fluide (24) dans l'espace de tête (13) comprend une introduction de fluide (24) dans une phase initiale à une première valeur de pression, puis une introduction de fluide (24) dans une phase finale à une seconde valeur de pression inférieure à la première valeur de pression.
14 - Procédé selon l'une des revendications 8 à
13, caractérisé par le fait que, dans le cas d'un remplissage à chaud à une température supérieure à 73 °C, le fluide (24) est introduit dans l'espace de tête (13) après un refroidissement du contenu (12) à une température inférieure à 45°C.
15 - Procédé selon l'une des revendications 8 à
14, caractérisé par le fait que la pression d'introduction du fluide (24) est configurée pour générer une pression résiduelle dans le contenant (2), comprise entre 1,01 bars et 2,5 bars, et de préférence entre 1,01 bars et 1,4 bars.
16 - Procédé selon l'une des revendications 8 à
15, caractérisé par le fait que le fluide (24) est un gaz inerte et stérile tel que de l'azote notamment sous forme gazeuse .
17 - Procédé selon l'une des revendications 8 à 16, caractérisé par le fait qu'il comprend en outre, avant, pendant et/ou après l'étape d'accostage du capot (4) sur le bouchon (3) , une étape de mise en circulation de fluide stérile entre le capot (4) et le bouchon (3) , de préférence un gaz inerte, de façon davantage préférée l'azote.
18 - Procédé selon l'une des revendications 8 à 17, caractérisé par le fait qu'il comprend en outre, avant l'étape d'accostage du capot (4) sur le bouchon (3), une étape de stérilisation de la surface extérieure du bouchon (3) par un ou plusieurs parmi un chauffage ponctuel, une stérilisation chimique, une vapeur ou une émission de lumière puisée.
19 - Machine de conditionnement en pression comprenant au moins un dispositif de conditionnement en pression (1) selon l'une des revendications 1 à 7, ladite machine de conditionnement en pression comprenant en outre un moyen de maintien en position de contenant (9) par rapport auquel le capot (4) de 1 ' au moins un dispositif de conditionnement en pression (1) est déplaçable entre une position de repos distante du moyen de maintien en position de contenant (9) et une position d'accostage dans laquelle le capot (4) est accosté de manière étanche sur le bouchon (3) du contenant à traiter (2) .
PCT/FR2017/053004 2016-11-04 2017-11-02 Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee WO2018083419A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17811984.8A EP3535190B1 (fr) 2016-11-04 2017-11-02 Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee
CN201780067173.7A CN109890705B (zh) 2016-11-04 2017-11-02 一种用于压力包装待加工容器的方法和装置以及相关的压力包装机
JP2019523104A JP2019536701A (ja) 2016-11-04 2017-11-02 処理されることとなるコンテナを圧力パッケージングするためのデバイスおよび方法、ならびに、関連の圧力パッケージング・マシン
BR112019008996A BR112019008996A2 (pt) 2016-11-04 2017-11-02 dispositivo e método de acondicionamento sob pressão de um recipiente a ser processado e máquina de acondicionamento sob pressão associada
US16/347,444 US11034475B2 (en) 2016-11-04 2017-11-02 Device and method for pressure-packaging a container to be processed and associated pressure-packaging machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1660720 2016-11-04
FR1660720A FR3058396B1 (fr) 2016-11-04 2016-11-04 Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee

Publications (1)

Publication Number Publication Date
WO2018083419A1 true WO2018083419A1 (fr) 2018-05-11

Family

ID=58213202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053004 WO2018083419A1 (fr) 2016-11-04 2017-11-02 Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee

Country Status (7)

