WO2018082506A1 - 混合自动重传请求harq码本的生成方法及相关设备 - Google Patents

混合自动重传请求harq码本的生成方法及相关设备 Download PDF

Info

Publication number
WO2018082506A1
WO2018082506A1 PCT/CN2017/108077 CN2017108077W WO2018082506A1 WO 2018082506 A1 WO2018082506 A1 WO 2018082506A1 CN 2017108077 W CN2017108077 W CN 2017108077W WO 2018082506 A1 WO2018082506 A1 WO 2018082506A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
transmission time
time unit
harq
terminal
Prior art date
Application number
PCT/CN2017/108077
Other languages
English (en)
French (fr)
Inventor
唐浩
栗忠峰
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17867444.6A priority Critical patent/EP3531605B1/en
Priority to KR1020197015353A priority patent/KR20190073511A/ko
Publication of WO2018082506A1 publication Critical patent/WO2018082506A1/zh
Priority to US16/400,702 priority patent/US10880050B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements

Definitions

  • the present application relates to the field of communications, and in particular, to a method for generating a HARQ codebook and related devices.
  • Enhanced Mobile Broadband eMBB
  • LTE Long Term Evolution
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communication
  • the Third Generation Partnership Project proposes a carrier aggregation technology, which is good for aggregating multiple carriers into one wider.
  • the spectrum can also be used to aggregate some discontinuous spectrum.
  • the transmitted time units used by the aggregated carriers are all the same, both being 1 ms.
  • New Radio there are cases where the transmission time units used by the aggregated carriers are different.
  • the transmission time units are different, the downlink data sent by the access network device to the terminal is the same according to the previous transmission time unit.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the HARQ codebook is wrong for different transmission time units, affecting the access network device and the terminal. Data transfer between.
  • the present invention provides a method for generating a HARQ codebook and a related device, so that when a carrier with different transmission time unit lengths is used for carrier aggregation, the HARQ codebook can be correctly generated without affecting the connection between the access network device and the terminal. data transmission.
  • a first aspect of the present invention provides a method for generating a HARQ codebook, including:
  • the terminal receives the first information sent by the access network device, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal;
  • the configured carrier includes a first carrier and a second a carrier, the HARQ feedback information of the first carrier, and the HARQ feedback information of the second carrier are transmitted on an uplink control channel of the first carrier, where a length of the transmission time unit of the first carrier is different from the first The transmission time unit lengths of the two carriers are not equal;
  • the terminal according to the configured HARQ timing of the carrier, the transmission time unit length of the first carrier, and the A relationship between transmission time unit lengths of the second carrier generates a HARQ codebook transmitted on an uplink control channel of the first carrier.
  • the access network device configures the carrier for the terminal, and the carrier configured by the access network device includes the first carrier and the second carrier, and the HARQ feedback information of the first carrier and the second carrier
  • the HARQ feedback information is transmitted on the uplink control channel of the first carrier, where the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier, and the terminal is notified by the first information, and the terminal receives the access network.
  • the first information sent by the device, the terminal generates uplink control on the first carrier according to the relationship between the HARQ timing of the carrier configured by the access network device, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier.
  • the HARQ codebook transmitted on the channel is erroneous in the prior art because the transmission time unit lengths of the first carrier and the second carrier are not equal, and the HARQ codebook generated by the terminal is incorrect.
  • the terminal can correctly generate the HARQ.
  • the codebook does not affect the data transmission between the access network device and the terminal.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the first carrier
  • the transmission time unit length is N times the length of the transmission time unit in the second carrier
  • the transmission time unit n of the first carrier is aligned with the transmission time unit of the N second carriers in the time domain
  • the transmission time unit of the N the second carriers includes a transmission time unit m; wherein N is a positive integer greater than 1, and n and m are natural numbers;
  • the HARQ timing of the configured carrier includes a HARQ timing of the transmission time unit m of the second carrier, and is used to indicate that the terminal transmits on the kth transmission time unit after the transmission time unit n of the first carrier Transmitting HARQ feedback information of the time unit m;
  • the HARQ codebook transmitted on including:
  • the terminal Generating, by the terminal, a HARQ codebook transmitted on a kth transmission time unit after the transmission time unit n of the first carrier; wherein the HARQ codebook of the second carrier included in the HARQ codebook
  • the time window size of the second carrier is N times the size, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the transmission time unit length of the first carrier is the transmission time unit length in the second carrier N times
  • the transmission time unit n of one first carrier is aligned with the transmission time unit of N second carriers in the time domain
  • the access time unit is included in the transmission time unit of the N second carriers
  • the HARQ timing of the configured carrier is set by default between the terminal and the terminal, or is sent to the terminal after the access network device is configured, and the HARQ timing of the first carrier in the HARQ timing of the configured carrier is consistent with the existing one
  • the second carrier is
  • the HARQ timing of the transmission time unit m is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier, and the terminal generates the transmission time unit in the first carrier.
  • HARQ codebook size of the second carrier included in the HARQ codebook is N times the second carrier
  • the size of the window, the size of the window is the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit.
  • the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook size of the first carrier.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: the first carrier The transmission time unit length is N times the transmission time unit length of the second carrier; the transmission time unit n of one first carrier is aligned with the time unit of the N second carrier transmissions, and the N is greater than 1 Positive integer, n is a natural number;
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the N transmission time units of the second carrier;
  • the HARQ codebook transmitted on including:
  • the terminal Determining, by the terminal, the HARQ feedback information that needs to be transmitted on at least one of the N transmission time units on the transmission time unit n on the first carrier according to the HARQ timing of the second carrier;
  • the terminal Generating, by the terminal, a HARQ codebook transmitted on a transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is N times The time window size of the second carrier, the time window size being the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the transmission time unit length of the first carrier is the transmission time unit length of the second carrier.
  • N times a transmission time unit n of a first carrier is aligned with a time unit of N second carrier transmissions, N is a positive integer greater than 1, and when n is a natural number, a default setting between the access network device and the terminal.
  • the HARQ timing of the configured carrier is sent to the terminal after the access network device is configured, and the HARQ timing of the first carrier in the HARQ timing of the configured carrier is consistent with the existing one, and the HARQ timing of the second carrier is used to indicate
  • the terminal transmits HARQ feedback information on at least one of the N transmission time units of the second carrier, and the terminal determines, according to the HARQ timing of the second carrier, that the transmission on the transmission time unit n on the first carrier needs to be in the N transmission time units.
  • the terminal generates a HARQ codebook transmitted on a transmission time unit n on the first carrier, where the HARQ codebook includes
  • the HARQ codebook of the second carrier is N times the time window size of the second carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit, which is obtained in the solution.
  • the codebook size of the HARQ codebook is the sum of the HARQ codebook size of the first carrier and the HARQ codebook size of the second carrier, so that the HARQ codebook is correctly obtained, which effectively solves the problem that the HARQ codebook cannot be correctly obtained in the prior art. The problem.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the first carrier The transmission time unit length is N times the transmission time unit length of the second carrier; the transmission time unit n of one first carrier is aligned with the time unit of the N second carrier transmissions in the time domain, and the N second
  • the transmission time unit of the carrier includes M uplink transmission time units, the N is a positive integer greater than 1, the M is a positive integer, n is a natural number, and the M is N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the M uplink transmission time units of the second carrier;
  • an uplink control channel on the first carrier according to a relationship between a HARQ timing of the configured carrier, a transmission time unit length of the first carrier, and a transmission time unit length of the second carrier Transmitted HARQ codebook, including:
  • the terminal Determining, by the terminal, the HARQ feedback information that needs to be transmitted on at least one of the M transmission time units on the transmission time unit n on the first carrier according to the HARQ timing of the second carrier;
  • the terminal Generating, by the terminal, a HARQ codebook transmitted on a transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is M times The time window size of the second carrier, the time window size being the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the transmission time unit length of the first carrier is the transmission time unit length of the second carrier.
  • the HARQ timing of the first carrier in the HARQ timing is consistent with the existing one, and the HARQ timing of the second carrier is used to instruct the terminal to transmit the HARQ feedback information on at least one of the M uplink transmission time units of the second carrier, the terminal Determining, according to the HARQ timing of the second carrier, transmitting HARQ feedback information that needs to be transmitted on at least one of the M transmission time units on the transmission time unit n on the first carrier, and finally Generating a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is M times the time window size of the second carrier, and the time window size For the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit, the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook size of the first carrier and the HARQ code of the second carrier. The sum of the sizes, so that the HARQ code
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the second carrier
  • the transmission time unit length is N times the transmission time unit length of the first carrier, and the transmission time unit of the N first carriers is aligned with the transmission time unit n of the second carrier in the time domain, the N
  • the last transmission time unit in the time domain in the transmission time unit of the first carrier is the transmission time unit m
  • the N is a positive integer greater than 1
  • n, m are natural numbers.
  • the HARQ timing of the configured carrier includes the HARQ timing on the transmission time unit n of the second carrier, and is used to indicate that the terminal is on the kth transmission time unit after the transmission time unit m of the first carrier Transmitting HARQ feedback information of the transmission time unit n;
  • the HARQ codebook transmitted on including:
  • HARQ codebook size is 1/N times the time window size of the second carrier, or equal to the time window size of the first carrier, and the time window size is required to transmit HARQ feedback on an uplink transmission time unit. The number of downlink transmission time units of information.
  • the transmission time unit length of the second carrier is the transmission time unit length of the first carrier N Times
  • the transmission time unit of the N first carriers is aligned with a second carrier transmission time unit n in the time domain
  • the last one of the transmission time units of the N first carriers in the time domain is the transmission time unit m
  • N A positive integer greater than 1, when n, m is a natural number
  • the HARQ timing of the configured carrier is set by default between the access network device and the terminal, or is sent to the terminal after the access network device is configured, and the configured HARQ timing of the carrier
  • the HARQ timing of the first carrier is consistent with the existing one
  • the HARQ timing of the second carrier is used to indicate that the terminal transmits the HARQ of the transmission time unit n on the kth transmission time unit after the transmission time unit m of the first carrier.
  • the terminal generates a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is 1/N times the time of the second carrier
  • the window size is equal to or equal to the time window size of the first carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the codebook size is the sum of the HARQ codebook size of the first carrier and the HARQ codebook size of the second carrier, so that the HARQ codebook is correctly obtained, which effectively solves the problem that the HARQ codebook cannot be correctly obtained in the prior art.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the second carrier
  • the transmission time unit length is N times the transmission time unit length of the first carrier
  • the transmission time unit of the N first carriers is aligned with the transmission time unit n of the second carrier in the time domain
  • the transmission time unit of the first carrier includes M uplink transmission time units, the N is a positive integer greater than 1, and n, m are natural numbers, and the M ⁇ N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on the transmission time unit n of the second carrier;
  • the HARQ codebook transmitted on including:
  • a HARQ codebook of one of the M transmission time units on the first carrier where a HARQ codebook size of the second carrier included in the HARQ codebook is 1/ M times the time window size of the second carrier, and the time window size is the number of downlink transmission time units that need to be fed back by one uplink transmission time unit.
  • the transmission time unit length of the second carrier is the transmission time unit length of the first carrier N times
  • the transmission time unit of the N first carriers is aligned with the transmission time unit n of one second carrier in the time domain
  • the transmission time units of the N first carriers include M uplink transmission time units, where N is greater than A positive integer of 1, n, m is a natural number.
  • the HARQ timing of the configured carrier is set by default between the access network device and the terminal, or the access network device is configured and sent to the terminal, and the configured carrier
  • the HARQ timing of the first carrier in the HARQ timing is consistent with the existing one
  • the HARQ timing of the second carrier is used to indicate that the terminal transmits the HARQ feedback information on the transmission time unit n of the second carrier, and the terminal according to the HARQ timing of the second carrier Determining that one of the M transmission time units on the first carrier needs to transmit HARQ feedback information on the transmission time unit n of the second carrier, and the terminal generates M transmissions on the first carrier
  • a HARQ codebook of one of the time units wherein the HARQ codebook size of the second carrier included in the HARQ codebook is 1/M times the time window size of the second carrier, and the time window size is an uplink transmission time unit The number of downlink transmission time units that need to be fed back.
  • the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook size of the first carrier and the second.
  • the first carrier is a primary carrier
  • the second carrier is a secondary carrier
  • the access network device includes one primary carrier and multiple secondary carriers in the carrier configured according to the carrier aggregation technology, and the subframe lengths of the primary carrier and the secondary carrier are consistent, but in this solution, If the first carrier is a primary carrier, then the second carrier is a secondary carrier, and the lengths of the transmission time units of the first carrier and the second carrier are unequal.
  • a second aspect of the present invention provides a method for generating a HARQ codebook, including:
  • the access network device allocates a configured carrier to the terminal
  • the access network device generates first information according to the allocation, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal; the configured carrier includes a first carrier And the second carrier, the HARQ feedback information of the first carrier and the HARQ feedback information of the second carrier are transmitted on an uplink control channel of the first carrier, where a length of a transmission time unit of the first carrier is The length of the transmission time unit of the second carrier is not equal;
  • the access network device transmits the first information to the terminal.
  • the access network device allocates the configured carrier to the terminal, and the carrier configured by the access network device includes the first carrier and the second carrier, and the HARQ feedback information of the first carrier and the second
  • the HARQ feedback information of the carrier is transmitted on the uplink control channel of the first carrier, where the length of the transmission time unit of the first carrier is not equal to the length of the transmission time unit of the second carrier, and the first information is generated according to the allocation, and the first information is generated.
  • Sending to the terminal so that the terminal can generate the HARQ codebook transmitted on the uplink control channel of the first carrier according to the first information.
  • the terminal because the transmission time unit lengths of the first carrier and the second carrier are not equal, the terminal generates The HARQ codebook is erroneous.
  • the embodiment of the present invention can enable the terminal to correctly generate the HARQ codebook without affecting data transmission between the access network device and the terminal.
  • the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier
  • the carrier information includes:
  • the transmission time unit length of the first carrier is N times the length of the transmission time unit in the second carrier, and the transmission time unit n of the first carrier and the transmission time unit of the N second carriers are in time Aligned on the domain; where N is a positive integer greater than 1, and n is a natural number.
  • the transmission time units of the N second carriers include M uplink transmission time units, where M ⁇ N.
  • the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier
  • the carrier information includes:
  • the transmission time unit length of the second carrier is N times the transmission time unit length of the first carrier, and the transmission time unit of the N first carriers is aligned with a second carrier transmission time unit n in the time domain, N is a positive integer greater than 1, and n is a natural number.
  • the transmission time units of the N first carriers include M uplink transmission time units, where M ⁇ N.
  • the first message is further configured to indicate a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier.
  • the carrier information of the carrier configured by the access network device is described in detail. Since the carrier information is inconsistent with the carrier information in the prior art, the access network device needs to send the first message to the terminal according to the carrier information. A message that enables the terminal to correctly generate the HARQ codebook.
  • the transmission time unit of the N second carriers includes a transmission time unit m, where the m is a natural number;
  • the method also includes:
  • the access network device configures, for the terminal, a HARQ timing of the transmission time unit m on the second carrier, and is used to indicate the kth transmission time of the terminal after the transmission time unit n of the first carrier Transmitting HARQ feedback information of the transmission time unit m on the unit;
  • the first information is further used to indicate a HARQ timing of a transmission time unit m on the second carrier.
  • the access network device can also configure the HARQ timing, and according to the prior art, the HARQ timing of the first carrier can be the original setting, and the transmission time of the first carrier is The length of the transmission time of the second carrier is inconsistent, and the HARQ timing of the second carrier is reconfigured.
  • the transmission time unit of the N second carriers includes the transmission time unit m
  • the transmission time on the second carrier The HARQ timing of the unit m may be used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier, and may also be used to indicate the transmission time on the second carrier.
  • HARQ timing of unit m may be used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier, and may also be used to indicate the transmission time on the second carrier.
  • the last transmission time unit in the time domain of the transmission time units of the N first carriers is a transmission time unit.
  • m is a natural number; the method further includes:
  • the access network device configures, for the terminal, a HARQ timing of the transmission time unit n on the second carrier, and is used to indicate the kth transmission time of the terminal after the transmission time unit m of the first carrier Transmitting HARQ feedback information of the transmission time unit n on the unit;
  • the first information is further used to indicate a HARQ timing of a transmission time unit n on the second carrier.
  • the access network device can also configure the HARQ timing, and according to the prior art, the HARQ timing of the first carrier can be the original setting, and the transmission time of the first carrier is The length of the transmission time of the second carrier is inconsistent, and the HARQ timing of the second carrier needs to be reconfigured.
  • the last transmission time unit in the time domain in the transmission time unit of the N first carriers is the transmission time unit.
  • the HARQ timing of the transmission time unit m on the second carrier may be used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier, or A HARQ timing for indicating a transmission time unit m on the second carrier.
  • a third aspect of the present invention provides a terminal, including:
  • a receiving module configured to receive first information sent by the access network device, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal;
  • the carrier and the second carrier, the HARQ feedback information of the first carrier and the HARQ feedback information of the second carrier are transmitted on an uplink control channel of the first carrier, where a transmission time unit length of the first carrier Transmission time unit length with the second carrier not equal;
  • a processing module configured to generate an uplink on the first carrier according to a relationship between a HARQ timing of the configured carrier, a transmission time unit length of the first carrier, and a transmission time unit length of the second carrier The HARQ codebook transmitted on the control channel.
  • the access network device configures the carrier for the terminal, and the carrier configured by the access network device includes the first carrier and the second carrier, and the HARQ feedback information of the first carrier and the second carrier
  • the HARQ feedback information is transmitted on the uplink control channel of the first carrier, where the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier, and the terminal is notified by the first information, and the receiving module receives the access.
  • the first information sent by the network device, the processing module generates the first carrier according to the relationship between the HARQ timing of the carrier configured by the access network device, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier.
  • the HARQ codebook transmitted on the uplink control channel is erroneous in the prior art because the transmission time unit lengths of the first carrier and the second carrier are not equal, and the terminal can generate the HARQ codebook correctly.
  • the HARQ codebook does not affect the data transmission between the access network device and the terminal.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the first carrier
  • the transmission time unit length is N times the length of the transmission time unit in the second carrier
  • the transmission time unit n of the first carrier is aligned with the transmission time unit of the N second carriers in the time domain
  • the transmission time unit of the N the second carriers includes a transmission time unit m; wherein N is a positive integer greater than 1, and n and m are natural numbers;
  • the HARQ timing of the configured carrier includes a HARQ timing of the transmission time unit m of the second carrier, and is used to indicate that the terminal transmits on the kth transmission time unit after the transmission time unit n of the first carrier Transmitting HARQ feedback information of the time unit m;
  • the processing module is specifically configured to determine, according to the HARQ timing of the second carrier, that the HARQ transmitted on the transmission time unit n on the first carrier needs to be transmitted on at least one of the N transmission time units Feedback;
  • the processing module is further configured to generate a HARQ codebook transmitted on a kth transmission time unit after the transmission time unit n of the first carrier; where the second part included in the HARQ codebook
  • the HARQ codebook size of the carrier is N times the time window size of the second carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the transmission time unit length of the first carrier is the transmission time unit length in the second carrier N times
  • the transmission time unit n of one first carrier is aligned with the transmission time unit of N second carriers in the time domain
  • the access time unit is included in the transmission time unit of the N second carriers
  • the HARQ timing of the configured carrier is set by default between the terminal and the terminal, or is sent to the terminal after the access network device is configured, and the HARQ timing of the first carrier in the HARQ timing of the configured carrier is consistent with the existing one
  • the second carrier is
  • the HARQ timing of the transmission time unit m is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier, and the processing module generates the transmission time at the first carrier.
  • the HARQ codebook size of the second carrier included in the HARQ codebook is N times the second payload
  • the time window size, the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit, and the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook of the first carrier. Size And the sum of the HARQ codebook sizes of the second carrier, so that the HARQ codebook is correctly obtained, effectively solving the problem that the HARQ codebook cannot be correctly obtained in the prior art.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the first carrier The transmission time unit length is N times the transmission time unit length of the second carrier; the transmission time unit n of one first carrier is aligned with the time unit of the N second carrier transmissions, and the N is greater than 1 Positive integer, n is a natural number;
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the N transmission time units of the second carrier;
  • the processing module is configured to determine, according to the HARQ timing of the second carrier, that the HARQ transmitted on the transmission time unit n on the first carrier needs to be transmitted on at least one of the M transmission time units Feedback;
  • the processing module is further configured to generate a HARQ codebook that is transmitted on a transmission time unit n on the first carrier, where a HARQ codebook size of the second carrier included in the HARQ codebook is N times the time window size of the second carrier, the time window size being the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the processing module generates a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is N times the time window size of the second carrier, time The window size is the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit.
  • the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook size of the first carrier and the second carrier. The sum of the HARQ codebook sizes, so that the HARQ codebook is correctly obtained, effectively solves the problem that the HARQ codebook cannot be correctly obtained in the prior art.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the first carrier The transmission time unit length is N times the transmission time unit length of the second carrier; the transmission time unit n of one first carrier is aligned with the time unit of the N second carrier transmissions in the time domain, and the N second
  • the transmission time unit of the carrier includes M uplink transmission time units, the N is a positive integer greater than 1, the M is a positive integer, n is a natural number, and the M is N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the M uplink transmission time units of the second carrier;
  • the processing module is configured to determine, according to the HARQ timing of the second carrier, that the HARQ transmitted on the transmission time unit n on the first carrier needs to be transmitted on at least one of the M transmission time units Feedback;
  • the processing module is further configured to generate a HARQ codebook that is transmitted on a transmission time unit n on the first carrier, where a HARQ codebook size of the second carrier included in the HARQ codebook is M times the time window size of the second carrier, the time window size being the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the processing module generates a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is M times the time window size of the second carrier, time The window size is the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit.
  • the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook size of the first carrier and the second carrier. The sum of the HARQ codebook sizes, so that the HARQ codebook is correctly obtained, effectively solves the problem that the HARQ codebook cannot be correctly obtained in the prior art.
  • the transmission time list of the first carrier The relationship between the length of the element and the length of the transmission time unit of the second carrier is: the length of the transmission time unit of the second carrier is N times the length of the transmission time unit of the first carrier, and the N first carriers The transmission time unit is aligned with the transmission time unit n of a second carrier in the time domain, and the last transmission time unit in the time domain of the transmission time units of the N first carriers is the transmission time unit m.
  • N be a positive integer greater than 1
  • n, m be a natural number.
  • the HARQ timing of the configured carrier includes the HARQ timing on the transmission time unit n of the second carrier, and is used to indicate that the terminal is on the kth transmission time unit after the transmission time unit m of the first carrier Transmitting HARQ feedback information of the transmission time unit n;
  • the processing module is specifically configured to generate a HARQ codebook that performs HARQ feedback information feedback on a kth transmission time unit after the transmission time unit of the first carrier, where the HARQ codebook includes The time frame size of the second carrier of the second carrier is 1/N times, or equal to the time window size of the first carrier, where the time window size is required to be in an uplink transmission time unit. The number of downlink transmission time units on which the HARQ feedback information is transmitted.
  • the processing module generates a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is 1/N times the time window size of the second carrier Or equal to the time window size of the first carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit, and the codebook size of the HARQ codebook obtained in this solution is the first The sum of the HARQ codebook size of one carrier and the HARQ codebook size of the second carrier, thereby correctly obtaining the HARQ codebook, effectively solves the problem that the HARQ codebook cannot be correctly obtained in the prior art.
  • the relationship between the transmission time unit length of the first carrier and the transmission time unit length of the second carrier is: the second carrier
  • the transmission time unit length is N times the transmission time unit length of the first carrier
  • the transmission time unit of the N first carriers is aligned with the transmission time unit n of the second carrier in the time domain
  • the transmission time unit of the first carrier includes M uplink transmission time units, the N is a positive integer greater than 1, and n, m are natural numbers, and the M ⁇ N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on the transmission time unit n of the second carrier;
  • the processing module is configured to determine, according to the HARQ timing of the second carrier, that one of the M transmission time units on the first carrier needs to be transmitted on the transmission time unit n of the second carrier. Transmitting HARQ feedback information;
  • the processing module is further configured to generate a HARQ codebook of one of the M transmission time units on the first carrier, where the HARQ code of the second carrier included in the HARQ codebook
  • the time window size of the second carrier is 1/M times, and the time window size is the number of downlink transmission time units that need to be fed back by one uplink transmission time unit.
  • the processing module generates a HARQ codebook of one of the M transmission time units on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is 1/M times the time window of the second carrier
  • the size and time window size is the number of downlink transmission time units that need to be fed back by one uplink transmission time unit.
  • the codebook size of the HARQ codebook obtained in this solution is the HARQ codebook size of the first carrier and the HARQ code of the second carrier. The sum of the sizes, so that the HARQ codebook is correctly obtained, effectively solves the problem that the HARQ codebook cannot be correctly obtained in the prior art.
  • the first carrier is a primary carrier
  • the second carrier is a secondary carrier
  • the access network device includes one primary carrier and multiple secondary carriers in the carrier configured according to the carrier aggregation technology, and the subframe lengths of the primary carrier and the secondary carrier are consistent, but in this solution, If the first carrier is a primary carrier, then the second carrier is a secondary carrier, and the lengths of the transmission time units of the first carrier and the second carrier are unequal.
  • a fourth aspect of the present invention provides an access network device, including:
  • a configuration module configured to allocate a configured carrier to the terminal
  • a generating module configured to generate first information according to the allocation, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal;
  • the configured carrier includes a first carrier and a second carrier, the HARQ feedback information of the first carrier and the HARQ feedback information of the second carrier are transmitted on an uplink control channel of the first carrier, where a length of the transmission time unit of the first carrier is The length of the transmission time unit of the second carrier is not equal;
  • a sending module configured to send the first information to the terminal.
  • the configuration module allocates the configured carrier to the terminal, and the carrier configured by the configuration module includes the first carrier and the second carrier, the HARQ feedback information of the first carrier, and the HARQ feedback of the second carrier.
  • the information is transmitted on the uplink control channel of the first carrier, where the length of the transmission time unit of the first carrier is not equal to the length of the transmission time unit of the second carrier, and the generating module generates the first information according to the allocation, and the sending module sends the first information. Sending to the terminal, so that the terminal can generate the HARQ codebook transmitted on the uplink control channel of the first carrier according to the first information.
  • the terminal because the transmission time unit lengths of the first carrier and the second carrier are not equal, the terminal generates The HARQ codebook is erroneous.
  • the embodiment of the present invention can enable the terminal to correctly generate the HARQ codebook without affecting data transmission between the access network device and the terminal.
  • the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier
  • the carrier information includes:
  • the transmission time unit length of the first carrier is N times the length of the transmission time unit in the second carrier, and the transmission time unit n of the first carrier and the transmission time unit of the N second carriers are in time Aligned on the domain; where N is a positive integer greater than 1, and n is a natural number.
  • the transmission time units of the N second carriers include M uplink transmission time units, where M ⁇ N.
  • the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier
  • the carrier information includes:
  • the transmission time unit length of the second carrier is N times the transmission time unit length of the first carrier, and the transmission time unit of the N first carriers is aligned with a second carrier transmission time unit n in the time domain, N is a positive integer greater than 1, and n is a natural number.
  • the transmission time units of the N first carriers include M uplink transmission time units, where M ⁇ N.
  • the first message is also And a relationship between a length of a transmission time unit of the first carrier and a length of a transmission time unit of the second carrier.
  • the carrier information of the carrier configured by the access network device is described in detail. Since the carrier information is inconsistent with the carrier information in the prior art, the access network device needs to send the first message to the terminal according to the carrier information. A message that enables the terminal to correctly generate the HARQ codebook.
  • the transmission time unit of the N second carriers includes a transmission time unit m, where the m is a natural number.
  • the configuration module is further configured to configure, for the terminal, a HARQ timing of a transmission time unit m on the second carrier, where the terminal is used to indicate the kth after the transmission time unit n of the first carrier Transmitting HARQ feedback information of the transmission time unit m on a transmission time unit;
  • the first information is further used to indicate a HARQ timing of a transmission time unit m on the second carrier.
  • the last transmission time unit in the time domain in the transmission time unit of the N first carriers is a transmission time unit.
  • m is a natural number
  • the configuration module is further configured to configure, for the terminal, a HARQ timing of a transmission time unit n on the second carrier, where the terminal is used to indicate the kth after the transmission time unit m of the first carrier Transmitting HARQ feedback information of the transmission time unit n on a transmission time unit;
  • the first information is further used to indicate a HARQ timing of a transmission time unit n on the second carrier.
  • the access network device can also configure the HARQ timing through the configuration module, and according to the prior art, the HARQ timing of the first carrier can be the original setting, and the first carrier is The transmission time length and the transmission time length of the second carrier are inconsistent, then the HARQ timing of the second carrier needs to be reconfigured, and the last transmission time unit in the time domain in the transmission time unit of the N first carriers is
  • the HARQ timing of the transmission time unit m on the second carrier may be used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier. It can also be used to indicate the HARQ timing of the transmission time unit m on the second carrier.
  • a fifth aspect of the present invention provides a method for determining a DAI value of a downlink allocation index, which is applied to a multi-carrier communication system, where the multi-carrier includes at least two transmission time unit lengths, and the method includes:
  • the access network device determines a value of the total DAI and a value of the accumulated DAI according to the shortest transmission time unit length of the at least two transmission time unit lengths;
  • the access network device sends the value of the total DAI and the value of the accumulated DAI to the terminal.
  • the longest transmission time unit length included in the multi-carrier is N times the length of the shortest transmission time unit, that is, N
  • the shortest transmission time unit is aligned with the longest transmission time unit in the time domain;
  • the access network device determines the value of the total DAI and the value of the accumulated DAI according to the minimum transmission time unit length of the at least two transmission time unit lengths, including:
  • the first carrier is calculated into the total DAI and the accumulated DAI when a transmission time unit is scheduled for a duration.
  • a sixth aspect of the present invention provides a method for generating a HARQ codebook, which is applicable to a multi-carrier communication system, where the multi-carrier includes at least two transmission time unit lengths, and the method includes:
  • the terminal receives the value of the total DAI and the value of the accumulated DAI sent by the access network device;
  • the terminal determines the HARQ codebook according to the value of the total DAI and the value of the accumulated DAI.
  • the access network device configures a scheduling carrier for the terminal, and the scheduling carrier configured by the access network device includes multiple carriers, and the multiple carriers include at least two carriers with a transmission time unit length.
  • the network access device obtains a minimum transmission time unit length of at least two transmission time unit lengths, and determines a total downlink allocation index (DAI) value and a cumulative DAI value according to a minimum transmission time unit length, and the total DAI
  • DAI downlink allocation index
  • the value of the accumulated DAI and the value of the accumulated DAI are sent to the terminal.
  • the terminal length of the transmission time of the first carrier and the second carrier is not equal, and the HARQ codebook generated by the terminal is incorrect.
  • the value of DAI and the value of accumulated DAI get the correct HARQ codebook.
  • FIG. 1 is a schematic diagram of an application scenario or a framework provided by the present application
  • FIG. 2 is a schematic diagram of HARQ timing of a conventional Pcell provided by the present application.
  • FIG. 3 is a schematic diagram of a signaling flow of an embodiment of a method for generating a HARQ codebook provided by the present application
  • FIG. 4 is a schematic diagram of a HARQ timing provided by the present application.
  • FIG. 5 is a schematic diagram of another HARQ timing provided by the present application.
  • FIG. 6 is a schematic diagram of still another HARQ timing provided by the present application.
  • FIG. 7 is a schematic diagram of still another HARQ timing provided by the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a terminal provided by the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of an access network device provided by the present application.
  • FIG. 10 is a schematic structural diagram of another embodiment of a terminal provided by the present application.
  • FIG. 11 is a schematic structural diagram of another embodiment of an access network device provided by the present application.
  • the present invention provides a method for generating a HARQ codebook and a related device, so that when a carrier with different transmission time unit lengths is used for carrier aggregation, the HARQ codebook can be correctly generated without affecting the connection between the access network device and the terminal. data transmission.
  • the present invention can be used in, but not limited to, an LTE system and an evolved system thereof, and can also be used in a 5G technology.
  • the system architecture is as shown in FIG. 1, between an access network device and an access network device, and between access network devices and Data can be transmitted between terminals
  • the access network device can send an access request to the access network device, and the access network device allocates the configured carrier to the terminal, so that the terminal can perform data transmission with the access network device, so as to satisfy different service types for the carrier.
  • Parameter requirements, in LTE-Advanced 3GPP proposes a carrier aggregation technology, which is good for aggregating multiple carriers into a wider spectrum, and also can aggregate some discontinuous spectrum together.
  • the existing aggregated carriers use the same transmission time unit, which is 1 ms.
  • the existing HARQ codebook can determine the HARQ codebook by the number of configured carriers or determine the HARQ codebook by the number of scheduled carriers. Refers to the carrier that the access network device can use for the terminal configured when the terminal accesses the access network device.
  • the state of each carrier can be an active state or an inactive state; the carrier in the active state refers to a carrier. In the active state, the terminal can use the carrier to transmit data; the scheduled carrier refers to the carrier that the terminal actually uses to transmit data.
  • the configured carrier can be divided into one or two Cell Groups, and one carrier in each Cell Group can perform physical uplink control channel (PUCCH) transmission, such as a primary carrier ( Primary Serving Cell (Pcell), the Pcell needs to jointly feed back HARQ information of other carriers in the Cell Group.
  • Pcell Primary Serving Cell
  • the access network device configures 5 carriers for the terminal, numbered from 0 to 4, carrier 0 is Pcell, and the other 4 carriers are secondary carrier (Scell), and all 5 carriers are time division duplex (Time) Division Duplexing, TDD) carrier, and the ratio is the same.
  • the feedback HARQ codebook needs to be determined. As shown in FIG.
  • D0, D4, and D5 are downlink subframes
  • S1 and S6 are special subframes
  • U2, U3, U7, and U8 are In the uplink subframe, on subframe 7 (U7)
  • the time window that needs to be fed back is subframe 0 (D0) and subframe 1 (S1), and the terminal only correctly receives data on subframe 0 of the Pcell, and in other auxiliary If the data is not correctly received on the carrier, the feedback HARQ codebook is 1000000000, where 10 in the HARQ codebook is the HARQ feedback information on the Pcell, and the HARQ feedback information indicates the terminal receiving the bearer data on the subframe 0 and the subframe 1.
  • the last 8 bits in the HARQ codebook are HARQ feedback information in the subframe corresponding to subframe 7 in the 4 Scells, and the HARQ codebook can be seen.
  • the codebook size is 10 bits.