Country Link
US (1) US11034475B2 (fr)
EP (1) EP3535190B1 (fr)
JP (1) JP2019536701A (fr)
CN (1) CN109890705B (fr)
BR (1) BR112019008996A2 (fr)
FR (1) FR3058396B1 (fr)
WO (1) WO2018083419A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699102A1 (fr) * 2019-02-21 2020-08-26 Krones AG Dispositif et procédé de fabrication de récipients remplis
DE102019104379A1 (de) * 2019-02-21 2020-08-27 Krones Ag Vorrichtung und Verfahren zum Herstellen von befüllten Behältnissen
DE102019104373A1 (de) * 2019-02-21 2020-08-27 Krones Ag Vorrichtung und Verfahren zum Herstellen von befüllten Behältnissen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132923B (zh) * 2017-05-30 2022-11-04 大卫梅尔罗斯设计有限公司 用于处理容器的混合方法和系统
DE102019104387A1 (de) * 2019-02-21 2020-08-27 Krones Ag Vorrichtung und Verfahren zum Herstellen von befüllten Behältnissen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2322062A1 (fr) 1975-08-28 1977-03-25 Carnaud Total Interplastic Procede et dispositif de bouchage pour recipients en matiere deformable
WO2009142510A1 (fr) 2008-05-19 2009-11-26 David Murray Melrose Procédé de modification d'espace de tête pour l'évacuation d'une pression de vide et appareil pour celui-ci
US20150121807A1 (en) 2013-11-04 2015-05-07 Silgan White Cap LLC Fluid injection system and method for scavenging oxygen in a container
WO2016177987A1 (fr) * 2015-05-05 2016-11-10 Jalca Procede de maitrise de la pression dans un contenant avec son contenu apres remplissage et bouchage et dispositif associe

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US234674A (en) * 1880-11-23 Consin
US1207814A (en) * 1915-03-06 1916-12-12 Frank W Stockton Method for preserving tennis-balls or other objects containing fluid under pressure.
US2125316A (en) * 1936-02-04 1938-08-02 Bell Telephone Labor Inc Method of forming glass to metal seals
US2856739A (en) * 1954-06-24 1958-10-21 Texas Co Manufacture of radiation detectors and the like
US2855006A (en) * 1955-12-16 1958-10-07 Nat Phoenix Ind Inc Beverage containers and method of filling the same
US3996725A (en) * 1973-05-21 1976-12-14 The Dow Chemical Company Apparatus for filling and hermetically sealing thermoplastic containers under vacuum
US4597245A (en) * 1982-04-02 1986-07-01 Kelsey-Hayes Company Apparatus for filling and sealing a container
US6604561B2 (en) * 2000-02-11 2003-08-12 Medical Instill Technologies, Inc. Medicament vial having a heat-sealable cap, and apparatus and method for filling the vial
JP2001340429A (ja) * 2000-06-01 2001-12-11 Welfide Corp 除菌混注具およびそれを用いた栓体、ならびに栓体付き薬液容器
CN1269696C (zh) * 2003-04-18 2006-08-16 诺亚公司 无封嘴封口的容器与其制造方法
KR20060028571A (ko) * 2004-09-25 2006-03-30 주식회사리팩 백 포장기
ATE529341T1 (de) * 2006-08-25 2011-11-15 Interprise Brussels S A Verpackung mit einem element zur gesteuerten änderung des gasgehalts in der verpackung
US10703617B2 (en) * 2008-05-19 2020-07-07 David Murray Melrose Method for controlled container headspace adjustment
CN102686484A (zh) * 2009-11-18 2012-09-19 大卫·默里·梅尔罗斯 用于顶部空间修改的压力密封方法
US9428292B2 (en) * 2013-03-13 2016-08-30 Silgan White Cap LLC Fluid injection system and method for supporting container walls
CN103779615B (zh) * 2014-03-03 2015-12-30 上海电气钠硫储能技术有限公司 一种钠硫电池负极针刺注钠装置
US9643746B1 (en) * 2016-09-20 2017-05-09 Paul E. Lunn System and method of transferring matter through a sealed container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2322062A1 (fr) 1975-08-28 1977-03-25 Carnaud Total Interplastic Procede et dispositif de bouchage pour recipients en matiere deformable
WO2009142510A1 (fr) 2008-05-19 2009-11-26 David Murray Melrose Procédé de modification d'espace de tête pour l'évacuation d'une pression de vide et appareil pour celui-ci
US20150121807A1 (en) 2013-11-04 2015-05-07 Silgan White Cap LLC Fluid injection system and method for scavenging oxygen in a container
WO2016177987A1 (fr) * 2015-05-05 2016-11-10 Jalca Procede de maitrise de la pression dans un contenant avec son contenu apres remplissage et bouchage et dispositif associe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699102A1 (fr) * 2019-02-21 2020-08-26 Krones AG Dispositif et procédé de fabrication de récipients remplis
DE102019104379A1 (de) * 2019-02-21 2020-08-27 Krones Ag Vorrichtung und Verfahren zum Herstellen von befüllten Behältnissen
DE102019104390A1 (de) * 2019-02-21 2020-08-27 Krones Ag Vorrichtung und Verfahren zum Herstellen von befüllten Behältnissen
DE102019104373A1 (de) * 2019-02-21 2020-08-27 Krones Ag Vorrichtung und Verfahren zum Herstellen von befüllten Behältnissen
US11325817B2 (en) 2019-02-21 2022-05-10 Krones Ag Machine and method for producing filled containers