  • the lengths of the transmission time units of the first carrier (ie, the prior art Pcell) and the second carrier (ie, the prior art Scell) in the aggregated carrier are not consistent.
  • the transmission time unit may be a subframe in the prior art, or may be a time slot or the like. Since the lengths of the transmission time units of the first carrier and the second carrier are not equal, the obtained manner is obtained according to the manner described above.
  • the HARQ codebook size is inaccurate, so it is necessary to reset the HARQ codebook generation method.
  • HARQ feedback information indicates the data reception status of the data carried by the terminal for the transmission time unit, the reception condition may be correct reception or error reception, and the time window indicates that feedback is needed.
  • a set of transmission time units for example, one transmission time unit is to feed back data reception conditions of two transmission time units, and data transmission between the access network device and the terminal uses one transport block (Transmit Block, TB),
  • Transport Block, TB transport block
  • the time window size of the transmission time unit is 2 bits
  • the HARQ timing indicates the data reception condition of the ith transmission time unit feedback transmission time unit u of the terminal after the transmission time unit u.
  • the HARQ codebook indicates the reception status of the data when the access network device sends data to the terminal.
  • the access network device can know the data reception status of the terminal according to the HARQ codebook, thereby adjusting the channel and the transmission between the terminal and the terminal.
  • the power or coding mode and the like enable the data transmission conditions between the access network device and the terminal to satisfy the communication standard.
  • the HARQ codebook can be generated by the terminal integrated time window, HARQ feedback information or HARQ timing.
  • An embodiment of the present invention provides a method for generating a HARQ codebook, including:
  • the access network device allocates a configured carrier to the terminal.
  • the terminal when the access network device accesses the terminal, the terminal needs to allocate the carrier that the terminal can use, that is, allocate the configured carrier, and the configured carrier includes the first carrier and the second carrier, and the HARQ feedback information of the first carrier.
  • the HARQ feedback information of the second carrier is fed back on the uplink control channel of the first carrier, that is, the first carrier is equivalent to the Pcell in the prior art, and the second carrier is equivalent to the Scell in the prior art, where the first The transmission time unit length of the carrier is not equal to the transmission time unit length of the second carrier.
  • the length of the transmission time unit of the first carrier and the length of the transmission time unit of the second carrier may be different due to different parameter sets (also referred to as numerology) corresponding to the first carrier and the second carrier, or may be due to the first
  • the carrier and the second carrier have different subcarrier spacings.
  • 302. The access network device generates first information according to the allocation.
  • the access network device generates the first information according to the configured allocation of the carrier, and the first information may include the message sent to the terminal, where the message may be a system information block of the system message.
  • SIB there are ten types of existing SIBs, and each type of SIB has different uses.
  • SIB2 is used for cell update or cell handover, and the first information may be included in an existing specific SIB.
  • a new SIB may be generated to include the first information, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal, where the configured carrier includes the first carrier and the second carrier, and the HARQ feedback information of the first carrier is used.
  • the HARQ feedback information of the second carrier is transmitted on the uplink control channel of the first carrier, where the length of the transmission time unit of the first carrier is not equal to the length of the transmission time unit of the second carrier, and it should be noted that if the configured carrier The HARQ timing is set in real time by the access network device, and then the HARQ timing of the configured carrier can also be indicated by the first information, or by the first The information contained in different messages different from the second information indicating to the terminal. If the HARQ timing of the configured carrier is pre-agreed between the access network device and the terminal, it does not need to be included in the first information.
  • the access network device sends the first information to the terminal, where the terminal receives the first information sent by the access network device.
  • the access network device in order to enable the data to be transmitted between the terminal and the access network device, the access network device needs to send the first information to the terminal.
  • the first information may also be included in the message, and the terminal receives the access.
  • the information sent by the network device obtains the first information from the message.
  • the terminal generates a HARQ codebook transmitted on the uplink control channel of the first carrier according to the relationship between the configured HARQ timing of the carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier.
  • the terminal may obtain, from the received first information, a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier, or may be included in a different message from the first information.
  • the different third information is obtained. If the HARQ timing of the configured carrier is set in real time by the access network device, the HARQ timing of the configured carrier may be obtained according to the first information, or the HARQ of the configured carrier may be known according to a pre-agreed agreement between the access network device and the terminal.
  • Timing according to the relationship between the configured HARQ timing of the carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier, the HARQ feedback information of the first carrier and the HARQ feedback information of the second carrier may be determined. And generating a HARQ codebook transmitted on an uplink control channel of the first carrier according to the HARQ feedback information of the first carrier and the HARQ feedback information of the second carrier.
  • the terminal generates an uplink on the first carrier according to the relationship between the HARQ timing of the carrier configured by the access network device, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier.
  • the HARQ codebook transmitted on the control channel, the transmission time unit length of the first carrier and the transmission time unit length of the second carrier are not If the HARQ codebook generated by the terminal is still used, the HARQ codebook generated by the terminal may be incorrect.
  • the embodiment of the present invention can enable the terminal to correctly generate the HARQ codebook without affecting the connection between the access network device and the terminal. Data transfer.
  • only the transmission time unit length of the first carrier and the transmission time unit length of the second carrier are not equal, and the relationship between the transmission time unit length of the specific first carrier and the transmission time unit length of the second carrier is limited.
  • the difference may affect the generation of the HARQ codebook.
  • the following describes the generation of the HARQ codebook by using the relationship between the transmission time unit length of the different first carrier and the transmission time unit length of the second carrier. Description.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the first carrier is a transmission in the second carrier N times the length of the time unit; the transmission time unit n of the first carrier is aligned with the transmission time unit of the N second carriers in the time domain, and the transmission time unit of the N second carriers includes the transmission time unit m; N is a positive integer greater than 1, and n and m are natural numbers;
  • the HARQ timing of the configured carrier includes the HARQ timing of the transmission time unit m of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier. ;
  • the terminal And generating, by the terminal, the HARQ codebook transmitted on the uplink control channel of the first carrier according to the relationship between the HARQ timing of the configured carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier, including:
  • the terminal generates a HARQ codebook transmitted on the kth transmission time unit after the transmission time unit n of the first carrier; wherein the HARQ codebook of the second carrier included in the HARQ codebook is N times the second carrier
  • the time window size which is the number of downlink transmission time units that need to transmit HARQ feedback information on an uplink transmission time unit.
  • the transmission time unit length of the first carrier is 4 times of the transmission time unit length in the second carrier; the transmission time unit of the first carrier and the 4 second carriers.
  • the transmission time units are aligned in the time domain, and the transmission time units of the 4 second carriers corresponding to the transmission time unit 0 of the first carrier include the downlink transmission time units 1 and 3 of the second carrier, and the transmission with the first carrier
  • the transmission time unit of the four second carriers corresponding to the time unit 1 includes the downlink transmission time unit 5 of the second carrier, and the setting of the HARQ timing of the first carrier is consistent with that in the prior art, and the first carrier in FIG.
  • the transmission time unit 2 transmits the HARQ feedback information of the transmission time unit 0 of the first carrier and the HARQ feedback information of the transmission time unit 1 of the first carrier, and the HARQ timing of the transmission time units 1 and 3 of the second carrier is used to indicate that the terminal is
  • the transmission time unit 2 of the first carrier transmits the HARQ feedback information of the transmission time units 1 and 3 of the second carrier, and the HARQ timing of the transmission time unit 5 of the second carrier is used to indicate that the terminal is in the
  • the transmission time unit 2 of the carrier transmits the HARQ feedback information of the transmission time unit 5 of the second carrier, and the terminal generates the HARQ codebook of the transmission time unit 2 of the first carrier, and the HARQ code of the first carrier included in the HARQ codebook
  • the current size is 2 bits
  • the time window size of the first carrier is the same as the size of the HARQ codebook is 2 bits, because the 4 transmission time units on the second carrier are aligned with one transmission time unit of the first carrier,
  • the data of the transmission time of the first carrier is received correctly.
  • the data of the transmission time unit 1 of the first carrier is incorrectly received, and the HARQ feedback information of the first carrier is 10, and the HARQ feedback of the second carrier is assumed, if the data of the transmission time units 1, 3 and 5 of the second carrier is correctly received.
  • the information is 01010100, and the HARQ of the first carrier and the second carrier will be
  • the HARQ codebook obtained by cascading the feedback information is 1001010100.
  • the HARQ feedback information of the first carrier in the HARQ codebook obtained by the cascading manner in the solution is at the front end, such as “10”
  • the second carrier The HARQ feedback information is after the HARQ feedback information of the first carrier, such as "01010100”.
  • the cascading mode may also be that the HARQ feedback information of the second carrier is at the front end, and the HARQ feedback information of the first carrier is after the HARQ feedback information of the second carrier, and the HARQ codebook is “0101010010”.
  • the specific cascading mode can also be other forms, and is not limited.
  • the time window size of the second carrier can be recorded as W, and then the HARQ codebook size of the second carrier is denoted by W times N (W*N).
  • the access network device may also configure a maximum value U, that is, the HARQ codebook size of the second carrier is smaller than U and W*N, in order to avoid excessive feedback overhead.
  • the value is recorded as min(W*N, U).
  • W*N>U the HARQ codebook size of the second carrier is U.
  • PDSCH physical downlink shared channel
  • the DAI value is smaller than the HARQ feedback information of the PDSCH scheduled by the downlink control information (DCI) of the U.
  • each carrier is configured with a U value; or all carriers share a U value.
  • the second carrier in a time window, there may be some transmission time units in the second carrier as high layer signaling, such as radio resource control (RRC) signaling or system information block (SIB), etc.
  • RRC radio resource control
  • SIB system information block
  • the uplink transmission time unit these transmission time units have no downlink data transmission, so the terminal feedback information is not needed, and the HARQ codebook size of the second carrier can be configured as W*NX, where X is a second carrier time window and passes the high-level letter. Let the number configured as the uplink transmission time unit.
  • the monitoring period of the physical downlink control channel (PDCCH) (the DCI used to schedule the PDSCH or the set of resources) is one transmission time unit.
  • the monitoring period of the PDCCH may be configured as T, T ⁇ 1, and T is an integer.
  • the HARQ codebook size of the second carrier is min (W*N/T, U). If the W*N cannot be divisible by T, the W*N/T may be rounded up, or the W*N/T may be rounded down, that is, the HARQ codebook size of the second carrier is or Whether to use rounding up or rounding down may be determined by the monitoring start transmission time unit (or offset) of the PDCCH.
  • the above embodiment is a feedback window based on the granularity definition and/or configuration of the transmission time unit length of the first carrier.
  • the feedback window defined or configured with the transmission time unit length of the first carrier as ⁇ n+1, n+2 ⁇ means that the time unit 0 (corresponding to n+2) and the first carrier in FIG. Time unit 1 (corresponding to n+1) can be fed back on time unit 2, so the codebook size of the first carrier is 2; time unit 0 (corresponding to n+2) and time unit 1 on the second carrier in FIG.
  • time unit 2 corresponds to n+2), time unit 3 (corresponding to n+2), time unit 4 (corresponding to n+1), time unit 5 (corresponding to n+1), and time unit 6 ( Corresponding to n+1), time unit 7 (corresponding to n+1) can be fed back on the first carrier time unit 2, so the codebook size of the first carrier is 8.
  • time unit 7 corresponds to n+1
  • Its HARQ feedback information may be fed back on the first carrier transmission time unit n+2 (ie, the first carrier transmission time unit 2).
  • the time unit granularity is the transmission time unit of the first carrier, and therefore the HARQ codebook size of the second carrier is determined according to W*N.
  • the time window of each carrier is based on its own transmission time unit length granularity definition and/or configuration
  • the second carrier feedback window whose transmission time unit length is defined or configured as the granularity is ⁇ n+1, n+2 ⁇ , which means that the time unit 6 (corresponding to n+2) and the time unit 7 on the second carrier in FIG. Corresponding to n+1) can be fed back on the first carrier time unit 2, so the codebook size of the first carrier is 2.
  • the size of the HARQ codebook of the second carrier is W. Similar to the above embodiment, if the extra configuration U is additionally introduced, the size of the HARQ codebook of the second carrier is min(W, U); In the monitoring period, the HARQ codebook size of the second carrier is min(W/T, U), or or or
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the first carrier is a transmission time of the second carrier N times the unit length; a transmission time unit n of the first carrier is aligned with the time unit of the N second carrier transmissions, N is a positive integer greater than 1, and n is a natural number;
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the N transmission time units of the second carrier;
  • the terminal And generating, by the terminal, the HARQ codebook transmitted on the uplink control channel of the first carrier according to the relationship between the HARQ timing of the configured carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier, including:
  • the terminal generates a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is N times the time window size of the second carrier, and the time window The size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the transmission time unit length of the first carrier is 4 times of the transmission time unit length in the second carrier; the transmission time unit of one first carrier and the transmission of 4 second carriers The time units are aligned in the time domain, and the transmission time units of the 4 second carriers corresponding to the transmission time unit 0 of the first carrier include the downlink transmission time units 0, 1 and 2 of the second carrier, and the HARQ timing of the first carrier
  • the setting is the same as in the prior art, Figure 5
  • the transmission time unit 1 of the first carrier transmits the HARQ feedback information of the transmission time unit 0 of the first carrier, and the HARQ timing of the transmission time unit 0 of the second carrier is used to indicate that the terminal transmits the transmission time unit 4 of the second carrier.
  • the HARQ timing of the transmission time unit 1 of the second carrier is used to indicate that the terminal is
  • the transmission time unit 6 of the second carrier transmits the HARQ feedback information of the time unit 1, and the terminal maps the HARQ feedback information in the transmission time unit 6 to the transmission time unit 1 of the first carrier; the transmission time unit 2 of the second carrier
  • the HARQ timing is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit 2 in the transmission time unit 7 of the second carrier, and the terminal maps the HARQ feedback information in the transmission time unit 7 to the transmission time unit 1 of the first carrier.
  • the terminal generates the HARQ codebook of the transmission time unit 1 of the first carrier, and the time window size of the first carrier and the second carrier are both 1 bit, and the HARQ codebook size of the first carrier included in the HARQ codebook is 1 Bit bit, the HARQ codebook size of the second carrier is 4 times the time window size of the second carrier, and assuming that the data reception of the transmission time unit 0 of the first carrier is correct, the HARQ feedback information of the first carrier is 1, assuming the second The data of the transmission time of the carrier is correctly received, and the data of the transmission time unit 2 is received incorrectly, then the HARQ feedback information of the second carrier is 1100, and the HARQ feedback information of the first carrier and the second carrier is cascaded.
  • the HARQ codebook of the transmission time unit 1 of the first carrier is 11100.
  • the HARQ codebook size of the second carrier is N times the time window size of the second carrier, and the HARQ codebook size of the other second carrier is the uplink transmission time of the M second carriers.
  • the time window size of the unit is as follows:
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the first carrier is a transmission time of the second carrier N times of the unit length; the transmission time unit n of one first carrier is aligned with the time unit of N second carrier transmissions, and the transmission time units of the N second carriers include M uplink transmission time units, where N is A positive integer greater than 1, M is a positive integer, n is a natural number, M ⁇ N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the M uplink transmission time units of the second carrier;
  • the terminal And generating, by the terminal, the HARQ codebook transmitted on the uplink control channel of the first carrier according to the relationship between the HARQ timing of the configured carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier, including:
  • the terminal generates a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is M times the time window size of the second carrier, and the time window The size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the time window size of the first carrier and the second carrier are both 1 bit, and the HARQ codebook size of the first carrier included in the HARQ codebook is 1 bit, since the transmission time unit 4-7 of the second carrier includes 3 uplink transmission time units (transmission time units 4, 6, and 7), the HARQ codebook size of the second carrier is 3 times the second carrier.
  • the time window size assuming that the data reception time of the transmission time unit 0 of the first carrier is correct, then the HARQ feedback information of the first carrier is 1, assuming that the data reception time of the transmission time units 0 and 1 of the second carrier is correct, the transmission time unit 2 If the data is received incorrectly, the HARQ feedback information of the second carrier is 110, and the HARQ codebook of the transmission time unit 1 of the first carrier obtained by concatenating the HARQ feedback information of the first carrier and the second carrier is 1110.
  • the length of the transmission time unit of the first carrier is N times the length of the transmission time unit of the second carrier, and the length of the transmission time unit of the second carrier is the length of the transmission time unit length of the first carrier. Double the situation.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the second carrier is a transmission time of the first carrier N times the unit length, the transmission time unit of the N first carriers is aligned with the transmission time unit n of one second carrier in the time domain, and the last transmission time in the time domain in the transmission time unit of the N first carriers
  • the unit is a transmission time unit m
  • N is a positive integer greater than 1
  • n, m are natural numbers
  • the HARQ timing of the configured carrier includes the HARQ timing on the transmission time unit n of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback of the transmission time unit n on the kth transmission time unit after the transmission time unit m of the first carrier. information;
  • the terminal And generating, by the terminal, the HARQ codebook transmitted on the uplink control channel of the first carrier according to the relationship between the HARQ timing of the configured carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier, including:
  • the terminal generates a HARQ codebook for performing HARQ feedback information feedback on the kth transmission time unit after the transmission time unit m of the first carrier; wherein the HARQ codebook size of the second carrier included in the HARQ codebook is 1/
  • the time window size of the N times second carrier is equal to or equal to the time window size of the first carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • the transmission time unit length of the second carrier is twice the length of the transmission time unit in the first carrier; the transmission time unit of one second carrier and the transmission of the two first carriers.
  • the time units are aligned in the time domain, the transmission time unit 0 of the second carrier aligned with the transmission time units 0 and 1 of the first carrier is a downlink transmission time unit, and the transmission time unit 2 and 3 of the first carrier are aligned with the second carrier
  • the transmission time unit 1 is a downlink transmission time unit
  • the HARQ timing of the transmission time unit 0 of the second carrier is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit 0 of the second carrier in the transmission time unit 4 of the first carrier
  • the HARQ timing of the transmission time unit 1 of the two carriers is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit 1 of the second carrier in the transmission time unit 5 of the first carrier, since the transmission time units 4 and 5 of the first carrier need feedback
  • the HARQ codebook of the second carrier on the transmission time units 4 and 5 of the first carrier is all 1, and the HARQ codebook of the first carrier is generated in the same manner as in the above embodiment, and the first carrier is The manner in which the HARQ codebook and the HARQ codebook are cascaded to obtain the HARQ code of the uplink control channel of the first carrier is also adopted in a cascade manner.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the second carrier is a transmission time of the first carrier N times the unit length, the transmission time unit of the N first carriers is aligned with the transmission time unit n of the second carrier in the time domain, and the transmission time units of the N first carriers include M uplink transmission time units.
  • N is a positive integer greater than 1
  • n is a natural number, M ⁇ N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to instruct the terminal to transmit the HARQ feedback information on the transmission time unit n of the second carrier;
  • the terminal And generating, by the terminal, the HARQ codebook transmitted on the uplink control channel of the first carrier according to the relationship between the HARQ timing of the configured carrier, the transmission time unit length of the first carrier, and the transmission time unit length of the second carrier, including:
  • the terminal generates a HARQ codebook of one of the M transmission time units on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is 1/M times the time window size of the second carrier
  • the time window size is the number of downlink transmission time units that need to be fed back by one uplink transmission time unit.
  • the transmission time unit length of the second carrier is twice the length of the transmission time unit in the first carrier; the transmission time unit of one second carrier and the transmission of the two first carriers.
  • the time units are aligned in the time domain, the transmission time unit 0 of the second carrier aligned with the transmission time units 0 and 1 of the first carrier is a downlink transmission time unit, and the transmission time unit 2 and 3 of the first carrier are aligned with the second carrier
  • the transmission time unit 1 is a downlink transmission time unit
  • the transmission time unit 2 of the second carrier aligned with the transmission time units 4 and 5 of the first carrier is an uplink transmission time unit
  • the transmission time units 4 and 5 of the two first carriers are
  • the uplink transmission time unit is the uplink transmission time unit
  • the HARQ timing of the transmission time unit 0 of the second carrier is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit 0 of the second carrier in the transmission time unit 2 of the second carrier, and the second carrier
  • the HARQ feedback information in the transmission time unit 2 of the second carrier is actually transmitted on the corresponding transmission time units 4 and 5 on the first carrier, and may adopt the principle of sequential and equal division, and the transmission time unit of the second carrier
  • the HARQ feedback information of 0 is transmitted on the transmission time unit 4 of the first carrier
  • the HARQ feedback information of the transmission time unit 1 of the second carrier is transmitted on the transmission time unit 5 of the first carrier. Therefore, the HARQ codebook size of the second carrier included in the HARQ codebook is the time window size of 1/2 second carriers, and the HARQ codebook size of the second carrier is 1 bit, and the transmission time of the second carrier is assumed.
  • the data of the unit 0 is correctly received, and the HARQ codebook of the second carrier is 1, and the HARQ codebook of the first carrier is generated in the same manner as in the foregoing embodiment, and the HARQ codebook of the first carrier and the HARQ codebook are cascaded.
  • the manner of the HARQ code of the uplink control channel of the first carrier is also a cascading manner, and no specific description is made.
  • the feedback information on the transmission time units 0 and 1 of the second carrier may all be fed back in the transmission time unit 4 or 5 of the first carrier.
  • the first uplink transmission time unit transmits the HARQ feedback information in the transmission time unit of the N first carriers, or
  • the terminal knows in advance the transmission direction of the transmission time unit of the N first carriers: wherein, N1 are uplink transmission time units, and the terminal may divide the codebook of the second carrier into N1 copies respectively in the N1 uplinks.
  • the transmission time unit performs feedback.
  • the semi-static codebook size is affected by the number of carriers and the time window size, and is also related to the number of codewords and the number of CBGs (code block groups).
  • the above embodiments are all cases where a single codeword transmission is assumed and the CBG feedback mode is not turned on. If there is at least one 2 codeword transmission in the time window on a certain carrier and the hybrid automatic repeat request-acknowledgment answer binding (HARQ-ACK bundling) mode is not used, the number of feedback bits corresponding to the carrier in the semi-static codebook It is also necessary to multiply by 2 on the basis of the above embodiment.
  • HARQ-ACK bundling hybrid automatic repeat request-acknowledgment answer binding
  • the number of HARQ-ACK information bits of the carrier in the semi-static codebook needs to be The size obtained above is multiplied by N.
  • the first M bits of the N bits corresponding to each TB correspond to the HARQ-ACK information of each CBG of the TB, and the latter N-M may be the default NACK.
  • the terminal may further generate a HARQ codebook according to the DAI information, which is specifically as follows:
  • the access network device determines the value of the total DAI and the value of the accumulated DAI according to the shortest transmission time unit length of the at least two transmission time unit lengths;
  • the access network device sends the value of the total DAI and the value of the accumulated DAI to the terminal, and the terminal receives the value of the total DAI and the value of the accumulated DAI sent by the access network device;
  • the terminal determines the HARQ codebook based on the value of the total DAI and the value of the accumulated DAI.
  • the longest transmission time unit length included in the multi-carrier is N times the shortest transmission time unit length, that is, the N shortest transmission time units and one longest transmission time.
  • the cells are aligned in the time domain,
  • the access network device determines the value of the total DAI and the value of the accumulated DAI according to the minimum transmission time unit length of the at least two transmission time unit lengths, including:
  • the header of the first transmission time unit exists on the first carrier of the multi-carrier and the head of one of the N shortest transmission time units is aligned in the time domain, and the first carrier continues in the first transmission time unit The time is scheduled, and the first carrier is calculated into the total DAI and the accumulated DAI.
  • the transmission time unit length of carrier 0 to carrier 2 is 0.5 ms
  • the transmission time unit length of carrier 3 to carrier 6 is 0.25 ms
  • the transmission time unit length of carrier 7 to carrier 10 is 0.125 ms
  • the carrier 7 is shown in Table 1.
  • the minimum length of the carrier 10 transmission time unit 0 aligned carrier 0 to carrier 2 in the scheduling carrier has carrier 0 and carrier 2
  • carrier 3 to carrier 6 in the scheduling carrier has carrier 4 and carrier 6, carrier 7 to carrier 10 in the scheduled carrier
  • There are carrier 8; carrier 7 to carrier 10 aligned with carrier 7 to carrier 10 with minimum length of transmission time unit 1 has carrier 7 and carrier 9; aligned with carrier 7 to carrier 10 with minimum length of transmission time unit 2
  • the carrier carrier 3 to the carrier 6 has a carrier 3, and the carrier 7 to the carrier 10 aligned with the transmission time unit 2 of the minimum length of the carrier 7 to the carrier 10 has a carrier 8 and a carrier 10; and a carrier 7 to the carrier 10
  • the minimum length of the transmission time unit 4 is aligned with the carrier 7 to the carrier 10.
  • the scheduling carrier has the carrier 8 and the carrier 9.
  • the terminal according to the scheduling carrier information of the table 1 configured by the access network device the access network device can be the minimum transmission time unit. 0 .125ms is a statistical unit. When the first 0.125ms transmission time unit, a total of 5 carriers are scheduled in other subframes aligned with the subframe, then the total DAI of the 5 scheduled carriers is 5, The cumulative DAI value is 1, 2, 3, 4, or 5, calculated from the carrier number from low to high.
  • the total DAI value is 7
  • the cumulative DAI value is 6 or 7
  • the total DAI value is 10
  • the accumulated DAI value is 8, 9 or 10
  • the obtained HARQ codebook size is 12 bit bits, and the HARQ codebook can be obtained according to the data reception status in the transmission time unit of each scheduling carrier.
  • the method for generating a HARQ codebook in the present invention is described in the foregoing embodiment.
  • the access network device and the terminal are described in detail below through an embodiment.
  • the present invention provides a terminal, including:
  • the receiving module 801 is configured to receive first information sent by the access network device, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal; the configured carrier includes a first carrier and a second carrier, and the first carrier The HARQ feedback information and the HARQ feedback information of the second carrier are transmitted on the uplink control channel of the first carrier, where the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier;
  • the processing module 802 is configured to generate a HARQ code transmitted on an uplink control channel of the first carrier according to a relationship between a HARQ timing of the configured carrier, a transmission time unit length of the first carrier, and a transmission time unit length of the second carrier. this.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the first carrier is a transmission in the second carrier N times the length of the time unit; the transmission time unit n of the first carrier is aligned with the transmission time unit of the N second carriers in the time domain, and the transmission time unit of the N second carriers includes the transmission time unit m; N is a positive integer greater than 1, n and m Natural number;
  • the HARQ timing of the configured carrier includes the HARQ timing of the transmission time unit m of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information of the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier. ;
  • the processing module 802 is specifically configured to generate a HARQ codebook that is transmitted on the kth transmission time unit after the transmission time unit n of the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is N times the time window size of the second carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the first carrier is a transmission time of the second carrier N times the unit length; a transmission time unit n of the first carrier is aligned with the time unit of the N second carrier transmissions, N is a positive integer greater than 1, and n is a natural number;
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the N transmission time units of the second carrier;
  • the processing module 802 is specifically configured to determine, according to the HARQ timing of the second carrier, that the HARQ feedback that needs to be transmitted on the at least one of the N transmission time units is transmitted on the transmission time unit n on the first carrier information;
  • the processing module 802 is further configured to generate a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is N times the second carrier
  • the time window size, the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the first carrier is a transmission time of the second carrier N times of the unit length; the transmission time unit n of one first carrier is aligned with the time unit of N second carrier transmissions, and the transmission time units of the N second carriers include M uplink transmission time units, where N is A positive integer greater than 1, M is a positive integer, n is a natural number, M ⁇ N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to indicate that the terminal transmits the HARQ feedback information on at least one of the M uplink transmission time units of the second carrier;
  • the processing module 802 is specifically configured to determine, according to the HARQ timing of the second carrier, that the HARQ feedback that needs to be transmitted on at least one of the M transmission time units is transmitted on the transmission time unit n on the first carrier information;
  • the processing module 802 is further configured to generate a HARQ codebook transmitted on the transmission time unit n on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is M times the second carrier
  • the time window size, the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit.
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the second carrier is a transmission time of the first carrier N times the unit length, the transmission time unit of the N first carriers is aligned with the transmission time unit n of one second carrier in the time domain, and the last transmission time in the time domain in the transmission time unit of the N first carriers
  • the unit is a transmission time unit m
  • N is a positive integer greater than 1
  • n, m are natural numbers
  • the HARQ timing of the configured carrier includes the HARQ timing on the transmission time unit n of the second carrier, and is used to indicate that the terminal transmits the HARQ inverse of the transmission time unit n on the kth transmission time unit after the transmission time unit m of the first carrier. Feed information
  • the processing module 802 is specifically configured to generate a HARQ codebook that performs HARQ feedback information feedback on a kth transmission time unit after a transmission time unit of the first carrier, where the HARQ code of the second carrier included in the HARQ codebook is used.
  • the time window size of the second carrier whose size is 1/N times, or equal to the time window size of the first carrier, and the time window size is the number of downlink transmission time units that need to transmit HARQ feedback information on one uplink transmission time unit. .
  • a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier is: a transmission time unit length of the second carrier is a transmission time of the first carrier N times the unit length, the transmission time unit of the N first carriers is aligned with the transmission time unit n of the second carrier in the time domain, and the transmission time units of the N first carriers include M uplink transmission time units.
  • N is a positive integer greater than 1
  • n is a natural number, M ⁇ N,
  • the HARQ timing of the configured carrier includes the HARQ timing of the second carrier, and is used to instruct the terminal to transmit the HARQ feedback information on the transmission time unit n of the second carrier;
  • the processing module 802 is specifically configured to determine, according to the HARQ timing of the second carrier, that one of the M transmission time units on the first carrier needs to be transmitted on the transmission time unit n of the second carrier.
  • HARQ feedback information
  • the processing module 802 is further configured to generate a HARQ codebook of one of the M transmission time units on the first carrier, where the HARQ codebook size of the second carrier included in the HARQ codebook is 1/M times
  • the time window size of the two carriers, and the time window size is the number of downlink transmission time units that need to be fed back by one uplink transmission time unit.
  • the first carrier is a primary carrier
  • the second carrier is a secondary carrier
  • the present invention provides an access network device, including:
  • the configuration module 901 is configured to allocate a configured carrier to the terminal;
  • the generating module 902 is configured to generate first information according to the allocation, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal; the configured carrier includes a first carrier and a second carrier, and the HARQ feedback information of the first carrier And transmitting the HARQ feedback information of the second carrier on the uplink control channel of the first carrier, where the length of the transmission time unit of the first carrier is not equal to the length of the transmission time unit of the second carrier;
  • the sending module 903 is configured to send the first information to the terminal.
  • the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier
  • the method includes: the carrier information includes the transmission time unit length of the first carrier is the second carrier. N times the length of the transmission time unit, the transmission time unit n of one first carrier is aligned with the transmission time unit of the N second carriers in the time domain; wherein N is a positive integer greater than 1, and n is a natural number.
  • the transmission time units of the N second carriers include M uplink transmission time units, where M ⁇ N.
  • the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier
  • the carrier information includes: the transmission time unit length of the second carrier is the first carrier. N times the length of the transmission time unit, the transmission time unit of the N first carriers is aligned with the second carrier transmission time unit n in the time domain, N is a positive integer greater than 1, and n is a natural number.
  • the transmission time units of the N first carriers include M uplink transmission time units, where M ⁇ N.
  • the first message is further used to indicate a relationship between a transmission time unit length of the first carrier and a transmission time unit length of the second carrier.
  • the transmission time unit of the N second carriers includes a transmission time unit m, where m is a natural number.
  • the configuration module 901 is further configured to configure, for the terminal, the HARQ timing of the transmission time unit m on the second carrier, to indicate that the terminal transmits the transmission time unit m on the kth transmission time unit after the transmission time unit n of the first carrier HARQ feedback information;
  • the first information is also used to indicate HARQ timing of the transmission time unit m on the second carrier.
  • the last transmission time unit in the time domain of the transmission time units of the N first carriers is a transmission time unit m, where m is a natural number.
  • the configuration module 901 is further configured to configure, for the terminal, the HARQ timing of the transmission time unit n on the second carrier, to indicate that the terminal transmits the transmission time unit on the kth transmission time unit after the transmission time unit m of the first carrier HARQ feedback information;
  • the first information is also used to indicate the HARQ timing of the transmission time unit n on the second carrier.
  • the configuration module 901 of the access network device configures the carrier for the terminal, and the configured carrier includes the first carrier and the second carrier, and the HARQ feedback information of the first carrier and The HARQ feedback information of the second carrier is transmitted on the uplink control channel of the first carrier, where the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier, and the generating module 902 obtains the first information.
  • the first information is notified to the terminal by the sending module 903, and the receiving module 801 of the terminal receives the first information sent by the sending module 903, and the processing module 802 of the terminal according to the HARQ timing of the carrier configured by the access network device and the transmission time of the first carrier Generating a HARQ codebook transmitted on an uplink control channel of the first carrier according to a relationship between the unit length and a transmission time unit length of the second carrier, in the prior art, due to the transmission time unit length of the first carrier and the second carrier
  • the unequal, the HARQ codebook generated by the terminal is incorrect.
  • the terminal can correctly generate the HARQ codebook without affecting the access. Data transmission between the device and the terminal.
  • an embodiment of the present invention provides a terminal 1000, including:
  • the terminal 1000 may include a processor 1001, a receiver 1002, and a memory 1003, where the memory 1003 may be used to store code executed by the processor 1001;
  • bus system 1004 includes a power bus, a control bus, and a status signal bus in addition to the data bus;
  • the receiver 1002 is configured to receive first information sent by the access network device, where the first information is used to indicate to the terminal that the access network device is a carrier configured by the terminal; the configured carrier includes a first carrier and a second carrier, and the first carrier The HARQ feedback information and the HARQ feedback information of the second carrier are transmitted on the uplink control channel of the first carrier, where the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier;
  • the processor 1001 is configured to generate a HARQ code transmitted on an uplink control channel of the first carrier according to a relationship between a HARQ timing of the configured carrier, a transmission time unit length of the first carrier, and a transmission time unit length of the second carrier. this.
  • an embodiment of the present invention provides an access network device 1100, including:
  • the access network device 1100 can include a processor 1101, a transceiver 1102, and a memory 1103, where the memory 1103 can be used to store code executed by the processor 1101;
  • bus system 1104 The various components in the access network device 1100 are coupled together by a bus system 1104, wherein the bus system 1104 includes a power bus, a control bus, and a status signal bus in addition to the data bus;
  • the processor 1101 is configured to allocate a configured carrier to the terminal;
  • the processor 1101 is further configured to generate first information according to the allocation, where the configured carrier includes a first carrier and a second carrier, and the HARQ feedback information of the first carrier and the HARQ feedback information of the second carrier are uplink control channels on the first carrier. Performing feedback, wherein the transmission time unit length of the first carrier is not equal to the transmission time unit length of the second carrier;
  • the transceiver 1102 is configured to send the first information to the terminal.
  • the processor 1101 of the access network device 1100 configures a carrier for the terminal, where the configured carrier includes the first carrier and the second carrier, and the HARQ feedback of the first carrier
  • the information and the HARQ feedback information of the second carrier are transmitted on the uplink control channel of the first carrier, where the length of the transmission time unit of the first carrier is not equal to the length of the transmission time unit of the second carrier, and the first information is obtained,
  • the first information is notified to the terminal by the transceiver 1102, the receiver 1002 of the terminal 1000 receives the first information sent by the access network device 1100, and the processor 1001 transmits the HARQ timing of the carrier configured according to the access network device and the transmission time of the first carrier.
  • the embodiment of the present invention can enable the terminal to correctly generate the HARQ codebook without affecting the access network device and Data transfer between terminals.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external memory. Partial cache.
  • RAM random access memory
  • Partial cache By way of example and not limitation, many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了HARQ码本的生成方法及相关设备,使得载波聚合的成员载波中具有不同传输时间单元长度的载波时,可以正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。本发明实施例方法包括:终端接收接入网设备发送的第一信息,第一信息用于向终端指示接入网设备为终端配置的载波,配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等;终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本。