Also Published As

Publication number Publication date
US20190329920A1 (en) 2019-10-31
EP3535190A1 (fr) 2019-09-11
FR3058396A1 (fr) 2018-05-11
CN109890705A (zh) 2019-06-14
CN109890705B (zh) 2021-06-22
BR112019008996A2 (pt) 2019-07-16
JP2019536701A (ja) 2019-12-19
EP3535190B1 (fr) 2021-01-06
US11034475B2 (en) 2021-06-15
FR3058396B1 (fr) 2018-11-09

Similar Documents

Publication Publication Date Title
EP3535190B1 (fr) Dispositif et procede de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee
WO2016177987A1 (fr) Procede de maitrise de la pression dans un contenant avec son contenu apres remplissage et bouchage et dispositif associe
FR2765515A1 (fr) Dispositif et procede de fabrication d'un objet en matiere plastique par soufflage
EP3535189B1 (fr) Procede et dispositif de conditionnement en pression d'un contenant a traiter et machine de conditionnement en pression associee
EP1910172B1 (fr) Ampoule operculee destinee a etre remplie d'un liquide par depression et procede de fabrication correspondant
FR3031903A1 (fr) Dispositif et procede de sterilisation de recipients en matiere thermoplastique au moyen d'un faisceau d'electrons pulse
EP3157732B1 (fr) Procédé et système
EP3292942B1 (fr) Procédé de fermeture d'un emballage tubulaire et de contrôle en continu de l'étanchéité de son extrémité soudée après son remplissage
FR2767123A1 (fr) Nouvelle structure de recipient et procede de conditionnement d'un produit au moyen de ce recipient
FR2799730A1 (fr) Machine de remplissage et de scellage de recipients
FR3050680A1 (fr) Procede de formage de recipients a parois multiples
EP2639197A1 (fr) Procédé de traitement thermique d'un contenant destiné à être empli à chaud, pour stockage longue durée, contenant obtenu
EP2119664A1 (fr) Procédé de mise en pression de bouteillle PET
EP3265389B1 (fr) Boite de conserve a fond souple et procédé de fabrication correspondant
FR3109554A1 (fr) Préforme et récipient à transmittances variables
WO2023079144A1 (fr) Machine et procédé de fabrication d'un conditionnement
FR3099755A3 (fr) Film thermossoudable formant une poche souple avec un bouchon a vis l’ensemble etant biodegradable et compostable
FR3069233A1 (fr) Boite de conserve a fond souple, fond souple de boite et procede de fabrication correspondant
FR3105196A1 (fr) Contrôle de l'étanchéité de produits
FR2877319A1 (fr) Procede et machine pour enduire d'une pellicule de protection les extremites d'un bouchon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17811984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008996

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017811984

Country of ref document: EP

Effective date: 20190604

ENP Entry into the national phase

Ref document number: 112019008996

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190502