Description

混合自动重传请求HARQ码本的生成方法及相关设备
本申请要求于2016年11月4日提交中国专利局、申请号为201610981534.6、发明名称为“混合自动重传请求HARQ码本的生成方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及HARQ码本的生成方法及相关设备。
背景技术
为了更好的满足日益增长的业务类型需求,在新的接入技术,例如5G技术中,要求支持除了长期演进(Long Term Evolution,LTE)中已经支持的增强移动宽带(Enhanced Mobile Broadband,eMBB)和广播业务外,又额外引入了高可靠低延迟通信(Ultra-Reliable and Low Latency Communications,URLLC)和大规模机器通信(massive Machine Type Communication,mMTC)两种新的业务类型。其中,每种业务类型的业务特点都具有明显的差异性,因此每种业务对于子载波间隔及符号长度等系统参数的需求不同。
为满足不同业务类型对于载波参数的需求,在LTE-Advanced中,第三代合作伙伴计划(Third Generation Partnership Project,3GPP)提出了载波聚合技术,它很好地将多个载波聚合成一个更宽的频谱,同时也可以把一些不连续的频谱聚合到一起。
但是被聚合的载波使用的传输时间单位都相同,都为1ms。而在New Radio(NR)中,会存在聚合的载波使用的传输时间单位不同的情况,当传输时间单位不同时,接入网设备下发给终端的下行数据,终端根据之前的传输时间单位相同的情况下设置的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈的HARQ码本,对于传输时间单位不同的情况下来说,HARQ码本是错误的,影响了接入网设备和终端之间的数据传输。
发明内容
本申请提供了HARQ码本的生成方法及相关设备,使得载波聚合的成员载波中具有不同传输时间单元长度的载波时,可以正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
本发明第一方面提供一种HARQ码本的生成方法,包括:
终端接收接入网设备发送的第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述 第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本。
在终端接入到接入网设备时,接入网设备为终端配置好载波,接入网设备配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,并且通过第一信息通知终端,终端接收接入网设备发送的第一信息,终端根据接入网设备配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,在现有技术中由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
结合本发明第一方面,本发明第一方面第一实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍;一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐,所述N个所述第二载波的传输时间单元中包括传输时间单元m;其中,N为大于1的正整数,n和m为自然数;
所述配置的载波的HARQ定时包括所述第二载波的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
所述终端生成在所述第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
如果接入网设备配置的载波中第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为,第一载波的传输时间单元长度为第二载波中的传输时间单元长度的N倍,一个第一载波的传输时间单元n与N个第二载波的传输时间单元在时域上对齐,N个第二载波的传输时间单元中包括传输时间单元m时,接入网设备和终端之间默认设置了配置的载波的HARQ定时,或者接入网设备配置好之后发送给终端,配置的载波的HARQ定时中的第一载波的HARQ定时与现有的一致,而第二载波的传输时间单元m的HARQ定时用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息,终端生成在第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法 正确得到HARQ码本的问题。
结合本发明第一方面,本发明第一方面第二实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N为大于1的正整数,n为自然数;
所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述N个传输时间单元中的至少一个上传输HARQ反馈信息;
所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
所述终端根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述N个传输时间单元中的至少一个上传输的HARQ反馈信息;
所述终端生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
如果接入网设备配置的载波中第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为,第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍,一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,N为大于1的正整数,n为自然数时,接入网设备和终端之间默认设置了配置的载波的HARQ定时,或者接入网设备配置好之后发送给终端,配置的载波的HARQ定时中的第一载波的HARQ定时与现有的一致,而第二载波的HARQ定时用于指示终端在第二载波的N个传输时间单元中的至少一个上传输HARQ反馈信息,终端根据第二载波的HARQ定时确定在第一载波上的传输时间单元n上传输需要在N个传输时间单元中的至少一个上传输的HARQ反馈信息,终端生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第一方面,本发明第一方面第三实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,所述M为正整数,n为自然数,所述M≤N,
所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述M个上行传输时间单元中的至少一个上传输HARQ反馈信息;
所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的 HARQ码本,包括:
所述终端根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述M个传输时间单元中的至少一个上传输的HARQ反馈信息;
所述终端生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为M倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
如果接入网设备配置的载波中第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为,第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,N个第二载波的传输时间单元中包括M个上行传输时间单元,N为大于1的正整数,M为正整数,n为自然数,M≤N时,接入网设备和终端之间默认设置了配置的载波的HARQ定时,或者接入网设备配置好之后发送给终端,配置的载波的HARQ定时中的第一载波的HARQ定时与现有的一致,而第二载波的HARQ定时用于指示终端在第二载波的M个上行传输时间单元中的至少一个上传输HARQ反馈信息,终端根据第二载波的HARQ定时确定在第一载波上的传输时间单元n上传输需要在M个传输时间单元中的至少一个上传输的HARQ反馈信息,终端生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为M倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第一方面,本发明第一方面第四实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述N为大于1的正整数,n,m为自然数,
所述配置的载波的HARQ定时包括所述第二载波的传输时间单元n上的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
所述终端生成在所述第一载波的传输时间单元m后的第k个传输时间单元上进行HARQ反馈信息反馈的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/N倍的所述第二载波的时间窗大小,或等于所述第一载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
如果接入网设备配置的载波中第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为,第二载波的传输时间单元长度为第一载波的传输时间单元长度的N 倍,N个第一载波的传输时间单元与一个第二载波传输时间单元n在时域上对齐,N个第一载波的传输时间单元中在时域上的最后一个为传输时间单元m,N为大于1的正整数,n,m为自然数时,接入网设备和终端之间默认设置了配置的载波的HARQ定时,或者接入网设备配置好之后发送给终端,配置的载波的HARQ定时中的第一载波的HARQ定时与现有的一致,而第二载波的HARQ定时用于指示终端在第一载波的传输时间单元m后的第k个传输时间单元上传输传输时间单元n的HARQ反馈信息,终端生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/N倍的第二载波的时间窗大小,或等于第一载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第一方面,本发明第一方面第五实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,n,m为自然数,所述M≤N,
所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的传输时间单元n上传输HARQ反馈信息;
所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
所述终端根据所述第二载波的HARQ定时,确定在所述第一载波上的所述M个传输时间单元之一传输需要在所述第二载波的传输时间单元n上传输HARQ反馈信息;
所述终端生成在所述第一载波上的所述M个传输时间单元之一的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/M倍的所述第二载波的时间窗大小,所述时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数。
如果接入网设备配置的载波中第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为,第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且N个第一载波的传输时间单元中包括M个上行传输时间单元,N为大于1的正整数,n,m为自然数,M≤N时,接入网设备和终端之间默认设置了配置的载波的HARQ定时,或者接入网设备配置好之后发送给终端,配置的载波的HARQ定时中的第一载波的HARQ定时与现有的一致,而第二载波的HARQ定时用于指示终端在第二载波的传输时间单元n上传输HARQ反馈信息,终端根据第二载波的HARQ定时确定在第一载波上的M个传输时间单元之一传输需要在第二载波的传输时间单元n上传输HARQ反馈信息,终端生成在第一载波上的M个传输时间单元之一的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/M倍的第二载波的时间窗大小,时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二 载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第一方面、第一方面第一实施方式、第一方面第二实施方式、第一方面第三实施方式、第一方面第四实施方式或第一方面第五实施方式,本发明第一方面第六实施方式中,所述第一载波为主载波,所述第二载波为辅载波。
在现有的4G网络中接入网设备根据载波聚合技术为终端配置的载波中包括一个主载波和多个辅载波,并且主载波和辅载波的子帧长度是一致的,而在本方案中,如果第一载波是主载波,那么第二载波是辅载波,并且第一载波和第二载波的传输时间单元的长度是不相等的。
本发明第二方面提供一种HARQ码本的生成方法,包括:
接入网设备为终端分配配置的载波;
所述接入网设备根据所述分配生成第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
所述接入网设备并将所述第一信息发送至所述终端。
在终端接入到接入网设备时,接入网设备为终端分配配置的载波,接入网设备配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,并且根据分配生成第一信息,将第一信息发送至终端,使得终端能够根据第一信息生成在第一载波的上行控制信道上传输的HARQ码本,在现有技术由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
结合本发明第二方面,本发明第二方面第一实施方式中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍,一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐;其中,N为大于1的正整数,n为自然数。
结合本发明第二方面第一实施方式,本发明第二方面第二实施方式中,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
结合本发明第二方面,本发明第二方面第三实施方式中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波传输时间单元n在时域上对齐,所述N为大于1的正整数,n为自然数。
结合本发明第二方面第三实施方式,本发明第二方面第四实施方式中,所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
结合本发明第二方面、第二方面第一实施方式、第二方面第二实施方式、第一方面第三实施方式或第二方面第四实施方式,本发明第二方面第五实施方式中,所述第一消息还用于指示所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度之间的关系。
以上实施例中,详细的描述了接入网设备为终端配置的载波的载波信息的情况,由于载波信息与现有技术中的载波信息不一致,接入网设备需要根据载波信息从而向终端发送第一信息,使得终端可以正确的生成HARQ码本。
结合本发明第二方面第一实施方式,本发明第二方面第六实施方式中,所述N个所述第二载波的传输时间单元中包括传输时间单元m,所述m为自然数;所述方法还包括:
所述接入网设备为所述终端配置所述第二载波上的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
所述第一信息还用于指示所述第二载波上的传输时间单元m的HARQ定时。
接入网设备除了和终端之间约定好HARQ定时之外,还可以配置HARQ定时,而根据现有技术相比,第一载波的HARQ定时可以是原先的设置,而由于第一载波的传输时间长度和第二载波的传输时间长度不一致了,那么第二载波的HARQ定时是需要重新配置的,在N个第二载波的传输时间单元中包括传输时间单元m时,第二载波上的传输时间单元m的HARQ定时可以用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息,也可以用于指示第二载波上的传输时间单元m的HARQ定时。
结合本发明第二方面第三实施方式,本发明第二方面第七实施方式中,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述m为自然数;所述方法还包括:
所述接入网设备为所述终端配置所述第二载波上的传输时间单元n的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
所述第一信息还用于指示所述第二载波上的传输时间单元n的HARQ定时。
接入网设备除了和终端之间约定好HARQ定时之外,还可以配置HARQ定时,而根据现有技术相比,第一载波的HARQ定时可以是原先的设置,而由于第一载波的传输时间长度和第二载波的传输时间长度不一致了,那么第二载波的HARQ定时是需要重新配置的,在N个第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m时,第二载波上的传输时间单元m的HARQ定时可以用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息,也可以用于指示第二载波上的传输时间单元m的HARQ定时。
本发明第三方面提供一种终端,包括:
接收模块,用于接收接入网设备发送的第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度 不相等;
处理模块,用于根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本。
在终端接入到接入网设备时,接入网设备为终端配置好载波,接入网设备配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,并且通过第一信息通知终端,接收模块接收接入网设备发送的第一信息,处理模块根据接入网设备配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,在现有技术由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
结合本发明第三方面,本发明第三方面第一实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍;一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐,所述N个所述第二载波的传输时间单元中包括传输时间单元m;其中,N为大于1的正整数,n和m为自然数;
所述配置的载波的HARQ定时包括所述第二载波的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述N个传输时间单元中的至少一个上传输的HARQ反馈信息;
所述处理模块,还用于生成在所述第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
如果接入网设备配置的载波中第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为,第一载波的传输时间单元长度为第二载波中的传输时间单元长度的N倍,一个第一载波的传输时间单元n与N个第二载波的传输时间单元在时域上对齐,N个第二载波的传输时间单元中包括传输时间单元m时,接入网设备和终端之间默认设置了配置的载波的HARQ定时,或者接入网设备配置好之后发送给终端,配置的载波的HARQ定时中的第一载波的HARQ定时与现有的一致,而第二载波的传输时间单元m的HARQ定时用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息,处理模块生成在第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小 和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第三方面,本发明第三方面第二实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N为大于1的正整数,n为自然数;
所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述N个传输时间单元中的至少一个上传输HARQ反馈信息;
所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述M个传输时间单元中的至少一个上传输的HARQ反馈信息;
所述处理模块,还用于生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
处理模块生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第三方面,本发明第三方面第三实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,所述M为正整数,n为自然数,所述M≤N,
所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述M个上行传输时间单元中的至少一个上传输HARQ反馈信息;
所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述M个传输时间单元中的至少一个上传输的HARQ反馈信息;
所述处理模块,还用于生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为M倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
处理模块生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为M倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第三方面,本发明第三方面第四实施方式中,所述第一载波的传输时间单 元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述N为大于1的正整数,n,m为自然数,
所述配置的载波的HARQ定时包括所述第二载波的传输时间单元n上的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
所述处理模块,具体用于生成在所述第一载波的传输时间单元后的第k个传输时间单元上进行HARQ反馈信息反馈的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/N倍的所述第二载波的时间窗大小,或等于所述第一载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
处理模块生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/N倍的第二载波的时间窗大小,或等于第一载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第三方面,本发明第三方面第五实施方式中,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,n,m为自然数,所述M≤N,
所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的传输时间单元n上传输HARQ反馈信息;
所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的所述M个传输时间单元之一传输需要在所述第二载波的传输时间单元n上传输HARQ反馈信息;
所述处理模块,还用于生成在所述第一载波上的所述M个传输时间单元之一的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/M倍的所述第二载波的时间窗大小,所述时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数。
处理模块生成在第一载波上的M个传输时间单元之一的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/M倍的第二载波的时间窗大小,时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数,本方案中得到的HARQ码本的码本大小是第一载波的HARQ码本大小和第二载波的HARQ码本大小之和,从而正确的得到HARQ码本,有效的解决了现有技术中无法正确得到HARQ码本的问题。
结合本发明第三方面、第三方面第一实施方式、第三方面第二实施方式、第三方面第 三实施方式、第三方面第四实施方式或第三方面第五实施方式,本发明第三方面第六实施方式中,所述第一载波为主载波,所述第二载波为辅载波。
在现有的4G网络中接入网设备根据载波聚合技术为终端配置的载波中包括一个主载波和多个辅载波,并且主载波和辅载波的子帧长度是一致的,而在本方案中,如果第一载波是主载波,那么第二载波是辅载波,并且第一载波和第二载波的传输时间单元的长度是不相等的。
本发明第四方面提供一种接入网设备,包括:
配置模块,用于为终端分配配置的载波;
生成模块,用于根据所述分配生成第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
发送模块,用于将所述第一信息发送至所述终端。
在终端接入到接入网设备时,配置模块为终端分配配置的载波,配置模块配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,生成模块并且根据分配生成第一信息,发送模块将第一信息发送至终端,使得终端能够根据第一信息生成在第一载波的上行控制信道上传输的HARQ码本,在现有技术由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
结合本发明第四方面,本发明第四方面第一实施方式中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍,一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐;其中,N为大于1的正整数,n为自然数。
结合本发明第四方面第一实施方式,本发明第四方面第二实施方式中,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
结合本发明第四方面,本发明第四方面第三实施方式中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波传输时间单元n在时域上对齐,所述N为大于1的正整数,n为自然数。
结合本发明第四方面第三实施方式,本发明第四方面第四实施方式中,所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
结合本发明第四方面、第四方面第一实施方式、第四方面第二实施方式、第四方面第三实施方式或第四方面第四实施方式,本发明第四方面第五实施方式中,所述第一消息还 用于指示所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度之间的关系。
以上实施例中,详细的描述了接入网设备为终端配置的载波的载波信息的情况,由于载波信息与现有技术中的载波信息不一致,接入网设备需要根据载波信息从而向终端发送第一信息,使得终端可以正确的生成HARQ码本。
结合本发明第四方面第一实施方式,本发明第四方面第六实施方式中,所述N个所述第二载波的传输时间单元中包括传输时间单元m,所述m为自然数,
所述配置模块,还用于为所述终端配置所述第二载波上的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
所述第一信息还用于指示所述第二载波上的传输时间单元m的HARQ定时。
结合本发明第四方面第三实施方式,本发明第四方面第四实施方式中,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述m为自然数,
所述配置模块,还用于为所述终端配置所述第二载波上的传输时间单元n的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
所述第一信息还用于指示所述第二载波上的传输时间单元n的HARQ定时。
接入网设备除了和终端之间约定好HARQ定时之外,还可以通过配置模块配置HARQ定时,而根据现有技术相比,第一载波的HARQ定时可以是原先的设置,而由于第一载波的传输时间长度和第二载波的传输时间长度不一致了,那么第二载波的HARQ定时是需要重新配置的,在N个第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m时,第二载波上的传输时间单元m的HARQ定时可以用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息,也可以用于指示第二载波上的传输时间单元m的HARQ定时。
本发明第五方面提供一种下行分配索引DAI值确定的方法,其特征在于,应用于多载波通信系统,所述多载波包括至少两种传输时间单元长度,所述方法包括:
所述接入网设备根据所述至少两种传输时间单元长度中最短的传输时间单元长度,确定总DAI的值和累计DAI的值;
所述接入网设备将所述总DAI的值和所述累计DAI的值发送给终端。
结合本发明第五方面,本发明第五方面第一实施方式中,所述多载波中包括的最长的传输时间单元长度为所述最短的传输时间单元长度的N倍,即N个所述最短的传输时间单元与一个最长的传输时间单元在时域上对齐;
所述接入网设备根据所述至少两种传输时间单元长度中最小的传输时间单元长度,确定总DAI的值和累计DAI的值,包括:
若所述多载波中第一载波上存在第一传输时间单元的头部与所述N个最短的传输时间单元中一个的头部在时域上对齐,且所述第一载波在所述第一传输时间单元持续的时间内被调度,则将所述第一载波计算入所述总DAI和所述累计DAI中。
本发明第六方面提供一种HARQ码本的生成方法,其特征在于,应用于多载波通信系统,所述多载波包括至少两种传输时间单元长度,所述方法包括:包括:
终端接收接入网设备发送的总DAI的值和累计DAI的值;
所述终端根据所述总DAI的值和累计DAI的值确定HARQ码本。
在终端接入到接入网设备时,接入网设备为终端配置调度载波,接入网设备配置的调度载波包括多个载波,多个载波中包括至少两个传输时间单元长度的载波,接入网设备获取至少两种传输时间单元长度中最小的传输时间单元长度,根据最小传输时间单元长度,确定总下行分配索引(Downlink Assignment Index,DAI)的值和累计DAI的值,并将总DAI的值和累计DAI的值发送给终端,在现有技术中由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例终端可以根据总DAI的值和累计DAI的值得到正确的HARQ码本。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍。
图1为本申请提供的应用场景或构架示意图;
图2为本申请提供的现有的Pcell的HARQ定时的示意图;
图3为本申请提供的HARQ码本的生成方法的一个实施例的信令流程示意图;
图4为本申请提供的一种HARQ定时的示意图;
图5为本申请提供的另一种HARQ定时的示意图;
图6为本申请提供的又一种HARQ定时的示意图;
图7为本申请提供的再一种HARQ定时的示意图;
图8为本申请提供的终端的一个实施例的结构示意图;
图9为本申请提供的接入网设备的一个实施例的结构示意图;
图10为本申请提供的终端的另一个实施例的结构示意图;
图11为本申请提供的接入网设备的另一个实施例的结构示意图。
具体实施方式
本申请提供了HARQ码本的生成方法及相关设备,使得载波聚合的成员载波中具有不同传输时间单元长度的载波时,可以正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先简单介绍本发明应用的系统构架或场景。
本发明可以用于但不限于LTE系统及其演进的系统中,也可以用于5G技术中,系统构架如图1所示,接入网设备和接入网设备之间及接入网设备和终端之间均可传输数据,终 端想要接入网络时,可以通过向接入网设备发送接入请求,接入网设备为终端分配配置的载波,使得终端可与接入网设备进行数据传输,为满足不同业务类型对于载波参数的需求,在LTE-Advanced中,3GPP提出了载波聚合技术,它很好地将多个载波聚合成一个更宽的频谱,同时也可以把一些不连续的频谱聚合到一起。现有的被聚合的载波使用的传输时间单位都相同,都为1ms,现有的HARQ码本可以是通过配置的载波数确定HARQ码本或者通过调度的载波数确定HARQ码本,配置的载波指的是在终端接入接入网设备时,接入网设备为终端配置的终端能够使用的载波,每一个载波的状态可以是激活状态或者未激活状态;激活状态的载波指的是一个载波处于激活状态,终端可以使用该载波来传输数据;调度的载波指的是终端实际用来传输数据的载波。
在LTE-Advanced中,可以将配置的载波分为1个或2个Cell Group,每个Cell Group中有1个载波可以进行物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输,比如主载波(Primary Serving Cell,Pcell),该Pcell需要联合反馈Cell Group中其它载波的HARQ信息。例如,接入网设备为终端配置了5个载波,编号从0到4,载波0为Pcell,其它4个载波为辅载波(Secondary Serving Cell,Scell),5个载波都为时分双工(Time Division Duplexing,TDD)载波,并且配比相同。在Pcell的某个上行子帧上,需要确定反馈的HARQ码本,如图2所示,D0、D4和D5为下行子帧,S1和S6为特殊子帧,U2、U3、U7和U8为上行子帧,在子帧7(U7)上,需要反馈的时间窗为子帧0(D0)和子帧1(S1),而终端只在Pcell的子帧0上正确接收数据,并且在其他辅载波上未正确接收数据,则反馈的HARQ码本为1000000000,其中HARQ码本中的10为Pcell上的HARQ反馈信息,HARQ反馈信息表示的是终端对于子帧0和子帧1上承载数据的接收情况,1表示终端正确接收数据,0表示终端未正确接收数据;HARQ码本中后面的8位0,则是4个Scell中对应于子帧7的子帧中HARQ反馈信息,可见HARQ码本的码本大小为10个bit。
但是,在本发明中LTE或者5G技术中,聚合载波中的第一载波(即现有技术的Pcell)和第二载波((即现有技术的Scell)的传输时间单元的长度并不是一致的,传输时间单元可以是现有技术中的子帧,也可以是时隙等,由于第一载波和第二载波的传输时间单元的长度并不相等,那么的按照上述所述的方式是得到的HARQ码本大小是不准确的,因此需要重新设置HARQ码本的生成方式。
下面对本申请中涉及的几个术语做一些解释:HARQ反馈信息表示的是终端对于传输时间单元中承载的数据的数据接收情况,接收情况可以为正确接收或错误接收,时间窗表示的是需要反馈的传输时间单元的集合,例如,一个传输时间单元要反馈2个传输时间单元的数据接收情况,且接入网设备和终端之间的数据传输使用1个传输块(Transmit Block,TB),则该传输时间单元的时间窗大小为2bit,HARQ定时表示终端在传输时间单元u之后的第i个传输时间单元反馈传输时间单元u的数据接收情况。HARQ码本表示的是接入网设备向终端下发数据时,终端对于数据的接收情况,接入网设备根据HARQ码本可以知道终端的数据接收情况,从而调整与终端之间的信道、发射功率或编码方式等等,使得接入网设备与终端之间的数据传输条件可以满足通信标准。
终端综合时间窗、HARQ反馈信息或HARQ定时就可以生成HARQ码本,
下面通过接入网设备和终端之间的交互对HARQ码本的生成方法进行说明,请参阅图3, 本发明实施例提供一种HARQ码本的生成方法,包括:
301、接入网设备为终端分配配置的载波;
本实施例中,接入网设备在终端接入时,需要为终端分配终端可以使用的载波,即分配配置的载波,配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波上的上行控制信道进行反馈,即第一载波相当于现有技术中的Pcell,而第二载波相当于现有技术中的Scell,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等。
第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等可以是由于第一载波和第二载波对应的参数集合(还可以称为numerology)不同导致的,也可以是由于第一载波和第二载波的子载波间隔不同所导致的。302、接入网设备根据分配生成第一信息;
本实施例中,接入网设备根据上述的配置的载波的分配情况生成第一信息,第一信息可以包含向终端发送的消息中,该消息具体可以是系统消息的系统信息块(System Information Block,SIB)中,现有的SIB的种类有上十种,每一种SIB都具有不同的用途,比如SIB2用于小区更新或小区切换等,可以在现有的特定SIB中包含第一信息,也可以生成新的SIB用于包含第一信息,第一信息用于向终端指示接入网设备为终端配置的载波,配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,需要说明的是,如果配置的载波的HARQ定时是接入网设备实时设置的,那么可以将配置的载波的HARQ定时也通过第一信息指示,或者通过与第一信息所包含在不同消息中的不同的第二信息指示给终端。如果配置的载波的HARQ定时是接入网设备和终端之间预先约定,那么不需要包含在第一信息中。
303、接入网设备并将第一信息发送至终端,终端接收接入网设备发送的第一信息;
本实施例中,为了能够使得终端和接入网设备之间传输数据,接入网设备需要将第一信息发送至终端,具体发送时,第一信息还可以包含在消息中,终端接收接入网设备发送的该信息,从该消息中得到第一信息。
304、终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本。
本实施例中,终端从接收到的第一信息中可以得到第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,或者从与第一信息所包含在不同消息中的不同的第三信息中得到。如果配置的载波的HARQ定时是接入网设备实时设置的,那么根据第一信息可以得到配置的载波的HARQ定时,或者,根据接入网设备和终端之间预先约定可以知道配置的载波的HARQ定时,根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,可以确定第一载波的HARQ反馈信息和第二载波的HARQ反馈信息,根据第一载波的HARQ反馈信息和第二载波的HARQ反馈信息生成在第一载波的上行控制信道上传输的HARQ码本。
本发明实施例中,由于终端是根据接入网设备配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,第一载波的传输时间单元长度和第二载波的传输时间单元长度不 相等,如果还是采用现有的HARQ码本生成方式,终端生成的HARQ码本将会是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
上述实施例中只限定了第一载波的传输时间单元长度和第二载波的传输时间单元长度不相等,具体的第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系的不同,可能会影响到HARQ码本的生成,下面通过实施例对不同的第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系下,HARQ码本的生成进行具体说明。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第一载波的传输时间单元长度为第二载波中的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波的传输时间单元在时域上对齐,N个第二载波的传输时间单元中包括传输时间单元m;其中,N为大于1的正整数,n和m为自然数;
配置的载波的HARQ定时包括第二载波的传输时间单元m的HARQ定时,用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息;
终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,包括:
终端生成在第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
本发明实施例中,具体可以如图4所示,第一载波的传输时间单元长度为第二载波中的传输时间单元长度的4倍;一个第一载波的传输时间单元与4个第二载波的传输时间单元在时域上对齐,与第一载波的传输时间单元0对应的4个第二载波的传输时间单元中包括第二载波的下行传输时间单元1和3,与第一载波的传输时间单元1对应的4个第二载波的传输时间单元中包括第二载波的下行传输时间单元5,第一载波的HARQ定时的设置与现有技术中的一致,图4中在第一载波的传输时间单元2传输第一载波的传输时间单元0的HARQ反馈信息和第一载波的传输时间单元1的HARQ反馈信息,而第二载波的传输时间单元1和3的HARQ定时用于指示终端在第一载波的传输时间单元2上传输第二载波的传输时间单元1和3的HARQ反馈信息,而第二载波的传输时间单元5的HARQ定时用于指示终端在第一载波的传输时间单元2上传输第二载波的传输时间单元5的HARQ反馈信息,终端生成在第一载波的传输时间单元2的HARQ码本,HARQ码本中所包括的第一载波的HARQ码本大小为2位bit,第一载波的时间窗大小与HARQ码本大小相同为2位bit,由于第二载波上的4个传输时间单元与第一载波的一个传输时间单元对齐,第二载波的时间窗大小也为2位bit,而第二载波的HARQ码本大小为4倍的第二载波的时间窗大小,即8位bit,假设第一载波的传输时间单元0的数据接收正确,而第一载波的传输时间单元1的数据接收错误,那么第一载波的HARQ反馈信息为10,假设第二载波的传输时间单元1、3和5的数据接收正确,那么第二载波的HARQ反馈信息为01010100,将第一载波和第二载波的HARQ 反馈信息进行级联得到的HARQ码本为1001010100,需要说明的是,本方案中的级联方式得到的HARQ码本中第一载波的HARQ反馈信息处于前端,如“10”,第二载波的HARQ反馈信息处于第一载波的HARQ反馈信息之后,如“01010100”。在实际实施中,级联方式也可以是第二载波的HARQ反馈信息处于前端,第一载波的HARQ反馈信息处于第二载波的HARQ反馈信息之后,HARQ码本为“0101010010”。除此之外,具体的级联方式还可以是其他形式,不做限定。
需要说明的是,在图4中只选择了传输时间单元长度为1/4的第一载波的传输时间单元长度的第二载波,在具体实施时,还可以有其他传输时间单元长度的载波。这些具有其他传输单元长度的载波也同样需要在第一载波上传输HARQ反馈信息,终端只需采用和第二载波相同的处理方式生成需要在所述第一载波上反馈的码本,再和其它同样需要在第一载波上反馈的码本进行级联即可。
为了方便表述,第二载波的时间窗大小可以记作W,那么第二载波的HARQ码本大小为记作W乘以N(W*N)。
在该实施例的一些具体实现方式中,为了避免过大的反馈开销,接入网设备还可以配置一个最大值U,即第二载波的HARQ码本大小为U和W*N中的较小值,记作min(W*N,U)。当W*N>U时,第二载波的HARQ码本大小为U。可选地,若检测到调度的物理下行共享信道(physical downlink shared channel,PDSCH)的个数超过了U,则仅反馈最先检测到的U个PDSCH的HARQ反馈信息;或者,仅反馈由携带DAI值小于U的下行控制信息(downlink control information,DCI)调度的PDSCH的HARQ反馈信息。可选的,每个载波配置一个U值;或者所有载波共用1个U值。
另外,一个时间窗内,第二载波中可能存在一些传输时间单元为高层信令,比如无线资源控制协议(radio resource control,RRC)信令或者系统信息块(system information block,SIB)等,配置的上行传输时间单元,这些传输时间单元没有下行数据传输,故而不需要终端反馈信息,可以配置第二载波的HARQ码本大小为W*N-X,其中X为一个第二载波时间窗内通过高层信令配置为上行传输时间单元的个数。
在上述实施例中,物理下行控制信道(physical downlink control channel,PDCCH)(用于调度PDSCH的DCI或者所在的资源集合)的监测周期为1个传输时间单元。在本实施例的另一些具体实现方式中,PDCCH的监测周期可配置为T,T≥1,且T为整数。基于上述实施例,此时,第二载波的HARQ码本大小为min(W*N/T,U)。若W*N不能被T整除,则可以对W*N/T向上取整,或者对W*N/T向下取整,即,第二载波的HARQ码本大小为
Figure PCTCN2017108077-appb-000001
或者
Figure PCTCN2017108077-appb-000002
采用向上取整还是向下取整可以由PDCCH的监测起始传输时间单元(或者偏移)确定。
本领域的技术人员可以将上述描述的各个实施例进行结合,即综合考虑上述各种因素中的一种或者多种来生成反馈的码本,在这里不做任何限制。
上述实施例是基于第一载波的传输时间单元长度为粒度定义和/或者配置的反馈窗。例 如,以第一载波的传输时间单元长度为粒度定义或者配置的反馈窗为{n+1,n+2},意味着图4中的第一载波上时间单元0(对应n+2)和时间单元1(对应n+1)可以在时间单元2上反馈,因此第一载波的码本大小为2;图4中的第二载波上时间单元0(对应n+2)、时间单元1(对应n+2),时间单元2(对应n+2)、时间单元3(对应n+2),时间单元4(对应n+1)、时间单元5(对应n+1),时间单元6(对应n+1)、时间单元7(对应n+1)可以在第一载波时间单元2上反馈,因此第一载波的码本大小为8。又例如,如图4所示,对于第一载波,PDSCH在第一载波传输时间单元n=0上传输,其HARQ反馈信息可以在第一载波传输时间单元n+2(即第一载波传输时间单元2)上反馈;对于第二载波,PDSCH在第二载波传输时间单元m=1上传输,对应第一载波的传输时间单元为n=0。其HARQ反馈信息可以在第一载波传输时间单元n+2(即第一载波传输时间单元2)上反馈。其中时间单元粒度为第一载波的传输时间单元,因此第二载波的HARQ码本大小根据W*N确定。
此外,还可以基于第二载波的传输时间单元长度的粒度定义或者配置时间窗(各载波的时间窗是基于自身的传输时间单元长度粒度定义和/或配置),即这样,以第二载波的传输时间单元长度为粒度定义或者配置的第二载波反馈窗为{n+1,n+2},意味着图4中的第二载波上时间单元6(对应n+2)、时间单元7(对应n+1)可以在第一载波时间单元2上反馈,因此第一载波的码本大小为2。此时,第二载波的HARQ码本大小为W;与上述实施例类似,若考虑额外引入配置最大值U,则第二载波的HARQ码本大小为min(W,U);若额外考虑PDCCH监测周期,则第二载波的HARQ码本大小为min(W/T,U),或者
Figure PCTCN2017108077-appb-000003
或者
Figure PCTCN2017108077-appb-000004
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,N为大于1的正整数,n为自然数;
配置的载波的HARQ定时包括第二载波的HARQ定时,用于指示终端在第二载波的N个传输时间单元中的至少一个上传输HARQ反馈信息;
终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,包括:
终端根据第二载波的HARQ定时,确定在第一载波上的传输时间单元n上传输需要在N个传输时间单元中的至少一个上传输的HARQ反馈信息;
终端生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
本发明实施例中,如图5所示,第一载波的传输时间单元长度为第二载波中的传输时间单元长度的4倍;一个第一载波的传输时间单元与4个第二载波的传输时间单元在时域上对齐,与第一载波的传输时间单元0对应的4个第二载波的传输时间单元中包括第二载波的下行传输时间单元0、1和2,第一载波的HARQ定时的设置与现有技术中的一致,图5 中在第一载波的传输时间单元1传输第一载波的传输时间单元0的HARQ反馈信息,而第二载波的传输时间单元0的HARQ定时用于指示终端在第二载波的传输时间单元4传输传输时间单元0的HARQ反馈信息,并且终端会将传输时间单元4中的HARQ反馈信息对应到第一载波的传输时间单元1上;第二载波的传输时间单元1的HARQ定时用于指示终端在第二载波的传输时间单元6传输时间单元1的HARQ反馈信息,并且终端会将传输时间单元6中的HARQ反馈信息对应到第一载波的传输时间单元1上;第二载波的传输时间单元2的HARQ定时用于指示终端在第二载波的传输时间单元7传输传输时间单元2的HARQ反馈信息,并且终端会将传输时间单元7中的HARQ反馈信息对应到第一载波的传输时间单元1上。终端生成在第一载波的传输时间单元1的HARQ码本,第一载波和第二载波的时间窗大小都为1位bit,HARQ码本中所包括的第一载波的HARQ码本大小为1位bit,第二载波的HARQ码本大小为4倍第二载波的时间窗大小,假设第一载波的传输时间单元0的数据接收正确,那么第一载波的HARQ反馈信息为1,假设第二载波的传输时间单元0和1的数据接收正确,传输时间单元2的数据接收错误,那么第二载波的HARQ反馈信息为1100,将第一载波和第二载波的HARQ反馈信息进行级联得到的第一载波的传输时间单元1的HARQ码本为11100。
在图5所示的实施例中第二载波的HARQ码本大小是N倍第二载波的时间窗大小,而另一种第二载波的HARQ码本大小是M个第二载波的上行传输时间单元的时间窗大小,具体如下:
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,N个第二载波的传输时间单元中包括M个上行传输时间单元,N为大于1的正整数,M为正整数,n为自然数,M≤N,
配置的载波的HARQ定时包括第二载波的HARQ定时,用于指示终端在第二载波的M个上行传输时间单元中的至少一个上传输HARQ反馈信息;
终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,包括:
终端生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为M倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
本发明实施例中,基于如图5所示的分配配置的载波,第一载波和第二载波的时间窗大小都为1位bit,HARQ码本中所包括的第一载波的HARQ码本大小为1位bit,由于第二载波的传输时间单元4-7中包括3个上行传输时间单元(传输时间单元4、6和7),那么第二载波的HARQ码本大小为3倍第二载波的时间窗大小,假设第一载波的传输时间单元0的数据接收正确,那么第一载波的HARQ反馈信息为1,假设第二载波的传输时间单元0和1的数据接收正确,传输时间单元2的数据接收错误,那么第二载波的HARQ反馈信息为110,将第一载波和第二载波的HARQ反馈信息进行级联得到的第一载波的传输时间单元1的HARQ码本为1110。
上述实施例中描述的是第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍,下面具体说明第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍的情况。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,N个第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,N为大于1的正整数,n,m为自然数,
配置的载波的HARQ定时包括第二载波的传输时间单元n上的HARQ定时,用于指示终端在第一载波的传输时间单元m后的第k个传输时间单元上传输传输时间单元n的HARQ反馈信息;
终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,包括:
终端生成在第一载波的传输时间单元m后的第k个传输时间单元上进行HARQ反馈信息反馈的HARQ码本;其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/N倍的第二载波的时间窗大小,或等于第一载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
本发明实施例中,如图6所示,第二载波的传输时间单元长度为第一载波中的传输时间单元长度的2倍;一个第二载波的传输时间单元与2个第一载波的传输时间单元在时域上对齐,与第一载波的传输时间单元0和1对齐的第二载波的传输时间单元0为下行传输时间单元,第一载波的传输时间单元2和3对齐的第二载波的传输时间单元1为下行传输时间单元,第二载波的传输时间单元0的HARQ定时用于指示终端在第一载波的传输时间单元4传输第二载波的传输时间单元0的HARQ反馈信息,第二载波的传输时间单元1的HARQ定时用于指示终端在第一载波的传输时间单元5传输第二载波的传输时间单元1的HARQ反馈信息,由于第一载波的传输时间单元4和5需要反馈两个传输时间单元(第二载波的传输时间单元0和1)的HARQ反馈信息,那么当第二载波的时间窗大小为2位bit,HARQ码本中所包括的第二载波的HARQ码本大小为1/2个第二载波的时间窗大小,即第二载波的HARQ码本大小为1位bit,假设第二载波的传输时间单元0和1的数据接收正确,在第一载波的传输时间单元4和5上的第二载波的HARQ码本都为1,而第一载波的HARQ码本的生成方式与上述实施例中一致,而且第一载波的HARQ码本和HARQ码本级联得到第一载波的上行控制信道的HARQ码的方式也是采用级联的方式。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且N个第一载波的传输时间单元中包括M个上行传输时间单元,N为大于1的正整数,n,m为自然数,M≤N,
配置的载波的HARQ定时包括第二载波的HARQ定时,用于指示终端在第二载波的传输时间单元n上传输HARQ反馈信息;
终端根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,包括:
终端根据第二载波的HARQ定时,确定在第一载波上的M个传输时间单元之一传输需要在第二载波的传输时间单元n上传输HARQ反馈信息;
终端生成在第一载波上的M个传输时间单元之一的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/M倍的第二载波的时间窗大小,时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数。
本发明实施例中,如图7所示,第二载波的传输时间单元长度为第一载波中的传输时间单元长度的2倍;一个第二载波的传输时间单元与2个第一载波的传输时间单元在时域上对齐,与第一载波的传输时间单元0和1对齐的第二载波的传输时间单元0为下行传输时间单元,第一载波的传输时间单元2和3对齐的第二载波的传输时间单元1为下行传输时间单元,第一载波的传输时间单元4和5对齐的第二载波的传输时间单元2为上行传输时间单元,两个个第一载波的传输时间单元4和5中均为上行传输时间单元,第二载波的传输时间单元0的HARQ定时用于指示终端在第二载波的传输时间单元2传输第二载波的传输时间单元0的HARQ反馈信息,第二载波的传输时间单元1的HARQ定时用于指示终端在第二载波的传输时间单元2传输第二载波的传输时间单元1的HARQ反馈信息,第二载波的传输时间单元2需要反馈传输时间单元0和1的HARQ反馈信息,那么第二载波的时间窗大小可以为2为bit。第二载波的传输时间单元2中的HARQ反馈信息实际上是需要在第一载波上对应的传输时间单元4和5上传输的,可以采取先后及均分的原则,第二载波的传输时间单元0的HARQ反馈信息在第一载波的传输时间单元4上传输,第二载波的传输时间单元1的HARQ反馈信息在第一载波的传输时间单元5上传输。因此,HARQ码本中所包括的第二载波的HARQ码本大小为1/2个第二载波的时间窗大小,第二载波的HARQ码本大小为1位bit,假设第二载波的传输时间单元0的数据接收正确,第二载波的HARQ码本为1,而第一载波的HARQ码本的生成方式与上述实施例中一致,而且第一载波的HARQ码本和HARQ码本级联得到第一载波的上行控制信道的HARQ码的方式也是采用级联的方式,不做具体的说明。
或者,也可以将第二载波的传输时间单元0和1上的反馈信息全都在第一载波的传输时间单元4或者5进行反馈。
也即,1个第二载波传输时间单元与N个第一载波的传输时间单元对齐时,在所述N个第一载波的传输时间单元中第一个上行传输时间单元传输HARQ反馈信息,或者终端预先知道所述N个第一载波的传输时间单元的传输方向:其中,有N1个是上行传输时间单元,终端可以将第二载波的码本均分为N1份分别在所述N1个上行传输时间单元进行反馈。
应理解的是,半静态码本大小除了受载波数和时间窗大小影响外,还受码字数和CBG(code block group)个数相关。以上实施例都是假设单码字传输并且没有开启CBG反馈模式的情况。若某个载波上的时间窗内存在至少1个2码字传输且不采用混合自动重传请求-确认回答捆绑(HARQ-ACK bundling)方式,则半静态码本下该载波对应的反馈比特数 为还需在上述实施例基础上乘以2。当网络设备通过RRC信令为终端设备在某个载波上配置了CBG级传输和CBG反馈,且配置最大CBG个数为N时,半静态码本中该载波的HARQ-ACK信息比特数需要在上面得到的大小基础上乘以N。各TB对应位置的N比特中前M比特对应该TB的各CBG的HARQ-ACK信息,后N-M可以为默认的NACK。
除了上述实施例之外,终端还可以根据DAI信息生成HARQ码本进行详细说明,具体如下:
接入网设备根据至少两种传输时间单元长度中最短的传输时间单元长度,确定总DAI的值和累计DAI的值;
接入网设备将总DAI的值和累计DAI的值发送给终端,终端接收接入网设备发送的总DAI的值和累计DAI的值;
终端根据总DAI的值和累计DAI的值确定HARQ码本。
可选的,本发明的一些实施例中,多载波中包括的最长的传输时间单元长度为最短的传输时间单元长度的N倍,即N个最短的传输时间单元与一个最长的传输时间单元在时域上对齐,
接入网设备根据至少两种传输时间单元长度中最小的传输时间单元长度,确定总DAI的值和累计DAI的值,包括:
若多载波中第一载波上存在第一传输时间单元的头部与N个最短的传输时间单元中一个的头部在时域上对齐,且第一载波在所述第一传输时间单元持续的时间内被调度,则将第一载波计算入总DAI和累计DAI中。
本发明实施例中,如下表1,终端生成HARQ码本的具体方式如下:
载波0到载波2的传输时间单元长度为0.5ms,载波3到载波6的传输时间单元长度为0.25ms,载波7到载波10的传输时间单元长度为0.125ms,表1中显示与载波7到载波10的最小长度的传输时间单元0对齐的载波0到载波2中调度载波有载波0和载波2,载波3到载波6中调度载波有载波4和载波6,载波7到载波10中调度载波有载波8;与载波7到载波10的最小长度的传输时间单元1对齐的载波7到载波10中调度载波有载波7和载波9;与载波7到载波10的最小长度的传输时间单元2对齐的载波3到载波6中调度载波有载波3,与载波7到载波10的最小长度的传输时间单元2对齐的载波7到载波10中调度载波有载波8和载波10;与载波7到载波10的最小长度的传输时间单元4对齐的载波7到载波10中调度载波有载波8和载波9,终端根据接入网设备配置的表1的调度载波信息,接入网设备可以以最小传输时间单元0.125ms为统计单位,在第一个0.125ms传输时间单元时,与该子帧对齐的其它子帧中共有5个载波被调度,则该5个被调度的载波的总DAI的值为5,累计DAI的值为1、2、3、4或5,以载波编号从低到高计算。在二个0.125ms传输时间单元时,与该传输时间单元头部对齐的其它传输时间单元只有两个载波被调度,则总DAI的值为7,累计DAI的值为6或7;在第三个0.125ms传输时间单元时,与该传输时间单元头部对齐的其它传输时间单元只有3个载波被调度,则总DAI的值为10,累计DAI的值为8、9或10,在第四个0.125ms传输时间单元时,与该传输时间单元头部对齐的其它传输时间单元只有2个载波被调度,则总DAI的值为12,累计DAI的值为11 或12,得到的HARQ码本大小为12位bit,而根据每一个调度载波的传输时间单元中数据接收状况可以得到HARQ码本。
表1
Figure PCTCN2017108077-appb-000005
上述实施例中介绍了本发明中HARQ码本的生成方法,下面通过实施例对接入网设备和终端进行详细说明。
请参阅图8,本发明提供一种终端,包括:
接收模块801,用于接收接入网设备发送的第一信息,第一信息用于向终端指示接入网设备为终端配置的载波;配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等;
处理模块802,用于根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第一载波的传输时间单元长度为第二载波中的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波的传输时间单元在时域上对齐,N个第二载波的传输时间单元中包括传输时间单元m;其中,N为大于1的正整数,n和m 为自然数;
配置的载波的HARQ定时包括第二载波的传输时间单元m的HARQ定时,用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息;
处理模块802,具体用于生成在第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,N为大于1的正整数,n为自然数;
配置的载波的HARQ定时包括第二载波的HARQ定时,用于指示终端在第二载波的N个传输时间单元中的至少一个上传输HARQ反馈信息;
处理模块802,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述N个传输时间单元中的至少一个上传输的HARQ反馈信息;
处理模块802,还用于生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为N倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第一载波的传输时间单元长度为第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,N个第二载波的传输时间单元中包括M个上行传输时间单元,N为大于1的正整数,M为正整数,n为自然数,M≤N,
配置的载波的HARQ定时包括第二载波的HARQ定时,用于指示终端在第二载波的M个上行传输时间单元中的至少一个上传输HARQ反馈信息;
处理模块802,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述M个传输时间单元中的至少一个上传输的HARQ反馈信息;
处理模块802,还用于生成在第一载波上的传输时间单元n上传输的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为M倍的第二载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,N个第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,N为大于1的正整数,n,m为自然数,
配置的载波的HARQ定时包括第二载波的传输时间单元n上的HARQ定时,用于指示终端在第一载波的传输时间单元m后的第k个传输时间单元上传输传输时间单元n的HARQ反 馈信息;
处理模块802,具体用于生成在第一载波的传输时间单元后的第k个传输时间单元上进行HARQ反馈信息反馈的HARQ码本;其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/N倍的第二载波的时间窗大小,或等于第一载波的时间窗大小,时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系为:第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且N个第一载波的传输时间单元中包括M个上行传输时间单元,N为大于1的正整数,n,m为自然数,M≤N,
配置的载波的HARQ定时包括第二载波的HARQ定时,用于指示终端在第二载波的传输时间单元n上传输HARQ反馈信息;
处理模块802,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的所述M个传输时间单元之一传输需要在所述第二载波的传输时间单元n上传输HARQ反馈信息;
处理模块802,还用于生成在第一载波上的M个传输时间单元之一的HARQ码本,其中,HARQ码本中所包括的第二载波的HARQ码本大小为1/M倍的第二载波的时间窗大小,时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数。
可选的,本发明的一些实施例中,第一载波为主载波,第二载波为辅载波。
请参阅图9,本发明提供一种接入网设备,,包括:
配置模块901,用于为终端分配配置的载波;
生成模块902,用于根据分配生成第一信息,第一信息用于向终端指示接入网设备为终端配置的载波;配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等;
发送模块903,用于将第一信息发送至终端。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,包括:载波信息包括第一载波的传输时间单元长度为第二载波中的传输时间单元长度的N倍,一个第一载波的传输时间单元n与N个第二载波的传输时间单元在时域上对齐;其中,N为大于1的正整数,n为自然数。
可选的,本发明的一些实施例中,N个第二载波的传输时间单元中包括M个上行传输时间单元,M≤N。
可选的,本发明的一些实施例中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,包括:载波信息包括第二载波的传输时间单元长度为第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波传输时间单元n在时域上对齐,N为大于1的正整数,n为自然数。
可选的,本发明的一些实施例中,N个第一载波的传输时间单元中包括M个上行传输时间单元,M≤N。
可选的,本发明的一些实施例中,第一消息还用于指示第一载波的传输时间单元长度与第二载波的传输时间单元长度之间的关系。
可选的,本发明的一些实施例中,N个第二载波的传输时间单元中包括传输时间单元m,m为自然数,
配置模块901,还用于为终端配置第二载波上的传输时间单元m的HARQ定时,用于指示终端在第一载波的传输时间单元n后的第k个传输时间单元上传输传输时间单元m的HARQ反馈信息;
第一信息还用于指示第二载波上的传输时间单元m的HARQ定时。
可选的,本发明的一些实施例中,N个第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,m为自然数,
配置模块901,还用于为终端配置第二载波上的传输时间单元n的HARQ定时,用于指示终端在第一载波的传输时间单元m后的第k个传输时间单元上传输传输时间单元n的HARQ反馈信息;
第一信息还用于指示第二载波上的传输时间单元n的HARQ定时。
综上所述,在终端接入到接入网设备时,接入网设备的配置模块901为终端配置好载波,配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,并且生成模块902得到第一信息,通过发送模块903将第一信息通知终端,终端的接收模块801接收发送模块903发送的第一信息,终端的处理模块802根据接入网设备配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,在现有技术中由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
请参阅图10,本发明实施例提供一种终端1000,包括:
终端1000可以包括处理器1001、接收器1002及存储器1003,其中,存储器1003可以用于存储处理器1001执行的代码;
终端1000中的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还包括电源总线、控制总线和状态信号总线;
接收器1002,用于接收接入网设备发送的第一信息,第一信息用于向终端指示接入网设备为终端配置的载波;配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等;
处理器1001,用于根据配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本。
请参阅图11,本发明实施例提供一种接入网设备1100,包括:
接入网设备1100可以包括处理器1101、收发器1102及存储器1103,其中,存储器1103可以用于存储处理器1101执行的代码;
接入网设备1100中的各个组件通过总线系统1104耦合在一起,其中总线系统1104除包括数据总线之外,还包括电源总线、控制总线和状态信号总线;
处理器1101,用于为终端分配配置的载波;
处理器1101,还用于根据分配生成第一信息,配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和第二载波的HARQ反馈信息在第一载波上的上行控制信道进行反馈,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等;
收发器1102,用于将第一信息发送至终端。
本发明实施例中,在终端接入到接入网设备时,接入网设备1100的处理器1101为终端配置好载波,配置的载波包括第一载波和第二载波,第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在第一载波的上行控制信道上传输,其中,第一载波的传输时间单元长度与第二载波的传输时间单元长度不相等,并且得到第一信息,通过收发器1102将第一信息通知终端,终端1000的接收器1002接收接入网设备1100发送的第一信息,处理器1001根据接入网设备配置的载波的HARQ定时、第一载波的传输时间单元长度和第二载波的传输时间单元长度之间的关系,生成在第一载波的上行控制信道上传输的HARQ码本,在现有技术中由于第一载波和第二载波的传输时间单位长度不相等,终端生成的HARQ码本是错误的,本发明实施例可以使得终端正确的生成HARQ码本,不影响接入网设备和终端之间的数据传输。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外 部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(souble sata rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (36)

  1. 一种混合自动重传请求HARQ码本的生成方法,其特征在于,包括:
    终端接收接入网设备发送的第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
    所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本。
  2. 根据权利要求1所述的方法,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍;一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐,所述N个所述第二载波的传输时间单元中包括传输时间单元m;其中,N为大于1的正整数,n和m为自然数;
    所述配置的载波的HARQ定时包括所述第二载波的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
    所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
    所述终端生成在所述第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  3. 根据权利要求1或者2所述的方法,其特征在于,所述终端还根据预设的上限值,生成在所述第一载波的上行控制信道上传输的HARQ码本,所述HARQ码本的大小小于等于所述预设的上限值。
  4. 根据权利要求1-3所述的方法,其特征在于,所述终端还根据物理下行控制信道PDCCH监测周期,生成在所述第一载波的上行控制信道上传输的HARQ码本;
    所述终端生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
    所述终端生成在所述第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,与所述PDCCH监测周期的比值,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  5. 根据权利要求2-4任一所述的方法,其特征在于,所述第二载波的时间窗根据所述第二载波的传输时间单元配置。
  6. 根据权利要求1所述的方法,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述 第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N为大于1的正整数,n为自然数;
    所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述N个传输时间单元中的至少一个上传输HARQ反馈信息;
    所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
    所述终端根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述N个传输时间单元中的至少一个上传输的HARQ反馈信息;
    所述终端生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  7. 根据权利要求1所述的方法,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,所述M为正整数,n为自然数,所述M≤N,
    所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述M个上行传输时间单元中的至少一个上传输HARQ反馈信息;
    所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
    所述终端根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述M个传输时间单元中的至少一个上传输的HARQ反馈信息;
    所述终端生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为M倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  8. 根据权利要求1所述的方法,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述N为大于1的正整数,n,m为自然数,
    所述配置的载波的HARQ定时包括所述第二载波的传输时间单元n上的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
    所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述 第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
    所述终端生成在所述第一载波的传输时间单元m后的第k个传输时间单元上进行HARQ反馈信息反馈的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/N倍的所述第二载波的时间窗大小,或等于所述第一载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  9. 根据权利要求1所述的方法,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,n,m为自然数,所述M≤N,
    所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的传输时间单元n上传输HARQ反馈信息;
    所述终端根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本,包括:
    所述终端根据所述第二载波的HARQ定时,确定在所述第一载波上的所述M个传输时间单元之一传输需要在所述第二载波的传输时间单元n上传输HARQ反馈信息;
    所述终端生成在所述第一载波上的所述M个传输时间单元之一的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/M倍的所述第二载波的时间窗大小,所述时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数。
  10. 根据权利要求1至9中任一所述的方法,其特征在于,所述第一载波为主载波,所述第二载波为辅载波。
  11. 一种混合自动重传请求HARQ码本的生成方法,其特征在于,包括:
    接入网设备为终端分配配置的载波;
    所述接入网设备根据所述分配生成第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
    所述接入网设备并将所述第一信息发送至所述终端。
  12. 根据权利要求11所述的方法,其特征在于,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍,一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐;其中,N为大于1的正整数,n为自然数。
  13. 根据权利要求12所述的方法,其特征在于,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
  14. 根据权利要求11所述的方法,其特征在于,所述第一载波的传输时间单元长度与 所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波传输时间单元n在时域上对齐,所述N为大于1的正整数,n为自然数。
  15. 根据权利要求14所述的方法,其特征在于,所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
  16. 根据权利要求11至15任一所述的方法,其特征在于,所述第一信息还用于指示所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度之间的关系。
  17. 根据权利要求12所述的方法,其特征在于,所述N个所述第二载波的传输时间单元中包括传输时间单元m,所述m为自然数;所述方法还包括:
    所述接入网设备为所述终端配置所述第二载波上的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
    所述第一信息还用于指示所述第二载波上的传输时间单元m的HARQ定时。
  18. 根据权利要求14所述的方法,其特征在于,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述m为自然数;所述方法还包括:
    所述接入网设备为所述终端配置所述第二载波上的传输时间单元n的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
    所述第一信息还用于指示所述第二载波上的传输时间单元n的HARQ定时。
  19. 一种终端,其特征在于,包括:
    接收模块,用于接收接入网设备发送的第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
    处理模块,用于根据所述配置的载波的HARQ定时、所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系,生成在所述第一载波的上行控制信道上传输的HARQ码本。
  20. 根据权利要求19所述的终端,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍;一个所述第一载波的传输时间单元n与N个所述第二载波的传输时间单元在时域上对齐,所述N个所述第二载波的传输时间单元中包括传输时间单元m;其中,N为大于1的正整数,n和m为自然数;
    所述配置的载波的HARQ定时包括所述第二载波的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
    所述处理模块,具体用于生成在所述第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N 倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  21. 根据权利要求19或者20所述的终端,其特征在于,所述处理模块,还用于根据根据预设的上限值,生成在所述第一载波的上行控制信道上传输的HARQ码本,所述HARQ码本的大小小于等于所述预设的上限值。
  22. 根据权利要求19-21任一所述的终端,其特征在于,所述处理模块,还用于根据物理下行控制信道PDCCH监测周期,生成在所述第一载波的上行控制信道上传输的HARQ码本;
    所述处理模块,具体用于生成在所述第一载波的传输时间单元n后的第k个传输时间单元上传输的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,与所述PDCCH监测周期的比值,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  23. 根据权利要求20-22任一所述的终端,其特征在于,所述第二载波的时间窗根据所述第二载波的传输时间单元配置。
  24. 根据权利要求19所述的终端,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N为大于1的正整数,n为自然数;
    所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述N个传输时间单元中的至少一个上传输HARQ反馈信息;
    所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述N个传输时间单元中的至少一个上传输的HARQ反馈信息;
    所述处理模块,还用于生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为N倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  25. 根据权利要求19所述的终端,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第一载波的传输时间单元长度为所述第二载波的传输时间单元长度的N倍;一个第一载波的传输时间单元n与N个第二载波传输的时间单元在时域对齐,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,所述M为正整数,n为自然数,所述M≤N,
    所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的所述M个上行传输时间单元中的至少一个上传输HARQ反馈信息;
    所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的传输时间单元n上传输需要在所述M个传输时间单元中的至少一个上传输的HARQ反馈信息;
    所述处理模块,还用于生成在所述第一载波上的传输时间单元n上传输的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为M倍的所述第二载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  26. 根据权利要求19所述的终端,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述N为大于1的正整数,n,m为自然数,
    所述配置的载波的HARQ定时包括所述第二载波的传输时间单元n上的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
    所述处理模块,具体用于生成在所述第一载波的传输时间单元m后的第k个传输时间单元上进行HARQ反馈信息反馈的HARQ码本;其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/N倍的所述第二载波的时间窗大小,或等于所述第一载波的时间窗大小,所述时间窗大小为需要在一个上行传输时间单元上传输HARQ反馈信息的下行传输时间单元的个数。
  27. 根据权利要求19所述的终端,其特征在于,所述第一载波的传输时间单元长度和所述第二载波的传输时间单元长度之间的关系为:所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波的传输时间单元n在时域上对齐,且所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述N为大于1的正整数,n,m为自然数,所述M≤N,
    所述配置的载波的HARQ定时包括所述第二载波的HARQ定时,用于指示所述终端在所述第二载波的传输时间单元n上传输HARQ反馈信息;
    所述处理模块,具体用于根据所述第二载波的HARQ定时,确定在所述第一载波上的所述M个传输时间单元之一传输需要在所述第二载波的传输时间单元n上传输HARQ反馈信息;
    所述处理模块,还用于生成在所述第一载波上的所述M个传输时间单元之一的HARQ码本,其中,所述HARQ码本中所包括的所述第二载波的HARQ码本大小为1/M倍的所述第二载波的时间窗大小,所述时间窗大小为一个上行传输时间单元需要反馈的下行传输时间单元的个数。
  28. 根据权利要求19至27中任一所述的终端,其特征在于,所述第一载波为主载波,所述第二载波为辅载波。
  29. 一种接入网设备,其特征在于,包括:
    配置模块,用于为终端分配配置的载波;
    生成模块,用于根据所述分配生成第一信息,所述第一信息用于向所述终端指示所述接入网设备为所述终端配置的载波;所述配置的载波包括第一载波和第二载波,所述第一载波的HARQ反馈信息和所述第二载波的HARQ反馈信息在所述第一载波的上行控制信道上传输,其中,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等;
    发送模块,用于将所述第一信息发送至所述终端。
  30. 根据权利要求29所述的接入网设备,其特征在于,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第一载波的传输时间单元长度为所述第二载波中的传输时间单元长度的N倍,一个所述第一载波的传 输时间单元n与N个所述第二载波的传输时间单元在时域上对齐;其中,N为大于1的正整数,n为自然数。
  31. 根据权利要求30所述的接入网设备,其特征在于,所述N个第二载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
  32. 根据权利要求29所述的接入网设备,其特征在于,所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度不相等,包括:所述载波信息包括所述第二载波的传输时间单元长度为所述第一载波的传输时间单元长度的N倍,N个第一载波的传输时间单元与一个第二载波传输时间单元n在时域上对齐,所述N为大于1的正整数,n为自然数。
  33. 根据权利要求32所述的接入网设备,其特征在于,所述N个所述第一载波的传输时间单元中包括M个上行传输时间单元,所述M≤N。
  34. 根据权利要求29至33中任一所述的接入网设备,其特征在于,所述第一消息还用于指示所述第一载波的传输时间单元长度与所述第二载波的传输时间单元长度之间的关系。
  35. 根据权利要求34所述的接入网设备,其特征在于,所述N个所述第二载波的传输时间单元中包括传输时间单元m,所述m为自然数,
    所述配置模块,还用于为所述终端配置所述第二载波上的传输时间单元m的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元n后的第k个传输时间单元上传输所述传输时间单元m的HARQ反馈信息;
    所述第一信息还用于指示所述第二载波上的传输时间单元m的HARQ定时。
  36. 根据权利要求32所述的接入网设备,其特征在于,所述N个所述第一载波的传输时间单元中在时域上的最后一个传输时间单元为传输时间单元m,所述m为自然数,
    所述配置模块,还用于为所述终端配置所述第二载波上的传输时间单元n的HARQ定时,用于指示所述终端在所述第一载波的传输时间单元m后的第k个传输时间单元上传输所述传输时间单元n的HARQ反馈信息;
    所述第一信息还用于指示所述第二载波上的传输时间单元n的HARQ定时。
PCT/CN2017/108077 2016-11-04 2017-10-27 混合自动重传请求harq码本的生成方法及相关设备 WO2018082506A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17867444.6A EP3531605B1 (en) 2016-11-04 2017-10-27 Method for generating hybrid automatic repeat request (harq) codebook and related device
KR1020197015353A KR20190073511A (ko) 2016-11-04 2017-10-27 하이브리드 자동 재송 요구(harq) 코드북 생성 방법 및 관련 장치
US16/400,702 US10880050B2 (en) 2016-11-04 2019-05-01 Hybrid automatic repeat request HARQ codebook generation method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610981534.6 2016-11-04
CN201610981534.6A CN108023719B (zh) 2016-11-04 2016-11-04 混合自动重传请求harq码本的生成方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/400,702 Continuation US10880050B2 (en) 2016-11-04 2019-05-01 Hybrid automatic repeat request HARQ codebook generation method and related device

Publications (1)

Publication Number Publication Date
WO2018082506A1 true WO2018082506A1 (zh) 2018-05-11

Family

ID=62075668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108077 WO2018082506A1 (zh) 2016-11-04 2017-10-27 混合自动重传请求harq码本的生成方法及相关设备

Country Status (5)

Country Link
US (1) US10880050B2 (zh)
EP (1) EP3531605B1 (zh)
KR (1) KR20190073511A (zh)
CN (1) CN108023719B (zh)
WO (1) WO2018082506A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072632A1 (en) * 2018-10-02 2020-04-09 Qualcomm Incorporated Time varying code block group granularity for hybrid automatic receipt request processes in new radio-unlicensed operations
WO2020155097A1 (en) * 2019-02-01 2020-08-06 Qualcomm Incorporated Harq process sharing for carrier aggregation
EP3873016A4 (en) * 2018-11-23 2021-12-22 Huawei Technologies Co., Ltd. COMMUNICATION PROCEDURE, DEVICE, DEVICE AND SYSTEM AND STORAGE MEDIUM
WO2022237539A1 (zh) * 2021-05-11 2022-11-17 大唐移动通信设备有限公司 反馈处理方法、发送方法、反馈方法、设备和存储介质

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280187B2 (ja) * 2017-01-04 2023-05-23 アイディーエーシー ホールディングス インコーポレイテッド 無線システムにおける受信機フィードバック
CN116405165A (zh) 2017-01-09 2023-07-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
CN108289015B (zh) * 2017-01-09 2023-04-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
US20180287752A1 (en) * 2017-03-29 2018-10-04 Kt Corporation Method and apparatus for configuring transport block to transmit data
CN110519019B (zh) * 2018-05-21 2020-07-21 华为技术有限公司 一种发送、接收码本信息的方法及装置
CN110557231B (zh) * 2018-06-04 2021-02-12 华为技术有限公司 传输信息的方法和通信设备
CN110855401A (zh) * 2018-08-20 2020-02-28 华为技术有限公司 一种harq反馈方法和装置
CN111193576B (zh) * 2018-11-14 2021-08-13 华为技术有限公司 发送码本的方法和装置以及接收码本的方法和装置
CN111435881B (zh) * 2019-01-11 2021-08-20 华为技术有限公司 用于无线通信的方法和通信装置
KR20210149843A (ko) 2019-04-30 2021-12-09 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Harq 코드북 결정 방법, 단말 장치 및 네트워크 장치
EP3934143A4 (en) * 2019-04-30 2022-03-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR DETERMINING A HARQ CODEBOOK
EP3961946A4 (en) * 2019-09-30 2022-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. FEEDBACK INFORMATION PROCESSING METHOD AND APPARATUS
US20220248436A1 (en) * 2019-11-18 2022-08-04 Samsung Electronics Co., Ltd. Method and device for transmitting harq-ack
CN113271180B (zh) * 2020-02-14 2023-05-23 华为技术有限公司 混合自动重传请求harq位图信息的反馈方法及相关设备
CN113573256B (zh) * 2020-04-28 2022-08-19 维沃移动通信有限公司 信息反馈、资源调度方法、终端及网络设备
WO2022076134A1 (en) * 2020-10-08 2022-04-14 Apple Inc. Harq transmission in new radio (nr) based on subcarrier spacing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051779A1 (zh) * 2008-11-05 2010-05-14 华为技术有限公司 编码方法和装置
US20130021898A1 (en) * 2010-04-27 2013-01-24 Lg Electronics Inc. Method and apparatus for uplink multiple input multiple output (mimo) transmission
CN103312468A (zh) * 2012-03-16 2013-09-18 英特尔公司 Harq/ack电码本大小确定
CN104396174A (zh) * 2012-07-27 2015-03-04 英特尔公司 用于带间时分双工(tdd)载波聚合(ca)的混合自动重传请求确认(harq-ack)码本生成
CN104823499A (zh) * 2012-08-03 2015-08-05 诺基亚通信公司 方法和装置
CN105850175A (zh) * 2014-01-15 2016-08-10 夏普株式会社 终端装置、基站装置、集成电路以及通信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771550B1 (ko) * 2010-10-15 2017-08-29 주식회사 골드피크이노베이션즈 Ack/nack 신호 송수신 방법 및 장치
WO2013043024A1 (ko) * 2011-09-23 2013-03-28 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN105991246B (zh) * 2015-02-10 2019-04-02 中国移动通信集团公司 一种数据重传方法及装置
CN107332646B (zh) * 2016-04-29 2021-05-11 中兴通讯股份有限公司 Harq-ack的发送方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051779A1 (zh) * 2008-11-05 2010-05-14 华为技术有限公司 编码方法和装置
US20130021898A1 (en) * 2010-04-27 2013-01-24 Lg Electronics Inc. Method and apparatus for uplink multiple input multiple output (mimo) transmission
CN103312468A (zh) * 2012-03-16 2013-09-18 英特尔公司 Harq/ack电码本大小确定
CN104396174A (zh) * 2012-07-27 2015-03-04 英特尔公司 用于带间时分双工(tdd)载波聚合(ca)的混合自动重传请求确认(harq-ack)码本生成
CN104823499A (zh) * 2012-08-03 2015-08-05 诺基亚通信公司 方法和装置
CN105850175A (zh) * 2014-01-15 2016-08-10 夏普株式会社 终端装置、基站装置、集成电路以及通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531605A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020072632A1 (en) * 2018-10-02 2020-04-09 Qualcomm Incorporated Time varying code block group granularity for hybrid automatic receipt request processes in new radio-unlicensed operations
US11483095B2 (en) 2018-10-02 2022-10-25 Qualcomm Incorporated Time varying code block group granularity for hybrid automatic receipt request processes in new radio-unlicensed operations
EP3873016A4 (en) * 2018-11-23 2021-12-22 Huawei Technologies Co., Ltd. COMMUNICATION PROCEDURE, DEVICE, DEVICE AND SYSTEM AND STORAGE MEDIUM
WO2020155097A1 (en) * 2019-02-01 2020-08-06 Qualcomm Incorporated Harq process sharing for carrier aggregation
WO2022237539A1 (zh) * 2021-05-11 2022-11-17 大唐移动通信设备有限公司 反馈处理方法、发送方法、反馈方法、设备和存储介质

Also Published As

Publication number Publication date
US20190260515A1 (en) 2019-08-22
EP3531605A1 (en) 2019-08-28
EP3531605A4 (en) 2019-10-23
EP3531605B1 (en) 2021-07-07
CN108023719A (zh) 2018-05-11
US10880050B2 (en) 2020-12-29
KR20190073511A (ko) 2019-06-26
CN108023719B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2018082506A1 (zh) 混合自动重传请求harq码本的生成方法及相关设备
US11956174B2 (en) Method and apparatus for transmitting and receiving radio signals in a wireless communication system
US10595166B2 (en) Systems and methods for processing time reduction signaling
US10834763B2 (en) Method and apparatus for handling overlap of different channels in wireless communication system
CN111510252B (zh) 在无线通信系统中发送ack/nack的方法和使用该方法的设备
US10581559B2 (en) User Equipment, base stations and methods
US11818694B2 (en) Terminal and communication method
JP6174810B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2017157181A1 (zh) 一种资源调度和分配的方法和装置
US20180048447A1 (en) User equipments, base stations and methods
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
JP2018508145A (ja) 6つ以上のキャリアのキャリアアグリゲーションの場合の改良されたharqフィードバックメカニズム
US8730893B2 (en) Group resource allocation method in broadband wireless access system and apparatus therefor
US20170222763A1 (en) Method for managing soft buffer in wireless communication system and apparatus for performing same
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
RU2644417C2 (ru) Способ и устройство для передачи данных при агрегации спектра
WO2019109687A1 (zh) 一种ack/nack传输方法及对应装置
WO2018028123A1 (zh) 数据传输方法、数据传输装置和通信系统
JP6532912B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
CN109983818B (zh) 用于发送/接收调度命令的方法和设备
KR20200037344A (ko) 무선 통신에서의 리소스 할당을 위한 방법 및 장치
CN109275192B (zh) 用于传输信息的方法和设备
KR102150413B1 (ko) 주파수분할 및 시분할 이중화 통신 시스템에서 물리채널 송수신의 제어 방법 및 장치
JP2019176492A (ja) キャリアアグリゲーションを使用するharqフィードバック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867444

Country of ref document: EP

Effective date: 20190520

ENP Entry into the national phase

Ref document number: 20197015353

Country of ref document: KR

Kind code of ref document: A